WO2013146721A1 - 冷却液組成物 - Google Patents

冷却液組成物 Download PDF

Info

Publication number
WO2013146721A1
WO2013146721A1 PCT/JP2013/058663 JP2013058663W WO2013146721A1 WO 2013146721 A1 WO2013146721 A1 WO 2013146721A1 JP 2013058663 W JP2013058663 W JP 2013058663W WO 2013146721 A1 WO2013146721 A1 WO 2013146721A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
weight
coolant composition
carbon atoms
salt
Prior art date
Application number
PCT/JP2013/058663
Other languages
English (en)
French (fr)
Inventor
伸行 加賀
純一朗 木村
Original Assignee
シーシーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーシーアイ株式会社 filed Critical シーシーアイ株式会社
Priority to US14/387,793 priority Critical patent/US9382465B2/en
Priority to EP13768361.1A priority patent/EP2832814B1/en
Priority to CN201380014262.7A priority patent/CN104185669B/zh
Publication of WO2013146721A1 publication Critical patent/WO2013146721A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/124Carboxylic acids

Definitions

  • the present invention relates to a coolant composition based on glycols.
  • metals such as aluminum, aluminum alloys, cast iron, steel, brass, solder, and copper have been used for cooling systems of internal combustion engines of engines.
  • aluminum or aluminum alloys have been frequently used for cooling system parts such as internal combustion engines, electric cars, and hybrid electric cars.
  • a cooling liquid composition containing a corrosion inhibitor such as phosphate, borate, silicate, or organic acid is applied to the cooling system.
  • a corrosion inhibitor such as phosphate, borate, silicate, or organic acid
  • an antifreeze containing glycols as a main component and not containing borate, silicate, amines, and nitrite in the components. And comprising an aromatic monobasic acid, molybdate and / or tungstate, and an aliphatic dibasic acid, aliphatic monobasic acid, phosphoric acid, triazole, thiazole, and phosphonic acid A coolant characterized by the following is known.
  • the coolant composition mainly composed of glycols, (a) 0%. At least one selected from 1 to 10% by weight of an aliphatic monobasic acid or salt thereof; and (b) from 0.1 to 10% by weight of an aliphatic dibasic acid or salt thereof. At least one selected from the group consisting of (c) 0.1 to 10% by weight of an aromatic monobasic acid or a salt thereof, and (d) 0. At least one selected from 1 to 1% by weight of nitrite and (e) 0.01 to 1.0% by weight of 2-phosphonobutane-1,2,4tricarboxylic acid, or a salt thereof. And (f) 0.0001 to 0.1% by weight of a strontium compound, a magnesium compound, and at least one selected from calcium compounds, a coolant composition is known. is there.
  • the precipitate was formed when diluted with hard water.
  • the generation of the precipitate not only reduces the corrosion prevention function of the cooling liquid, but may cause a situation in which the generated precipitate accumulates in the circulation path of the cooling system and closes the cooling system.
  • borate is corrosive to aluminum or aluminum alloy, and silicate is inferior in stability in the liquid, and easily changes when the temperature or pH changes, or when other salts coexist. There was a problem that it was easily gelled and separated, thereby reducing the corrosion prevention function.
  • metal corrosion inhibitors effective for rust prevention of metals, particularly aluminum or aluminum alloys, have various problems in use, and are excellent in corrosion against aluminum or aluminum alloys. It has been desired to develop a corrosion inhibitor exhibiting preventive properties.
  • the cooling liquid composition is diluted with water and filled in the cooling system, but air is slightly dissolved in the diluted cooling water. For this reason, when a pressure difference is generated in the process in which the diluted cooling water circulates in the cooling system, bubbles are generated due to this, and so-called cavitation damage occurs in which the metal surface is eroded by the bubbles. Bubbles causing cavitation damage were also generated by vibration.
  • the coolant composition that suppresses cavitation damage includes adipic acid, benzoic acid, and C9 to C12 aliphatic dibasic acids.
  • An organic acid component comprising at least one or a salt thereof, a molybdate, and a corrosion-resistant additive comprising at least one of mercaptobenzothiazole, benzotriazole, tolyltriazole, nitrite, nitrate, and silicate;
  • Proposals have been made to include a buffer component containing at least one sodium salt of borate or phosphate and a freezing point depressant.
  • p-toluyl which is mainly composed of glycols, is selected from aliphatic dibasic acids having 6 to 12 carbon atoms or alkali metal salts thereof.
  • a coolant containing an acid or an alkali metal salt thereof has been known, the lubricity of the mechanical seal of the water pump is not good, and squeal may occur.
  • Patent Document 5 discloses a cooling system for an internal combustion engine or the like that uses the coolant by employing deionized water obtained by separating and removing corrosive ions and scale-forming ions in the coolant containing water.
  • the corrosion resistance of a metal is improved and the formation of a scale is suppressed to improve the lubricity of a mechanical seal of a water pump.
  • this cooling liquid composition has improved lubricity by suppressing the formation of deposits, it has not improved the lubricating performance of the cooling liquid itself.
  • a coolant based on glycols (A) 0.1 to 8% by weight of a fatty acid dicarboxylic acid having 8 to 18 carbon atoms or an alkali metal salt thereof (B) 0.1 to 10% by weight of an alkylbenzoic acid having 7 to 18 carbon atoms or an alkali metal salt thereof (C) A coolant composition containing 0.1 to 5% by weight of an aliphatic monocarboxylic acid having 6 to 18 carbon atoms or a salt thereof. 2. The coolant composition according to claim 1, wherein the aliphatic dicarboxylic acid is sebacic acid. 3. The coolant composition according to claim 1 or 2, wherein the alkylbenzoic acid is p-toluic acid. 4). The coolant composition according to any one of claims 1 to 3, which is free from amine, silicate, borate, phosphate and nitrite.
  • the cooling liquid composition in the present invention is a so-called concentrate for use by diluting with water or the like at the time of use, and dilution in a state used as a cooling liquid obtained by diluting the concentrate with water or the like. It is a composition including any of the product.
  • glycols in the present invention include one or more of ethylene glycol, propylene glycol, 1,3-butylene glycol, hexylene glycol, diethylene glycol, glycerin, etc. Among them, ethylene glycol or propylene glycol is particularly preferable.
  • (C8-C18 fatty acid dicarboxylic acid or alkali metal salt thereof) As the fatty acid dicarboxylic acid having 8 to 18 carbon atoms or the alkali metal salt thereof, the component (a) contained in the composition of the present invention, that is, the aliphatic dicarboxylic acid, or the alkali metal salt or ammonium salt thereof, It has excellent corrosion resistance against iron and aluminum-based metals. Also, by combining one or more mixtures selected from the component (a) with the following components (b) and (c), an excellent effect of suppressing cavitation damage to cast iron and steel is exhibited. Will come to be.
  • Aliphatic dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, piperic acid, suberic acid, azelaic acid, sebacic acid, undecane disuccinic acid, dodecane disuccinic acid, brassic acid, and taptic acid, or These alkali metal salts, ammonium salts and the like can be used alone or in combination of two or more. Among these, suberic acid, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid are more preferable in terms of excellent performance.
  • the component (a) is contained in the coolant composition in the range of 0.1 to 8% by weight.
  • content of the component (a) is less than 0.1% by weight, corrosion resistance to iron and aluminum-based metals and sufficient suppression of cavitation damage to cast iron and steel cannot be expected, and 8.0% by weight. In the case where the amount is larger than the above range, it is not economical because an effect exceeding 8.0% by weight cannot be obtained.
  • alkyl benzoic acid or alkali metal salt thereof (C7-18 alkyl benzoic acid or alkali metal salt thereof)
  • the alkyl benzoic acid having 7 to 18 carbon atoms or its alkali metal salt those having excellent corrosion resistance against iron and aluminum-based metals are preferably used. Further, by combining one or more mixtures selected from the component (b), the component (a) and the component (c) below, an excellent cavitation damage suppressing effect on cast iron and steel can be obtained. It comes to be demonstrated.
  • alkyl benzoic acid having 7 to 18 carbon atoms or an alkali metal salt thereof examples include benzoic acids such as benzoic acid, nitrobenzoic acid and hydroxybenzoic acid, p-toluic acid, p-ethylbenzoic acid, p-propylbenzoic acid, p Alkyl benzoic acids such as isopropyl benzoic acid and p-tert butyl benzoic acid, alkoxy benzoic acids represented by the general formula RO—C 6 H 4 —COOH (where R is an alkyl group of C 1 to C 5 ), general formula R Cinnamic acid, alkylcinnamic acid, alkoxycinnamic acid represented by —C 6 H 4 —CH ⁇ COOH (R is an alkyl or alkoxy group of C 1 to C 5 ), or an alkali metal salt thereof, ammonium A salt etc.
  • benzoic acids such as benzoic acid, nitrobenzoic acid and hydroxy
  • benzoic acid, p-toluic acid, and p-tertbutylbenzoic acid are excellent in the corrosion prevention performance of aluminum or aluminum alloy, and it is desirable that at least one of these be included.
  • the component (b) is included in the coolant composition in the range of 0.1 to 10% by weight.
  • the content of the component (b) is less than 0.1% by weight, it cannot be expected to have a corrosion inhibiting property against iron and aluminum-based metals and a sufficient suppression effect of cavitation damage to cast iron and steel. If the amount is too large, an effect exceeding 10% by weight cannot be obtained, which is uneconomical.
  • C6-C18 aliphatic monocarboxylic acid or salt thereof (C) aliphatic monocarboxylic acids having 6 to 18 carbon atoms or salts thereof include pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, valuloic acid, 2-methylheptanoic acid, nonanoic acid, 4-methyloctanoic acid, 3,5,5-trimethylhexanoic acid, decanoic acid, isodecanoic acid, neodecanoic acid, 4-ethyloctanoic acid, 4-methylnonanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, isotridecanoic acid, myristic acid , Isomyristic acid, palmitic acid, isopalmitic acid, oleic acid, linoleic acid, linolenic acid,
  • the aliphatic monocarboxylic acid having 6 to 18 carbon atoms or a salt thereof is contained in the coolant composition in the range of 0.1 to 5% by weight.
  • the content of an aliphatic monocarboxylic acid having 6 to 18 carbon atoms or a salt thereof is less than 0.1% by weight, sufficient anticorrosion performance for aluminum and iron-based metal, and sufficient cavitation damage suppression effect for iron-based metal
  • the amount exceeds 5% by weight there is no effect corresponding to the amount exceeding, and this is uneconomical.
  • Nitrite forms a film on the surface of metals, particularly iron, in diesel engines. This film prevents erosion caused by air bubbles and reacts with amine salts, although it is an extremely effective component against cavitation. It is also known to generate nitrosamine which is a carcinogenic substance, and generation of nitrosamine can be prevented by not using nitrite.
  • molybdates, tungstates, triazoles, and thiazoles can be employed in addition to the antifoaming agent and the colorant.
  • the pH is adjusted using a normal alkali substance, preferably a hydroxide of an alkali metal salt such as sodium or potassium.
  • the pH adjustment range is 6.5 to 9.0, preferably 7.0 to 9.0.
  • An antifoaming agent can be added to the cooling liquid.
  • triazoles examples include benzotriazole, tolyltriazole, 4-phenyl-1,2,3-triazole, 2-naphthotriazole, 4-nitrobenzotriazole, and salts thereof. These may be used alone or in combination of two or more.
  • the amount of triazole added is 0.01 to 3% by weight, preferably 0.05 to 1% by weight. If the added amount of triazoles is less than 0.01% by weight, the anticorrosion performance cannot be exhibited especially for copper-based metals, and even if more than 3% by weight is added, the further anticorrosive effect is changed. Since there is no, it becomes useless.
  • thiazoles examples include mercaptobenzothiazole and salts thereof.
  • Thiazoles may be added in a trace amount, and are added in the range of 0.01 to 2% by weight, preferably 0.05 to 1% by weight. However, when the addition amount is less than 0.01% by weight, a predetermined anticorrosion performance particularly for copper-based metals cannot be obtained, and even when more than 2% by weight is added, no further change is observed in the anticorrosion effect. So it will be useless.
  • Example 1 The effects of the present invention will be shown based on examples and comparative examples.
  • the components and test results of the compositions used in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1 below.
  • Friction coefficient A vertical load of 30 N was applied to a mechanical seal made of SiC, and the rotational torque between the seals at a rotation speed of 200 rpm in a sample liquid at 100 ° C. was measured to calculate the friction coefficient.
  • Cavitation Test Using the apparatus shown in FIG. 1, a cavitation breakage prevention performance test was performed by the magnetostrictive vibration method under the conditions shown in Table 2.
  • Examples 1 and 2 and Comparative Examples 1 and 2 both show the same pH value, according to Examples 1 and 2, the friction coefficient is low, and when this is used as a coolant, a circulation pump is used. It can be confirmed that it has excellent lubricity such as mechanical seals.
  • Comparative Example 1 is an example not containing the component (b) in the present invention. According to this example, it can be seen that the result of the cavitation test is particularly bad.
  • Comparative Example 2 which does not contain the component (c) of the present invention, the friction coefficient is as high as 5.5 ⁇ 10 ⁇ 5 , so it is clear that the lubricity is inferior to that of the Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

 グリコール類を基材とする冷却液組成物であって、 (a)炭素数8~18の脂肪酸ジカルボン酸又はそのアルカリ金属塩を0.1~8重量%、(b)炭素数7~18のアルキル安息香酸又はそのアルカリ金属塩を0.1~10重量%、(c)炭素数6~18の脂肪族モノカルボン酸又はその塩を0.1~5重量%を含有する冷却液組成物を提供する。

Description

冷却液組成物
 本発明は、グリコール類を基材とする冷却液組成物に関する。
 従来より、エンジンの内燃機関の冷却系統等には、アルミニウム、アルミニウム合金、鋳鉄、鋼、黄銅、はんだ、銅等の金属が使用されている。特に近年、自動車車体の軽量化を目的として、内燃機関や電気自動車、ハイブリッド電気自動車等の冷却系統部品にはアルミニウム又はアルミニウム合金が多用されるに至っている。
 これらの金属は、水あるいは空気との接触により腐食を生じる。このため、これらの金属の腐食を防止するため、冷却系統には、リン酸塩、ホウ酸塩、ケイ酸塩、有機酸等の腐食防止剤を含む冷却液組成物が適用されている。
 このような組成物の例としては、特許文献1に記載されているように、グリコール類を主成分とし、成分中にホウ酸塩,ケイ酸塩,アミン類,及び亜硝酸塩を含まない不凍液であって、芳香族一塩基酸と,モリブデン酸塩及び/又はタングステン酸塩と,脂肪族二塩基酸,脂肪族一塩基酸,リン酸類,トリアゾール類、チアゾール類,及びホスホン酸類を含んでなることを特徴とする冷却液が公知である。
 また、特許文献2に記載されているように、グリコール類を主成分とする冷却液組成物において、(a)0 .1~10 重量%の脂肪族1塩基酸、又はその塩の中から選ばれた少なくとも1種と、(b)0.1~10重量%の脂肪族2塩基酸、又はその塩の中から選ばれた少なくとも1種と、(c)0.1~10重量%の芳香族1塩基酸、又はその塩の中から選ばれた少なくとも1種と、(d)0 .1~1重量%の亜硝酸塩の少なくとも1種と、(e)0.01~1.0重量%の2-ホスホノブタン-1,2,4トリカルボン酸、又はその塩の中から選ばれる少なくとも1種と、(f)0.0001~0.1重量%のストロンチウム化合物、マグネシウム化合物、及びカルシウム化合物の中から選ばれる少なくとも1種と、を含有することを特徴とする、冷却液組成物が公知である。
 ところが、リン酸塩は、硬水成分と反応して沈殿を生成することから、硬水で希釈した場合には、沈殿を生じていた。沈殿物の生成は、冷却液の腐食防止機能を低下させるだけでなく、生成した沈殿物が冷却系統の循環路に堆積し、冷却系統を閉塞するという事態を引き起こす恐れがあった。
 一方、ホウ酸塩は、アルミニウム又はアルミニウム合金に対して腐食性を有し、ケイ酸塩は、液中の安定性に劣り、温度やpHが変化した場合、あるいは他の塩類が共存すると容易にゲル化して分離し易く、これにより腐食防止機能が低下するという問題があった。
 このように金属、特にはアルミニウム又はアルミニウム合金の防錆に有効な金属腐食防止剤として知られるものは、いずれも使用に際し種々の問題を有しており、アルミニウム又はアルミニウム合金に対して優れた腐食防止性を示す腐食防止剤の開発が望まれていた。
 また、冷却液組成物は、これを水で希釈して冷却系統内に充填されるのであるが、希釈冷却水中には僅かながら空気が溶存している。このため、当該希釈冷却水が冷却系統内を循環する過程で圧力差が生じると、これが原因で気泡が発生し、この気泡により金属面が浸食される、いわゆるキャビテーション損傷が発生していた。またキャビテーション損傷を引き起こす気泡は振動によっても発生していた。
 このような事情に鑑み、特許文献3に記載されているように、キャビテーション損傷の抑制をはかった冷却液組成物として、アジピン酸を含み、また安息香酸及びC9~C12の脂肪族2塩基酸の少なくとも1つを含む有機酸成分又はその塩と、モリブデン酸塩を含み、またメルカプトベンゾチアゾール、ベンゾトリアゾール、トリルトリアゾール、亜硝酸塩、硝酸塩、及びケイ酸塩の少なくとも1つを含む耐食性添加剤と、ホウ酸塩、又はリン酸塩の少なくとも1つのナトリウム塩を含む緩衝液成分と、凝固点降下剤とを含むものが提案されている。
 また、特許文献4に示すように、グリコール類を主成分とし、成分中に炭素数6~12の脂肪族二塩基酸、又はそのアルカリ金属塩の中から選ばれた少なくとも1種、p-トルイル酸又はそのアルカリ金属塩を含有してなる冷却液は知られていたが、ウォーターポンプのメカニカルシールの潤滑性が良好でなく、鳴きが発生する恐れがあった。
 さらに特許文献5には、水を含有する冷却液において、その水として腐食性イオン及びスケール形成イオンを分離除去した脱イオン水を採用することにより、該冷却液を使用する内燃機関等の冷却系統に使用した際に金属の防食性を向上させると共にスケールの形成を抑制してウォーターポンプのメカニカルシールの潤滑性を向上させることが記載されている。
 しかし、この冷却液組成物では、堆積物の生成抑制による潤滑性向上は達成したが、冷却液そのものの潤滑性能を向上させたわけではない。
特開2002-371270号公報 特開2005-187748号公報 特開2002-97461号公報 WO01/70901号公報 WO99/57218号公報
 アルミニウムの防錆、耐キャビテーション性に優れ、冷却液循環ポンプのメカニカルシールの潤滑性にも優れた冷却液を得ることを課題とする。
1.グリコール類を基材とする冷却液であって、
(a)炭素数8~18の脂肪酸ジカルボン酸又はそのアルカリ金属塩を0.1~8重量%
(b)炭素数7~18のアルキル安息香酸又はそのアルカリ金属塩を0.1~10重量%
(c)炭素数6~18の脂肪族モノカルボン酸又はその塩を0.1~5重量%を含有する冷却液組成物。
2.前記脂肪族ジカルボン酸がセバシン酸である請求項1に記載の冷却液組成物。
3.前記アルキル安息香酸がp-トルイル酸である請求項1又は2に記載の冷却液組成物。
4.アミン、ケイ酸塩、ホウ酸塩、リン酸塩、亜硝酸塩を含まないことを特徴とする請求項1~3のいずれかに記載の冷却液組成物。
 本発明によれば、アルミニウムの防錆、耐キャビテーション性に優れ、冷却液循環ポンプのメカニカルシールの潤滑性にも優れた冷却液組成物を得ることができる。
磁歪式振動法によるキャビテーション破損防止性能を試験する試験装置の模式図
 以下、具体的に本発明について述べる。
 なお、本発明における冷却液組成物は、使用時において水等により希釈して使用するためのいわゆる濃縮物と、該濃縮物を水等により希釈されて得た冷却液として使用される状態の希釈物、のいずれも包含する組成物である。
(グリコール類)
 本発明におけるグリコール類としては、エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ヘキシレングリコール、ジエチレングリコール、グリセリン等から1種以上が挙げられるが、その中でも特にエチレングリコール、あるいはプロピレングリコールが望ましい。
(炭素数8~18の脂肪酸ジカルボン酸又はそのアルカリ金属塩)
(a)炭素数8~18の脂肪酸ジカルボン酸又はそのアルカリ金属塩としては、本発明の組成物中に含まれる(a)成分、すなわち脂肪族ジカルボン酸、又はそのアルカリ金属塩、アンモニウム塩は、鉄、アルミ系金属に対して優れた腐食防止性を有するものである。また、この(a)成分から選ばれる1種若しくは2種以上の混合物と、下記(b)成分及び(c)成分とを組み合せることにより、鋳鉄及び鋼に対する優れたキャビテーション損傷の抑制効果が発揮されるようになる。
 脂肪族ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピペリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン2 酸、ドデカン2 酸、ブラシル酸、及びタプチン酸、あるいはそれらのアルカリ金属塩、アンモニウム塩等を単独又は2種以上を使用することができる。中でもスベリン酸、アゼライン酸、セバシン酸、ウンデカン2酸及びドデカン2酸は、上記性能に優れるという点でより好ましい。
 上記(a)成分は冷却液組成物中0.1~8重量%の範囲で含まれる。(a)成分の含有量が0.1重量%よりも少ない場合、鉄、アルミ系金属に対する腐食防止性と、鋳鉄及び鋼に対するキャビテーション損傷の十分な抑制効果が期待できず、8.0重量%よりも多い場合には、8.0重量%を越えた分だけの効果が得られないため、不経済となる。
(炭素数7~18のアルキル安息香酸又はそのアルカリ金属塩)
(b)炭素数7~18のアルキル安息香酸又はそのアルカリ金属塩としては、鉄、アルミ系金属に対して優れた腐食防止性を有するものが好ましく用いられる。また、この(b)成分から選ばれる1種若しくは2種以上の混合物と、上記(a)成分及び下記(c)成分とを組み合せることにより、鋳鉄及び鋼に対する優れたキャビテーション損傷の抑制効果が発揮されるようになる。
 炭素数7~18のアルキル安息香酸又はそのアルカリ金属塩としては、安息香酸、ニトロ安息香酸、ヒドロキシ安息香酸等の安息香酸類、p-トルイル酸、p-エチル安息香酸、p-プロピル安息香酸、p-イソプロピル安息香酸、p-tertブチル安息香酸等のアルキル安息香酸、一般式RO-C64-COOH(RはC1~C5のアルキル基)で表されるアルコキシ安息香酸、一般式R-C64-CH=COOH(RはC1~C5のアルキル基又はアルコキシ基)で表されるケイ皮酸、アルキルケイ皮酸、アルコキシケイ皮酸、又はそれらのアルカリ金属塩、アンモニウム塩等を単独又は2種以上使用することができる。中でも、安息香酸、p-トルイル酸、及びp-tertブチル安息香酸は、アルミニウム又はアルミニウム合金の腐食防止性能に優れており、これらの少なくとも1種が含まれていることが望ましい。
 上記(b)成分は冷却液組成物中0.1~10重量%の範囲で含まれる。(b)成分の含有量が0.1重量%よりも少ない場合、鉄、アルミ系金属に対する腐食防止性と、鋳鉄及び鋼に対するキャビテーション損傷の十分な抑制効果が期待できず、10重量%よりも多い場合には、10重量%を越えた分だけの効果が得られないため、不経済となる。
(炭素数6~18の脂肪族モノカルボン酸又はその塩)
(c)炭素数6~18の脂肪族モノカルボン酸又はその塩としては、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、2-エチルヘキサン酸、バルブロ酸、2-メチルヘプタン酸、ノナン酸、4-メチルオクタン酸、3,5,5-トリメチルヘキサン酸、デカン酸、イソデカン酸、ネオデカン酸、4-エチルオクタン酸、4-メチルノナン酸、ウンデカン酸、ドデカン酸、トリデカン酸、イソトリデカン酸、ミリスチン酸、イソミリスチン酸、パルミチン酸、イソパルミチン酸、オレイン酸、リノール酸、リノレン酸、リシノール酸、ステアリン酸、イソステアリン酸及びイソアラキジン酸及びそれらのアルカリ金属塩、アンモニウム塩等を単独又は2種以上を使用することができる。
 炭素数6~18の脂肪族モノカルボン酸又はその塩は、冷却液組成物中0.1~5重量%の範囲で含まれている。炭素数6~18の脂肪族モノカルボン酸又はその塩の含有量が、0.1重量%を下回る場合、アルミニウム及び鉄系金属に対する十分な防食性能、鉄系金属に対する十分なキャビテーション損傷の抑制効果が発揮されず、5重量%を上回る場合には、上回る分だけの効果がなく、不経済となる。
 但し、本発明においては、アミン、ケイ酸塩、ホウ酸塩、リン酸塩、亜硝酸塩を含まないことが望ましい。
 アミンやアミン塩を添加させない場合には、仮に亜硝酸塩を添加した場合であってもニトロソアミンを生成することを防止できる効果を発揮することができる。
 ケイ酸塩を添加させない場合には、ケイ酸塩の添加によって発生する冷却液中での安定性の低下、熱やpHが変化した場合や他の塩類が共存する場合における容易にゲル化する支障、及び腐食防止機能が低下するという不具合を防止することができる。
 ホウ酸塩を含まない場合には、ホウ酸塩によるアルミやその合金の腐食を防止することができ、これにより、冷却液組成物の腐食防止性が早期に低下してしまうという不具合が発生することもない。
 リン酸塩を含まない場合には、冷却液中に含有される硬水成分と反応することにより沈殿の発生を防止でき、これにより冷却液の腐食防止機能の低下、さらには沈殿物が堆積することによる冷却系統の循環路が閉塞する事態を引き起こすことを防止できる。
 亜硝酸塩は、ディーゼルエンジン内において金属、特に鉄表面に皮膜を形成し、この皮膜が気泡による浸食を防ぐ作用を発揮し、キャビテーションに対してきわめて有効に作用する成分ではあるものの、アミン塩と反応して発ガン性物質であるニトロソアミンを発生することも知られており、亜硝酸塩を使用しないことによりニトロソアミンの発生を防止できる。
(その他添加剤)
 その他の添加剤としては、消泡剤、着色剤等の他に、モリブデン酸塩、タングステン酸塩、トリアゾール類、チアゾール類を採用することができる。さらに、通常のアルカリ物質、好ましくはナトリウムやカリウム等のアルカリ金属塩の水酸化物を用いて、そのpHが調整される。pH調整範囲としては、6.5~9.0であり、好ましくは7.0~9.0の範囲に調整される。なお、本冷却液には消泡剤を添加することができる。
 また、本発明に使用し得るトリアゾール類としては、ベンゾトリアゾール、トリルトリアゾール、4-フェニル-1,2,3-トリアゾール、2-ナフトトリアゾール、あるいは4-ニトロベンゾトリアゾール等、及びこれらの塩類等を挙げることができ、これらを単独又は2種以上を混合して使用することができる。トリアゾール類を添加する際の添加量としては、0.01~3重量%、好ましくは0.05~1重量%の範囲である。
 トリアゾール類の添加量が0.01重量%未満では、特に銅系の金属に対する防食性能を発揮することができなくなり、3重量%より多くを添加してもそれ以上の防食効果に変化が見られないので無駄になる。
 本発明に使用し得るチアゾール類としては、メルカプトベンゾチアゾール及びその塩類を挙げることができる。チアゾール類は微量で良く、0.01~2重量%、好ましくは0.05~1重量%の範囲で添加する。しかし、その添加量が0.01重量%未満では、特に銅系の金属に対する所定の防食性能が得られず、2重量%より多くを添加してもそれ以上の防食効果に変化が見られないので無駄になる。
(実施例)
 本発明の効果を実施例及び比較例を基に示す。
 実施例1及び2と比較例1及び2にて使用した組成の成分及び試験結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
(試験方法)
  摩擦係数
 SiC製のメカニカルシールに垂直荷重30Nをかけ、100℃における試料液中での回転数200rpmでのシール間の回転トルクを測定し、摩擦係数を算出した。
  キャビテーション試験
 図1に示す装置を用いて、表2に示す条件で磁歪式振動法によるキャビテーション破損防止性能試験を行った。
Figure JPOXMLDOC01-appb-T000002
 実施例1及び2と比較例1及び2はいずれも同程度のpH値を示しているものの、実施例1及び2によると摩擦係数が低く、これを用いて冷却液とした場合には循環ポンプのメカニカルシール等の潤滑性に優れることを確認できる。
 比較例1は本発明における(b)成分を含有しない例であり、この例によれば特にキャビテーション試験の結果が悪いことがわかる。他方特に本発明の(c)成分を含有しない比較例2によると摩擦係数が5.5×10-5と高いので、実施例によるよりも潤滑性に劣ることは明らかである。
 また、本発明による実施例1及び2によると、冷却水が僅かに含有する空気によってもキャビテーション損傷の発生を防止することができるので、キャビテーション試験による質量の減少が極めて低い。一方、上記のように比較例1及び2のいずれによってもキャビテーション試験による質量の減少が多いので、キャビテーションがより頻繁に発生することが理解できる。
 このような、特に(a)成分に加えて(b)成分及び(c)成分を共に含有する本発明による効果は、摩擦係数及びキャビテーション試験のいずれか1つをとっても、これらの(b)成分及び(c)成分のいずれか一方を使用するに留まる比較例1及び2に示す効果を単に合わせたものではなく、比較例1及び2のいずれによる結果からも顕著に優れたものである。

Claims (4)

  1.  グリコール類を基材とする冷却液組成物であって、
    (a)炭素数8~18の脂肪酸ジカルボン酸又はそのアルカリ金属塩を0.1~8重量%
    (b)炭素数7~18のアルキル安息香酸又はそのアルカリ金属塩を0.1~10重量%
    (c)炭素数6~18の脂肪族モノカルボン酸又はその塩を0.1~5重量%
    を含有する冷却液組成物。
  2.  前記脂肪族ジカルボン酸がセバシン酸である請求項1に記載の冷却液組成物。
  3.  前記アルキル安息香酸がp-トルイル酸である請求項1又は2に記載の冷却液組成物。
  4.  アミン、ケイ酸塩、ホウ酸塩、リン酸塩、亜硝酸塩を含まないことを特徴とする請求項1~3のいずれかに記載の冷却液組成物。
PCT/JP2013/058663 2012-03-27 2013-03-26 冷却液組成物 WO2013146721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/387,793 US9382465B2 (en) 2012-03-27 2013-03-26 Liquid coolant composition
EP13768361.1A EP2832814B1 (en) 2012-03-27 2013-03-26 Liquid coolant composition
CN201380014262.7A CN104185669B (zh) 2012-03-27 2013-03-26 冷却液组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-072196 2012-03-27
JP2012072196A JP5917972B2 (ja) 2012-03-27 2012-03-27 冷却液組成物

Publications (1)

Publication Number Publication Date
WO2013146721A1 true WO2013146721A1 (ja) 2013-10-03

Family

ID=49259972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058663 WO2013146721A1 (ja) 2012-03-27 2013-03-26 冷却液組成物

Country Status (5)

Country Link
US (1) US9382465B2 (ja)
EP (1) EP2832814B1 (ja)
JP (1) JP5917972B2 (ja)
CN (1) CN104185669B (ja)
WO (1) WO2013146721A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520080A (zh) * 2015-09-11 2017-03-22 陕西华臻汽车零部件有限公司 全有机型长效防冻冷却液、防冻冷却液及其制备方法
CN107163919A (zh) * 2017-05-15 2017-09-15 江苏东昇光伏科技有限公司 一种太阳能电池组件焊接专用冷却液及其制备方法
JP2019143053A (ja) * 2018-02-21 2019-08-29 トヨタ自動車株式会社 冷却液組成物
CN108659797A (zh) * 2018-04-28 2018-10-16 上海理工大学 一种新能源车的冷冻保护液
KR20220057325A (ko) * 2020-10-29 2022-05-09 주식회사 케이디파인켐 전기 자동차용 냉각액 조성물
CN115404049A (zh) * 2021-05-28 2022-11-29 中国石油化工股份有限公司 一种冷却液及其制备方法和应用
CN117447973A (zh) * 2023-12-22 2024-01-26 纯牌科技股份有限公司 一种电动汽车用冷却液及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057218A1 (fr) 1998-05-06 1999-11-11 Shishiai-Kabushikigaisha Liquide de refroidissement dilue
WO2001007090A1 (en) 1999-07-21 2001-02-01 The Procter & Gamble Company Microorganism filter and method for removing microorganism from water
WO2001070901A1 (fr) * 2000-03-23 2001-09-27 Shishiai-Kabushikigaisha Composition d'antigel/de refrigerant
JP2002097461A (ja) 2000-07-06 2002-04-02 Fleetguard Inc エンジン不凍液組成物
JP2002371270A (ja) 2001-06-15 2002-12-26 Tanikawa Yuka Kogyo Kk 不凍液
JP2005042138A (ja) * 2003-07-24 2005-02-17 Honda Motor Co Ltd 冷却液組成物
JP2005187748A (ja) 2003-12-26 2005-07-14 Cci Corp 冷却液組成物
JP2005187905A (ja) * 2003-12-26 2005-07-14 Cci Corp 冷却液組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851145A (en) * 1986-06-30 1989-07-25 S.A. Texaco Petroleum Nv Corrosion-inhibited antifreeze/coolant composition
BR0014997B1 (pt) * 1999-10-29 2011-05-17 concentrado anticongelante, e, composição refrigerante aquosa.
JP5044544B2 (ja) * 2006-03-31 2012-10-10 シーシーアイ株式会社 冷却液組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057218A1 (fr) 1998-05-06 1999-11-11 Shishiai-Kabushikigaisha Liquide de refroidissement dilue
WO2001007090A1 (en) 1999-07-21 2001-02-01 The Procter & Gamble Company Microorganism filter and method for removing microorganism from water
WO2001070901A1 (fr) * 2000-03-23 2001-09-27 Shishiai-Kabushikigaisha Composition d'antigel/de refrigerant
JP2002097461A (ja) 2000-07-06 2002-04-02 Fleetguard Inc エンジン不凍液組成物
JP2002371270A (ja) 2001-06-15 2002-12-26 Tanikawa Yuka Kogyo Kk 不凍液
JP2005042138A (ja) * 2003-07-24 2005-02-17 Honda Motor Co Ltd 冷却液組成物
JP2005187748A (ja) 2003-12-26 2005-07-14 Cci Corp 冷却液組成物
JP2005187905A (ja) * 2003-12-26 2005-07-14 Cci Corp 冷却液組成物

Also Published As

Publication number Publication date
JP5917972B2 (ja) 2016-05-18
US9382465B2 (en) 2016-07-05
JP2013203809A (ja) 2013-10-07
EP2832814A1 (en) 2015-02-04
EP2832814A4 (en) 2015-12-23
CN104185669A (zh) 2014-12-03
CN104185669B (zh) 2017-02-22
EP2832814B1 (en) 2019-05-08
US20150152312A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP5917972B2 (ja) 冷却液組成物
CN108350345B (zh) 含硅酸盐的冷却剂浓缩物
EP2892970A1 (en) Heat transfer fluids and corrosion inhibitor formulations for use thereof
JP5096685B2 (ja) マグネシウムまたはマグネシウム合金用不凍液/冷却液組成物
JPWO2005033362A1 (ja) 冷却液組成物
WO2011121660A1 (ja) 冷却液組成物
CN114907820A (zh) 延长工作的发动机冷却剂组合物
JP2007269825A (ja) マグネシウムまたはマグネシウム合金用不凍液/冷却液組成物
CN1346396A (zh) 用于柴油发动机的单羧酸基防冻剂组合物
JP6537847B2 (ja) 冷却液組成物
JP2005187748A (ja) 冷却液組成物
JP2005187905A (ja) 冷却液組成物
CN114269878A (zh) 包含有机羧酸或其盐的基于二醇的传热流体、其制备方法及其用途
JP2008088242A (ja) 冷却液組成物
JP2007269834A (ja) マグネシウムまたはマグネシウム合金用不凍液/冷却液組成物
JPWO2006046275A1 (ja) 不凍液/冷却液組成物
JP2007269822A (ja) マグネシウムまたはマグネシウム合金用不凍液/冷却液組成物
CN110172333B (zh) 冷却液组合物
JP6970037B2 (ja) 冷却液組成物
JP2009242664A (ja) 不凍液/冷却液組成物
JPWO2005054399A1 (ja) 冷却液組成物
JP2005042138A (ja) 冷却液組成物
JP2007269854A (ja) マグネシウムまたはマグネシウム合金用不凍液/冷却液組成物
JPWO2005037951A1 (ja) 冷却液組成物
JP2007269828A (ja) マグネシウム又はマグネシウム合金用不凍液/冷却液組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387793

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013768361

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE