WO2013146370A1 - 3-アルコキシ-3-メチル-1-ブタノールの製造方法 - Google Patents

3-アルコキシ-3-メチル-1-ブタノールの製造方法 Download PDF

Info

Publication number
WO2013146370A1
WO2013146370A1 PCT/JP2013/057481 JP2013057481W WO2013146370A1 WO 2013146370 A1 WO2013146370 A1 WO 2013146370A1 JP 2013057481 W JP2013057481 W JP 2013057481W WO 2013146370 A1 WO2013146370 A1 WO 2013146370A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
butanol
type zeolite
alkoxy
buten
Prior art date
Application number
PCT/JP2013/057481
Other languages
English (en)
French (fr)
Inventor
史彦 岡部
雄高 鈴木
矢田 和之
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2013146370A1 publication Critical patent/WO2013146370A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only

Definitions

  • the present invention relates to a method for producing 3-alkoxy-3-methyl-1-butanol which is useful as a raw material for intermediates for medical and agricultural chemicals and various detergents.
  • an object of the present invention is to provide a method for producing 3-alkoxy-3-methyl-1-butanol with high selectivity and high yield.
  • the present invention provides the following [1] to [4].
  • [1] At least one methylbutenol selected from 3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol and a primary alcohol having 1 to 5 carbon atoms
  • 3-alkoxy-3-methyl-1-butanol can be produced with higher selectivity and higher yield than before.
  • the production method of the present invention is represented by the following chemical reaction formula. (In the formula, two carbon-carbon bonds consisting of a solid line and a broken line indicate that one of them is a carbon-carbon double bond.)
  • Examples of the primary alcohol having 1 to 5 carbon atoms used in the method of the present invention include methanol, ethanol, n-propanol, n-butanol, and isobutanol. Of these, methanol, ethanol, and n-propanol are preferable from the viewpoint of selectivity and yield of 3-alkoxy-3-methyl-1-butanol. If a secondary alcohol (for example, isopropanol) or a tertiary alcohol is used instead of the primary alcohol, the selectivity and yield of 3-alkoxy-3-methyl-1-butanol are greatly reduced.
  • a secondary alcohol for example, isopropanol
  • a tertiary alcohol is used instead of the primary alcohol, the selectivity and yield of 3-alkoxy-3-methyl-1-butanol are greatly reduced.
  • the amount of the primary alcohol having 1 to 5 carbon atoms is preferably 0.5 to 40 mol, more preferably 0.7 to 1 mol of at least one methylbutenol selected from IPEA and PNA. -30 mol, more preferably 0.8-25 mol.
  • the lower limit of the amount of primary alcohol having 1 to 5 carbon atoms to 1 mol of at least one methylbutenol selected from IPEA and PNA is, in addition to the lower limit, from the viewpoint of conversion, Preferably it is 2 mol, More preferably, it is 5 mol.
  • the primary alcohol having 1 to 5 carbon atoms When the primary alcohol having 1 to 5 carbon atoms is excessive with respect to IPEA or PNA, the primary alcohol itself functions as a solvent, and there is no need to use another solvent, so that the reaction can be carried out efficiently. Is preferable.
  • a solvent can also be used.
  • the solvent include aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxy.
  • Examples include ethane, ethers such as diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), and tetraethylene glycol dimethyl ether (tetraglyme), which do not adversely affect the reaction of the present invention.
  • a solvent may be used individually by 1 type and may use 2 or more types together.
  • ⁇ -type zeolite, Y-type zeolite The method of the present invention is carried out in the presence of at least one zeolite selected from ⁇ -type zeolite and Y-type zeolite.
  • Zeolite is a hydrous aluminosilicate having pores.
  • ⁇ -type zeolite and / or “Y-type” zeolite high-selectivity and high yield of 3- It has been found that alkoxy-3-methyl-1-butanol can be produced.
  • ⁇ -type zeolite and Y-type zeolite may be proton type (H type) or ammonium ion type (NH 4 + type); alkali metals such as sodium and potassium; alkaline earth metals such as magnesium and calcium; iron Group 8 metals such as cobalt; Group 9 metals such as cobalt; Group 10 metals such as nickel; From the viewpoint of the selectivity and yield of 3-alkoxy-3-methyl-1-butanol, it is preferable that both ⁇ -type zeolite and Y-type zeolite are proton types.
  • the SiO 2 / Al 2 O 3 (molar ratio) of the ⁇ -type zeolite is preferably 5 to 500, more preferably 10 to 450 from the viewpoint of the selectivity and yield of 3-alkoxy-3-methyl-1-butanol. More preferably, it is 15 to 400.
  • BET specific surface area of the ⁇ -type zeolite, 3-alkoxy-3-methyl-1-butanol selectivity and in terms of yield preferably 100 ⁇ 1,000m 2 / g, more preferably 150 ⁇ 800m 2 / g More preferably, it is 200 to 700 m 2 / g.
  • the pore size of ⁇ -type zeolite is preferably 0.2 to 1.0 nm, more preferably 0.4 to 0.8 nm, and still more preferably 0.5 to 0.7 nm.
  • the average particle size of ⁇ -type zeolite is preferably 1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m, and still more preferably 1 to 50 ⁇ m.
  • the sodium content of the ⁇ -type zeolite is preferably 0.01 to 1% by mass, more preferably 0.01 to 0.5% by mass.
  • the SiO 2 / Al 2 O 3 (molar ratio) of the Y-type zeolite is preferably 6 to 50, more preferably 7 to 40, from the viewpoint of the selectivity and yield of 3-alkoxy-3-methyl-1-butanol. More preferably, it is 8-20.
  • the BET specific surface area of the Y-type zeolite is preferably 100 to 1,000 m 2 / g, more preferably 250 to 800 m 2 / g from the viewpoint of the selectivity and yield of 3-alkoxy-3-methyl-1-butanol. More preferably, it is 400 to 750 m 2 / g.
  • the pores of the Y-type zeolite are those in which a 12-membered ring generally called a large pore is formed from the viewpoint of selectivity and yield of 3-alkoxy-3-methyl-1-butanol. Is preferred.
  • the pore size of the Y-type zeolite is preferably 0.2 to 1.0 nm, more preferably 0.4 to 0.8 nm, and still more preferably 0.6 to 0.8 nm.
  • the acid amount of the Y-type zeolite determined by the NH 3 -TPD method is preferably 0.01 to 5 mmol / g, more preferably from the viewpoint of the selectivity and yield of 3-alkoxy-3-methyl-1-butanol.
  • the average particle size of the Y-type zeolite is preferably 1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, still more preferably 3 to 20 ⁇ m.
  • the sodium content of the Y-type zeolite is preferably 0.01 to 1% by mass, more preferably 0.01 to 0.5% by mass.
  • the reaction temperature for carrying out the method of the present invention is usually preferably 40 to 80 ° C., more preferably 50 to 80 ° C.
  • reaction pressure usually preferably 40 to 80 ° C.
  • reaction pressure usually, it is simple and preferable to implement under a normal pressure.
  • known methods such as a batch method, a semi-continuous method, and a continuous method can be applied.
  • embodiments according to the respective methods will be described in detail, but the present invention is not particularly limited thereto.
  • the reactor is charged with IPEA and / or PNA, primary alcohol, ⁇ -type zeolite and / or Y-type zeolite, and if necessary, all of the solvent, at a predetermined temperature. Heat to agitate and stir.
  • the reaction time is not particularly limited, and the conversion rate of IPEA or PNA is appropriately monitored by gas chromatography or the like, and the conversion rate is preferably 55% or more, more preferably 60% or more, still more preferably 70% or more, particularly preferably Is reacted until it reaches 80% or more.
  • the reactor is equipped with at least part of IPEA and / or PNA, at least part of primary alcohol, ⁇ -type zeolite and / or Y-type zeolite, Accordingly, at least a part of the solvent is charged, and the reaction is carried out by stirring at a predetermined temperature, while continuously or intermittently supplying IPEA and / or PNA, primary alcohol, and, if necessary, the solvent to the reactor.
  • reaction time it demonstrates similarly to the case of the said batch system.
  • a jacketed tubular reactor is filled with ⁇ -type zeolite and / or Y-type zeolite, and a heating medium of a predetermined temperature is allowed to flow through the jacket while IPEA and / or PNA.
  • the primary alcohol are mixed such that LHSV (Liquid Hourly Space Velocity; liquid space velocity; hr ⁇ 1 ) is preferably 0.1 to 70 hr ⁇ 1 , more preferably 0.1 to 50 hr ⁇ 1.
  • LHSV Liquid Hourly Space Velocity; liquid space velocity; hr ⁇ 1
  • Such a continuous system is implemented by a “one-pass system” in which a mixed solution of IPEA and / or PNA and primary alcohol is circulated only once through a tubular reactor filled with ⁇ -type zeolite and / or Y-type zeolite.
  • a “circulation type” in which at least part or all of the reaction mixture obtained by passing through the tubular reactor is circulated through the tubular reactor again and the above operation is repeated as necessary. May be implemented.
  • LHSV when carrying out in a single pass type, LHSV, from the viewpoint of conversion, preferably 0.1 ⁇ 5 hr -1, more preferably 0.1 ⁇ 3 hr -1, more preferably 0.1 ⁇ 1hr -1 is there.
  • LHSV is preferably 3 to 70 hr ⁇ 1 , more preferably 5 to 50 hr ⁇ 1 , still more preferably 10 to 50 hr ⁇ 1 , particularly preferably 15 to 40 hr from the viewpoint of conversion. -1 .
  • the selectivity for 3-alkoxy-3-methyl-1-butanol tends to increase.
  • 3-alkoxy-3-methyl-1-butanol can be separated by applying a known separation method to the resulting reaction mixture.
  • the obtained 3-alkoxy-3-methyl-1-butanol can be further purified by subjecting it to purification techniques such as column chromatography and distillation.
  • Example 1 Batch mode, ⁇ -type zeolite, ethanol use Thermometer, Dimroth condenser and 300 mL three-necked flask equipped with a stirrer were charged with 21.5 g (0.25 mol) of 3-methyl-3-buten-1-ol. , 230 g of ethanol (4.99 mol, ethanol / IPEA ⁇ 20 (molar ratio)) and ⁇ -type zeolite “BEA-25” (BET specific surface area: 250 m 2 / g, average particle size: 3.8 ⁇ m, proton type, Sudden Chemie catalyst 15g) was added, and the reaction was conducted while heating to 60 ° C and stirring.
  • Example 3 Batch system, ⁇ -type zeolite, ethanol used In Example 1, instead of ⁇ -type zeolite “BEA-25”, ⁇ -type zeolite “BEA-150” (BET specific surface area: 620 m 2 / g, average The same operation as in Example 1 was performed except that a particle size: 45 ⁇ m, proton type, manufactured by Zude Chemie Catalysts Co., Ltd.) was used. The reaction mixture after 8 hours from the start of the reaction was analyzed by gas chromatography.
  • Example 4 Batch system, use of Y-type zeolite, ethanol
  • Y-type zeolite “350HUA” BET specific surface area: 650 m 2 / g, average particle diameter
  • 6 ⁇ m proton type, manufactured by Tosoh Corporation
  • the reaction mixture after 8 hours from the start of the reaction was analyzed by gas chromatography.
  • the conversion of 3-methyl-3-buten-1-ol was 74.9% and 3-ethoxy-3-methyl-1-butanol
  • the yield was 58.0% (selectivity of 3-ethoxy-3-methyl-1-butanol was 77.5%).
  • Table 1 If the reaction is further continued, it can be said that the yield of 3-ethoxy-3-methyl-1-butanol can be further increased.
  • Example 1 Batch system, use of strong acidic ion exchange resin, ethanol
  • strongly acidic ion exchange resin “Diaion PK212LH” manufactured by Mitsubishi Chemical Corporation
  • the reaction time was 16 hours.
  • the reaction mixture after 16 hours from the start of the reaction was analyzed by gas chromatography.
  • the conversion of 3-methyl-3-buten-1-ol was 97.0% and 3-ethoxy-3-methyl-1-butanol
  • the yield was 58.0% (selectivity of 3-ethoxy-3-methyl-1-butanol 59.8%).
  • Table 1 The results are shown in Table 1. In addition, since the conversion rate was high enough, it turns out that a yield cannot be raised any more.
  • Example 2 Batch system, use of ZSM-5 type zeolite, ethanol
  • ZSM-5 type zeolite manufactured by Zude Chemie Catalysts
  • the same operation as in Example 1 was performed.
  • the reaction mixture after 8 hours from the start of the reaction was analyzed by gas chromatography.
  • the conversion of 3-methyl-3-buten-1-ol was 13.6% and 3-ethoxy-3-methyl-1-butanol
  • the yield was 4.4% (selectivity of 3-ethoxy-3-methyl-1-butanol 32.7%).
  • Table 1 The results are shown in Table 1.
  • Example 3 Batch system, use of activated clay, ethanol In Example 1, in place of ⁇ -type zeolite “BEA-25”, activated clay (manufactured by Nippon Kakuhaku Co., Ltd.) was used. The same operation was performed. When the reaction mixture after 8 hours from the start of the reaction was analyzed by gas chromatography, the conversion of 3-methyl-3-buten-1-ol was 14.8%. No 1-butanol was obtained. The results are shown in Table 1.
  • Example 4 Batch system, using niobium oxide and ethanol
  • Example 1 was used except that niobium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ⁇ -type zeolite “BEA-25”. The same operation was performed.
  • the reaction mixture after 8 hours from the start of the reaction was analyzed by gas chromatography.
  • the conversion of 3-methyl-3-buten-1-ol was 3.4%, and 3-ethoxy-3-methyl-1-butanol
  • the yield was 0.1% (selectivity of 3-ethoxy-3-methyl-1-butanol: 3.0%).
  • Table 1 The results are shown in Table 1.
  • Example 5 Continuous type, ⁇ -type zeolite, ethanol used (circulation type) A jacketed tubular reactor was charged with 100 mL of pellet-shaped ⁇ -type zeolite “BEA-25” (manufactured by Zude Chemie Catalysts). While flowing warm water (heat medium) at 70 ° C.
  • Example 6 Continuous method, using ⁇ -type zeolite, n-propanol (circulation type)
  • Example 5 the same operation as in Example 5 was performed, except that 600 g (9.99 mol) of n-propanol was used instead of 460 g (9.99 mol) of ethanol.
  • the reaction mixture after reaction for 10 hours was analyzed by gas chromatography.
  • the conversion of 3-methyl-3-buten-1-ol was 93.5% and 3-propoxy-3-methyl-1-butanol
  • the yield was 75.0% (selectivity of 3-propoxy-3-methyl-1-butanol was 80.2%).
  • Table 2 The results are shown in Table 2.
  • Example 7 Continuous system, ⁇ -type zeolite, methanol (circulation)
  • Example 5 the same operation as in Example 5 was performed except that 320 g (9.99 mol) of methanol was used instead of 460 g (9.99 mol) of ethanol.
  • the reaction mixture after flowing for 10 hours was analyzed by gas chromatography.
  • the conversion of 3-methyl-3-buten-1-ol was 87.1%, and 3-methoxy-3-methyl-1-butanol.
  • the yield was 73.2% (selectivity of 3-methoxy-3-methyl-1-butanol 84.0%).
  • Table 2 The results are shown in Table 2.
  • Example 8 Continuous system, ⁇ -type zeolite, ethanol used (one-pass system)
  • Example 5 is the same as Example 5 except that the LHSV was changed to 0.5 hr ⁇ 1 , the one-pass system was used in which the tubular reactor was circulated only once, and the reaction mixture was not circulated by the pump. The same operation was performed. The obtained reaction mixture was analyzed by gas chromatography. The conversion of 3-methyl-3-buten-1-ol was 87.9%, and the yield of 3-ethoxy-3-methyl-1-butanol was 71.7% (selectivity of 3-ethoxy-3-methyl-1-butanol was 81.6%). The results are shown in Table 2.
  • Example 5 Continuous method, strong acidic ion exchange resin, ethanol used (circulation type)
  • a strongly acidic ion exchange resin “Diaion PK212LH” manufactured by Mitsubishi Chemical Corporation
  • the same operation as in Example 5 was performed.
  • the reaction mixture after reaction for 10 hours was analyzed by gas chromatography.
  • the conversion of 3-methyl-3-buten-1-ol was 90.9% and 3-ethoxy-3-methyl-1-butanol
  • the yield was 58.9% (selectivity of 3-ethoxy-3-methyl-1-butanol 64.8%).
  • Table 2 The results are shown in Table 2.
  • Example 9 Continuous type, ⁇ -type zeolite, PNA, ethanol used (circulation type)
  • 43 g (0.50 mol) of 3-methyl-2-buten-1-ol was used instead of 43 g (0.50 mol) of 3-methyl-3-buten-1-ol.
  • the same operation as 5 was performed.
  • the reaction mixture after the reaction for 10 hours was analyzed by gas chromatography.
  • the conversion of 3-methyl-2-buten-1-ol was 83.1% and 3-ethoxy-3-methyl-1-butanol
  • the yield was 65.6% (selectivity of 3-ethoxy-3-methyl-1-butanol 79.0%).
  • Table 3 The results are shown in Table 3.
  • Example 9 Continuous system, strong acidic ion exchange resin, PNA, ethanol used (circulation type)
  • a strongly acidic ion exchange resin “Diaion PK212LH” (manufactured by Mitsubishi Chemical Corporation) was used, and the temperature of hot water was changed to 50 ° C.
  • the same operation as in Example 9 was performed.
  • the reaction mixture after the reaction for 10 hours was analyzed by gas chromatography.
  • the conversion of 3-methyl-2-buten-1-ol was 88.2% and 3-ethoxy-3-methyl-1-butanol.
  • the yield was 55.2% (selectivity of 3-ethoxy-3-methyl-1-butanol 62.6%).
  • Table 3 The results are shown in Table 3.
  • the 3-alkoxy-3-methyl-1-butanol obtained by the production method of the present invention is useful as an intermediate for medical and agricultural chemicals and as a raw material for various cleaning agents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 3-アルコキシ-3-メチル-1-ブタノールを高選択率および高収率で製造する方法を提供する。具体的には、3-メチル-3-ブテン-1-オールおよび3-メチル-2-ブテン-1-オールから選択される少なくとも1種のメチルブテノールと炭素数1~5の第一級アルコールとを、β型ゼオライトおよびY型ゼオライトから選択される少なくとも1種のゼオライトの存在下に反応させる、3-アルコキシ-3-メチル-1-ブタノールの製造方法を提供する。

Description

3-アルコキシ-3-メチル-1-ブタノールの製造方法
 本発明は、医農薬中間体や各種洗浄剤の原料などとして有用な3-アルコキシ-3-メチル-1-ブタノールの製造方法に関する。
 3-メチル-3-ブテン-1-オール(以下、IPEAと称することがある。)または3-メチル-2-ブテン-1-オール(以下、PNAと称することがある。)と第一級アルコールとの反応において、硫酸、燐酸、スルホン酸、カチオン系イオン交換樹脂などの酸の存在下に実施することにより、異性化反応や脱水反応、さらに二重結合への水酸基の付加反応などを抑制しながら3-アルコキシ-3-メチル-1-ブタノールを製造し得ることが知られている(特許文献1参照)。
特開昭50-59309号公報
 しかしながら、特許文献1に記載の方法では、転化率は高いものの、3-アルコキシ-3-メチル-1-ブタノールの選択率が不十分であり、より高収率で3-アルコキシ-3-メチル-1-ブタノールを得るためには、更なる改良の余地があった。
 そこで、本発明の課題は、3-アルコキシ-3-メチル-1-ブタノールを高選択率および高収率で製造する方法を提供することにある。
 本発明者らが鋭意検討した結果、IPEAまたはPNAと第一級アルコールとの反応において、特定のゼオライトを触媒として用いることにより前記課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記[1]~[4]を提供する。
[1]3-メチル-3-ブテン-1-オールおよび3-メチル-2-ブテン-1-オールから選択される少なくとも1種のメチルブテノールと炭素数1~5の第一級アルコールとを、β型ゼオライトおよびY型ゼオライトから選択される少なくとも1種のゼオライトの存在下に反応させることを特徴とする、3-アルコキシ-3-メチル-1-ブタノールの製造方法。
[2]前記炭素数1~5の第一級アルコールが、メタノール、エタノールまたはn-プロパノールである、上記[1]の3-アルコキシ-3-メチル-1-ブタノールの製造方法。
[3]前記炭素数1~5の第一級アルコールの使用量が、3-メチル-3-ブテン-1-オールおよび3-メチル-2-ブテン-1-オールから選択される少なくとも1種のメチルブテノール1モルに対して0.5~40モルである、上記[1]または[2]の3-アルコキシ-3-メチル-1-ブタノールの製造方法。
[4]前記β型ゼオライトおよびY型ゼオライトのBET比表面積が、それぞれ、100~1,000m2/gである、上記[1]~[3]のいずれかの3-アルコキシ-3-メチル-1-ブタノールの製造方法。
 本発明の製造方法によれば、3-アルコキシ-3-メチル-1-ブタノールを従来よりも高選択率および高収率で製造することができる。
 まず、本明細書において、好ましいとする規定は任意に採用することができ、好ましいとする規定同士の組み合わせは、より好ましいといえる。
[3-アルコキシ-3-メチル-1-ブタノールの製造方法]
 本発明の3-アルコキシ-3-メチル-1-ブタノールの製造方法では、3-メチル-3-ブテン-1-オール(IPEA)および3-メチル-2-ブテン-1-オール(PNA)から選択される少なくとも1種のメチルブテノールと炭素数1~5の第一級アルコールとを、β型ゼオライトおよびY型ゼオライトから選択される少なくとも1種のゼオライトの存在下に反応させることに特徴を有する。第一級アルコールをR-CH2OH(Rは、水素原子または炭素数1~4のアルキル基を示す。)と表すと、本発明の製造方法は、以下の化学反応式で表される。
Figure JPOXMLDOC01-appb-C000001
(式中、実線と破線からなる2箇所の炭素-炭素結合は、いずれか一方が炭素-炭素二重結合になっていることを示す。)
(炭素数1~5の第一級アルコール)
 本発明の方法で用いる炭素数1~5の第一級アルコールとしては、メタノール、エタノール、n-プロパノール、n-ブタノール、イソブタノールなどが挙げられる。中でも、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点から、好ましくはメタノール、エタノール、n-プロパノールである。なお、第一級アルコールの代わりに第二級アルコール(例えばイソプロパノール)または第三級アルコールを用いると、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率が大幅に低減する。
 炭素数1~5の第一級アルコールの使用量は、IPEAおよびPNAから選択される少なくとも1種のメチルブテノール1モルに対して、好ましくは0.5~40モル、より好ましくは0.7~30モル、さらに好ましくは0.8~25モルである。特に、IPEAおよびPNAから選択される少なくとも1種のメチルブテノール1モルに対する炭素数1~5の第一級アルコールの使用量の下限値は、転化率の観点から、前記下限値に加え、より好ましくは2モル、さらに好ましくは5モルである。炭素数1~5の第一級アルコールを、IPEAやPNAに対して過剰量とすると、第一級アルコール自体が溶媒としても機能し、他に溶媒を用いる必要がなくなり、効率良く反応を行なうことができて好ましい。
 なお、本発明の方法においては、溶媒を用いることもできる。溶媒としては、例えばヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレン、メシチレンなどの芳香族炭化水素;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールジメチルエーテル(テトラグライム)などのエーテルなどの、本発明の反応に悪影響を及ぼさない溶媒が挙げられる。溶媒は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(β型ゼオライト、Y型ゼオライト)
 本発明の方法では、β型ゼオライトおよびY型ゼオライトから選択される少なくとも1種のゼオライトの存在下に実施する。ゼオライトは細孔を有した含水アルミノ系ケイ酸塩であり、その中でも、本発明では「β型」ゼオライトおよび/または「Y型」ゼオライトを用いることにより、高選択的に高収率で3-アルコキシ-3-メチル-1-ブタノールを製造できることを見出した。
 β型ゼオライトおよびY型ゼオライトは、プロトン型(H型)またはアンモニウムイオン型(NH4 +型)であってもよく、ナトリウムやカリウム等のアルカリ金属;マグネシウムやカルシウム等のアルカリ土類金属;鉄等の8族金属;コバルト等の9族金属;ニッケル等の10族金属などによって置換された「金属置換型」であってもよい。3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点からは、β型ゼオライトおよびY型ゼオライトは、いずれもプロトン型であることが好ましい。
 β型ゼオライトのSiO2/Al23(モル比)は、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点から、好ましくは5~500、より好ましくは10~450、さらに好ましくは15~400である。
 β型ゼオライトのBET比表面積は、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点から、好ましくは100~1,000m2/g、より好ましくは150~800m2/g、さらに好ましくは200~700m2/gである。β型ゼオライトの細孔については、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点から、一般的に大細孔と言われる12員環が形成されたものであることが好ましい。また、β型ゼオライトの細孔径は、好ましくは0.2~1.0nm、より好ましくは0.4~0.8nm、さらに好ましくは0.5~0.7nmである。
 β型ゼオライトの平均粒子径は、好ましくは1~100μm、より好ましくは1~80μm、さらに好ましくは1~50μmである。
 β型ゼオライトのナトリウム含有量は、好ましくは0.01~1質量%、より好ましくは0.01~0.5質量%である。
 Y型ゼオライトのSiO2/Al23(モル比)は、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点から、好ましくは6~50、より好ましくは7~40、さらに好ましくは8~20である。Y型ゼオライトのBET比表面積は、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点から、好ましくは100~1,000m2/g、より好ましくは250~800m2/g、さらに好ましくは400~750m2/gである。Y型ゼオライトの細孔については、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点から、一般的に大細孔と言われる12員環が形成されたものであることが好ましい。また、Y型ゼオライトの細孔径は、好ましくは0.2~1.0nm、より好ましくは0.4~0.8nm、さらに好ましくは0.6~0.8nmである。
 Y型ゼオライトのNH3-TPD法によって求めた酸量は、3-アルコキシ-3-メチル-1-ブタノールの選択率および収率の観点から、好ましくは0.01~5mmol/g、より好ましくは0.01~3mmol/g、さらに好ましくは0.05~2mmol/gである。
 Y型ゼオライトの平均粒子径は、好ましくは1~100μm、より好ましくは1~50μm、さらに好ましくは3~20μmである。
 Y型ゼオライトのナトリウム含有量は、好ましくは0.01~1質量%、より好ましくは0.01~0.5質量%である。
 本発明の方法を実施する際の反応温度は、通常、好ましくは40~80℃、より好ましくは50~80℃である。反応圧力に特に制限はないが、通常、常圧下で実施するのが簡便であり好ましい。
 本発明の3-アルコキシ-3-メチル-1-ブタノールの製造方法の実施形態に特に制限はなく、例えば、バッチ方式、セミ連続方式、連続方式など、公知の方法を適用できる。以下に、それぞれの方式による実施形態について具体的に説明するが、特にこれらに制限されるものではない。
 本発明の方法をバッチ方式により実施する場合、例えば、反応器にIPEAおよび/またはPNA、第一級アルコール、β型ゼオライトおよび/またはY型ゼオライト、さらに必要に応じて溶媒を全て仕込み、所定温度に加熱して攪拌する。反応時間に特に制限はなく、適宜、ガスクロマトグラフィーなどによってIPEAやPNAの転化率を追跡し、転化率が好ましくは55%以上、より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上になるまで反応を行う。
 本発明の方法をセミ連続方式により実施する場合、例えば、反応器にIPEAおよび/またはPNAの少なくとも一部、第一級アルコールの少なくとも一部、β型ゼオライトおよび/またはY型ゼオライト、さらに必要に応じて溶媒の少なくとも一部を仕込み、所定温度で攪拌して反応を行ないながら、連続的又は断続的にIPEAおよび/またはPNA、第一級アルコール、および必要に応じ溶媒を反応器に供給する。反応時間については、前記バッチ方式の場合と同様に説明される。
 本発明の方法を連続方式により実施する場合、例えば、ジャケット付き管型反応装置にβ型ゼオライトおよび/またはY型ゼオライトを充填し、ジャケットに所定温度の熱媒を流しながら、IPEAおよび/またはPNAと第一級アルコールとの混合液を、LHSV(Liquid Hourly Space Velocity;液空間速度;hr-1)が好ましくは0.1~70hr-1、より好ましくは0.1~50hr-1となるように前記管型反応装置に流通させる。かかる連続方式は、IPEAおよび/またはPNAと第一級アルコールとの混合液を、β型ゼオライトおよび/またはY型ゼオライトを充填した管型反応装置に1回のみ流通させる「ワンパス式」で実施してもよいし、該管型反応装置を通過させて得られる反応混合液の少なくとも一部または全部を再び該管型反応装置に流通させ、必要に応じて前記操作を繰り返して行う「循環式」で実施してもよい。なお、ワンパス式で実施する場合、LHSVは、転化率の観点から、好ましくは0.1~5hr-1、より好ましくは0.1~3hr-1、さらに好ましくは0.1~1hr-1である。一方、循環式で実施する場合、LHSVは、転化率の観点から、好ましくは3~70hr-1、より好ましくは5~50hr-1、さらに好ましくは10~50hr-1、特に好ましくは15~40hr-1である。
 なお、本発明の方法を連続方式にて実施すると、3-アルコキシ-3-メチル-1-ブタノールの選択率が高まる傾向にある。
 反応終了後、得られた反応混合液に公知の分離方法を適用することにより、3-アルコキシ-3-メチル-1-ブタノールを分離できる。得られた3-アルコキシ-3-メチル-1-ブタノールは、さらにカラムクロマトグラフィーや蒸留などの精製手法に付すことにより、その純度を高めることができる。
 以下、実施例などにより本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。なお、各例におけるガスクロマトグラフィー測定条件は以下の通りである。
(ガスクロマトグラフィー測定条件)
 装置   :GC-14B(株式会社島津製作所製)
 使用カラム:G-300(内径1.2mm×長さ20m)、(財)化学物質評価研究機構製
 分析条件 :注入口温度240℃、検出器温度240℃
 カラム温度:80℃から230℃まで5℃/分で昇温
 検出器  :水素炎イオン化検出器(FID)
<実施例1>バッチ方式、β型ゼオライト、エタノール使用
 温度計、ジムロート冷却器および攪拌装置を備えた300mL三口フラスコに、3-メチル-3-ブテン-1-オール21.5g(0.25mol)、エタノール230g(4.99mol、エタノール/IPEA≒20(モル比))およびβ型ゼオライト「BEA-25」(BET比表面積:250m2/g、平均粒子径:3.8μm、プロトン型、ズードケミー触媒株式会社製)15gを入れ、60℃に加熱して攪拌しながら反応を行った。
 反応開始から8時間後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は88.4%、3-エトキシ-3-メチル-1-ブタノールの収率は66.3%(3-エトキシ-3-メチル-1-ブタノールの選択率75.0%)であった。結果を表1に示す。
<実施例2>バッチ方式、β型ゼオライト、エタノール使用
 実施例1において、エタノールの使用量を115g(2.5mol、エタノール/IPEA=10(モル比))としたこと以外は実施例1と同様の操作を行なった。
 反応開始から8時間後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は60.7%、3-エトキシ-3-メチル-1-ブタノールの収率は42.9%(3-エトキシ-3-メチル-1-ブタノールの選択率70.7%)であった。結果を表1に示す。なお、さらに反応を継続すれば、3-エトキシ-3-メチル-1-ブタノールの収率をより一層高めることができるといえる。
<実施例3>バッチ方式、β型ゼオライト、エタノール使用
 実施例1において、β型ゼオライト「BEA-25」の代わりに、β型ゼオライト「BEA-150」(BET比表面積:620m2/g、平均粒子径:45μm、プロトン型、ズードケミー触媒株式会社製)を使用したこと以外は実施例1と同様の操作を行なった。
 反応開始から8時間後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は59.5%、3-エトキシ-3-メチル-1-ブタノールの収率は41.6%(3-エトキシ-3-メチル-1-ブタノールの選択率69.9%)であった。結果を表1に示す。なお、さらに反応を継続すれば、3-エトキシ-3-メチル-1-ブタノールの収率をより一層高めることができるといえる。
<実施例4>バッチ方式、Y型ゼオライト、エタノール使用
 実施例1において、β型ゼオライト「BEA-25」の代わりに、Y型ゼオライト「350HUA」(BET比表面積:650m2/g、平均粒子径:6μm、プロトン型、東ソー株式会社製)を使用したこと以外は実施例1と同様に操作を行なった。
 反応開始から8時間後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は74.9%、3-エトキシ-3-メチル-1-ブタノールの収率は58.0%(3-エトキシ-3-メチル-1-ブタノールの選択率77.5%)であった。結果を表1に示す。なお、さらに反応を継続すれば、3-エトキシ-3-メチル-1-ブタノールの収率をより一層高めることができるといえる。
<比較例1>バッチ方式、強酸性イオン交換樹脂、エタノール使用
 実施例1において、β型ゼオライト「BEA-25」の代わりに、強酸性イオン交換樹脂「ダイヤイオンPK212LH」(三菱化学株式会社製)を使用し、反応時間を16時間としたこと以外は実施例1と同様の操作を行なった。
 反応開始から16時間後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は97.0%、3-エトキシ-3-メチル-1-ブタノールの収率は58.0%(3-エトキシ-3-メチル-1-ブタノールの選択率59.8%)であった。結果を表1に示す。なお、転化率は充分に高かったため、これ以上、収率を高められないことがわかる。
<比較例2>バッチ方式、ZSM-5型ゼオライト、エタノール使用
 実施例1において、β型ゼオライト「BEA-25」の代わりに、ZSM-5型ゼオライト(ズードケミー触媒株式会社製)を使用したこと以外は実施例1と同様の操作を行なった。
 反応開始から8時間後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は13.6%、3-エトキシ-3-メチル-1-ブタノールの収率は4.4%(3-エトキシ-3-メチル-1-ブタノールの選択率32.7%)であった。結果を表1に示す。
<比較例3>バッチ方式、活性白土、エタノール使用
 実施例1において、β型ゼオライト「BEA-25」の代わりに、活性白土(日本活性白土株式会社製)を使用したこと以外は実施例1と同様の操作を行なった。
 反応開始から8時間後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は14.8%であったが、3-エトキシ-3-メチル-1-ブタノールは全く得られなかった。結果を表1に示す。
<比較例4>バッチ方式、酸化ニオブ、エタノール使用
 実施例1において、β型ゼオライト「BEA-25」の代わりに、酸化ニオブ(和光純薬工業株式会社製)を使用したこと以外は実施例1と同様の操作を行なった。
 反応開始から8時間後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は3.4%、3-エトキシ-3-メチル-1-ブタノールの収率は0.1%(3-エトキシ-3-メチル-1-ブタノールの選択率3.0%)であった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
<実施例5>連続方式、β型ゼオライト、エタノール使用(循環式)
 ジャケット付き管型反応装置に、ペレット状のβ型ゼオライト「BEA-25」(ズードケミー触媒株式会社製)を100mL充填した。ジャケットに70℃の温水(熱媒)を流しながら、エタノール460g(9.99mol)と3-メチル-3-ブテン-1-オール43g(0.50mol)の混合液(エタノール/IPEA≒20(モル比))を、LHSV30hr-1で管型反応装置に供給し、通過させて得られた反応混合液の全量を、ポンプを用いて再び該管型反応装置に供給することにより、循環させながら反応を行った。
 10時間反応させた後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は87.9%、3-エトキシ-3-メチル-1-ブタノールの収率は72.3%(3-エトキシ-3-メチル-1-ブタノールの選択率82.3%)であった。結果を表2に示す。
<実施例6>連続方式、β型ゼオライト、n-プロパノール使用(循環式)
 実施例5において、エタノール460g(9.99mol)の代わりにn-プロパノール600g(9.99mol)を使用したこと以外は実施例5と同様の操作を行なった。
 10時間反応させた後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は93.5%、3-プロポキシ-3-メチル-1-ブタノールの収率は75.0%(3-プロポキシ-3-メチル-1-ブタノールの選択率80.2%)であった。結果を表2に示す。
<実施例7>連続方式、β型ゼオライト、メタノール使用(循環式)
 実施例5において、エタノール460g(9.99mol)の代わりにメタノール320g(9.99mol)を使用したこと以外は実施例5と同様の操作を行なった。
 10時間流通させた後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は87.1%、3-メトキシ-3-メチル-1-ブタノールの収率は73.2%(3-メトキシ-3-メチル-1-ブタノールの選択率84.0%)であった。結果を表2に示す。
<実施例8>連続方式、β型ゼオライト、エタノール使用(ワンパス式)
 実施例5において、LHSVを0.5hr-1に変更し、管型反応装置を1回のみ流通させるワンパス式にて実施し、反応混合液をポンプで循環しなかったこと以外は実施例5と同様の操作を行なった。
 得られた反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は87.9%、3-エトキシ-3-メチル-1-ブタノールの収率は71.7%(3-エトキシ-3-メチル-1-ブタノールの選択率81.6%)であった。結果を表2に示す。
<比較例5>連続方式、強酸性イオン交換樹脂、エタノール使用(循環式)
 実施例5において、β型ゼオライト「BEA-25」の代わりに、強酸性イオン交換樹脂「ダイヤイオンPK212LH」(三菱化学株式会社製)を使用し、温水の温度を50℃としたこと以外は実施例5と同様の操作を行なった。
 10時間反応させた後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-3-ブテン-1-オールの転化率は90.9%、3-エトキシ-3-メチル-1-ブタノールの収率は58.9%(3-エトキシ-3-メチル-1-ブタノールの選択率64.8%)であった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
<実施例9>連続方式、β型ゼオライト、PNA、エタノール使用(循環式)
 実施例5において、3-メチル-3-ブテン-1-オール43g(0.50mol)の代わりに3-メチル-2-ブテン-1-オール43g(0.50mol)を使用したこと以外は実施例5と同様の操作を行なった。
 10時間反応させた後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-2-ブテン-1-オールの転化率は83.1%、3-エトキシ-3-メチル-1-ブタノールの収率は65.6%(3-エトキシ-3-メチル-1-ブタノールの選択率79.0%)であった。結果を表3に示す。
<比較例6>連続方式、強酸性イオン交換樹脂、PNA、エタノール使用(循環式)
 実施例9において、β型ゼオライト「BEA-25」の代わりに、強酸性イオン交換樹脂「ダイヤイオンPK212LH」(三菱化学株式会社製)を使用し、温水の温度を50℃としたこと以外は実施例9と同様の操作を行なった。
 10時間反応させた後の反応混合液をガスクロマトグラフィーで分析したところ、3-メチル-2-ブテン-1-オールの転化率は88.2%、3-エトキシ-3-メチル-1-ブタノールの収率は55.2%(3-エトキシ-3-メチル-1-ブタノールの選択率62.6%)であった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明の製造方法により得られる3-アルコキシ-3-メチル-1-ブタノールは、医農薬中間体や各種洗浄剤の原料などとして有用である。

Claims (4)

  1.  3-メチル-3-ブテン-1-オールおよび3-メチル-2-ブテン-1-オールから選択される少なくとも1種のメチルブテノールと炭素数1~5の第一級アルコールとを、β型ゼオライトおよびY型ゼオライトから選択される少なくとも1種のゼオライトの存在下に反応させることを特徴とする、3-アルコキシ-3-メチル-1-ブタノールの製造方法。
  2.  前記炭素数1~5の第一級アルコールが、メタノール、エタノールまたはn-プロパノールである、請求項1に記載の3-アルコキシ-3-メチル-1-ブタノールの製造方法。
  3.  前記炭素数1~5の第一級アルコールの使用量が、3-メチル-3-ブテン-1-オールおよび3-メチル-2-ブテン-1-オールから選択される少なくとも1種のメチルブテノール1モルに対して0.5~40モルである、請求項1または2に記載の3-アルコキシ-3-メチル-1-ブタノールの製造方法。
  4.  前記β型ゼオライトおよびY型ゼオライトのBET比表面積が、それぞれ、100~1,000m2/gである、請求項1~3のいずれかに記載の3-アルコキシ-3-メチル-1-ブタノールの製造方法。
PCT/JP2013/057481 2012-03-27 2013-03-15 3-アルコキシ-3-メチル-1-ブタノールの製造方法 WO2013146370A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012071889 2012-03-27
JP2012-071889 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146370A1 true WO2013146370A1 (ja) 2013-10-03

Family

ID=49259631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057481 WO2013146370A1 (ja) 2012-03-27 2013-03-15 3-アルコキシ-3-メチル-1-ブタノールの製造方法

Country Status (1)

Country Link
WO (1) WO2013146370A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189485A1 (ja) 2019-03-15 2020-09-24 積水化成品工業株式会社 生分解性樹脂粒子、該粒子を含有する生分解性樹脂粒子群、及びその用途
WO2020262509A1 (ja) 2019-06-28 2020-12-30 積水化成品工業株式会社 生分解性樹脂粒子及びそれを含有する外用剤
WO2021067087A1 (en) * 2019-09-30 2021-04-08 Dow Global Technologies Llc Methods of etherification
WO2021067079A1 (en) * 2019-09-30 2021-04-08 Dow Global Technologies Llc Methods of etherification
WO2021067077A1 (en) * 2019-09-30 2021-04-08 Dow Global Technologies Llc Methods of etherification
EP4234611A1 (en) 2016-07-22 2023-08-30 Sekisui Plastics Co., Ltd. Generally spherical resin particles formed of thermoplastic resin, method for producing same and use of same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059309A (ja) * 1973-10-04 1975-05-22
CN102206142A (zh) * 2011-03-23 2011-10-05 中国科学院山西煤炭化学研究所 一种3-甲氧基-3-甲基-1-丁醇的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059309A (ja) * 1973-10-04 1975-05-22
CN102206142A (zh) * 2011-03-23 2011-10-05 中国科学院山西煤炭化学研究所 一种3-甲氧基-3-甲基-1-丁醇的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234611A1 (en) 2016-07-22 2023-08-30 Sekisui Plastics Co., Ltd. Generally spherical resin particles formed of thermoplastic resin, method for producing same and use of same
WO2020189485A1 (ja) 2019-03-15 2020-09-24 積水化成品工業株式会社 生分解性樹脂粒子、該粒子を含有する生分解性樹脂粒子群、及びその用途
WO2020262509A1 (ja) 2019-06-28 2020-12-30 積水化成品工業株式会社 生分解性樹脂粒子及びそれを含有する外用剤
WO2021067087A1 (en) * 2019-09-30 2021-04-08 Dow Global Technologies Llc Methods of etherification
WO2021067079A1 (en) * 2019-09-30 2021-04-08 Dow Global Technologies Llc Methods of etherification
WO2021067077A1 (en) * 2019-09-30 2021-04-08 Dow Global Technologies Llc Methods of etherification

Similar Documents

Publication Publication Date Title
WO2013146370A1 (ja) 3-アルコキシ-3-メチル-1-ブタノールの製造方法
JPH06157378A (ja) 1,3−プロパンジオールの製造方法
CN104822683A (zh) 用于在酸性催化剂的存在下通过使用轻质醇醚化二脱水己糖醇制备二烷氧基二脱水己糖醇的方法
CN107108397B (zh) 用于生产二烯烃的方法
MX2012013509A (es) Procedimiento para la preparacion de tetrahidropiranoles 2-sustituidos.
EP3330246B1 (en) Method for directly preparing glycol dimethyl ether and co-producing ethylene glycol from ethylene glycol monomethyl ether
CN109890782A (zh) 生产丁二烯的单阶段方法
GB2539990A (en) Catalyst system and process
JP6357518B2 (ja) 触媒として陽イオン交換樹脂を使用することによるn,n’−ビス(2−シアノエチル)−1,2−エチレンジアミンの調製方法
JP2019501193A5 (ja)
US9567266B2 (en) Olefin production method
CN102887819B (zh) 一种制备2,2-二羟甲基丁醛的方法
JP6097278B2 (ja) 3−アルコキシ−3−メチル−1−ブタノールの製造方法
JP2015500846A (ja) トリメチロールプロパン製造の副流からトリメチロールプロパンが富化された生成物流を得る方法
GB2542869A (en) Process
KR102110743B1 (ko) 1,2-알케인다이올로부터의 포화 알데하이드 제조 방법
JP2005247840A (ja) 1,3−プロパンジオールの製造方法及び該製造方法で得られる1,3−プロパンジオール
JP6086594B2 (ja) 多価アルコールの製造方法
WO2015147035A1 (ja) シクロペンチルアルキルエーテル化合物の製造方法
JP6462498B2 (ja) 不飽和アルコールの製造方法及び触媒
CA1276618C (en) Process for the preparation of n-alkylanilines
EP3880643B1 (en) Synthesis of triethylene glycol bis(2-ethylhexanoate)
JP6290580B2 (ja) 還元反応用触媒組成物、1,6−ヘキサンジオールの製造方法、アミノベンゼン化合物の製造方法
JP5619753B2 (ja) 2−第二級−アルキル−4,5−ジ−(直鎖−アルキル)フェノール類を製造する方法
JP6008802B2 (ja) フェノールの精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP