WO2013145839A1 - Defect detection apparatus - Google Patents

Defect detection apparatus Download PDF

Info

Publication number
WO2013145839A1
WO2013145839A1 PCT/JP2013/051964 JP2013051964W WO2013145839A1 WO 2013145839 A1 WO2013145839 A1 WO 2013145839A1 JP 2013051964 W JP2013051964 W JP 2013051964W WO 2013145839 A1 WO2013145839 A1 WO 2013145839A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
probe
defect detection
detection apparatus
defect
Prior art date
Application number
PCT/JP2013/051964
Other languages
French (fr)
Japanese (ja)
Inventor
泰広 上田
敏幸 篠崎
森田 春雪
英斗 纐纈
行彦 中倉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013145839A1 publication Critical patent/WO2013145839A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a defect detection apparatus for detecting defects such as wiring formed on a substrate.
  • Patent Document 1 discloses an inspection apparatus including a probe unit that supplies current to an electrode and a sensor unit that detects the current supplied to the wiring and determines the presence or absence of a defect.
  • Patent Document 2 As a technique for specifying the position of a defect such as wiring, for example, in Patent Document 2, a two-dimensional image of a substrate is acquired by imaging the substrate with a licensor, and the two-dimensional image is subjected to image processing to obtain a defect position. Is specified.
  • Patent Documents 3 to 5 disclose techniques for specifying a short-circuit position by passing a current through a wiring or the like to be inspected, photographing with an infrared camera, and detecting heat generation of the wiring or the like.
  • JP 2007-206641 A released on August 16, 2007
  • JP 2010-66236 A published March 25, 2010
  • Japanese Patent Laid-Open No. 4-72552 published March 6, 1992
  • JP-A-6-207914 published July 26, 1994
  • Japanese Patent Laid-Open No. 2-64594 published on March 5, 1990
  • the position measurement accuracy varies when the distance between the imaging means and the inspection object changes. That is, when the distance between the imaging unit and the inspection object changes, the area of the area on the substrate that is imaged by the imaging unit changes. On the other hand, the number of pixels of the image sensor in the imaging means is constant. For this reason, when the distance between the imaging means and the inspection object changes, the resolution of the image (the area of the area on the inspection object per pixel) changes, and the position measurement accuracy varies.
  • the infrared camera observes only the temperature difference between the imaging objects by detecting the infrared rays radiated from the imaging object, the position and size of the reference object for determining the resolution are known in advance. And a plurality of objects having different temperatures (a plurality of different temperature regions). However, if there is a temperature difference between these objects, the heat of each object moves so as to eliminate the temperature difference, so the boundary of the temperature difference becomes unclear. For this reason, it is difficult to always provide a reference with sufficient accuracy, and it is difficult to always obtain sufficient resolution with the techniques of Patent Documents 3 to 5. Further, even if a reference object with sufficient accuracy can be prepared, it takes time to adjust the distance between the imaging means and the inspection object, resulting in a problem that inspection efficiency is lowered.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a defect detection apparatus that can easily and appropriately detect the position of a defect in a wiring formed on a substrate. .
  • a defect detection apparatus is a defect detection apparatus for detecting a defect of a wiring formed on a substrate, and a voltage application for applying a voltage to a stage on which the substrate is placed and a wiring to be inspected on the substrate.
  • a gantry arranged so as to straddle the stage, and the inspection in which a voltage is applied by the voltage application unit, disposed at a position facing the substrate surface of the substrate placed on the stage in the gantry.
  • An infrared camera that images the target wiring, and the gantry is movable in the X direction, which is parallel to the substrate surface of the substrate placed on the stage, and the infrared camera is mounted on the stage. It is attached to the gantry so that the relative position with respect to the substrate surface in the Z direction which is a direction perpendicular to the substrate surface of the substrate to be placed is constant. It is characterized by a door.
  • the infrared camera can be easily moved to a position corresponding to the inspection target wiring on the substrate.
  • the infrared camera can be translated along a direction parallel to the substrate surface while keeping the position in the direction perpendicular to the substrate surface of the infrared camera constant, and can be moved to a position corresponding to the inspection target location on the substrate. .
  • substrate can be detected with high precision.
  • the infrared camera is attached to the gantry so as to be parallel to the substrate surface of the substrate placed on the stage and parallel to the Y direction that intersects the X direction. Also good.
  • the infrared camera is translated along the X and Y directions parallel to the substrate surface, so It can be moved to a corresponding position. Thereby, the defect of the inspection object location in a board
  • the voltage application unit includes a probe unit including a probe needle that contacts a connection terminal provided on the substrate, and the probe unit includes a substrate on which the probe needle is placed on the stage. It is good also as a structure provided so that the movement to the position which contacts the said connection terminal, and the position spaced apart with respect to the said connection terminal is possible.
  • the inspection voltage can be easily applied to the wiring to be inspected by bringing the probe needle into contact with the connection terminal provided on the substrate to be inspected.
  • connection terminal is provided at an outer edge portion of each substrate circuit
  • probe portion has a shape of an outer edge portion of each substrate circuit.
  • the substrate circuit since the substrate circuit is exposed through the opening, it is possible to easily image the inspection target wiring with the infrared camera in a state where a voltage is applied to the inspection target wiring of the substrate circuit. it can.
  • the substrate circuit is a substrate circuit provided in a display panel, and includes a pixel region in which a large number of pixel circuits are arranged, and a peripheral circuit region having a peripheral circuit for driving the pixel circuits.
  • defects can be detected in both the pixel region and the peripheral circuit region.
  • the probe section of the probe section is moved to a position where the probe needle of the probe section is in contact with the connection terminal of the substrate circuit to be inspected. It is good also as a structure which can image.
  • the defect detection process can be performed compared to the case where the entire area of the substrate circuit is imaged in multiple steps.
  • the required processing time can be shortened.
  • the defect detection apparatus of the present invention it is possible to detect a defect at a location to be inspected on a substrate with high accuracy.
  • FIG. 1 is explanatory drawing which shows the structure of the board
  • (b) is the probe part with which the defect detection apparatus shown in FIG. 1 is equipped. It is explanatory drawing which shows this structure.
  • (A) is explanatory drawing which shows the structure of the board
  • FIG. 1 is a perspective view schematically showing a configuration of a defect detection apparatus 100 according to the present embodiment.
  • the defect detection apparatus 100 includes a base 10, an alignment stage 11, a gantry 12, mount parts 15 a and 15 b, a probe part (voltage application part) 3, and an infrared camera 4.
  • An alignment stage (stage) 11 is installed on the base 10, and a mother substrate (substrate) 1 that is an inspection object is placed on the alignment stage 11. Further, the X-axis direction (the mother substrate 1 in the alignment stage 11) is positioned at both sides of the alignment stage 11 in the base 10 in the Y-axis direction (the direction parallel to the mounting surface of the mother substrate 1 in the alignment stage 11). Guide rails 13a and 13b extending in a direction parallel to the mounting surface and in a direction intersecting with the Y-axis direction are provided.
  • the alignment stage 11 is provided with a position adjusting means (not shown). By this position adjusting means, the substrate surface of the mother substrate 1 placed on the alignment stage 11 is parallel to the X axis direction and the Y axis direction. The position is adjusted so that A plurality of TFT substrates (substrate circuits) 2 used for the liquid crystal panel are formed on the mother substrate 1 (in this embodiment, four pieces in the X-axis direction ⁇ Y-axis direction on one mother substrate 1). A total of eight TFT substrates 2 arranged in a matrix of two sheets are formed).
  • the gantry 12 is a gate provided with two leg portions 12a and 12b arranged so as to face each other across the alignment stage 11, and a beam portion 12c connecting one end sides of the leg portions 12a and 12b. It has a mold shape. The other end sides of the leg portions 12a and 12b are attached to guide rails 13a and 13b provided on the base 10, respectively. As a result, the gantry 12 can be translated in the X-axis direction along the guide rails 13a and 13b.
  • a guide rail 14 extending in the Y-axis direction is provided on the beam portion 12c of the gantry 12, and the infrared camera 4 and mount portions 15a and 15b are attached to the guide rail 14.
  • the infrared camera 4 and the mounts 15a and 15b are movable in the Y-axis direction along the guide rail 14, while the Z-axis direction (the direction perpendicular to the X-axis direction and the Y-axis direction) is relative to the gantry 12. Is attached to the guide rail 14 so as to be always constant.
  • the infrared camera 4 can be translated in the X-axis direction by the movement of the gantry 12, and can be moved in the Y-axis direction along the guide rail 14, while the position in the Z-axis direction is the gantry 12 and alignment stage. 11 is fixed to the gantry 12 in a constant manner. That is, the infrared camera 4 has a gantry so that the distance from the TFT substrate 2 as the inspection object placed on the alignment stage 11 is always constant even when the infrared camera 4 is translated in the X-axis direction and the Y-axis direction. 12 is attached.
  • the mount portions 15a and 15b include guide rails 16a and 16b extending in the Z-axis direction, and probe support portions 17a and 17b attached to the probe portion 3 are attached to the guide rails 16a and 16b. . Thereby, the probe part 3 can be translated in the Z-axis direction along the guide rails 16a and 16b.
  • FIG. 2A is a plan view of one of the plurality of TFT substrates 2 formed on the mother substrate 1.
  • the TFT substrate 2 includes a pixel portion (pixel region, display portion) 21, a peripheral circuit portion (drive circuit portion, peripheral circuit region) 22 provided around the pixel portion 21, and a TFT substrate.
  • Terminal portions 23a to 23d each having a plurality of connection terminals provided on the peripheral edge portion of 2 are provided.
  • a plurality of scanning lines (gate lines) and a plurality of signal lines (data lines) are provided so as to intersect with each other, and switching elements each including a TFT (thin film transistor, not shown) at each intersection. Is formed.
  • the peripheral circuit section 22 is formed with peripheral circuits for driving the liquid crystal panel, and wirings such as wirings for connecting the respective circuits and auxiliary capacitance wirings (all not shown). Further, the connection terminals of the terminal portions 23a to 23d provided on the peripheral edge portion of the TFT substrate 2 are electrically connected to wirings or circuits provided in the peripheral circuit portion 22 or the pixel portion 21.
  • FIG. 2B is a plan view of the probe unit 3 for connecting a terminal unit 23a to 23d installed on the TFT substrate 2 and applying a voltage to the wiring and circuit on the TFT 2.
  • FIG. 2B is a plan view of the probe unit 3 for connecting a terminal unit 23a to 23d installed on the TFT substrate 2 and applying a voltage to the wiring and circuit on the TFT 2.
  • the probe part 3 has a frame part whose inner edge part has a shape corresponding to the outer edge part of the TFT substrate 2 shown in FIG. That is, the probe portion 3 has a frame portion having an opening inside, and the TFT substrate 2 to be inspected is accommodated in the opening portion of the frame portion.
  • probe needle portions 24a to 24d having probe needles protruding toward the inner side (opening portion side) are provided on the inner edge portion of the frame portion of the probe portion 3.
  • the probe needles provided in the probe needle portions 24a to 24d are provided at positions corresponding to the connection terminals of the terminal portions 23a to 23d installed on the TFT substrate 2.
  • the probe needles provided in the probe needle units 24a to 24d and the terminal units 23a to 23d of the TFT substrate 2 are used. Contact each connection terminal.
  • the upper portions of the pixel portion 21 and the peripheral circuit portion 22 are exposed without being covered with the probe portion 3.
  • the probe needles provided in the probe needle parts 24a to 24d are individually connected to a resistance measuring part 37 and a voltage applying part 36, which will be described later, via switching relays (not shown). Thereby, the probe unit 3 can selectively apply a voltage to a desired wiring (one or a plurality of wirings) among the plurality of wirings connected to the terminal units 23a to 23d.
  • the probe unit 3 can measure the resistance value of each wiring connected to the terminal portions 23a to 23d and the resistance value between adjacent wirings.
  • the infrared camera 4 and the mounts 15a and 15b are attached to a common guide rail 14 so that the relative positions of these members are constant, and move integrally along the guide rail 14. It has become.
  • the infrared camera 4 has the pixel portion 21 of the TFT substrate 2 in the state where the probe needles provided in the probe needle portions 24a to 24d and the connection terminals of the terminal portions 23a to 23d of the TFT substrate 2 are in contact with each other.
  • the entire inspection target region in the peripheral circuit unit 22 is attached to a position where it can be imaged by one imaging process. That is, in the present embodiment, an infrared camera is used as the infrared camera 4, in which the entire area to be inspected is included in the pixel unit 21 and the peripheral circuit unit 22 of the TFT substrate 2 in the imaging range by one imaging process.
  • the present invention is not limited to this, and the infrared camera 4 whose imaging range by one imaging process corresponds to a part of the inspection target area is used, and the infrared camera 4 is in the Y-axis direction with respect to the mount portions 15a and 15b. It may be configured to be relatively movable in at least one of the X-axis directions, and may be configured to image the inspection target region by a plurality of imaging processes.
  • the infrared camera 4 and the mount portions 15a and 15b are attached to the common guide rail 14.
  • the present invention is not limited to this, and the infrared camera 4 and the mount portions 15a and 15b are attached. Guide rails may be provided individually.
  • the infrared camera 4 and the mount parts 15a and 15b are attached to the common gantry 12.
  • the present invention is not limited to this, and the gantry for attaching the infrared camera 4 and the mount parts 15a and 15b. May be provided individually.
  • FIG. 3 is a block diagram schematically showing the functional configuration of the defect detection apparatus 100.
  • the defect detection apparatus 100 includes a control unit 31, a data storage unit 32, a gantry moving unit 33, a probe moving unit 34, a camera moving unit 35, a probe unit 3, and an infrared camera 4.
  • the probe unit 3 includes a voltage application unit 36 and a resistance measurement unit 37.
  • the control unit 31 includes a position control unit 41, a voltage control unit 42, a resistance measurement control unit 43, a defect determination unit 44, an imaging control unit 45, and a defect position specifying unit 46.
  • the gantry moving means 28 is constituted by a motor, a gear or the like (not shown), and translates the gantry 12 in the X-axis direction along the guide rails 13a and 13b.
  • the probe moving means 29 is constituted by a motor, a gear or the like (not shown), and moves the mount portions 15a and 15b along the guide rail 14 provided on the beam portion 12c of the gantry 12 in the Y-axis direction.
  • the probe support portions 17a and 17b are moved in the Z-axis direction along the guide rails 16a and 16b provided on the mount portions 15a and 15b. Thereby, the probe part 3 moves to a Y-axis direction and a Z-axis direction.
  • the camera moving means 30 is constituted by a motor, a gear or the like (not shown), and moves the infrared camera 4 in the Y-axis direction along the guide rail 14 provided on the beam portion 12c of the gantry 12.
  • the camera moving means 30 is used. It may be omitted and the probe moving means 29 may have the function.
  • the voltage application unit 36 is provided in the probe unit 3, and is individually connected to each probe needle provided in the probe needles 24a to 24d via a switching relay (not shown). Thereby, the voltage application unit 36 can selectively apply a voltage to one or a plurality of desired wirings among the wirings connected to each probe needle.
  • the resistance measurement unit 37 is provided in the probe unit 3, and is individually connected to each probe needle provided in the probe needles 24a to 24d via a switching relay (not shown). Thereby, the resistance measurement part 37 can measure the resistance value of the desired wiring among the wiring connected to each probe needle, or the resistance value between adjacent wiring.
  • the control unit 31 is a computer device that includes an arithmetic processing unit such as a CPU and a dedicated processor, and a storage unit (not shown) such as a RAM, a ROM, and an HDD, and is stored in the storage unit.
  • the position control unit 41, the voltage control unit 42, the resistance measurement control unit 43, the defect determination unit 44, the imaging control unit 45, and the defect position specifying unit by reading and executing various information and programs for performing various controls
  • the function 46 is executed to control the operation of each part of the defect detection apparatus 100.
  • the control unit 31 is not limited to being realized using software, and may be configured by hardware logic.
  • the control unit 31 may be a combination of hardware that performs a part of the processing of the control unit 31 and arithmetic means that executes software that performs control of the hardware or residual processing.
  • the position controller 41 controls operations of the gantry moving means 33, the probe moving means 34, and the camera moving means 35. That is, the position control unit 41 controls the movement of the gantry 12 in the X-axis direction, the movement of the probe unit 3 and the infrared camera 4 in the Y-axis direction, and the movement of the probe unit 3 in the Z-axis direction.
  • the voltage control unit 42 controls the operation of the voltage application unit 36 provided in the probe unit 3 to selectively apply a desired voltage to one or more desired wires among the wires connected to each probe needle. To be applied.
  • the resistance measurement control unit 43 controls the operation of the resistance measurement unit 37 provided in the probe unit 3, and the resistance value of a desired wiring among the wirings connected to each probe needle, or between adjacent wirings Let the resistance value be measured.
  • the defect determination unit 44 determines the presence or absence of a defect based on the measurement result of the resistance value by the resistance measurement unit 37.
  • the imaging control unit 45 controls the operation of the infrared camera (thermo viewer) 4 to capture an infrared image (thermo viewer image) of the TFT substrate 2.
  • the defect position specifying unit 46 specifies the position of the defect based on the measurement result of the resistance value by the resistance measuring unit 37 or the infrared image data captured by the infrared camera 4.
  • the data storage unit 32 stores various programs used for controlling the defect detection apparatus 100 by the control unit 31, measurement results of wiring or resistance values between the wirings by the resistance measurement unit 37, infrared image data captured by the infrared camera 38, and the like.
  • the mother substrate 1 is placed at a predetermined position on the alignment stage 11, and position adjustment (alignment) is performed so that the mother substrate 1 is parallel to the X-axis direction and the Y-axis direction (S1).
  • the mechanism and method for position adjustment are not particularly limited, and conventionally known mechanisms and methods can be used. Further, the position adjustment may be performed automatically or manually.
  • the position control unit 41 controls the operations of the gantry moving unit 33, the probe moving unit 34, and the camera moving unit 35, and moves the probe unit 3 to a position corresponding to the TFT substrate 2 to be inspected to move the probe unit.
  • the probe needles provided in the three probe needle parts 24a to 24d are brought into contact with the connection terminals provided in the terminal parts 23a to 23d of the TFT substrate 2 (S2).
  • the voltage control unit 42 controls the operation of the voltage application unit 36 to apply a voltage for resistance value inspection between the wirings to be inspected or between the wirings (S3), and the resistance measurement control unit 43 performs resistance measurement unit 37. Is controlled to measure the resistance value (electric resistance value) between the wirings to be inspected or between the wirings (S4).
  • the defect determination unit 44 determines the presence or absence of a defect between the wirings to be inspected or the wirings based on the resistance value measurement result of S4 (S5). Specifically, the defect determination unit 44 compares the resistance value measurement result of S4 with the resistance value between the wiring or the wiring when there is no defect stored in the data storage unit 32 in advance, If the difference is less than a predetermined value, it is determined that there is no defect, and if it is greater than the predetermined value, it is determined that there is a defect.
  • FIG. 5A to FIG. 5C are explanatory diagrams schematically showing an example of a defective portion (wiring short-circuit portion) 25 generated in the pixel portion 21.
  • FIG. 5A to FIG. 5C are explanatory diagrams schematically showing an example of a defective portion (wiring short-circuit portion) 25 generated in the pixel portion 21.
  • FIG. 5A to FIG. 5C are explanatory diagrams schematically showing an example of a defective portion (wiring short-circuit portion) 25 generated in the pixel portion 21.
  • FIG. 5A shows an example of the defective portion 25 in which the wiring X and the wiring Y are short-circuited in the intersecting portion in the TFT substrate where the wiring X (for example, the scanning line) and the wiring Y (for example, the signal line) intersect. Is shown.
  • the presence / absence and position of this type of defective portion 25 is switched to the probe needle to be conducted to the set of terminal portion 23a and terminal portion 23d or the set of terminal portion 23b and terminal portion 23c shown in FIG.
  • the wirings Y1 to Y10 can be specified by measuring the resistance value between the wirings for each wiring.
  • FIG. 5B shows an example of the defective portion 25 in which the wirings of adjacent wirings X (for example, scanning lines or scanning lines and auxiliary capacitance wirings) are short-circuited.
  • the presence / absence and position of this type of defect 25 is determined by switching the probe needle to be conducted to a pair of odd numbered terminal 23b and even numbered 23d, and measuring the resistance value between adjacent wires X1 to X10. Can be specified.
  • FIG. 5C shows an example of the defective portion 25 in which the wirings between adjacent wirings Y (for example, signal lines) are short-circuited.
  • the presence / absence and position of this type of defective portion 25 is determined by switching the probe needle to be conducted to a pair of odd numbered terminals 23a and even numbered 23c, and measuring resistance values between adjacent wires Y1 to Y10. Can be specified.
  • the defect determination unit 44 stores the wiring corresponding to the defect or the resistance value between the wirings in the data storage unit 32 (S6).
  • the defect position specifying unit 46 determines whether or not it is necessary to perform an infrared inspection in order to specify the position of the defect (S7).
  • the defect position specifying unit 46 determines that the infrared inspection is unnecessary.
  • the defect position specifying unit 46 determines that an infrared inspection is necessary.
  • the defect position specifying unit 46 determines that infrared inspection is necessary to specify the position of the defective part 25.
  • the voltage control unit 42 controls the operation of the voltage application unit 36 to apply a voltage for infrared inspection between the wirings to be inspected or between the wirings (S8), and image pickup.
  • the control unit 45 controls the operation of the infrared camera 4 to image the TFT substrate 2 (S9), and stores the captured infrared image data in the data storage unit 32.
  • the voltage value for infrared inspection is not particularly limited, and may be set as appropriate in consideration of the characteristics of the wiring or circuit to be inspected.
  • the voltage value for infrared inspection may be set to a voltage value proportional to the square root of the resistance value measured in S4.
  • the calorific value per unit time can be made constant, the resistance of the short circuit path including the defect 25 depends on the type of the substrate, the location where the defect 25 occurs on the substrate, the cause of the short circuit of the defect 25, and the like. Even if the value fluctuates greatly, the calorific value per unit time can be made constant regardless of these factors.
  • the defect position specifying unit 46 specifies the position of the defect based on the infrared image data (S10), and stores the specified position in the data storage unit 32 (S11).
  • FIG. 6A is an explanatory diagram showing a position A of a defect present in a part of the TFT substrate 2
  • FIG. 6B is a diagram of an infrared image acquired by imaging an area including the defect with the infrared camera 4.
  • FIG.6 (c) is explanatory drawing which shows the image which expanded and image
  • the defect position specifying unit 46 specifies based on the resistance value measurement result.
  • the defect position is stored in the data storage unit 32 (S11).
  • control unit 31 determines whether or not the inspection of all the wirings to be inspected in the TFT substrate 2 being inspected or the inspection between the wirings has been completed. Is determined (S12).
  • control unit 31 returns to the process of S3 and inspects the next wiring or between the wirings.
  • control unit 31 determines whether or not the inspection has been completed for all TFT substrates 2 in the mother substrate 1 under inspection (S13).
  • control unit 31 ends the inspection process for the mother substrate 1.
  • the defect detection apparatus 100 includes the gantry 12 that can be translated in the X-axis direction, which is parallel to the substrate surface of the mother substrate 1 placed on the alignment stage 11, and the above-described gantry 12.
  • An infrared camera 4 attached to the gantry 12 so that the relative position with respect to the substrate surface in the Z-axis direction which is a direction perpendicular to the substrate surface of the mother substrate 1 is constant. Then, the inspection target wiring to which the voltage for infrared inspection is applied is imaged.
  • the infrared camera 4 is translated along a direction parallel to the substrate surface while keeping the position in the direction perpendicular to the substrate surface of the infrared camera 4 constant, and the inspection target portion (TFT to be inspected) on the mother substrate 1 is moved. It can be moved to a position according to the substrate 2). Therefore, it is possible to easily and accurately detect a defect in the inspection target portion (inspection target TFT substrate 2) in the mother substrate 1.
  • the infrared camera 4 is attached to the gantry 12 so as to be parallel to the substrate surface of the mother substrate 1 placed on the alignment stage 11 and parallel to the Y-axis direction that intersects the X-axis direction. It has been.
  • the infrared camera 4 can be easily and appropriately moved to a position corresponding to the inspection target portion (TFT substrate 2 to be inspected) on the mother substrate 1.
  • the defect detection processing of the TFT substrate (substrate circuit) 2 provided in the liquid crystal panel is performed by the defect detection device 100 .
  • the substrate to be subjected to the defect detection processing is not limited to this.
  • the present invention can be applied to any substrate circuit in which wiring is formed on the substrate.
  • the present invention can be applied to a defect detection process for wiring of a substrate circuit provided in a display panel such as a plasma display or an organic EL display, or a solar battery panel.
  • the probe unit 3 has a shape corresponding to one TFT substrate 2, and each probe needle of the probe unit 3 is brought into contact with each connection terminal provided on the one TFT substrate 2.
  • the shape of the probe unit 3 is made to correspond to the plurality of TFT substrates 2 placed on the alignment stage 11, and each probe needle of the probe unit 3 is attached to each connection terminal provided in the plurality of TFT substrates 2. It is good also as a structure made to contact.
  • the configuration including only one infrared camera 4 has been described.
  • a plurality of infrared cameras 4 may be provided, and the inspection target area may be imaged by the plurality of infrared cameras 4.
  • the present invention is not limited to this, and at least the alignment stage 11 (on the alignment stage 11). It is only necessary that the position in the Z-axis direction with respect to the inspection target substrate) is constant.
  • the infrared camera 4 may be attached to a fixed member that does not move relative to the alignment stage 11 in the X-axis direction and the Y-axis direction so that the position in the Z-axis direction is constant.
  • the infrared camera 4 may be fixed so that the positions in the Y-axis direction and the Z-axis direction are constant with respect to the gantry 12 movable in the X-axis direction.
  • the infrared camera 4 is fixed to a fixed member whose relative position in the X-axis direction and the Y-axis direction with respect to the alignment stage 11 is not moved, the position in the Z-axis direction is constant, and parallel to at least one of the X-axis direction and the Y-axis direction. It may be attached in a movable state.
  • a laser irradiation device for correcting a defect portion may be mounted on the defect detection device 100.
  • the defect portion is irradiated with the laser, whereby the defect portion detection processing and defect correction processing can be performed continuously.
  • the mounting method of said laser irradiation apparatus is not specifically limited, What is necessary is just a structure which can move a laser irradiation part to the position according to the defect part.
  • the above laser irradiation apparatus may be mounted on the gantry 12 or may be mounted on another support member different from the gantry 12.
  • the present invention can be applied to a defect detection apparatus that detects defects such as wiring formed on a substrate.
  • the present invention can be applied to a defect detection device that detects defects such as wiring formed on a display panel such as a liquid crystal panel or a plasma display panel, or a substrate such as a solar battery panel.
  • Probe unit (voltage application unit) 4 Infrared camera 10 Base 11 Alignment stage (stage) 12 Gantry 12a, 12b Leg portion 12c Beam portion 13a, 13b Guide rail 14 Guide rail 15a, 15b Mount portion 16a, 16b Guide rail 17a, 17b Probe support portion 21 Pixel portion (pixel region) 22 Peripheral circuit (Drive circuit, peripheral circuit area) 23a to 23d Terminal portions 24a to 24d Probe needle portion 25 Defect portion 28 Gantry moving means 29 Probe moving means 30 Camera moving means 31 Control section 32 Data storage section 33 Gantry moving means 34 Probe moving means 35 Camera moving means 36 Voltage applying section 37 Resistance measurement unit 38 Infrared camera 41 Position control unit 42 Voltage control unit 43 Resistance measurement control unit 44 Defect determination unit 45 Imaging control unit 46 Defect position specifying unit 100 Defect detection device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

To suitably detect defects of wiring on a substrate. An infrared camera (4) is attached to the beam section (12c) of a gantry (12), said beam section being disposed across an alignment stage (11) having a mother board (1) placed thereon, such that the relative position with respect to the board surface of the mother board (1) placed on the alignment stage (11) is fixed in the direction perpendicular to the board surface.

Description

欠陥検出装置Defect detection device
 本発明は、基板上に形成された配線等の欠陥を検出する欠陥検出装置に関するものである。 The present invention relates to a defect detection apparatus for detecting defects such as wiring formed on a substrate.
 従来、液晶パネル等の製造プロセスでは、透明基板上にTFT(薄膜トランジスタ)などの半導体素子や配線等を形成した後、半導体素子や配線等の短絡の有無を検査するアレイ検査が行われている。 Conventionally, in a manufacturing process of a liquid crystal panel or the like, after a semiconductor element such as a TFT (thin film transistor), a wiring, or the like is formed on a transparent substrate, an array inspection for inspecting the presence or absence of a short circuit of the semiconductor element or the wiring is performed.
 通常、アレイ検査では、配線の端部にプローブを接触させ、配線両端における電気抵抗、または隣接する配線間の電気抵抗および電気容量を測定する導通検査を行うことにより短絡の有無が検査される。例えば、特許文献1には、電極に電流を供給するプローブ部と、配線に供給された電流を検出して欠陥の有無を判別するセンサー部とを備えた検査装置が開示されている。 Usually, in the array inspection, a probe is brought into contact with an end portion of a wiring, and the presence or absence of a short circuit is inspected by performing a continuity test for measuring the electric resistance at both ends of the wiring or the electric resistance and capacitance between adjacent wirings. For example, Patent Document 1 discloses an inspection apparatus including a probe unit that supplies current to an electrode and a sensor unit that detects the current supplied to the wiring and determines the presence or absence of a defect.
 しかしながら、このような導通検査だけでは、配線等の欠陥の有無を検出できたとしても、その欠陥の位置を特定することができない場合があり、欠陥の有無だけでなく欠陥の位置を特定する技術が求められている。 However, even if such a continuity test alone can detect the presence or absence of a defect such as a wiring, the position of the defect may not be specified, and a technique for specifying not only the presence or absence of a defect but also the position of the defect Is required.
 配線等の欠陥の位置を特定するための技術として、例えば特許文献2には、基板をライセンサで撮像することで基板の2次元画像を取得し、その2次元画像を画像処理することによって欠陥位置を特定することが記載されている。 As a technique for specifying the position of a defect such as wiring, for example, in Patent Document 2, a two-dimensional image of a substrate is acquired by imaging the substrate with a licensor, and the two-dimensional image is subjected to image processing to obtain a defect position. Is specified.
 また、特許文献3~5には、検査対象の配線等に電流を流して赤外線カメラで撮影し、配線等の発熱を検出することにより短絡位置を特定する技術が開示されている。 Patent Documents 3 to 5 disclose techniques for specifying a short-circuit position by passing a current through a wiring or the like to be inspected, photographing with an infrared camera, and detecting heat generation of the wiring or the like.
特開2007-206641号公報(2007年8月16日公開)JP 2007-206641 A (released on August 16, 2007) 特開2010-66236号公報(2010年3月25日公開)JP 2010-66236 A (published March 25, 2010) 特開平4-72552号公報(1992年3月6日公開)Japanese Patent Laid-Open No. 4-72552 (published March 6, 1992) 特開平6-207914(1994年7月26日公開)JP-A-6-207914 (published July 26, 1994) 特開平2-64594号公報(1990年3月5日公開)Japanese Patent Laid-Open No. 2-64594 (published on March 5, 1990)
 ところで、撮像手段を用いた検査システムでは、撮像手段と検査対象物との距離が変化すると、位置測定精度がばらついてしまう。すなわち、撮像手段と検査対象物との距離が変化すると、撮像手段によって撮像される基板上の領域面積が変化する。一方で撮像手段における撮像素子の画素数は一定である。このため、撮像手段と検査対象物との距離が変化すると、画像の分解能(一画素あたりの検査対象物上の領域面積)が変化してしまい、位置測定精度がばらついてしまう。 By the way, in the inspection system using the imaging means, the position measurement accuracy varies when the distance between the imaging means and the inspection object changes. That is, when the distance between the imaging unit and the inspection object changes, the area of the area on the substrate that is imaged by the imaging unit changes. On the other hand, the number of pixels of the image sensor in the imaging means is constant. For this reason, when the distance between the imaging means and the inspection object changes, the resolution of the image (the area of the area on the inspection object per pixel) changes, and the position measurement accuracy varies.
 このため、撮像手段を用いた検査システムでは、撮像手段の分解能を検出し、その検出結果に基づいて撮像手段と検査対象物との距離を調整する必要がある。 For this reason, in the inspection system using the imaging means, it is necessary to detect the resolution of the imaging means and adjust the distance between the imaging means and the inspection object based on the detection result.
 しかしながら、特許文献3~5に開示されているような赤外線カメラを用いて検査を行う検査装置では、赤外線カメラの分解能を正確に求めるのが困難であるという問題がある。 However, inspection apparatuses that perform inspection using an infrared camera as disclosed in Patent Documents 3 to 5 have a problem that it is difficult to accurately determine the resolution of the infrared camera.
 すなわち、赤外線カメラでは撮像対象物から放射される赤外線を検出することで撮像対象物間の温度の違いのみを観察するので、分解能を求めるための基準物は、位置および大きさが予め判明しており、かつ温度が互いに異なる複数の物体(異なる複数の温度領域)である必要がある。ところが、それら各物体の間に温度の違いがあると各物体の熱はその温度差を解消するように移動するため、温度差の境界が不明瞭になる。このため、充分な精度の基準物を常時用意しておくのは困難であり、特許文献3~5の技術では、常に充分な分解能を得ることが困難である。また、仮に充分な精度の基準物を用意しておくことができたとしても、撮像手段と検査対象物との距離の調整に時間がかかるので検査効率が低下してしまうという問題がある。 In other words, since the infrared camera observes only the temperature difference between the imaging objects by detecting the infrared rays radiated from the imaging object, the position and size of the reference object for determining the resolution are known in advance. And a plurality of objects having different temperatures (a plurality of different temperature regions). However, if there is a temperature difference between these objects, the heat of each object moves so as to eliminate the temperature difference, so the boundary of the temperature difference becomes unclear. For this reason, it is difficult to always provide a reference with sufficient accuracy, and it is difficult to always obtain sufficient resolution with the techniques of Patent Documents 3 to 5. Further, even if a reference object with sufficient accuracy can be prepared, it takes time to adjust the distance between the imaging means and the inspection object, resulting in a problem that inspection efficiency is lowered.
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、基板上に形成された配線の欠陥の位置を容易かつ適切に検出することのできる欠陥検出装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a defect detection apparatus that can easily and appropriately detect the position of a defect in a wiring formed on a substrate. .
 本発明の欠陥検出装置は、基板上に形成された配線の欠陥を検出する欠陥検出装置であって、上記基板が載置されるステージと、上記基板における検査対象配線に電圧を印加する電圧印加部と、上記ステージを跨ぐように配置されたガントリーと、上記ガントリーにおける上記ステージ上に載置される基板の基板面に対向する位置に配置され、上記電圧印加部によって電圧が印加された上記検査対象配線を撮像する赤外線カメラとを備え、上記ガントリーは、上記ステージ上に載置される基板の基板面に平行な方向であるX方向に平行移動可能であり上記赤外線カメラは、上記ステージ上に載置される基板の基板面に垂直な方向であるZ方向についての上記基板面に対する相対位置が一定になるように上記ガントリーに取り付けられていることを特徴としている。 A defect detection apparatus according to the present invention is a defect detection apparatus for detecting a defect of a wiring formed on a substrate, and a voltage application for applying a voltage to a stage on which the substrate is placed and a wiring to be inspected on the substrate. And a gantry arranged so as to straddle the stage, and the inspection in which a voltage is applied by the voltage application unit, disposed at a position facing the substrate surface of the substrate placed on the stage in the gantry. An infrared camera that images the target wiring, and the gantry is movable in the X direction, which is parallel to the substrate surface of the substrate placed on the stage, and the infrared camera is mounted on the stage. It is attached to the gantry so that the relative position with respect to the substrate surface in the Z direction which is a direction perpendicular to the substrate surface of the substrate to be placed is constant. It is characterized by a door.
 上記の構成によれば、電圧を印加した状態の検査対象配線を赤外線カメラで撮像することにより、欠陥箇所を容易に検出することができる。また、赤外線カメラの基板面に垂直な方向の位置を一定にすることにより、可視光波長領域の画像を撮像するカメラに比べて分解能の検出および検査対象物との距離の調整が難しい赤外線カメラを用いる構成であるにもかかわらず、位置測定精度のばらつきを抑制することができる。また、ガントリーが基板面に平行な方向に平行移動可能なので、赤外線カメラを基板における検査対象配線に応じた位置に容易に移動させることができる。すなわち、赤外線カメラの基板面に垂直な方向の位置を一定に保ちつつ、赤外線カメラを基板面に平行な方向に沿って平行移動させ、基板における検査対象箇所に応じた位置に移動させることができる。これにより、基板における検査対象箇所の欠陥を高精度に検出することができる。 According to the above configuration, it is possible to easily detect a defective portion by imaging the inspection target wiring in a state where a voltage is applied with an infrared camera. In addition, by making the position in the direction perpendicular to the substrate surface of the infrared camera constant, it is difficult to detect the resolution and adjust the distance to the inspection object compared to a camera that captures an image in the visible light wavelength region. Regardless of the configuration used, variations in position measurement accuracy can be suppressed. Further, since the gantry can be translated in a direction parallel to the substrate surface, the infrared camera can be easily moved to a position corresponding to the inspection target wiring on the substrate. That is, the infrared camera can be translated along a direction parallel to the substrate surface while keeping the position in the direction perpendicular to the substrate surface of the infrared camera constant, and can be moved to a position corresponding to the inspection target location on the substrate. . Thereby, the defect of the inspection object location in a board | substrate can be detected with high precision.
 また、上記赤外線カメラは、上記ステージ上に載置される基板の基板面に平行、かつ上記X方向と交差する方向であるY方向に平行移動可能な状態で上記ガントリーに取り付けられている構成としてもよい。 The infrared camera is attached to the gantry so as to be parallel to the substrate surface of the substrate placed on the stage and parallel to the Y direction that intersects the X direction. Also good.
 上記の構成によれば、赤外線カメラの基板面に垂直な方向の位置を一定に保ちつつ、赤外線カメラを基板面に平行なX方向およびY方向に沿って平行移動させ、基板における検査対象箇所に応じた位置に移動させることができる。これにより、基板における検査対象箇所の欠陥を高精度に検出することができる。 According to the above configuration, while keeping the position in the direction perpendicular to the substrate surface of the infrared camera constant, the infrared camera is translated along the X and Y directions parallel to the substrate surface, so It can be moved to a corresponding position. Thereby, the defect of the inspection object location in a board | substrate can be detected with high precision.
 また、上記電圧印加部は、上記基板に設けられた接続端子に接触するプローブ針を備えたプローブ部を備えており、上記プローブ部は、上記プローブ針が上記ステージ上に載置される基板の上記接続端子に接触する位置と当該接続端子に対して離間する位置とに移動可能に備えられている構成としてもよい。 The voltage application unit includes a probe unit including a probe needle that contacts a connection terminal provided on the substrate, and the probe unit includes a substrate on which the probe needle is placed on the stage. It is good also as a structure provided so that the movement to the position which contacts the said connection terminal, and the position spaced apart with respect to the said connection terminal is possible.
 上記の構成によれば、検査対象とする基板に設けられた接続端子にプローブ針を接触させることにより、検査対象の配線に検査用の電圧を容易に印加することができる。 According to the above configuration, the inspection voltage can be easily applied to the wiring to be inspected by bringing the probe needle into contact with the connection terminal provided on the substrate to be inspected.
 また、上記基板上には1または複数の基板回路が形成されており、上記接続端子は上記各基板回路の外縁部に設けられており、上記プローブ部は、上記各基板回路の外縁部の形状に応じた形状の開口部を有する枠部を備え、当該プローブ部のプローブ針が上記各基板回路のうち検査対象とする基板回路の上記接続端子に接触する位置に移動したときに、当該基板回路が上記開口部を介して露出する構成としてもよい。 One or a plurality of substrate circuits are formed on the substrate, the connection terminal is provided at an outer edge portion of each substrate circuit, and the probe portion has a shape of an outer edge portion of each substrate circuit. When the probe needle of the probe section moves to a position in contact with the connection terminal of the board circuit to be inspected among the board circuits, the board circuit is provided. It is good also as a structure exposed through the said opening part.
 上記の構成によれば、上記基板回路が上記開口部を介して露出するので、当該基板回路の検査対象配線に電圧を印加した状態で上記赤外線カメラにより当該検査対象配線を容易に撮像することができる。 According to the above configuration, since the substrate circuit is exposed through the opening, it is possible to easily image the inspection target wiring with the infrared camera in a state where a voltage is applied to the inspection target wiring of the substrate circuit. it can.
 また、上記基板回路は、表示パネルに備えられる基板回路であり、多数の画素回路が配置された画素領域と、上記各画素回路を駆動するための周辺回路を有する周辺回路領域とを有し、上記プローブ部を、当該プローブ部のプローブ針が検査対象とする基板回路の上記接続端子に接触する位置に移動させたときに、上記画素領域および上記周辺回路領域の全域が上記開口部を介して露出する構成としてもよい。 The substrate circuit is a substrate circuit provided in a display panel, and includes a pixel region in which a large number of pixel circuits are arranged, and a peripheral circuit region having a peripheral circuit for driving the pixel circuits. When the probe unit is moved to a position where the probe needle of the probe unit contacts the connection terminal of the substrate circuit to be inspected, the entire pixel region and the peripheral circuit region are passed through the opening. It may be configured to be exposed.
 上記の構成によれば、画素領域および周辺回路領域の両方について欠陥を検出することができる。 According to the above configuration, defects can be detected in both the pixel region and the peripheral circuit region.
 また、上記赤外線カメラは、上記プローブ部が、当該プローブ部の上記プローブ針が検査対象とする上記基板回路の接続端子に接触する位置に移動した状態において上記開口部の全域を一度の撮像処理で撮像可能である構成としてもよい。 In the infrared camera, the probe section of the probe section is moved to a position where the probe needle of the probe section is in contact with the connection terminal of the substrate circuit to be inspected. It is good also as a structure which can image.
 上記の構成によれば、上記開口部を介して露出する基板回路の全域を一度の撮像処理で撮像できるので、基板回路の全域を複数回に分けて撮像する場合に比べて、欠陥検出処理に要する処理時間を短縮することができる。 According to the above configuration, since the entire area of the substrate circuit exposed through the opening can be imaged in a single imaging process, the defect detection process can be performed compared to the case where the entire area of the substrate circuit is imaged in multiple steps. The required processing time can be shortened.
 以上のように、本発明の欠陥検出装置によれば、基板における検査対象箇所の欠陥を高精度に検出することができる。 As described above, according to the defect detection apparatus of the present invention, it is possible to detect a defect at a location to be inspected on a substrate with high accuracy.
本発明の一実施形態にかかる欠陥検出装置の構成を模式的に示した斜視図である。It is the perspective view which showed typically the structure of the defect detection apparatus concerning one Embodiment of this invention. (a)は図1に示した欠陥検出装置を用いた欠陥検出処理の検査対象とする基板の構成を示す説明図であり、(b)は図1に示した欠陥検出装置に備えられるプローブ部の構成を示す説明図である。(A) is explanatory drawing which shows the structure of the board | substrate used as the inspection object of the defect detection process using the defect detection apparatus shown in FIG. 1, (b) is the probe part with which the defect detection apparatus shown in FIG. 1 is equipped. It is explanatory drawing which shows this structure. 図1に示した欠陥検出装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the defect detection apparatus shown in FIG. 図1に示した欠陥検出装置における欠陥検出処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the defect detection process in the defect detection apparatus shown in FIG. (a)~(c)は図2(a)に示した基板に生じ得る欠陥の例を示す説明図である。(A)-(c) is explanatory drawing which shows the example of the defect which may arise in the board | substrate shown to Fig.2 (a). (a)は図1に示した欠陥検出装置を用いた欠陥検出処理の検査対象とする基板の構成を示す説明図であり、(b)は(a)に示した基板を赤外線カメラで撮像した結果を示す説明図であり、(c)は(a)に示した基板を光学顕微鏡で拡大した結果を示す説明図である。(A) is explanatory drawing which shows the structure of the board | substrate used as the test object of the defect detection process using the defect detection apparatus shown in FIG. 1, (b) imaged the board | substrate shown to (a) with the infrared camera. It is explanatory drawing which shows a result, (c) is explanatory drawing which shows the result of having expanded the board | substrate shown to (a) with the optical microscope.
 本発明の一実施形態について説明する。 An embodiment of the present invention will be described.
  (1-1.欠陥検出装置100のハードウェア構成)
 図1は本実施形態にかかる欠陥検出装置100の構成を模式的に示した斜視図である。この図に示すように、欠陥検出装置100は、基台10、アライメントステージ11、ガントリー12、マウント部15a,15b、プローブ部(電圧印加部)3、および赤外線カメラ4を備えている。
(1-1. Hardware Configuration of Defect Detection Device 100)
FIG. 1 is a perspective view schematically showing a configuration of a defect detection apparatus 100 according to the present embodiment. As shown in this figure, the defect detection apparatus 100 includes a base 10, an alignment stage 11, a gantry 12, mount parts 15 a and 15 b, a probe part (voltage application part) 3, and an infrared camera 4.
 基台10上にはアライメントステージ(ステージ)11が設置されており、このアライメントステージ11上に検査対象物であるマザー基板(基板)1が載置されるようになっている。また、基台10におけるアライメントステージ11に対してY軸方向(アライメントステージ11におけるマザー基板1の載置面に平行な方向)の両側の位置には、X軸方向(アライメントステージ11におけるマザー基板1の載置面に平行、かつY軸方向と交差する方向)に延伸するガイドレール13a,13bがそれぞれ設けられている。 An alignment stage (stage) 11 is installed on the base 10, and a mother substrate (substrate) 1 that is an inspection object is placed on the alignment stage 11. Further, the X-axis direction (the mother substrate 1 in the alignment stage 11) is positioned at both sides of the alignment stage 11 in the base 10 in the Y-axis direction (the direction parallel to the mounting surface of the mother substrate 1 in the alignment stage 11). Guide rails 13a and 13b extending in a direction parallel to the mounting surface and in a direction intersecting with the Y-axis direction are provided.
 アライメントステージ11には、図示しない位置調整手段が設けられており、この位置調整手段により、当該アライメントステージ11上に載置されたマザー基板1の基板面がX軸方向およびY軸方向に平行になるように位置調整されるようになっている。なお、マザー基板1上には、液晶パネルに用いられるTFT基板(基板回路)2が複数形成されている(本実施形態では、1枚のマザー基板1上にX軸方向4枚×Y軸方向2枚のマトリクス状に配置された合計8枚のTFT基板2が形成されている)。 The alignment stage 11 is provided with a position adjusting means (not shown). By this position adjusting means, the substrate surface of the mother substrate 1 placed on the alignment stage 11 is parallel to the X axis direction and the Y axis direction. The position is adjusted so that A plurality of TFT substrates (substrate circuits) 2 used for the liquid crystal panel are formed on the mother substrate 1 (in this embodiment, four pieces in the X-axis direction × Y-axis direction on one mother substrate 1). A total of eight TFT substrates 2 arranged in a matrix of two sheets are formed).
 ガントリー12は、アライメントステージ11を跨いで互いに対向するように配置された2本の脚部12a,12bと、これら各脚部12a,12bの一端側同士を接続する梁部12cとを備えた門型形状を有している。また、脚部12a,12bの他端側はそれぞれ基台10に設けられたガイドレール13a,13bに取り付けられている。これにより、ガントリー12は、ガイドレール13a,13bに沿ってX軸方向に平行移動できるようになっている。 The gantry 12 is a gate provided with two leg portions 12a and 12b arranged so as to face each other across the alignment stage 11, and a beam portion 12c connecting one end sides of the leg portions 12a and 12b. It has a mold shape. The other end sides of the leg portions 12a and 12b are attached to guide rails 13a and 13b provided on the base 10, respectively. As a result, the gantry 12 can be translated in the X-axis direction along the guide rails 13a and 13b.
 また、ガントリー12の梁部12cには、Y軸方向に延伸するガイドレール14が設けられており、このガイドレール14には赤外線カメラ4およびマウント部15a,15bが取り付けられている。赤外線カメラ4およびマウント部15a,15bは、ガイドレール14に沿ってY軸方向に移動可能である一方、Z軸方向(X軸方向およびY軸方向に直交する方向)についてはガントリー12に対する相対位置が常に一定になるようにガイドレール14に取り付けられている。したがって、赤外線カメラ4は、ガントリー12の移動によりX軸方向に平行移動可能であり、かつガイドレール14に沿ってY軸方向に移動可能である一方、Z軸方向の位置はガントリー12およびアライメントステージ11に対して一定にガントリー12に取り付けられている。すなわち、赤外線カメラ4は、X軸方向およびY軸方向に平行移動した場合であってもアライメントステージ11に載置された検査対象物であるTFT基板2との距離が常に一定になるようにガントリー12に取り付けられている。 Further, a guide rail 14 extending in the Y-axis direction is provided on the beam portion 12c of the gantry 12, and the infrared camera 4 and mount portions 15a and 15b are attached to the guide rail 14. The infrared camera 4 and the mounts 15a and 15b are movable in the Y-axis direction along the guide rail 14, while the Z-axis direction (the direction perpendicular to the X-axis direction and the Y-axis direction) is relative to the gantry 12. Is attached to the guide rail 14 so as to be always constant. Therefore, the infrared camera 4 can be translated in the X-axis direction by the movement of the gantry 12, and can be moved in the Y-axis direction along the guide rail 14, while the position in the Z-axis direction is the gantry 12 and alignment stage. 11 is fixed to the gantry 12 in a constant manner. That is, the infrared camera 4 has a gantry so that the distance from the TFT substrate 2 as the inspection object placed on the alignment stage 11 is always constant even when the infrared camera 4 is translated in the X-axis direction and the Y-axis direction. 12 is attached.
 また、マウント部15a,15bは、Z軸方向に延伸するガイドレール16a,16bを備えており、これらガイドレール16a,16bにプローブ部3に取り付けられたプローブ支持部17a,17bが取り付けられている。これにより、プローブ部3はガイドレール16a,16bに沿ってZ軸方向に平行移動可能になっている。 The mount portions 15a and 15b include guide rails 16a and 16b extending in the Z-axis direction, and probe support portions 17a and 17b attached to the probe portion 3 are attached to the guide rails 16a and 16b. . Thereby, the probe part 3 can be translated in the Z-axis direction along the guide rails 16a and 16b.
 図2(a)は、マザー基板1に形成されている複数のTFT基板2のうちの1つの平面図である。この図に示すように、TFT基板2には、画素部(画素領域、表示部)21、画素部21の周囲に設けられた周辺回路部(駆動回路部、周辺回路領域)22、およびTFT基板2の周縁部に設けられたそれぞれ複数の接続端子からなる端子部23a~23dが設けられている。画素部21には、複数の走査線(ゲートライン)と複数の信号線(データライン)とが互いに交差するように設けられており、各交点にTFT(薄膜トランジスタ、図示せず)からなるスイッチング素子が形成されている。また、周辺回路部22には、液晶パネルの駆動を行うための周辺回路や、各回路を接続する配線や補助容量配線などの配線が形成されている(いずれも図示せず)。また、TFT基板2の周縁部に設けられた端子部23a~23dの各接続端子は、周辺回路部22または画素部21に備えられる配線または回路に電気的に接続されている。 FIG. 2A is a plan view of one of the plurality of TFT substrates 2 formed on the mother substrate 1. As shown in this figure, the TFT substrate 2 includes a pixel portion (pixel region, display portion) 21, a peripheral circuit portion (drive circuit portion, peripheral circuit region) 22 provided around the pixel portion 21, and a TFT substrate. Terminal portions 23a to 23d each having a plurality of connection terminals provided on the peripheral edge portion of 2 are provided. In the pixel portion 21, a plurality of scanning lines (gate lines) and a plurality of signal lines (data lines) are provided so as to intersect with each other, and switching elements each including a TFT (thin film transistor, not shown) at each intersection. Is formed. The peripheral circuit section 22 is formed with peripheral circuits for driving the liquid crystal panel, and wirings such as wirings for connecting the respective circuits and auxiliary capacitance wirings (all not shown). Further, the connection terminals of the terminal portions 23a to 23d provided on the peripheral edge portion of the TFT substrate 2 are electrically connected to wirings or circuits provided in the peripheral circuit portion 22 or the pixel portion 21.
 図2(b)は、TFT基板2に設置された端子部23a~23dと接続させてTFT2上の配線や回路に電圧を印加するためのプローブ部3の平面図である。 FIG. 2B is a plan view of the probe unit 3 for connecting a terminal unit 23a to 23d installed on the TFT substrate 2 and applying a voltage to the wiring and circuit on the TFT 2. FIG.
 プローブ部3は、内縁部の形状が図2(a)に示したTFT基板2の外縁部に応じた形状である枠部を有している。すなわち、プローブ部3は、内側に開口部を有する枠部を有しており、検査対象のTFT基板2がこの枠部の開口部に収容されるようになっている。 The probe part 3 has a frame part whose inner edge part has a shape corresponding to the outer edge part of the TFT substrate 2 shown in FIG. That is, the probe portion 3 has a frame portion having an opening inside, and the TFT substrate 2 to be inspected is accommodated in the opening portion of the frame portion.
 また、プローブ部3の枠部における内縁部には、内側(開口部側)に向けて突出するプローブ針を備えたプローブ針部24a~24dが設けられている。これら各プローブ針部24a~24dに備えられる各プローブ針は、TFT基板2に設置された端子部23a~23dの各接続端子に対応する位置に設けられている。 Further, probe needle portions 24a to 24d having probe needles protruding toward the inner side (opening portion side) are provided on the inner edge portion of the frame portion of the probe portion 3. The probe needles provided in the probe needle portions 24a to 24d are provided at positions corresponding to the connection terminals of the terminal portions 23a to 23d installed on the TFT substrate 2.
 これにより、枠部の開口部に検査対象のTFT基板2を収容するようにプローブ部3を移動させると、プローブ針部24a~24dに備えられる各プローブ針とTFT基板2の端子部23a~23dの各接続端子とを接触する。また、TFT基板2を開口部に収容して各プローブ針と各接続端子とをさせた状態では、画素部21および周辺回路部22の上方がプローブ部3で覆われることなく露出する。 As a result, when the probe unit 3 is moved so as to accommodate the TFT substrate 2 to be inspected in the opening of the frame unit, the probe needles provided in the probe needle units 24a to 24d and the terminal units 23a to 23d of the TFT substrate 2 are used. Contact each connection terminal. In the state where the TFT substrate 2 is accommodated in the opening and the probe needles and the connection terminals are connected, the upper portions of the pixel portion 21 and the peripheral circuit portion 22 are exposed without being covered with the probe portion 3.
 プローブ針部24a~24dに備えられる各プローブ針は、スイッチングリレー(図示せず)を介して個別に後述する抵抗測定部37および電圧印加部36に接続されている。これにより、プローブ部3は、端子部23a~23dに接続されている複数の配線のうちの所望の配線(1または複数の配線)に選択的に電圧を印加できるようになっている。また、プローブ部3は、端子部23a~23dに接続されているそれぞれの配線の抵抗値および隣接する配線間の抵抗値などを測定することができるようになっている。 The probe needles provided in the probe needle parts 24a to 24d are individually connected to a resistance measuring part 37 and a voltage applying part 36, which will be described later, via switching relays (not shown). Thereby, the probe unit 3 can selectively apply a voltage to a desired wiring (one or a plurality of wirings) among the plurality of wirings connected to the terminal units 23a to 23d. The probe unit 3 can measure the resistance value of each wiring connected to the terminal portions 23a to 23d and the resistance value between adjacent wirings.
 また、赤外線カメラ4とマウント部15a,15bとは、これら各部材の相対位置が一定になるように共通のガイドレール14に取り付けられており、ガイドレール14に沿って一体的に移動するようになっている。 The infrared camera 4 and the mounts 15a and 15b are attached to a common guide rail 14 so that the relative positions of these members are constant, and move integrally along the guide rail 14. It has become.
 また、赤外線カメラ4は、プローブ針部24a~24dに備えられる各プローブ針とTFT基板2の端子部23a~23dの各接続端子とを接触させた状態において、当該TFT基板2の画素部21および周辺回路部22における検査対象領域の全域を1度の撮像処理によって撮像できる位置に取り付けられている。すなわち、本実施形態では、赤外線カメラ4として、1度の撮像処理による撮像範囲にTFT基板2の画素部21および周辺回路部22のうち検査対象領域の全域が含まれる赤外線カメラを用いている。 In addition, the infrared camera 4 has the pixel portion 21 of the TFT substrate 2 in the state where the probe needles provided in the probe needle portions 24a to 24d and the connection terminals of the terminal portions 23a to 23d of the TFT substrate 2 are in contact with each other. The entire inspection target region in the peripheral circuit unit 22 is attached to a position where it can be imaged by one imaging process. That is, in the present embodiment, an infrared camera is used as the infrared camera 4, in which the entire area to be inspected is included in the pixel unit 21 and the peripheral circuit unit 22 of the TFT substrate 2 in the imaging range by one imaging process.
 ただし、これに限らず、1度の撮像処理による撮像範囲が検査対象領域のうちの一部に相当する赤外線カメラ4を用いるとともに、赤外線カメラ4がマウント部15a,15bに対してY軸方向およびX軸方向の少なくとも一方に相対的に移動可能な構成とし、検査対象領域を複数回の撮像処理によって撮像する構成としてもよい。 However, the present invention is not limited to this, and the infrared camera 4 whose imaging range by one imaging process corresponds to a part of the inspection target area is used, and the infrared camera 4 is in the Y-axis direction with respect to the mount portions 15a and 15b. It may be configured to be relatively movable in at least one of the X-axis directions, and may be configured to image the inspection target region by a plurality of imaging processes.
 また、本実施形態では、赤外線カメラ4とマウント部15a,15bとを共通のガイドレール14に取り付けているが、これに限るものではなく、赤外線カメラ4とマウント部15a,15bとを取り付けるためのガイドレールを個別に設けてもよい。また、本実施形態では、赤外線カメラ4とマウント部15a,15bとを共通のガントリー12に取り付けているが、これに限るものではなく、赤外線カメラ4とマウント部15a,15bとを取り付けるためのガントリーを個別に設けてもよい。 In this embodiment, the infrared camera 4 and the mount portions 15a and 15b are attached to the common guide rail 14. However, the present invention is not limited to this, and the infrared camera 4 and the mount portions 15a and 15b are attached. Guide rails may be provided individually. In this embodiment, the infrared camera 4 and the mount parts 15a and 15b are attached to the common gantry 12. However, the present invention is not limited to this, and the gantry for attaching the infrared camera 4 and the mount parts 15a and 15b. May be provided individually.
  (1-2.欠陥検出装置100の制御系の構成)
 図3は欠陥検出装置100の機能構成を概略的に示したブロック図である。この図に示すように、欠陥検出装置100は、制御部31、データ記憶部32、ガントリー移動手段33、プローブ移動手段34、カメラ移動手段35、プローブ部3、および赤外線カメラ4を備えている。また、プローブ部3は、電圧印加部36および抵抗測定部37を備えている。また、制御部31は、位置制御部41、電圧制御部42、抵抗測定制御部43、欠陥判定部44、撮像制御部45、および欠陥位置特定部46を備えている。
(1-2. Configuration of Control System of Defect Detection Device 100)
FIG. 3 is a block diagram schematically showing the functional configuration of the defect detection apparatus 100. As shown in this figure, the defect detection apparatus 100 includes a control unit 31, a data storage unit 32, a gantry moving unit 33, a probe moving unit 34, a camera moving unit 35, a probe unit 3, and an infrared camera 4. The probe unit 3 includes a voltage application unit 36 and a resistance measurement unit 37. The control unit 31 includes a position control unit 41, a voltage control unit 42, a resistance measurement control unit 43, a defect determination unit 44, an imaging control unit 45, and a defect position specifying unit 46.
 ガントリー移動手段28は、モータやギア等(図示せず)によって構成されており、ガントリー12をガイドレール13a,13bに沿ってX軸方向に平行移動させる。 The gantry moving means 28 is constituted by a motor, a gear or the like (not shown), and translates the gantry 12 in the X-axis direction along the guide rails 13a and 13b.
 プローブ移動手段29は、モータやギア等(図示せず)によって構成されており、マウント部15a,15bをガントリー12の梁部12cに設けられたガイドレール14に沿ってY軸方向に移動させるとともに、プローブ支持部17a,17bをマウント部15a,15bに設けられたガイドレール16a,16bに沿ってZ軸方向に移動させる。これにより、プローブ部3はY軸方向およびZ軸方向に移動する。 The probe moving means 29 is constituted by a motor, a gear or the like (not shown), and moves the mount portions 15a and 15b along the guide rail 14 provided on the beam portion 12c of the gantry 12 in the Y-axis direction. The probe support portions 17a and 17b are moved in the Z-axis direction along the guide rails 16a and 16b provided on the mount portions 15a and 15b. Thereby, the probe part 3 moves to a Y-axis direction and a Z-axis direction.
 カメラ移動手段30は、モータやギア等(図示せず)によって構成されており、赤外線カメラ4をガントリー12の梁部12cに設けられたガイドレール14に沿ってY軸方向に移動させる。なお、赤外線カメラ4とマウント部15a,15bとがガントリー12の梁部12cに設けられたガイドレール14に沿ってY軸方向に一体的に移動する構成とする場合には、カメラ移動手段30を省略し、その機能をプローブ移動手段29に兼ねさせてもよい。 The camera moving means 30 is constituted by a motor, a gear or the like (not shown), and moves the infrared camera 4 in the Y-axis direction along the guide rail 14 provided on the beam portion 12c of the gantry 12. When the infrared camera 4 and the mount parts 15a and 15b are configured to move integrally in the Y-axis direction along the guide rail 14 provided on the beam part 12c of the gantry 12, the camera moving means 30 is used. It may be omitted and the probe moving means 29 may have the function.
 電圧印加部36はプローブ部3に備えられており、プローブ針部24a~24dに備えられる各プローブ針に対してスイッチングリレー(図示せず)を介して個別に接続されている。これにより、電圧印加部36は、各プローブ針に接続されている配線のうちの所望の1または複数の配線に選択的に電圧を印加できるようになっている。 The voltage application unit 36 is provided in the probe unit 3, and is individually connected to each probe needle provided in the probe needles 24a to 24d via a switching relay (not shown). Thereby, the voltage application unit 36 can selectively apply a voltage to one or a plurality of desired wirings among the wirings connected to each probe needle.
 抵抗測定部37はプローブ部3に備えられており、プローブ針部24a~24dに備えられる各プローブ針に対してスイッチングリレー(図示せず)を介して個別に接続されている。これにより、抵抗測定部37は、各プローブ針に接続されている配線のうちの所望の配線の抵抗値、あるいは隣接する配線間の抵抗値を測定できるようになっている。 The resistance measurement unit 37 is provided in the probe unit 3, and is individually connected to each probe needle provided in the probe needles 24a to 24d via a switching relay (not shown). Thereby, the resistance measurement part 37 can measure the resistance value of the desired wiring among the wiring connected to each probe needle, or the resistance value between adjacent wiring.
 制御部31は、CPUや専用プロセッサなどの演算処理部、および、RAM、ROM、HDDなどの記憶部(いずれも図示せず)などにより構成されるコンピュータ装置であり、上記記憶部に記憶されている各種情報および各種制御を実施するためのプログラムを読み出して実行することで位置制御部41、電圧制御部42、抵抗測定制御部43、欠陥判定部44、撮像制御部45、および欠陥位置特定部46の機能を実行し、欠陥検出装置100の各部の動作を制御する。なお、制御部31は、ソフトウェアを用いて実現されるものに限らず、ハードウェアロジックによって構成されるものであってもよい。また、制御部31は、当該制御部31の処理の一部を行うハードウェアと当該ハードウェアの制御や残余の処理を行うソフトウェアを実行する演算手段とを組み合わせたものであってもよい。 The control unit 31 is a computer device that includes an arithmetic processing unit such as a CPU and a dedicated processor, and a storage unit (not shown) such as a RAM, a ROM, and an HDD, and is stored in the storage unit. The position control unit 41, the voltage control unit 42, the resistance measurement control unit 43, the defect determination unit 44, the imaging control unit 45, and the defect position specifying unit by reading and executing various information and programs for performing various controls The function 46 is executed to control the operation of each part of the defect detection apparatus 100. The control unit 31 is not limited to being realized using software, and may be configured by hardware logic. In addition, the control unit 31 may be a combination of hardware that performs a part of the processing of the control unit 31 and arithmetic means that executes software that performs control of the hardware or residual processing.
 位置制御部41は、ガントリー移動手段33、プローブ移動手段34、およびカメラ移動手段35の動作を制御する。すなわち、位置制御部41は、ガントリー12のX軸方向への移動、プローブ部3および赤外線カメラ4のY軸方向への移動、およびプローブ部3のZ軸方向への移動を制御する。 The position controller 41 controls operations of the gantry moving means 33, the probe moving means 34, and the camera moving means 35. That is, the position control unit 41 controls the movement of the gantry 12 in the X-axis direction, the movement of the probe unit 3 and the infrared camera 4 in the Y-axis direction, and the movement of the probe unit 3 in the Z-axis direction.
 電圧制御部42は、プローブ部3に備えられている電圧印加部36の動作を制御し、各プローブ針に接続されている配線のうちの所望の1または複数の配線に所望の電圧を選択的に印加させる。 The voltage control unit 42 controls the operation of the voltage application unit 36 provided in the probe unit 3 to selectively apply a desired voltage to one or more desired wires among the wires connected to each probe needle. To be applied.
 抵抗測定制御部43は、プローブ部3に備えられている抵抗測定部37の動作を制御し、各プローブ針に接続されている配線のうちの所望の配線の抵抗値、あるいは隣接する配線間の抵抗値を測定させる。 The resistance measurement control unit 43 controls the operation of the resistance measurement unit 37 provided in the probe unit 3, and the resistance value of a desired wiring among the wirings connected to each probe needle, or between adjacent wirings Let the resistance value be measured.
 欠陥判定部44は、抵抗測定部37による抵抗値の測定結果に基づいて欠陥の有無を判定する。 The defect determination unit 44 determines the presence or absence of a defect based on the measurement result of the resistance value by the resistance measurement unit 37.
 撮像制御部45は、赤外線カメラ(サーモビューア)4の動作を制御してTFT基板2の赤外線画像(サーモビューア画像)を撮像させる。 The imaging control unit 45 controls the operation of the infrared camera (thermo viewer) 4 to capture an infrared image (thermo viewer image) of the TFT substrate 2.
 欠陥位置特定部46は、抵抗測定部37による抵抗値の測定結果、あるいは赤外線カメラ4が撮像した赤外線画像データに基づいて欠陥の位置を特定する。 The defect position specifying unit 46 specifies the position of the defect based on the measurement result of the resistance value by the resistance measuring unit 37 or the infrared image data captured by the infrared camera 4.
 データ記憶部32は、制御部31による欠陥検出装置100の制御に用いられる各種プログラム、抵抗測定部37による配線あるいは配線間の抵抗値の測定結果、赤外線カメラ38によって撮像された赤外線画像データなどを記憶する。 The data storage unit 32 stores various programs used for controlling the defect detection apparatus 100 by the control unit 31, measurement results of wiring or resistance values between the wirings by the resistance measurement unit 37, infrared image data captured by the infrared camera 38, and the like. Remember.
  (1-3.欠陥検出装置100の動作)
 次に、欠陥検出装置100による欠陥検出処理時の動作について、図4に示すフローチャートを参照しながら説明する。
(1-3. Operation of defect detection apparatus 100)
Next, the operation at the time of defect detection processing by the defect detection apparatus 100 will be described with reference to the flowchart shown in FIG.
 まず、アライメントステージ11上の所定の位置にマザー基板1を載置し、マザー基板1がX軸方向およびY軸方向に平行になるように位置調整(アライメント)を行う(S1)。位置調整のための機構および方法は特に限定されるものではなく、従来から公知の機構および方法を用いることができる。また、位置調整は自動で行ってもよく手動で行ってもよい。 First, the mother substrate 1 is placed at a predetermined position on the alignment stage 11, and position adjustment (alignment) is performed so that the mother substrate 1 is parallel to the X-axis direction and the Y-axis direction (S1). The mechanism and method for position adjustment are not particularly limited, and conventionally known mechanisms and methods can be used. Further, the position adjustment may be performed automatically or manually.
 次に、位置制御部41がガントリー移動手段33、プローブ移動手段34、およびカメラ移動手段35の動作を制御し、プローブ部3を検査対象とするTFT基板2に対応する位置に移動させてプローブ部3のプローブ針部24a~24dに備えられる各プローブ針をTFT基板2の端子部23a~23dに備えられる各接続端子と接触させる(S2)。 Next, the position control unit 41 controls the operations of the gantry moving unit 33, the probe moving unit 34, and the camera moving unit 35, and moves the probe unit 3 to a position corresponding to the TFT substrate 2 to be inspected to move the probe unit. The probe needles provided in the three probe needle parts 24a to 24d are brought into contact with the connection terminals provided in the terminal parts 23a to 23d of the TFT substrate 2 (S2).
 次に、電圧制御部42が電圧印加部36の動作を制御して検査対象とする配線または配線間に抵抗値検査用の電圧を印加させ(S3)、抵抗測定制御部43が抵抗測定部37の動作を制御して検査対象とする配線または配線間の抵抗値(電気抵抗値)を測定させる(S4)。 Next, the voltage control unit 42 controls the operation of the voltage application unit 36 to apply a voltage for resistance value inspection between the wirings to be inspected or between the wirings (S3), and the resistance measurement control unit 43 performs resistance measurement unit 37. Is controlled to measure the resistance value (electric resistance value) between the wirings to be inspected or between the wirings (S4).
 次に、欠陥判定部44が、S4の抵抗値測定結果に基づいて検査対象の配線または配線間の欠陥の有無を判定する(S5)。具体的には、欠陥判定部44は、S4の抵抗値測定結果と、データ記憶部32に予め記憶させている欠陥がない場合の当該配線または当該配線間の抵抗値とを比較し、両者の差が所定値未満の場合には欠陥なしと判定し、所定値以上の場合に欠陥ありと判定する。 Next, the defect determination unit 44 determines the presence or absence of a defect between the wirings to be inspected or the wirings based on the resistance value measurement result of S4 (S5). Specifically, the defect determination unit 44 compares the resistance value measurement result of S4 with the resistance value between the wiring or the wiring when there is no defect stored in the data storage unit 32 in advance, If the difference is less than a predetermined value, it is determined that there is no defect, and if it is greater than the predetermined value, it is determined that there is a defect.
 図5(a)~図5(c)は、画素部21に生じる欠陥部(配線短絡部)25の例を模式的に示した説明図である。 FIG. 5A to FIG. 5C are explanatory diagrams schematically showing an example of a defective portion (wiring short-circuit portion) 25 generated in the pixel portion 21. FIG.
 図5(a)は、配線X(例えば走査線)と配線Y(例えば信号線)とが交差するTFT基板において、当該交差部分において配線Xと配線Yとが短絡している欠陥部25の例を示している。この種の欠陥部25の有無および位置は、導通させるプローブ針を図2に示した端子部23aと端子部23dとの組または端子部23bと端子部23cとの組に切り替え、配線X1~X10および配線Y1~Y10に関して配線毎に配線間の抵抗値を測定することにより特定することができる。 FIG. 5A shows an example of the defective portion 25 in which the wiring X and the wiring Y are short-circuited in the intersecting portion in the TFT substrate where the wiring X (for example, the scanning line) and the wiring Y (for example, the signal line) intersect. Is shown. The presence / absence and position of this type of defective portion 25 is switched to the probe needle to be conducted to the set of terminal portion 23a and terminal portion 23d or the set of terminal portion 23b and terminal portion 23c shown in FIG. The wirings Y1 to Y10 can be specified by measuring the resistance value between the wirings for each wiring.
 図5(b)は、隣接する配線Xの配線間(例えば走査線同士、あるいは走査線と補助容量配線)が短絡した欠陥部25の例を示している。この種の欠陥部25の有無および位置は、導通させるプローブ針を、端子部23bの奇数番と23dの偶数番との組に切り替えて、配線X1~X10の隣り合う配線間の抵抗値を測定することにより特定することができる。 FIG. 5B shows an example of the defective portion 25 in which the wirings of adjacent wirings X (for example, scanning lines or scanning lines and auxiliary capacitance wirings) are short-circuited. The presence / absence and position of this type of defect 25 is determined by switching the probe needle to be conducted to a pair of odd numbered terminal 23b and even numbered 23d, and measuring the resistance value between adjacent wires X1 to X10. Can be specified.
 図5(c)は、隣接する配線Yの配線間(例えば信号線同士)が短絡した欠陥部25の例を示している。この種の欠陥部25の有無および位置は、導通させるプローブ針を、端子部23aの奇数番と23cの偶数番との組に切り替えて、配線Y1~Y10の隣り合う配線間の抵抗値を測定することにより特定することができる。 FIG. 5C shows an example of the defective portion 25 in which the wirings between adjacent wirings Y (for example, signal lines) are short-circuited. The presence / absence and position of this type of defective portion 25 is determined by switching the probe needle to be conducted to a pair of odd numbered terminals 23a and even numbered 23c, and measuring resistance values between adjacent wires Y1 to Y10. Can be specified.
 S5において欠陥があると判定した場合、欠陥判定部44は、当該欠陥に対応する配線あるいは配線間の抵抗値をデータ記憶部32に記憶させる(S6)。また、欠陥位置特定部46は、当該欠陥の位置を特定するために赤外線検査を行う必要があるか否かを判断する(S7)。 When it is determined that there is a defect in S5, the defect determination unit 44 stores the wiring corresponding to the defect or the resistance value between the wirings in the data storage unit 32 (S6). In addition, the defect position specifying unit 46 determines whether or not it is necessary to perform an infrared inspection in order to specify the position of the defect (S7).
 例えば、図5(a)に示した例のように、配線Xと配線Yとが交差する箇所において欠陥部25が生じている場合、S4において配線Xと配線Yのすべての組み合わせ毎に抵抗検査するのであれば、配線間の抵抗検査により配線X4と配線Y4とに異常が検出され、欠陥部25の位置を特定できる。したがって、その場合、欠陥位置特定部46は、赤外線検査は不要であると判断する。 For example, as in the example shown in FIG. 5A, in the case where the defect portion 25 is generated at the intersection of the wiring X and the wiring Y, the resistance inspection is performed for every combination of the wiring X and the wiring Y in S4. If so, an abnormality is detected in the wiring X4 and the wiring Y4 by the resistance inspection between the wirings, and the position of the defective portion 25 can be specified. Therefore, in that case, the defect position specifying unit 46 determines that the infrared inspection is unnecessary.
 しかしながら、配線Xと配線Yとの組み合わせ数は膨大であるため、配線Xと配線Yのすべての組み合わせについて抵抗値測定を行うのには長時間を要する。例えば、フルハイビジョン用液晶パネルの場合、配線Xが1080本、配線Yが1920なので、全組み合わせは約207万通りとなる。このため、全ての組み合わせについて抵抗検査をするとタクトが長時間となり、検査処理能力が大幅に低くなってしまうので現実的ではない。そこで、配線Xと配線Yとをそれぞれいくつかのグループに分け、グループ毎にまとめて抵抗検査をすることで抵抗検査回数を削減することが考えられる。例えば、全ての配線Xと、全ての配線Yとの間で抵抗検査を行えば、抵抗検査回数はわずか1回となる。ところが、複数の配線Xと複数の配線Yとの間で抵抗検査を行う場合、配線間の短絡の有無を検出することはできるが、短絡が生じている位置を特定することができない。このような場合、欠陥位置特定部46は、赤外線検査が必要であると判断する。 However, since the number of combinations of the wiring X and the wiring Y is enormous, it takes a long time to measure the resistance value for all the combinations of the wiring X and the wiring Y. For example, in the case of a full high-definition liquid crystal panel, since there are 1080 wirings X and 1920 wirings Y, there are approximately 2.70 million combinations. For this reason, if resistance inspection is performed for all combinations, the tact time becomes long, and the inspection processing capability is greatly reduced, which is not realistic. Therefore, it is conceivable to reduce the number of resistance inspections by dividing the wiring X and the wiring Y into several groups and performing a resistance inspection for each group. For example, if resistance inspection is performed between all the wirings X and all the wirings Y, the number of resistance inspections is only one. However, when a resistance test is performed between the plurality of wirings X and the plurality of wirings Y, it is possible to detect the presence or absence of a short circuit between the wirings, but it is not possible to specify the position where the short circuit has occurred. In such a case, the defect position specifying unit 46 determines that an infrared inspection is necessary.
 また、図5(b)および図5(c)のように、隣接する配線間において欠陥部25が生じている場合、一対の隣接する配線間、例えば、配線X3と配線X4との間に欠陥部25が有ることは特定できる。しかしながら、欠陥部25の配線の長さ方向についての位置を特定できない。このため、欠陥位置特定部46は、欠陥部25の位置を特定するために赤外線検査が必要であると判断する。 Further, as shown in FIGS. 5B and 5C, when the defect portion 25 is generated between the adjacent wirings, the defect is generated between the pair of adjacent wirings, for example, between the wiring X3 and the wiring X4. It can be specified that the portion 25 is present. However, the position of the defective portion 25 in the length direction of the wiring cannot be specified. For this reason, the defect position specifying unit 46 determines that infrared inspection is necessary to specify the position of the defective part 25.
 S7において赤外線検査が必要であると判断した場合、電圧制御部42が電圧印加部36の動作を制御して検査対象の配線あるいは配線間に赤外線検査用の電圧を印加するとともに(S8)、撮像制御部45が赤外線カメラ4の動作を制御してTFT基板2を撮像させ(S9)、撮像した赤外線画像データをデータ記憶部32に記憶させる。 When it is determined in S7 that an infrared inspection is necessary, the voltage control unit 42 controls the operation of the voltage application unit 36 to apply a voltage for infrared inspection between the wirings to be inspected or between the wirings (S8), and image pickup. The control unit 45 controls the operation of the infrared camera 4 to image the TFT substrate 2 (S9), and stores the captured infrared image data in the data storage unit 32.
 赤外線検査用の電圧値は特に限定されるものではなく、検査対象の配線や回路の特性等を考慮して適宜設定すればよい。なお、赤外線検査用の電圧値をS4で測定した抵抗値の平方根に比例する電圧値に設定してもよい。この場合、単位時間当たりの発熱量を一定にすることができるので、基板の種類、基板上における欠陥部25の発生場所、欠陥部25の短絡原因等により、欠陥部25を含む短絡経路の抵抗値が大きく変動する場合であっても単位時間当たりの発熱量をこれらの要因にかかわらず一定にすることができる。 The voltage value for infrared inspection is not particularly limited, and may be set as appropriate in consideration of the characteristics of the wiring or circuit to be inspected. The voltage value for infrared inspection may be set to a voltage value proportional to the square root of the resistance value measured in S4. In this case, since the calorific value per unit time can be made constant, the resistance of the short circuit path including the defect 25 depends on the type of the substrate, the location where the defect 25 occurs on the substrate, the cause of the short circuit of the defect 25, and the like. Even if the value fluctuates greatly, the calorific value per unit time can be made constant regardless of these factors.
 次に、欠陥位置特定部46が、赤外線画像データに基づいて欠陥の位置を特定し(S10)、特定した位置をデータ記憶部32に記憶させる(S11)。 Next, the defect position specifying unit 46 specifies the position of the defect based on the infrared image data (S10), and stores the specified position in the data storage unit 32 (S11).
 図6(a)はTFT基板2の一部に存在する欠陥の位置Aを示す説明図であり、図6(b)はこの欠陥を含む領域を赤外線カメラ4によって撮像して取得した赤外線画像の例を示す説明図であり、図6(c)は上記欠陥を光学顕微鏡によって拡大して撮影した画像を示す説明図である。配線等に欠陥がある場合、当該欠陥において抵抗値が変化するため電圧を引加した場合に発熱が生じる。このため、図6(b)に示したように、配線に欠陥が存在する場合には当該配線に電圧を印加した状態で赤外線カメラを用いて撮像することにより、欠陥部の発熱を検出し、欠陥の位置を特定することができる。 FIG. 6A is an explanatory diagram showing a position A of a defect present in a part of the TFT substrate 2, and FIG. 6B is a diagram of an infrared image acquired by imaging an area including the defect with the infrared camera 4. It is explanatory drawing which shows an example, FIG.6 (c) is explanatory drawing which shows the image which expanded and image | photographed the said defect with the optical microscope. When there is a defect in the wiring or the like, the resistance value changes in the defect, so that heat is generated when a voltage is applied. For this reason, as shown in FIG. 6B, when there is a defect in the wiring, heat generation of the defective portion is detected by imaging using an infrared camera with a voltage applied to the wiring, The position of the defect can be specified.
 また、S7において赤外線検査が不要であると判断した場合、すなわちS4の抵抗値測定結果を用いて欠陥位置を特定可能である場合、欠陥位置特定部46は、抵抗値測定結果に基づいて特定した欠陥位置をデータ記憶部32に記憶させる(S11)。 When it is determined in S7 that the infrared inspection is unnecessary, that is, when the defect position can be specified using the resistance value measurement result of S4, the defect position specifying unit 46 specifies based on the resistance value measurement result. The defect position is stored in the data storage unit 32 (S11).
 S5において欠陥がないと判断した場合、およびS11で欠陥の位置情報を記憶した後、制御部31は検査中のTFT基板2における検査対象とする全ての配線または配線間の検査が完了したか否かを判断する(S12)。 When it is determined in S5 that there is no defect, and after the defect position information is stored in S11, the control unit 31 determines whether or not the inspection of all the wirings to be inspected in the TFT substrate 2 being inspected or the inspection between the wirings has been completed. Is determined (S12).
 そして、S12において未検査の検査対象があると判断した場合、制御部31は、S3の処理に戻って次の配線または配線間の検査を行う。 Then, when it is determined in S12 that there is an uninspected inspection object, the control unit 31 returns to the process of S3 and inspects the next wiring or between the wirings.
 一方、S12において全ての検査対象について検査が完了したと判断した場合、制御部31は、検査中のマザー基板1における全てのTFT基板2について検査が完了したか否かを判断する(S13)。 On the other hand, if it is determined in S12 that the inspection has been completed for all inspection objects, the control unit 31 determines whether or not the inspection has been completed for all TFT substrates 2 in the mother substrate 1 under inspection (S13).
 そして、未検査のTFT基板2がある場合にはS2の処理に戻り、次のTFT基板2に対する検査を行う。 If there is an uninspected TFT substrate 2, the process returns to S 2 to inspect the next TFT substrate 2.
 一方、S13において全てのTFT基板2の検査が完了したと判断した場合、制御部31はそのマザー基板1に対する検査処理を終了する。 On the other hand, when it is determined in S13 that the inspection of all the TFT substrates 2 is completed, the control unit 31 ends the inspection process for the mother substrate 1.
  (1-4.欠陥検出装置100の作用効果)
 以上のように、本実施形態にかかる欠陥検出装置100は、アライメントステージ11上に載置されたマザー基板1の基板面に平行な方向であるX軸方向に平行移動可能なガントリー12と、上記マザー基板1の基板面に垂直な方向であるZ軸方向についての上記基板面に対する相対位置が一定になるようにガントリー12に取り付けられた赤外線カメラ4とを備えており、この赤外線カメラ4を用いて、赤外線検査用の電圧が印加された検査対象配線を撮像する。
(1-4. Effects of Defect Detection Device 100)
As described above, the defect detection apparatus 100 according to the present embodiment includes the gantry 12 that can be translated in the X-axis direction, which is parallel to the substrate surface of the mother substrate 1 placed on the alignment stage 11, and the above-described gantry 12. An infrared camera 4 attached to the gantry 12 so that the relative position with respect to the substrate surface in the Z-axis direction which is a direction perpendicular to the substrate surface of the mother substrate 1 is constant. Then, the inspection target wiring to which the voltage for infrared inspection is applied is imaged.
 これにより、赤外線カメラ4の基板面に垂直な方向の位置を一定に保ちつつ、赤外線カメラ4を基板面に平行な方向に沿って平行移動させ、マザー基板1における検査対象箇所(検査対象のTFT基板2)に応じた位置に移動させることができる。したがって、マザー基板1における検査対象箇所(検査対象のTFT基板2)の欠陥を容易かつ高精度に検出することができる。 As a result, the infrared camera 4 is translated along a direction parallel to the substrate surface while keeping the position in the direction perpendicular to the substrate surface of the infrared camera 4 constant, and the inspection target portion (TFT to be inspected) on the mother substrate 1 is moved. It can be moved to a position according to the substrate 2). Therefore, it is possible to easily and accurately detect a defect in the inspection target portion (inspection target TFT substrate 2) in the mother substrate 1.
 また、赤外線カメラ4は、アライメントステージ11上に載置されたマザー基板1の基板面に平行、かつ上記X軸方向と交差する方向であるY軸方向に平行移動可能な状態でガントリー12に取り付けられている。 The infrared camera 4 is attached to the gantry 12 so as to be parallel to the substrate surface of the mother substrate 1 placed on the alignment stage 11 and parallel to the Y-axis direction that intersects the X-axis direction. It has been.
 したがって、赤外線カメラ4を、マザー基板1における検査対象箇所(検査対処のTFT基板2)に応じた位置に容易かつ適切に移動させることができる。 Therefore, the infrared camera 4 can be easily and appropriately moved to a position corresponding to the inspection target portion (TFT substrate 2 to be inspected) on the mother substrate 1.
 なお、本実施形態では、欠陥検出装置100により液晶パネルに備えられるTFT基板(基板回路)2の欠陥検出処理を行う場合について説明したが、欠陥検出処理の対象とする基板はこれに限るものではなく、基板上に配線が形成された基板回路であれば適用できる。例えば、プラズマディスプレイや有機ELディスプレイ等の表示パネル、あるいは太陽電池パネル等に備えられる基板回路の配線の欠陥検出処理に適用することもできる。 In the present embodiment, the case where the defect detection processing of the TFT substrate (substrate circuit) 2 provided in the liquid crystal panel is performed by the defect detection device 100 has been described. However, the substrate to be subjected to the defect detection processing is not limited to this. The present invention can be applied to any substrate circuit in which wiring is formed on the substrate. For example, the present invention can be applied to a defect detection process for wiring of a substrate circuit provided in a display panel such as a plasma display or an organic EL display, or a solar battery panel.
 また、本実施形態では、プローブ部3が1つのTFT基板2に対応する形状を有しており、その1つのTFT基板2に備えられる各接続端子に当該プローブ部3の各プローブ針を接触させる構成について説明したが、これに限るものではない。例えば、プローブ部3の形状をアライメントステージ11上に載置された複数のTFT基板2に対応する形状とし、それら複数のTFT基板2に備えられる各接続端子に当該プローブ部3の各プローブ針を接触させる構成としてもよい。 In the present embodiment, the probe unit 3 has a shape corresponding to one TFT substrate 2, and each probe needle of the probe unit 3 is brought into contact with each connection terminal provided on the one TFT substrate 2. Although the configuration has been described, the present invention is not limited to this. For example, the shape of the probe unit 3 is made to correspond to the plurality of TFT substrates 2 placed on the alignment stage 11, and each probe needle of the probe unit 3 is attached to each connection terminal provided in the plurality of TFT substrates 2. It is good also as a structure made to contact.
 また、本実施形態では赤外線カメラ4を1つのみ備えた構成について説明したが、複数の赤外線カメラ4を備え、それら複数の赤外線カメラ4によって検査対象領域を撮像するようにしてもよい。 Further, in the present embodiment, the configuration including only one infrared camera 4 has been described. However, a plurality of infrared cameras 4 may be provided, and the inspection target area may be imaged by the plurality of infrared cameras 4.
 また、本実施形態では赤外線カメラ4がアライメントステージ11に対してX軸方向およびY軸方向に平行移動可能な構成について説明したが、これに限るものではなく、少なくともアライメントステージ11(アライメントステージ11上に載置される検査対象基板)に対するZ軸方向の位置が一定であればよい。 In this embodiment, the configuration in which the infrared camera 4 is movable in the X-axis direction and the Y-axis direction with respect to the alignment stage 11 has been described. However, the present invention is not limited to this, and at least the alignment stage 11 (on the alignment stage 11). It is only necessary that the position in the Z-axis direction with respect to the inspection target substrate) is constant.
 例えば、赤外線カメラ4を、アライメントステージ11に対するX軸方向およびY軸方向の相対位置が移動しない固定部材にZ軸方向の位置が一定となるように取り付けてもよい。 For example, the infrared camera 4 may be attached to a fixed member that does not move relative to the alignment stage 11 in the X-axis direction and the Y-axis direction so that the position in the Z-axis direction is constant.
 また、赤外線カメラ4を、X軸方向に移動可能なガントリー12に対してY軸方向およびZ軸方向の位置が一定となるように固定してもよい。 Further, the infrared camera 4 may be fixed so that the positions in the Y-axis direction and the Z-axis direction are constant with respect to the gantry 12 movable in the X-axis direction.
 また、赤外線カメラ4を、アライメントステージ11に対するX軸方向およびY軸方向の相対位置が移動しない固定部材に、Z軸方向の位置が一定となり、かつX軸方向およびY軸方向の少なくとも一方に平行移動可能な状態で取り付けてもよい。 Further, the infrared camera 4 is fixed to a fixed member whose relative position in the X-axis direction and the Y-axis direction with respect to the alignment stage 11 is not moved, the position in the Z-axis direction is constant, and parallel to at least one of the X-axis direction and the Y-axis direction. It may be attached in a movable state.
 また、欠陥検出装置100に、欠陥箇所を修正するためのレーザ照射装置を搭載してもよい。レーザ照射装置を搭載することにより、欠陥部の位置を特定した後、欠陥部にレーザを照射することで、欠陥部の検出処理と欠陥修正処理とを連続して行うことができる。なお、上記のレーザ照射装置の搭載方法は特に限定されるものではなく、レーザ照射部を欠陥部に応じた位置に移動させることのできる構成であればよい。例えば、上記のレーザ照射装置をガントリー12に搭載してもよく、ガントリー12とは異なる他の支持部材に搭載してもよい。 Further, a laser irradiation device for correcting a defect portion may be mounted on the defect detection device 100. By mounting the laser irradiation apparatus, after the position of the defect portion is specified, the defect portion is irradiated with the laser, whereby the defect portion detection processing and defect correction processing can be performed continuously. In addition, the mounting method of said laser irradiation apparatus is not specifically limited, What is necessary is just a structure which can move a laser irradiation part to the position according to the defect part. For example, the above laser irradiation apparatus may be mounted on the gantry 12 or may be mounted on another support member different from the gantry 12.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope indicated in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 本発明は、基板上に形成された配線等の欠陥を検出する欠陥検出装置に適用できる。例えば、液晶パネル、プラズマディスプレイパネル等の表示パネルや太陽電池パネル等の基板に形成された配線等の欠陥を検出する欠陥検出装置に適用できる。 The present invention can be applied to a defect detection apparatus that detects defects such as wiring formed on a substrate. For example, the present invention can be applied to a defect detection device that detects defects such as wiring formed on a display panel such as a liquid crystal panel or a plasma display panel, or a substrate such as a solar battery panel.
1 マザー基板(基板)
2 TFT基板(基板回路)
3 プローブ部(電圧印加部)
4 赤外線カメラ
10 基台
11 アライメントステージ(ステージ)
12 ガントリー
12a,12b 脚部
12c 梁部
13a,13b ガイドレール
14 ガイドレール
15a,15b マウント部
16a,16b ガイドレール
17a,17b プローブ支持部
21 画素部(画素領域)
22 周辺回路部(駆動回路部、周辺回路領域)
23a~23d 端子部
24a~24d プローブ針部
25 欠陥部
28 ガントリー移動手段
29 プローブ移動手段
30 カメラ移動手段
31 制御部
32 データ記憶部
33 ガントリー移動手段
34 プローブ移動手段
35 カメラ移動手段
36 電圧印加部
37 抵抗測定部
38 赤外線カメラ
41 位置制御部
42 電圧制御部
43 抵抗測定制御部
44 欠陥判定部
45 撮像制御部
46 欠陥位置特定部
100 欠陥検出装置
1 Mother board (board)
2 TFT substrate (substrate circuit)
3 Probe unit (voltage application unit)
4 Infrared camera 10 Base 11 Alignment stage (stage)
12 Gantry 12a, 12b Leg portion 12c Beam portion 13a, 13b Guide rail 14 Guide rail 15a, 15b Mount portion 16a, 16b Guide rail 17a, 17b Probe support portion 21 Pixel portion (pixel region)
22 Peripheral circuit (Drive circuit, peripheral circuit area)
23a to 23d Terminal portions 24a to 24d Probe needle portion 25 Defect portion 28 Gantry moving means 29 Probe moving means 30 Camera moving means 31 Control section 32 Data storage section 33 Gantry moving means 34 Probe moving means 35 Camera moving means 36 Voltage applying section 37 Resistance measurement unit 38 Infrared camera 41 Position control unit 42 Voltage control unit 43 Resistance measurement control unit 44 Defect determination unit 45 Imaging control unit 46 Defect position specifying unit 100 Defect detection device

Claims (6)

  1.  基板上に形成された配線の欠陥を検出する欠陥検出装置であって、
     上記基板が載置されるステージと、
     上記基板における検査対象配線に電圧を印加する電圧印加部と、
     上記ステージを跨ぐように配置されたガントリーと、
     上記ガントリーにおける上記ステージ上に載置される基板の基板面に対向する位置に配置され、上記電圧印加部によって電圧が印加された上記検査対象配線を撮像する赤外線カメラとを備え、
     上記ガントリーは、上記ステージ上に載置される基板の基板面に平行な方向であるX方向に平行移動可能であり
     上記赤外線カメラは、上記ステージ上に載置される基板の基板面に垂直な方向であるZ方向についての上記基板面に対する相対位置が一定になるように上記ガントリーに取り付けられていることを特徴とする欠陥検出装置。
    A defect detection apparatus for detecting defects in wiring formed on a substrate,
    A stage on which the substrate is placed;
    A voltage application unit for applying a voltage to the wiring to be inspected on the substrate;
    A gantry placed across the stage,
    An infrared camera that is disposed at a position facing the substrate surface of the substrate placed on the stage in the gantry and images the inspection target wiring to which a voltage is applied by the voltage application unit;
    The gantry is movable in the X direction, which is a direction parallel to the substrate surface of the substrate placed on the stage, and the infrared camera is perpendicular to the substrate surface of the substrate placed on the stage. A defect detection apparatus, wherein the defect detection apparatus is attached to the gantry so that a relative position with respect to the substrate surface in the Z direction which is a direction is constant.
  2.  上記赤外線カメラは、上記ステージ上に載置される基板の基板面に平行、かつ上記X方向と交差する方向であるY方向に平行移動可能な状態で上記ガントリーに取り付けられていることを特徴とする請求項1に記載の欠陥検出装置。 The infrared camera is attached to the gantry so as to be parallel to a substrate surface of a substrate placed on the stage and parallel to the Y direction which is a direction intersecting the X direction. The defect detection apparatus according to claim 1.
  3.  上記電圧印加部は、上記基板に設けられた接続端子に接触するプローブ針を備えたプローブ部を備えており、
     上記プローブ部は、上記プローブ針が上記ステージ上に載置される基板の上記接続端子に接触する位置と当該接続端子に対して離間する位置とに移動可能に備えられていることを特徴とする請求項1または2に記載の欠陥検出装置。
    The voltage application unit includes a probe unit including a probe needle that contacts a connection terminal provided on the substrate,
    The probe section is provided so as to be movable between a position where the probe needle contacts the connection terminal of the substrate placed on the stage and a position separated from the connection terminal. The defect detection apparatus according to claim 1.
  4.  上記基板上には1または複数の基板回路が形成されており、上記接続端子は上記各基板回路の外縁部に設けられており、
     上記プローブ部は、上記各基板回路の外縁部の形状に応じた形状の開口部を有する枠部を備え、当該プローブ部のプローブ針が上記各基板回路のうち検査対象とする基板回路の上記接続端子に接触する位置に移動したときに、当該基板回路が上記開口部を介して露出することを特徴とする請求項3に記載の欠陥検出装置。
    One or a plurality of substrate circuits are formed on the substrate, and the connection terminal is provided at an outer edge of each substrate circuit,
    The probe portion includes a frame portion having an opening having a shape corresponding to the shape of the outer edge portion of each substrate circuit, and the probe needle of the probe portion connects the substrate circuit to be inspected among the substrate circuits. The defect detection apparatus according to claim 3, wherein the substrate circuit is exposed through the opening when moved to a position in contact with the terminal.
  5.  上記基板回路は、表示パネルに備えられる基板回路であり、多数の画素回路が配置された画素領域と、上記画素領域の周囲に配置された周辺回路領域とを有し、
     上記プローブ部を、当該プローブ部のプローブ針が検査対象とする基板回路の上記接続端子に接触する位置に移動させたときに、上記画素領域および上記周辺回路領域の全域が上記開口部を介して露出することを特徴とする請求項4に記載の欠陥検出装置。
    The substrate circuit is a substrate circuit provided in a display panel, and includes a pixel region in which a large number of pixel circuits are disposed, and a peripheral circuit region disposed around the pixel region,
    When the probe unit is moved to a position where the probe needle of the probe unit contacts the connection terminal of the substrate circuit to be inspected, the entire pixel region and the peripheral circuit region are passed through the opening. The defect detection apparatus according to claim 4, wherein the defect detection apparatus is exposed.
  6.  上記赤外線カメラは、上記プローブ部が、当該プローブ部の上記プローブ針が検査対象とする上記基板回路の接続端子に接触する位置に移動した状態において上記開口部の全域を一度の撮像処理で撮像可能であることを特徴とする請求項4または5に記載の欠陥検出装置。 In the infrared camera, the entire area of the opening can be imaged in a single imaging process when the probe section is moved to a position where the probe needle of the probe section contacts the connection terminal of the substrate circuit to be inspected. The defect detection apparatus according to claim 4, wherein the defect detection apparatus is a defect detection apparatus.
PCT/JP2013/051964 2012-03-28 2013-01-30 Defect detection apparatus WO2013145839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-074783 2012-03-28
JP2012074783A JP2013205234A (en) 2012-03-28 2012-03-28 Defect detection apparatus

Publications (1)

Publication Number Publication Date
WO2013145839A1 true WO2013145839A1 (en) 2013-10-03

Family

ID=49259125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051964 WO2013145839A1 (en) 2012-03-28 2013-01-30 Defect detection apparatus

Country Status (2)

Country Link
JP (1) JP2013205234A (en)
WO (1) WO2013145839A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534995A (en) * 2014-12-26 2015-04-22 大族激光科技产业集团股份有限公司 Optical measuring equipment
WO2020113894A1 (en) * 2018-12-04 2020-06-11 深圳市华星光电半导体显示技术有限公司 Electrical testing device and method for accurately locating cross line defect of electrical testing device
CN113125526A (en) * 2019-12-30 2021-07-16 湖南山水检测有限公司 A food detects machine for microelement and heavy metal analysis

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695283B1 (en) * 2014-03-27 2017-01-12 주식회사 탑 엔지니어링 Apparatus for testing thin film transistor substrate
US10041889B2 (en) * 2016-08-01 2018-08-07 The Boeing Company System and method for high speed surface and subsurface FOD and defect detection
KR101919808B1 (en) * 2017-01-26 2018-11-20 (주)티에스이 Multi testing apparatus for flatpanel display having themovision unit
JP6915518B2 (en) * 2017-12-07 2021-08-04 三菱電機株式会社 Wafer inspection method
TWI663412B (en) * 2018-08-17 2019-06-21 皓琪科技股份有限公司 System for assisting array layout board identification and recording defect location

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575471B2 (en) * 1977-12-22 1982-01-30
JPH01185454A (en) * 1988-01-21 1989-07-25 Toshiba Corp Method and apparatus for inspecting shortcircuit failure and shortcircuit failure repairing apparatus
JPH06207914A (en) * 1993-01-11 1994-07-26 Hitachi Ltd Method and apparatus for detecting defect, and infrared detecting method and apparatus
JP2000258459A (en) * 1999-03-09 2000-09-22 Advanced Display Inc Inspection instrument for electrical characteristic inspection
WO2010077865A2 (en) * 2008-12-17 2010-07-08 Kla-Tencor Corporation Defect detection and response

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765519B2 (en) * 1998-05-27 2006-04-12 オプトレックス株式会社 Wiring pattern inspection method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575471B2 (en) * 1977-12-22 1982-01-30
JPH01185454A (en) * 1988-01-21 1989-07-25 Toshiba Corp Method and apparatus for inspecting shortcircuit failure and shortcircuit failure repairing apparatus
JPH06207914A (en) * 1993-01-11 1994-07-26 Hitachi Ltd Method and apparatus for detecting defect, and infrared detecting method and apparatus
JP2000258459A (en) * 1999-03-09 2000-09-22 Advanced Display Inc Inspection instrument for electrical characteristic inspection
WO2010077865A2 (en) * 2008-12-17 2010-07-08 Kla-Tencor Corporation Defect detection and response

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534995A (en) * 2014-12-26 2015-04-22 大族激光科技产业集团股份有限公司 Optical measuring equipment
CN104534995B (en) * 2014-12-26 2018-01-05 大族激光科技产业集团股份有限公司 Optical measuring apparatus
WO2020113894A1 (en) * 2018-12-04 2020-06-11 深圳市华星光电半导体显示技术有限公司 Electrical testing device and method for accurately locating cross line defect of electrical testing device
CN113125526A (en) * 2019-12-30 2021-07-16 湖南山水检测有限公司 A food detects machine for microelement and heavy metal analysis

Also Published As

Publication number Publication date
JP2013205234A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
WO2013145839A1 (en) Defect detection apparatus
JP5628410B2 (en) Defect inspection method, defect inspection apparatus, and substrate manufacturing method
JP5261540B2 (en) Defect inspection apparatus and defect inspection method
TWI518318B (en) Wiring defect detecting method and wiring defect detecting apparatus
TWI743067B (en) Systems and methods for facilitating inspection of a device under test comprising a plurality of panels
US7545162B2 (en) Method and apparatus for inspecting and repairing liquid crystal display device
JP6273131B2 (en) Inspection apparatus and inspection method
WO2013128738A1 (en) Defect detection method, defect detection device, and method for producing semiconductor substrate
JP5744212B2 (en) Wiring defect detection method, wiring defect detection apparatus, and semiconductor substrate manufacturing method
WO2013039024A1 (en) Wiring defect detection method and wiring defect detection device
JP6084140B2 (en) Electrical inspection device
KR20080015557A (en) Repair apparatus for flat panel display
JP5832909B2 (en) WIRING DEFECT DETECTION DEVICE HAVING INFRARED CAMERA AND ABNORMALITY DETECTING METHOD FOR DETECTING ABNORMALITY OF THE IR
JP2015017930A (en) Inspection apparatus
JP2013250098A (en) Method and apparatus for detecting wiring defect, and method for manufacturing wiring board
JP2013246158A (en) Defect inspection device, defect inspection method, defect inspection program and recording medium
KR101924853B1 (en) Themal testing apparatus for flatpanel display
KR102536717B1 (en) Printed assembly circuit board assembly inspection device
JP2010123700A (en) Test apparatus
KR20180135501A (en) Themal testing apparatus for flatpanel display
JP2014025902A (en) Method and apparatus for detecting defects, and method of manufacturing semiconductor substrates
JP5893436B2 (en) Tip position specifying method and tip position specifying device for specifying the tip position of a line area displayed as an image, and position specifying method and position specifying device for specifying the position of a short-circuit defect
CN110609439B (en) Inspection apparatus
JP2008039465A (en) Visual examination system and visual examination method
KR20230067199A (en) Apparatus for inspecting metal mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768964

Country of ref document: EP

Kind code of ref document: A1