WO2013146144A1 - 二次電池用負極材料、および二次電池 - Google Patents
二次電池用負極材料、および二次電池 Download PDFInfo
- Publication number
- WO2013146144A1 WO2013146144A1 PCT/JP2013/056130 JP2013056130W WO2013146144A1 WO 2013146144 A1 WO2013146144 A1 WO 2013146144A1 JP 2013056130 W JP2013056130 W JP 2013056130W WO 2013146144 A1 WO2013146144 A1 WO 2013146144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphite
- negative electrode
- secondary battery
- hexagonal
- crystalline carbon
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- Lithium ion secondary batteries have excellent characteristics such as high energy density and high operating voltage, and little deterioration due to charge / discharge cycles.
- Portable information terminals and industrial equipment such as mobile phones and notebook computers Widely used in In the future, it is expected to be applied to electric vehicles and power storage due to the increase in size, and research and development are underway.
- graphite is mainly used as the negative electrode active material of lithium ion secondary batteries.
- graphite is used as the negative electrode active material, a decomposition reaction of the electrolytic solution occurs at the electrode / electrolytic solution interface, and the capacity may be reduced.
- Patent Document 1 and Patent Document 2 propose to coat graphite with amorphous carbon or low crystalline carbon. Thereby, since it can prevent that electrolyte solution contacts the graphite surface directly, decomposition reaction of electrolyte solution can be suppressed.
- the graphite having the low crystalline carbon coating film described in Patent Document 1 and Patent Document 2 can prevent the electrolytic solution from directly contacting the graphite surface by the low crystalline carbon coating film.
- the decomposition reaction of the electrolytic solution can be suppressed.
- the internal graphite and the low crystalline carbon coating film have not been sufficiently studied.
- improvement of long-term reliability of the battery is particularly desired.
- the present invention solves the above-mentioned problems, and is made of graphite having a low crystalline carbon coating film, and can be used for a secondary battery that can realize a secondary battery with a small decrease in battery capacity even after long-term use.
- An object is to provide a negative electrode material.
- the third aspect of the present invention contains hexagonal graphite and rhombohedral graphite, and has a low crystalline carbon coating film on the surface.
- the lattice strain of the (101) plane of the hexagonal graphite is And a negative electrode material for a secondary battery made of graphite having an absolute value of a lattice strain difference of (100) plane of the hexagonal graphite of 7.1 ⁇ 10 ⁇ 4 or less.
- this invention relates to the secondary battery which has said negative electrode for secondary batteries.
- the negative electrode material for a secondary battery of the present invention comprises hexagonal graphite and rhombohedral graphite, and graphite having a low crystalline carbon coating film on the surface.
- “having a low crystalline carbon coating film” means that the surface of graphite is coated with carbon having a lower crystallinity than graphite or amorphous carbon.
- the graphite (graphite coated with low crystalline carbon) which is the negative electrode material for secondary battery of the present invention is one or more of the following characteristics (1) to (3), preferably the characteristic (1): It has all of (3). (1) In DTA measurement, it has an exothermic peak at 600 ° C. or lower, preferably 570 to 590 ° C., 690 ° C.
- graphite having a low crystalline carbon coating film (graphite coated with low crystalline carbon) as a negative electrode active material
- it is necessary to grasp and control the physical properties of the surface coating film and graphite.
- it has a low crystalline carbon coating film having at least one of the above characteristics (1) to (3), preferably all of characteristics (1) to (3)
- Graphite (graphite coated with low crystalline carbon) has good crystallinity of internal graphite, and a secondary battery using this as a negative electrode active material has excellent long-term reliability.
- the DTA measurement (differential thermal analysis) and the XRD measurement will be described in detail in Examples.
- the secondary battery of the present invention contains graphite which is the negative electrode material for the secondary battery of the present invention, that is, hexagonal graphite and rhombohedral graphite, has a low crystalline carbon coating film on the surface, It is characterized in that graphite having any one or more of characteristics (1) to (3), preferably all of characteristics (1) to (3) is used as the negative electrode active material.
- the secondary battery of the present invention contains, for example, a positive electrode in which a layer containing a positive electrode active material is formed on a positive electrode current collector, and a negative electrode active material (graphite which is a negative electrode material for a secondary battery of the present invention).
- the negative electrode current collector is formed on a negative electrode current collector, and the positive electrode and the negative electrode are disposed to face each other via a porous separator containing an electrolytic solution.
- the porous separator is disposed substantially parallel to the layer containing the negative electrode active material and the layer containing the positive electrode active material.
- the shape of the secondary battery of the present invention is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a coin shape, and a laminate pack.
- the negative electrode of the secondary battery of the present invention contains graphite as described above as a negative electrode active material.
- graphite which is the negative electrode material for a secondary battery of the present invention, a conductive material such as carbon black, and polyfluoride.
- various materials capable of inserting and extracting lithium for example, complex oxides such as Li x MO 2 (where M represents at least one transition metal), specifically, Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x MnO 3 , Li x Ni y Co 1-y O 2, etc., and a binder such as a conductive material such as carbon black, PVdF, etc.
- a material obtained by dispersing and kneading an agent with a solvent such as N-methyl-2-pyrrolidone (NMP) on a substrate (positive electrode current collector) such as a metal foil can be used.
- the secondary battery of the present invention comprises a negative electrode and a positive electrode laminated in a dry air or inert gas atmosphere via a separator, or after being rolled up, the resulting secondary battery is accommodated in a battery can or a synthetic resin and a metal foil. It can manufacture by sealing with the flexible film etc. which consist of a laminated body.
- porous films such as polyolefin, such as a polypropylene and polyethylene, a fluororesin, can be used suitably.
- Examples of the electrolytic solution in the present invention include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), and diethyl carbonate (DEC).
- PC propylene carbonate
- EC ethylene carbonate
- BC butylene carbonate
- VC vinylene carbonate
- DMC dimethyl carbonate
- DEC diethyl carbonate
- Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, and ⁇ -lactones such as ⁇ -butyrolactone, , 2-Ethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, aceto Amide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imi
- lithium salt examples include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides, etc. It is done. Further, a polymer electrolyte may be used instead of the electrolytic solution.
- the mass of the measured powder sample was about 3 mg, and the gas flow rates during the measurement were nitrogen gas: 240 cc / min and oxygen gas: 60 cc / min.
- the temperature profile at the time of temperature rise was set as follows. First, a waiting time of 5 minutes was provided to stabilize the gas flow before measurement. Next, measurement was performed while increasing the temperature from 20 ° C. to 400 ° C. at a rate of 10 ° C./min. Then, when it reached 400 degreeC, it waited for 10 minutes and measured from 400 degreeC to 900 degreeC, heating up at the rate of 3 degree-C / min.
- Fig. 1 shows the DTA spectrum in the low temperature region.
- Curves 1 to 5 are DTA curves of graphites A to E, respectively.
- One peak is observed in any sample at the position indicated by the broken line 6.
- these peaks are referred to as low temperature peaks.
- Fig. 2 shows the DTA spectrum in the high temperature region.
- Curves 7 to 11 are DTA curves of graphites A to E, respectively.
- a peak is observed in any sample at the position indicated by the broken line 12.
- these peaks are referred to as high temperature peaks.
- the low temperature peak located below 600 ° C. specifically between 576 ° C. and 582 ° C., is caused by combustion of the low crystalline carbon coating film. Since the difference in the low temperature peak temperature is small between graphites, it is considered that the properties of the low crystalline carbon coating film are not significantly different between the graphites A to E.
- the high temperature peak located at 690 ° C. or higher, specifically between 676 ° C. and 720 ° C., is caused by the combustion of graphite. While the difference in the low temperature peak temperature was small, the high temperature peak temperature ranged from 676 ° C. to 720 ° C., and the difference between the graphites was large. The difference in high temperature peak temperature is considered to reflect the difference in crystallinity of graphite.
- the wavelength of the X-ray used for the measurement was 0.1241 nm.
- the measurement result of graphite A is shown in FIG.
- FIG. 4 shows the relationship between the high temperature peak temperature in DTA measurement and the half width of the (101) peak of hexagonal graphite in XRD measurement. It can be seen that the higher the high temperature peak temperature of DTA, the smaller the half width. In particular, the half width of graphite A and B was 0.256 ° or less.
- a small half-value width indicates a large crystallite size and a small variation in crystal strain due to lattice strain. In this sense, the small half width reflects the good crystallinity of graphite. Therefore, it is considered that the high temperature peak of DTA indicates that the crystallinity of graphite is good.
- FIG. 5 shows the relationship between the absolute value of the difference between the lattice strain of the (101) plane of hexagonal graphite and the lattice strain of the (100) plane of hexagonal graphite and the high temperature peak temperature in DTA measurement.
- the lattice strain of the (101) plane of hexagonal graphite, the lattice strain of the (100) plane of hexagonal graphite, and the absolute value of the difference were determined as follows.
- the 2 ⁇ value of the (101) peak of hexagonal graphite and the 2 ⁇ value of the (100) peak of hexagonal graphite are read. These values are 2 ⁇ (101) and 2 ⁇ (100) , respectively.
- the interplanar spacing d (101) of the (101) plane of hexagonal graphite and the interplanar spacing d (100) of the (100) plane of hexagonal graphite are expressed by the following equations using the values of ⁇ (101) and ⁇ (100). More demanded.
- d (101), 0 is the (101) plane spacing in unstrained hexagonal graphite
- d (100), 0 is the (100) plane spacing in unstrained hexagonal graphite.
- d (101), 0 is 0.2032 nm
- d (100), 0 is 0.2132 nm.
- FIG. 5 shows that the absolute value
- of graphites A and B was 6.85 ⁇ 10 ⁇ 4 or less. This result suggests that the more uniform the lattice strain of hexagonal graphite contained in graphite, the more difficult it is to burn graphite.
- Negative electrode sheets using graphites A to E as active materials were prepared as follows. That is, a negative electrode sheet was formed by mixing an active material, PVdF, and a conductive additive, applying a dispersion kneaded with NMP as a solvent, applying the resultant to a copper foil, drying and compressing. Further, a positive electrode active material, PVdF, and a conductive additive were mixed, and a dispersion kneaded using NMP as a solvent was applied to an aluminum foil, dried and compressed to form a positive electrode sheet.
- the lithium ion secondary battery has a low crystalline carbon coating film having at least one of the following characteristics (1) to (3), preferably all of characteristics (1) to (3), and has hexagonal graphite and rhomboid. It can be seen that the reliability of the lithium ion secondary battery can be improved by using graphite containing tetrahedral graphite as the negative electrode material.
- (1) In DTA measurement it has exothermic peaks at 600 ° C. or lower and 690 ° C. or higher.
- the half width of the (101) peak of hexagonal graphite is 0.2575 ° or less.
- the absolute value of the difference between the lattice strain of the (101) plane of hexagonal graphite and the lattice strain of the (100) plane of hexagonal graphite is 7.1 ⁇ 10 ⁇ 4 or less.
- thermogravimetry analysis thermogravimetry analysis: measuring mass change accompanying temperature rise.
- Other methods such as TGA can also be used.
- the secondary battery of the present invention can be used in all industrial fields that require a power source and industrial fields related to transport, storage, and supply of electrical energy.
- power supplies for mobile devices such as mobile phones and notebook computers
- power supplies for transportation and transportation media such as trains, satellites, and submarines, including electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles Backup power source such as UPS
- UPS electric assist bicycles Backup power source
- UPS power storage facilities for storing power generated by solar power generation, wind power generation, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
(1)DTA測定において、600℃以下、好ましくは570~590℃と、690℃以上、好ましくは700℃以上、より好ましくは710~730℃に発熱ピークを有する。
(2)XRD測定において、六方晶グラファイトの(101)ピークの半値幅が0.2575°以下、好ましくは0.257°以下、より好ましくは0.2565°以下である。
(3)XRD測定において、六方晶グラファイトの(101)面の格子歪と六方晶グラファイトの(100)面の格子歪の差の絶対値が7.1×10-4以下、好ましくは7.0×10-4以下、より好ましくは6.9×10-4以下である。
(黒鉛A~Eの製造)
黒鉛の結晶性が異なる5つの試料(低結晶性炭素被覆膜を有する黒鉛A~E)を次のようにして製造した。
このようにして得た低結晶性炭素被覆膜を有する黒鉛の熱的性質を明らかにするために、黒鉛A~EについてDTA測定を行った。
黒鉛の結晶性を評価するために、黒鉛A~EについてXRD測定を行った。
黒鉛A~Eを活物質とした負極シートを以下のように作製した。すなわち、活物質とPVdF、導電助剤を混合し、NMPを溶剤として分散混練したものを銅箔に塗布し、乾燥、圧縮することにより負極シートを形成した。また、正極活物質とPVdF、導電助剤を混合し、NMPを溶剤として分散混練したものをアルミニウム箔に塗布し、乾燥、圧縮することにより正極シートを形成した。さらに、1mol/LのLiPF6をECとDECの混合溶媒に溶解させたものを電解質溶液とした。上記の負極、正極、電解質溶液およびセパレータを用いてコイン型二次電池を作製した。これらのコイン型二次電池を用いて充放電サイクル試験を行ったところ、電池としての長期信頼性は黒鉛A、Bが他の黒鉛C、D、Eよりも良好であった。
(1)黒鉛の燃焼に起因するDTAの高温ピーク温度と、黒鉛の結晶性に関わる2つの指標:六方晶グラファイトの(101)ピークの半値幅、六方晶グラファイトの(101)面の格子歪と六方晶グラファイトの(100)面の格子歪の差に相関がある、
(2)(i) DTAの高温ピークがより高温であり(717℃以上)、(ii) 六方晶グラファイトの(101)ピークの半値幅が小さく(0.256°以下)、(iii)六方晶グラファイトの(101)面の格子歪と六方晶グラファイトの(100)面の格子歪の差の絶対値が小さい(6.85×10-4以下)、黒鉛A,Bを負極活物質として用いた二次電池は、長期信頼性が良好であった。
(1)DTA測定において、600℃以下と、690℃以上に発熱ピークを有する。
(2)XRD測定において、六方晶グラファイトの(101)ピークの半値幅が0.2575°以下である。
(3)XRD測定において、六方晶グラファイトの(101)面の格子歪と六方晶グラファイトの(100)面の格子歪の差の絶対値が7.1×10-4以下である。
2 低結晶性炭素皮膜を有する黒鉛Bの低温領域におけるDTA曲線
3 低結晶性炭素皮膜を有する黒鉛Cの低温領域におけるDTA曲線
4 低結晶性炭素皮膜を有する黒鉛Dの低温領域におけるDTA曲線
5 低結晶性炭素皮膜を有する黒鉛Eの低温領域におけるDTA曲線
6 低結晶性炭素皮膜を有する黒鉛のDTAスペクトルにおける低温ピーク
7 低結晶性炭素皮膜を有する黒鉛Aの高温領域におけるDTA曲線
8 低結晶性炭素皮膜を有する黒鉛Bの高温領域におけるDTA曲線
9 低結晶性炭素皮膜を有する黒鉛Cの高温領域におけるDTA曲線
10 低結晶性炭素皮膜を有する黒鉛Dの高温領域におけるDTA曲線
11 低結晶性炭素皮膜を有する黒鉛Eの高温領域におけるDTA曲線
12 低結晶性炭素皮膜を有する黒鉛のDTAスペクトルにおける高温ピーク
13 低結晶性炭素皮膜を有する黒鉛のXRDスペクトルにおける六方晶グラファイトの(100)面に起因する回折ピーク
14 低結晶性炭素皮膜を有する黒鉛のXRDスペクトルにおける菱面体晶グラファイトの(001)面に起因する回折ピーク
15 低結晶性炭素皮膜を有する黒鉛のXRDスペクトルにおける六方晶グラファイトの(101)面に起因する回折ピーク
16 低結晶性炭素皮膜を有する黒鉛のXRDスペクトルにおける菱面体晶グラファイトの(011)面に起因する回折ピーク
Claims (8)
- 六方晶グラファイトと、菱面体晶グラファイトを含有し、
表面には低結晶性炭素被覆膜を有し、
DTA測定において、600℃以下と、690℃以上に発熱ピークを有する黒鉛からなる二次電池用負極材料。 - 六方晶グラファイトと、菱面体晶グラファイトを含有し、
表面には低結晶性炭素被覆膜を有し、
XRD測定において、前記六方晶グラファイトの(101)ピークの半値幅が0.2575°以下である黒鉛からなる二次電池用負極材料。 - 前記黒鉛が、DTA測定において、600℃以下と、690℃以上に発熱ピークを有する請求項2に記載の二次電池用負極材料。
- 六方晶グラファイトと、菱面体晶グラファイトを含有し、
表面には低結晶性炭素被覆膜を有し、
XRD測定において、前記六方晶グラファイトの(101)面の格子歪と前記六方晶グラファイトの(100)面の格子歪の差の絶対値が7.1×10-4以下である黒鉛からなる二次電池用負極材料。 - 前記黒鉛が、DTA測定において、600℃以下と、690℃以上に発熱ピークを有する請求項4に記載の二次電池用負極材料。
- 前記黒鉛が、XRD測定において、六方晶グラファイトの(101)ピークの半値幅が0.2575°以下である請求項4乃至請求項5に記載の二次電池用負極材料。
- 請求項1乃至請求項6のいずれか1項に記載の黒鉛を負極活物質として含む二次電池用負極。
- 請求項7に記載の負極を有する二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/389,514 US9748556B2 (en) | 2012-03-30 | 2013-03-06 | Negative electrode material for secondary battery, and secondary battery |
JP2014507603A JP6102914B2 (ja) | 2012-03-30 | 2013-03-06 | 二次電池用負極材料、および二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-082756 | 2012-03-30 | ||
JP2012082756 | 2012-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146144A1 true WO2013146144A1 (ja) | 2013-10-03 |
Family
ID=49259415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056130 WO2013146144A1 (ja) | 2012-03-30 | 2013-03-06 | 二次電池用負極材料、および二次電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9748556B2 (ja) |
JP (1) | JP6102914B2 (ja) |
WO (1) | WO2013146144A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9552900B2 (en) * | 2014-09-09 | 2017-01-24 | Graphene Platform Corporation | Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite |
US9815987B2 (en) | 2014-09-09 | 2017-11-14 | Graphene Platform Corporation | Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite and method of producing a composite conductive material |
WO2020213628A1 (ja) * | 2019-04-18 | 2020-10-22 | 昭和電工株式会社 | 複合炭素粒子、その製造方法及びその用途 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102546827B1 (ko) * | 2018-04-24 | 2023-06-21 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
JP7547753B2 (ja) * | 2019-03-28 | 2024-09-10 | 三菱ケミカル株式会社 | 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 |
CN112820871A (zh) * | 2020-12-31 | 2021-05-18 | 潮州三环(集团)股份有限公司 | 一种硅基负极材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007305625A (ja) * | 2006-05-08 | 2007-11-22 | Masayuki Yoshio | 疑似容量キャパシタ |
WO2007139130A1 (ja) * | 2006-05-31 | 2007-12-06 | Sanyo Electric Co., Ltd. | 高電圧充電型非水電解質二次電池 |
JP2008300274A (ja) * | 2007-06-01 | 2008-12-11 | Panasonic Corp | 複合負極活物質および非水電解質二次電池 |
WO2010110443A1 (ja) * | 2009-03-27 | 2010-09-30 | 三菱化学株式会社 | 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池 |
WO2012039477A1 (ja) * | 2010-09-24 | 2012-03-29 | 日立化成工業株式会社 | リチウムイオン電池、及びそれを利用した電池モジュール |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2643035B2 (ja) | 1991-06-17 | 1997-08-20 | シャープ株式会社 | 非水系二次電池用炭素負極およびその製造方法 |
JP3969164B2 (ja) | 2002-04-16 | 2007-09-05 | 三菱化学株式会社 | リチウム二次電池用負極材料及びそれから製造された負極体 |
US20040229041A1 (en) * | 2003-05-16 | 2004-11-18 | Caisong Zou | Graphite granules and their method of fabrication |
-
2013
- 2013-03-06 WO PCT/JP2013/056130 patent/WO2013146144A1/ja active Application Filing
- 2013-03-06 JP JP2014507603A patent/JP6102914B2/ja not_active Expired - Fee Related
- 2013-03-06 US US14/389,514 patent/US9748556B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007305625A (ja) * | 2006-05-08 | 2007-11-22 | Masayuki Yoshio | 疑似容量キャパシタ |
WO2007139130A1 (ja) * | 2006-05-31 | 2007-12-06 | Sanyo Electric Co., Ltd. | 高電圧充電型非水電解質二次電池 |
JP2008300274A (ja) * | 2007-06-01 | 2008-12-11 | Panasonic Corp | 複合負極活物質および非水電解質二次電池 |
WO2010110443A1 (ja) * | 2009-03-27 | 2010-09-30 | 三菱化学株式会社 | 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池 |
WO2012039477A1 (ja) * | 2010-09-24 | 2012-03-29 | 日立化成工業株式会社 | リチウムイオン電池、及びそれを利用した電池モジュール |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9552900B2 (en) * | 2014-09-09 | 2017-01-24 | Graphene Platform Corporation | Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite |
US9815987B2 (en) | 2014-09-09 | 2017-11-14 | Graphene Platform Corporation | Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite and method of producing a composite conductive material |
WO2020213628A1 (ja) * | 2019-04-18 | 2020-10-22 | 昭和電工株式会社 | 複合炭素粒子、その製造方法及びその用途 |
Also Published As
Publication number | Publication date |
---|---|
US20150118566A1 (en) | 2015-04-30 |
US9748556B2 (en) | 2017-08-29 |
JPWO2013146144A1 (ja) | 2015-12-10 |
JP6102914B2 (ja) | 2017-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111466046B (zh) | 负极活性材料、包含所述负极活性材料的负极和包含所述负极的锂二次电池 | |
CN108140823B (zh) | 负极活性物质、二次电池、负极材料和二次电池制造方法 | |
KR102301220B1 (ko) | 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지 | |
US10074850B2 (en) | High-capacity negative electrode active material and lithium secondary battery including the same | |
JP6102914B2 (ja) | 二次電池用負極材料、および二次電池 | |
KR20100060362A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR20220038494A (ko) | 이차 전지, 전해액 및 이차 전지를 포함하는 장치 | |
US20160190651A1 (en) | Nonaqueous electrolyte battery and battery pack | |
JP4655721B2 (ja) | リチウムイオン二次電池及び正極活物質 | |
TWI629823B (zh) | Positive electrode mixture and non-aqueous electrolyte battery | |
US20150263385A1 (en) | Lithium secondary battery | |
EP2874227B1 (en) | Lithium secondary battery | |
WO2019235469A1 (ja) | 還元型グラフェン系材料 | |
KR20150084818A (ko) | 비수전해질 이차 전지용 망간산리튬 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지 | |
JP5055780B2 (ja) | 正極活物質の製造方法およびそれを用いた電池 | |
WO2012077472A1 (ja) | 二次電池用正極活物質及びそれを使用した二次電池 | |
US20230170477A1 (en) | Composite cathode materials for lithium-ion batteries and methods for manufacturing the same | |
CN117941101A (zh) | 正极活性材料及其制备方法、极片、二次电池及用电装置 | |
JP4838989B2 (ja) | 非水電解液二次電池用正極活物質の製造方法 | |
JP5195854B2 (ja) | リチウムイオン二次電池 | |
JP2010135115A (ja) | 非水電解質二次電池 | |
JP2005243448A (ja) | 非水電解質二次電池 | |
JP4867153B2 (ja) | 非水電解液二次電池用の正極活物質、二次電池用正極および非水電解液二次電池 | |
KR102465642B1 (ko) | 쿠에트-테일러 반응기를 이용한 고용량 양극소재의 제조방법 및 그를 포함하는 리튬이차전지의 제조방법 | |
JP7447904B2 (ja) | 還元型酸化グラフェン-ジヒドロキシナフタレン複合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13768871 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507603 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14389514 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13768871 Country of ref document: EP Kind code of ref document: A1 |