JP2008039465A - Visual examination system and visual examination method - Google Patents

Visual examination system and visual examination method Download PDF

Info

Publication number
JP2008039465A
JP2008039465A JP2006210878A JP2006210878A JP2008039465A JP 2008039465 A JP2008039465 A JP 2008039465A JP 2006210878 A JP2006210878 A JP 2006210878A JP 2006210878 A JP2006210878 A JP 2006210878A JP 2008039465 A JP2008039465 A JP 2008039465A
Authority
JP
Japan
Prior art keywords
image
abnormality
appearance inspection
visual field
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006210878A
Other languages
Japanese (ja)
Inventor
Toshiya Okabe
敏也 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006210878A priority Critical patent/JP2008039465A/en
Publication of JP2008039465A publication Critical patent/JP2008039465A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a visual examination system capable of detecting large abnormalities that are not received in a visual field without overlooking the same, and to provide a visual examination method. <P>SOLUTION: The visual examination system has acquiring means (S1 and S2) for setting the partial region of the surface of matter in the visual field, to acquire the image thereof and a deciding means (S4) for deciding the existence of the abnormalities of protruding from the visual field on the surface of the matter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物体の表面の観察に用いられる外観検査装置および外観検査方法に関する。   The present invention relates to an appearance inspection apparatus and an appearance inspection method used for observing an object surface.

半導体ウエハなどの物体の表面を観察して欠陥などの異常を検出するために、その表面の一部領域の画像を取得して処理する装置が知られている(例えば特許文献1を参照)。処理の際には、取得した一部領域の画像と参照画像との比較が行われ、一部領域の画像に対応する単一視野内で、欠陥などの異常の検出処理が行われる。
特開2001−118896号公報
In order to detect an abnormality such as a defect by observing the surface of an object such as a semiconductor wafer, an apparatus that acquires and processes an image of a partial region of the surface is known (see, for example, Patent Document 1). At the time of processing, the acquired image of the partial area and the reference image are compared, and an abnormality detection process such as a defect is performed within a single field of view corresponding to the partial area image.
JP 2001-118896 A

しかし、上記の装置では、単一視野内で異常の検出処理を行うため、視野に収まらない大きな異常(例えばクラスタ欠陥など)があっても、これを見逃してしまうという問題があった。
本発明の目的は、視野に収まらない大きな異常を見逃さずに検出できる外観検査装置および外観検査方法を提供することにある。
However, since the above apparatus performs an abnormality detection process within a single visual field, there is a problem that even if there is a large abnormality (for example, a cluster defect) that does not fit in the visual field, this is missed.
An object of the present invention is to provide an appearance inspection apparatus and an appearance inspection method capable of detecting without overlooking a large abnormality that does not fit in the visual field.

本発明の外観検査装置は、物体の表面の一部領域を視野の中に設定して該一部領域の画像を取得する取得手段と、前記画像に基づき、前記表面において前記視野からはみ出す大きさの異常の有無を判断する判断手段とを備えたものである。
また、上記の外観検査装置において、前記取得手段は、前記異常があると判断されたときに、前記物体と前記視野とを相対移動させて前記異常のはみ出し部分を前記視野の中に再設定し、前記はみ出し部分を含む領域の画像をさらに取得するものである。
The appearance inspection apparatus according to the present invention includes an acquisition unit configured to set a partial area of the surface of the object in the field of view and acquire an image of the partial area, and a size that protrudes from the field of view on the surface based on the image. Determination means for determining whether or not there is an abnormality.
Further, in the above appearance inspection apparatus, when it is determined that there is an abnormality, the acquisition unit relatively moves the object and the visual field to reset the protruding portion of the abnormality in the visual field. The image of the area including the protruding portion is further acquired.

また、上記の外観検査装置において、前記取得手段は、前記異常があると判断されたときに、前記物体と前記視野とを該視野の大きさ分だけ相対移動させて、前記はみ出し部分を含む領域の画像を取得するものである。
また、上記の外観検査装置において、前記取得手段が取得した前記一部領域の画像と前記はみ出し部分を含む領域の画像とを合成して、前記異常に関わる合成画像を生成する生成手段をさらに備えたものである。
Further, in the above appearance inspection apparatus, when the acquisition unit determines that there is an abnormality, the acquisition unit moves the object and the field of view relative to each other by the size of the field of view and includes the protruding portion. The image of is acquired.
The appearance inspection apparatus may further include a generating unit configured to combine the image of the partial region acquired by the acquiring unit and the image of the region including the protruding portion to generate a composite image related to the abnormality. It is a thing.

本発明の外観検査方法は、物体の表面の一部領域を視野の中に設定して該一部領域の画像を取得し、前記画像に基づき、前記表面において前記視野からはみ出す大きさの異常の有無を判断するものである。
また、上記の外観検査方法において、前記異常があるときに、前記物体と前記視野とを相対移動させて前記異常のはみ出し部分を前記視野の中に再設定し、前記はみ出し部分を含む領域の画像をさらに取得するものである。
According to the appearance inspection method of the present invention, a partial region of the surface of an object is set in a visual field, an image of the partial region is acquired, and an abnormality of a size that protrudes from the visual field on the surface is based on the image. It is to determine the presence or absence.
Further, in the above appearance inspection method, when there is the abnormality, the object and the visual field are relatively moved to reset the abnormal protruding part in the visual field, and an image of the region including the protruding part is obtained. To get more.

また、上記の外観検査方法において、前記異常があるときに、前記物体と前記視野とを該視野の大きさ分だけ相対移動させて、前記はみ出し部分を含む領域の画像を取得するものである。
また、上記の外観検査方法において、前記一部領域の画像と前記はみ出し部分を含む領域の画像とを合成して、前記異常に関わる合成画像を生成するものである。
In the appearance inspection method described above, when there is an abnormality, the object and the field of view are relatively moved by the size of the field of view, and an image of an area including the protruding portion is acquired.
In the appearance inspection method, the image of the partial region and the image of the region including the protruding portion are synthesized to generate a composite image related to the abnormality.

本発明によれば、視野に収まらない大きな異常を見逃さずに検出できる。   According to the present invention, it is possible to detect without missing a large abnormality that does not fit in the field of view.

以下、図面を用いて本発明の実施形態を詳細に説明する。
本実施形態の外観検査装置10には、図1に示す通り、ウエハ11を支持するステージ12と、ステージ12に接続された搬送制御機構部13と、ステージ12の上方に配置された光学顕微鏡部(14,15)と、コンピュータ16とが設けられる。外観検査装置10は、例えば、半導体素子の製造工程においてウエハ11の表面1Aに形成される回路パターンなどの観察に用いられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the appearance inspection apparatus 10 of the present embodiment includes a stage 12 that supports a wafer 11, a transfer control mechanism unit 13 connected to the stage 12, and an optical microscope unit that is disposed above the stage 12. (14, 15) and a computer 16 are provided. The appearance inspection apparatus 10 is used for observing, for example, a circuit pattern formed on the surface 1A of the wafer 11 in a semiconductor element manufacturing process.

ステージ12は、ウエハ11の観察時、搬送制御機構部13からの制御信号に基づいて、ウエハ11をXY方向に移動させる。また、光学顕微鏡部(14,15)は、対物レンズ14とCCDカメラ15と不図示の照明系とで構成される。光学顕微鏡部(14,15)の視野は、ウエハ11の表面1Aの一部領域に相当する。
光学顕微鏡部(14,15)には、適宜のタイミングで、コンピュータ16からの制御信号が出力される。そして、この制御信号に基づいて、光学顕微鏡部(14,15)では、ウエハ11の表面1Aの一部領域の拡大画像(以下「顕微鏡画像」)を取得し、これをコンピュータ16に出力する。
The stage 12 moves the wafer 11 in the XY directions based on a control signal from the transfer control mechanism unit 13 when observing the wafer 11. The optical microscope section (14, 15) includes an objective lens 14, a CCD camera 15, and an illumination system (not shown). The field of view of the optical microscope section (14, 15) corresponds to a partial region of the surface 1A of the wafer 11.
Control signals from the computer 16 are output to the optical microscope section (14, 15) at an appropriate timing. Based on this control signal, the optical microscope section (14, 15) acquires an enlarged image (hereinafter referred to as “microscope image”) of a partial region of the surface 1 A of the wafer 11 and outputs it to the computer 16.

コンピュータ16では、光学顕微鏡部(14,15)が取得したウエハ11の顕微鏡画像を処理して、ウエハ11の表面1Aにおける回路パターンの欠陥や異物などの検出を自動で行う。検出されるものには、欠陥や異物の他に、傷や疑似欠陥なども含まれる。本件ではこれらを総じて「異常」という。また、コンピュータ16は、適宜、ウエハ11の顕微鏡画像をモニタ6Aに表示させ、操作者による観察を可能とする。   In the computer 16, the microscope image of the wafer 11 acquired by the optical microscope unit (14, 15) is processed, and a circuit pattern defect or foreign matter on the surface 1 A of the wafer 11 is automatically detected. What is detected includes scratches and pseudo defects in addition to defects and foreign matter. In this case, these are collectively referred to as “abnormal”. Further, the computer 16 appropriately displays a microscope image of the wafer 11 on the monitor 6A so that the operator can observe it.

次に、外観検査装置10におけるウエハ11の観察動作の具体例を説明する。
観察用のレシピは予めコンピュータ16に記憶され、レシピにしたがってコンピュータ16が観察動作を実行する。その手順の一例を図2のフローチャートに示す。
観察対象のウエハ11がステージ12に載置されると、コンピュータ16は、まず(ステップS1)、ウエハ11の表面1Aのうちレシピに登録されている観察位置の情報を、搬送制御機構部13に出力する。
Next, a specific example of the observation operation of the wafer 11 in the appearance inspection apparatus 10 will be described.
The observation recipe is stored in advance in the computer 16, and the computer 16 executes an observation operation according to the recipe. An example of the procedure is shown in the flowchart of FIG.
When the wafer 11 to be observed is placed on the stage 12, the computer 16 first (step S 1) sends information on the observation position registered in the recipe on the surface 1 A of the wafer 11 to the transfer control mechanism unit 13. Output.

このため、搬送制御機構部13は、コンピュータ16からの観察位置の情報に基づいてステージ12の搬送制御(XY方向)を行い、ウエハ11の表面1Aのうちレシピで指定された観察位置を光学顕微鏡部(14,15)の視野の中に設定する。このとき、視野内には表面1Aの観察位置を含む一部領域(以下「観察領域」)が設定され、観察領域の拡大像が対物レンズ14を介してCCDカメラ15の撮像面に形成される。   Therefore, the transfer control mechanism unit 13 performs transfer control (XY direction) of the stage 12 based on the observation position information from the computer 16, and sets the observation position specified by the recipe on the surface 1 </ b> A of the wafer 11 to the optical microscope. Set in the field of view (14, 15). At this time, a partial region including the observation position of the surface 1A (hereinafter referred to as “observation region”) is set in the field of view, and an enlarged image of the observation region is formed on the imaging surface of the CCD camera 15 via the objective lens 14. .

次に(ステップS2)、コンピュータ16は、CCDカメラ15を制御する。そして、ウエハ11の表面1Aの観察領域の拡大像に基づく顕微鏡画像(例えば図3(a)参照)をCCDカメラ15から取得する。また、コンピュータ16は、顕微鏡画像をモニタ6Aに表示させる。
次に(ステップS3)、コンピュータ16は、顕微鏡画像(例えば図3(a))を処理し、ウエハ11の表面1Aの異常検出を行う。この異常検出処理は、コンピュータ16に搭載された異常検出ソフトウェアを利用して行われる。
Next (step S2), the computer 16 controls the CCD camera 15. Then, a microscope image (see, for example, FIG. 3A) based on an enlarged image of the observation area on the surface 1A of the wafer 11 is acquired from the CCD camera 15. In addition, the computer 16 displays the microscope image on the monitor 6A.
Next (step S3), the computer 16 processes a microscope image (for example, FIG. 3A) and detects an abnormality of the surface 1A of the wafer 11. This abnormality detection process is performed using abnormality detection software installed in the computer 16.

例えば、予め用意した良品サンプルの画像(例えば図3(b))を参照画像として用い、この参照画像と上記の顕微鏡画像との画像アライメントを行った後、2枚の画像(図3(a),(b))の比較演算を行う。つまり、2枚の画像の対応する各画素どうしで差分強度を求め、その分布から差分画像(例えば図3(c))を生成する。
ウエハ11の表面1Aの観察領域に何らかの回路パターンが含まれる場合、顕微鏡画像(図3(a))には回路パターンの実際の像が現れ、参照画像(図3(b))には回路パターンの良品の像が含まれる。このため、両者の差分画像(図3(c))には回路パターンの像そのものではなく、実際の像において良品とは違う部分(回路パターンの欠陥などの異常20)が現れることになる。
For example, an image of a good sample prepared in advance (for example, FIG. 3B) is used as a reference image, and after the image alignment between the reference image and the above-described microscope image, two images (FIG. 3A) , (b)). That is, a difference intensity is obtained between corresponding pixels of two images, and a difference image (for example, FIG. 3C) is generated from the distribution.
When some circuit pattern is included in the observation area of the surface 1A of the wafer 11, an actual image of the circuit pattern appears in the microscope image (FIG. 3A), and the circuit pattern appears in the reference image (FIG. 3B). The image of a non-defective product is included. For this reason, in the difference image between them (FIG. 3C), not the image of the circuit pattern itself, but a portion (abnormality 20 such as a defect in the circuit pattern) that is different from the non-defective product appears in the actual image.

そして、差分画像(図3(c))から自動的に異常20の有無を検出するためには、差分画像の各画素値(差分強度)と予め定めた閾値との大小比較が行われる。比較の結果から、差分画像に閾値より大きい画素値の部分があれば、これを異常20と判断する。その他の部分を正常と判断する。
また、差分画像において検出された異常20が画素値の異なる複数種類の異常21,22(図3(d),(e))を含む場合には、上記した大小比較の際の閾値の設定に応じて、これらを互いに区別して検出することもできる。
Then, in order to automatically detect the presence / absence of the abnormality 20 from the difference image (FIG. 3C), a size comparison between each pixel value (difference intensity) of the difference image and a predetermined threshold value is performed. As a result of the comparison, if there is a pixel value portion larger than the threshold value in the difference image, this is determined as abnormality 20. Judge other parts as normal.
In addition, when the abnormality 20 detected in the difference image includes a plurality of types of abnormality 21 and 22 (FIGS. 3D and 3E) having different pixel values, the threshold value is set for the above-described size comparison. Accordingly, these can be detected separately from each other.

上記のような異常検出処理(ステップS3)を行えば、顕微鏡画像(図3(a))に対応する視野の中で、ウエハ11の表面1Aにおける異常20(または異常21,22)の有無を判断することができる。しかし、上記の異常は単一視野内に収まっているとは限らない。視野内で検出された異常20〜22に関連する(または関連しない)大きな異常が視野外まで広がっている可能性は十分にある。   If the above-described abnormality detection process (step S3) is performed, the presence / absence of the abnormality 20 (or abnormality 21, 22) on the surface 1A of the wafer 11 is determined in the field of view corresponding to the microscope image (FIG. 3A). Judgment can be made. However, the above abnormalities are not always within a single visual field. It is quite possible that a large anomaly associated with (or not associated with) anomalies 20-22 detected within the field of view has spread beyond the field of view.

そこで、本実施形態では、視野に収まらない大きな異常(以下適宜クラスタ欠陥と呼ぶ)を見逃さずに検出するため、次のステップS4以降の処理を行う。
ステップS4では、表面1Aにおいて視野からはみ出す大きさの異常の有無を判断する。この判断は、例えば、顕微鏡画像(図3(a))から求めた差分画像(図3(c))の4辺の各画素の中に、上記のステップS3で用いた閾値より大きい画素値があるか否かによって行えばよい。
Therefore, in the present embodiment, in order to detect without missing a large abnormality that does not fit in the field of view (hereinafter referred to as a cluster defect as appropriate), the processing after the next step S4 is performed.
In step S4, it is determined whether or not there is an abnormality in the size of the surface 1A that protrudes from the visual field. This determination is made, for example, when the pixel value larger than the threshold used in step S3 is included in each pixel on the four sides of the difference image (FIG. 3C) obtained from the microscope image (FIG. 3A). It may be performed depending on whether or not there is.

差分画像(図3(c))の4辺の各画素の中に閾値より大きい画素値がない場合には、ウエハ11の表面1Aにおいて視野からはみ出す大きさの異常はない(つまり全ての異常が視野の中に収まっている)と判断し(ステップS4がNo)、ステップS5〜S9の処理を省略して、図2の処理を終了する。
一方、差分画像(図3(c))の4辺の各画素の中に閾値より大きい画素値がある場合には、表面1Aにおいて視野からはみ出す大きさの異常があると判断して(ステップS4がYes)、ステップS5の処理に進む。
When there is no pixel value larger than the threshold value among the pixels on the four sides of the difference image (FIG. 3C), there is no abnormality in the size that protrudes from the visual field on the surface 1A of the wafer 11 (that is, all abnormalities are present). 2 (step S4 is No), the processing of steps S5 to S9 is omitted, and the processing of FIG.
On the other hand, if there is a pixel value larger than the threshold value among the pixels on the four sides of the difference image (FIG. 3C), it is determined that there is an abnormality in the size that protrudes from the field of view on the surface 1A (step S4). Is Yes), the process proceeds to step S5.

図3(c)の例では、差分画像の4辺のうち上辺と左辺との各々に閾値より大きい画素値(ハッチング部分)を含むため、異常20は現在の視野(図4(a)参照)から上方と左方との双方へはみ出していると考えられる。図4(a)にははみ出し部分の予測を点線で例示した。
ステップS5では、異常20のはみ出し方向の何れか1つに応じてステージ12を制御し、光学顕微鏡部(14,15)の視野に対してウエハ11を移動方向における視野の大きさ分だけ微小移動させ、異常20のはみ出し部分を含む領域31(図4(b))を新たな観察領域として視野の中に再設定する。このとき、ウエハ11の微小移動量を視野の大きさ分(δ)とすることで、元の観察領域30に隣接するはみ出し部分を含む領域31を視野の中に設定することができる。
In the example of FIG. 3C, since the upper side and the left side of the four sides of the difference image include pixel values (hatched portions) larger than the threshold value, the abnormality 20 is the current visual field (see FIG. 4A). It is thought that it protrudes from the upper side and the left side. In FIG. 4A, the prediction of the protruding portion is illustrated by a dotted line.
In step S5, the stage 12 is controlled in accordance with any one of the protruding directions of the abnormality 20, and the wafer 11 is moved minutely by the size of the visual field in the movement direction with respect to the visual field of the optical microscope section (14, 15). Then, the region 31 (FIG. 4B) including the protruding portion of the abnormality 20 is reset in the field of view as a new observation region. At this time, by setting the minute movement amount of the wafer 11 to the size of the visual field (δ), the region 31 including the protruding portion adjacent to the original observation region 30 can be set in the visual field.

次に(ステップS6)、ステップS2と同様の制御を行って、異常20のはみ出し部分を含む領域31の顕微鏡画像を取得する。次に(ステップS7)、ステップS3と同様の処理を行い、はみ出し部分を含む領域31の顕微鏡画像から差分画像(図4(c))を生成した後、この差分画像から自動的に異常23の有無を判断する。このとき、ステップS3と同じ閾値を用いることが好ましい。   Next (step S6), the same control as in step S2 is performed, and a microscope image of the region 31 including the protruding portion of the abnormality 20 is acquired. Next (step S7), the same processing as step S3 is performed, and after generating a difference image (FIG. 4C) from the microscope image of the region 31 including the protruding portion, the abnormality 23 is automatically detected from the difference image. Judgment is made. At this time, it is preferable to use the same threshold as in step S3.

さらに、次のステップS8では、差分画像(図4(c))の4辺のうち、過去の観察領域と隣接していない辺の各画素の中に閾値より大きい画素値があるか否かを判断し、新たなはみ出し方向があるか否かを判断する。
図4(c)の例では、差分画像の4辺のうち右辺が過去の観察領域30と隣接しており、その他の上辺,左辺,下辺のうち、上辺の各画素の中に閾値より大きい画素値(ハッチング部分)を含む。このため、差分画像(図4(c))から検出した異常23は現在の視野からさらに上方へはみ出していると考えられる(図4(d)参照)。
Further, in the next step S8, it is determined whether or not there is a pixel value larger than the threshold value in each pixel on the side that is not adjacent to the past observation region among the four sides of the difference image (FIG. 4C). Judgment is made to determine whether or not there is a new protruding direction.
In the example of FIG. 4C, the right side of the four sides of the difference image is adjacent to the past observation region 30, and among the other upper side, left side, and lower side, each pixel on the upper side is larger than the threshold value. Contains the value (hatched part). For this reason, it is considered that the abnormality 23 detected from the difference image (FIG. 4C) protrudes further upward from the current visual field (see FIG. 4D).

このように新たなはみ出し方向がある場合(ステップS8がYes)、ステップS5に戻る。そして、ステップS5〜S7の処理を繰り返す。その結果、例えば図5(a)に示す通り、元の観察領域30とはみ出し部分を含む隣の領域31の各差分画像に加えて、はみ出し部分を含む領域32〜35の各差分画像を順に得ることができる。なお、領域35の差分画像では右辺と下辺に閾値より大きい画素値があるが、何れも、過去に観察した領域と隣接しているため、画像取得を終える。   When there is a new protruding direction as described above (Yes in step S8), the process returns to step S5. And the process of step S5-S7 is repeated. As a result, for example, as shown in FIG. 5A, in addition to the difference images of the original observation region 30 and the adjacent region 31 including the protruding portion, the difference images of the regions 32 to 35 including the protruding portion are obtained in order. be able to. In the difference image of the region 35, there are pixel values larger than the threshold value on the right side and the lower side, but since both are adjacent to the region observed in the past, the image acquisition is completed.

ステップS8の判断において、新たなはみ出し方向がなければ(ステップS8がNo)、次のステップS9の処理に進み、元の観察領域30の差分画像とはみ出し部分31〜35の各差分画像とを合成して、1つの大きな異常24(図5(b))に関わる合成画像を生成する。図2の処理を終了する。
なお、ウエハ11の表面1Aの中にレシピで指定された他の観察位置がある場合には、図2の処理を繰り返せばよい。ウエハ11の製造工程に依存するが、通常は、ウエハ11の表面1Aの5箇所(あるいは9箇所)で抜き取り検査が行われる。
If it is determined in step S8 that there is no new protruding direction (No in step S8), the process proceeds to the next step S9, and the difference image of the original observation region 30 and the difference images of the protruding portions 31 to 35 are combined. Then, a composite image related to one large abnormality 24 (FIG. 5B) is generated. The process of FIG. 2 is terminated.
If there is another observation position designated by the recipe in the surface 1A of the wafer 11, the process of FIG. 2 may be repeated. Although it depends on the manufacturing process of the wafer 11, the sampling inspection is usually performed at 5 (or 9) locations on the surface 1 </ b> A of the wafer 11.

このように、本実施形態の外観検査装置10によれば、レシピで指定された観察位置を含む一部領域(図5(a)の観察領域30)の顕微鏡画像に基づき、表面1Aにおいて視野からはみ出す大きさの異常の有無を判断するので、視野に収まらない大きな異常24(例えばクラスタ欠陥など)があっても、これを見逃さずに検出できる。
さらに、本実施形態の外観検査装置10によれば、大きな異常24がある場合に、対物レンズ14の倍率を変更せず、視野の大きさを一定に保ちながら、大きな異常24のはみ出し部分を順に視野の中に設定して顕微鏡画像を取得する。このため、表面1Aにおける異常24の大きさに拘わらず、その全体像を確実に検出できる。さらに、ステージ12の移動量および移動方向に基づいて、異常24の大きさや形状を正確に算出できる。
Thus, according to the appearance inspection apparatus 10 of the present embodiment, based on the microscopic image of the partial region (the observation region 30 in FIG. 5A) including the observation position specified by the recipe, the surface 1A is viewed from the field of view. Since it is determined whether or not there is an abnormality with a size that protrudes, even if there is a large abnormality 24 (for example, a cluster defect) that does not fit in the field of view, it can be detected without missing it.
Furthermore, according to the appearance inspection apparatus 10 of the present embodiment, when there is a large abnormality 24, the protruding portion of the large abnormality 24 is sequentially arranged while keeping the size of the field of view constant without changing the magnification of the objective lens 14. Set in the field of view and acquire a microscope image. For this reason, the whole image can be reliably detected regardless of the size of the abnormality 24 on the surface 1A. Further, the size and shape of the abnormality 24 can be accurately calculated based on the moving amount and moving direction of the stage 12.

なお、上記の例に限らず、大きな異常24を発見したときに、対物レンズ14の倍率を下げて視野を広げ、異常24の全体像を検出するようにしても構わない。ただし、低倍率化には限界があるため、異常24の大きさによっては全体像を検出できないこともある。また、倍率変更によって倍率誤差が発生するため、異常24の大きさや形状などを正確に検出できないこともある。このため、上記例のように、対物レンズ14の倍率を変更せずに複数の顕微鏡画像を取得して異常24の全体像を検出する方が望ましい。   Note that the present invention is not limited to the above example, and when a large abnormality 24 is discovered, the magnification of the objective lens 14 may be reduced to widen the field of view, and the entire image of the abnormality 24 may be detected. However, since there is a limit to the reduction in magnification, the entire image may not be detected depending on the size of the abnormality 24. In addition, since a magnification error occurs due to the magnification change, the size or shape of the abnormality 24 may not be detected accurately. Therefore, as in the above example, it is desirable to detect a whole image of the abnormality 24 by acquiring a plurality of microscope images without changing the magnification of the objective lens 14.

また、本実施形態の外観検査装置10では、異常のはみ出し方向にステージ12を微小移動させる際、その微小移動量を視野の大きさ分(δ)とするため、ウエハ11の表面1Aの隣接する複数の領域(図5(a)の観察領域30,はみ出し部分31〜35)を視野の中に順に設定することができる。このため、大きな異常24の全体像を隙間なく連続的に効率良く検出できる。ただし、上記の微小移動量は、視野の大きさ分(δ)より小さく設定しても大きく設定しても構わない。   Further, in the appearance inspection apparatus 10 according to the present embodiment, when the stage 12 is finely moved in the abnormal protrusion direction, the minute movement amount is set to the size of the visual field (δ), so that the surface 1A of the wafer 11 is adjacent. A plurality of regions (the observation region 30 and the protruding portions 31 to 35 in FIG. 5A) can be set in order in the field of view. For this reason, the entire image of the large abnormality 24 can be detected continuously and efficiently without a gap. However, the minute movement amount may be set smaller or larger than the visual field size (δ).

さらに、本実施形態の外観検査装置10では、最終的に、元の観察領域30の差分画像とはみ出し部分31〜35の各差分画像とを合成して、大きな異常24(例えばクラスタ欠陥)に関わる合成画像を生成するので、視野の拡大と略同等の効果が得られる。また、この合成画像を例えばモニタ6Aに表示させることで、異常24の全体像を一目で把握可能となる。   Further, in the appearance inspection apparatus 10 according to the present embodiment, finally, the difference image of the original observation region 30 and the difference images of the protruding portions 31 to 35 are combined to relate to a large abnormality 24 (for example, a cluster defect). Since a composite image is generated, an effect substantially equivalent to the expansion of the visual field can be obtained. Further, by displaying this composite image on, for example, the monitor 6A, the entire image of the abnormality 24 can be grasped at a glance.

また、本実施形態の外観検査装置10では、大きな異常24が画素値の異なる複数種類の異常25,26(図5(c))を含む場合には、その画素値の違いに応じて、これらを互いに区別して検出することもできる。そして、異常25,26の大小関係や位置関係などから、大きな異常25の原因(小さい異常26)を特定することもできる。例えば、小さい異常26は異物であり、大きい異常25はスピンコータによる膜厚ムラなどである。   Further, in the appearance inspection apparatus 10 of the present embodiment, when the large abnormality 24 includes a plurality of types of abnormality 25 and 26 (FIG. 5C) having different pixel values, these are determined according to the difference in the pixel values. Can also be detected separately from each other. The cause of the large abnormality 25 (small abnormality 26) can also be specified from the magnitude relationship or positional relationship of the abnormality 25, 26. For example, the small abnormality 26 is a foreign matter, and the large abnormality 25 is film thickness unevenness caused by a spin coater.

(変形例)
なお、上記した実施形態では、ウエハ11の表面1Aの異常のはみ出し部分を視野内に再設定する際にステージ12を制御してウエハ11を微小移動させたが、本発明はこれに限定されない。その他、ウエハ11を固定して光学顕微鏡部(14,15)の視野を微小移動させてもよいし、ウエハ11と視野との双方を移動させてもよい。つまり、ウエハ11と視野とを相対移動させれば、同様の効果を得ることができる。
(Modification)
In the above-described embodiment, when the abnormal protruding portion of the surface 1A of the wafer 11 is reset within the visual field, the stage 12 is controlled to slightly move the wafer 11, but the present invention is not limited to this. In addition, the wafer 11 may be fixed and the field of view of the optical microscope unit (14, 15) may be moved minutely, or both the wafer 11 and the field of view may be moved. That is, if the wafer 11 and the visual field are relatively moved, the same effect can be obtained.

また、上記した実施形態では、大きな異常24がある場合に、差分画像の4辺の画素値から異常24のはみ出し方向を決定し、新たなはみ出し方向に微小移動させたが、本発明はこれに限定されない。異常24のはみ出し方向とは関係なく、レシピで指定された観察領域30の周囲で微小移動を繰り返してもよい。ただし、本実施形態のように、大きな異常24のはみ出し方向に応じて微小移動させる方が好ましく、スループットが向上する。   Further, in the above-described embodiment, when there is a large abnormality 24, the protruding direction of the abnormality 24 is determined from the pixel values of the four sides of the difference image and moved slightly in the new protruding direction. It is not limited. Regardless of the protruding direction of the abnormality 24, the minute movement may be repeated around the observation region 30 specified by the recipe. However, as in the present embodiment, it is preferable to make a minute movement according to the protruding direction of the large abnormality 24, and the throughput is improved.

また、上記した実施形態では、ウエハ11を被検物とする外観検査装置10を例に説明を行ったが、本発明はこれに限定されない。例えば、液晶基板を被検物とする検査装置や、基板に実装された電子部品を被検物として観察する検査装置などにも、本発明を適用することができる。
ウエハ11の表面1Aなどのように同じパターンが繰り返し配列されている場合、微小移動量をダイピッチと同じにすれば参照画像が1枚で済み、レシピ作成時間を短縮できる。このとき、視野をダイと同じ大きさにすれば連続した複数の顕微鏡画像を取得できる(参照画像もダイと同じ大きさ)。ただし、複数の顕微鏡画像が不連続であってもよい。
Further, in the above-described embodiment, the appearance inspection apparatus 10 using the wafer 11 as an inspection object has been described as an example, but the present invention is not limited to this. For example, the present invention can be applied to an inspection apparatus that uses a liquid crystal substrate as a test object, or an inspection apparatus that observes an electronic component mounted on the substrate as a test object.
When the same pattern is repeatedly arranged, such as the surface 1A of the wafer 11, if the amount of minute movement is the same as the die pitch, only one reference image is required, and the recipe creation time can be shortened. At this time, if the field of view is the same size as the die, a plurality of continuous microscope images can be acquired (the reference image is also the same size as the die). However, the plurality of microscopic images may be discontinuous.

外観検査装置10の構成を示す概略図である。1 is a schematic diagram illustrating a configuration of an appearance inspection apparatus 10. FIG. ウエハ11の観察動作の手順を示すフローチャートである。3 is a flowchart showing a procedure of an observation operation for a wafer 11. 顕微鏡画像と参照画像と差分画像を説明する図である。It is a figure explaining a microscope image, a reference image, and a difference image. 異常のはみ出し方向と微小移動を説明する図である。It is a figure explaining the protrusion direction and minute movement of an abnormality. 微小移動の繰り返しと大きな異常24を説明する図である。It is a figure explaining repetition of a minute movement, and the big abnormality 24. FIG.

符号の説明Explanation of symbols

10 外観検査装置 ; 11 ウエハ ; 12 ステージ ; 13 搬送制御機構部 ;
14 対物レンズ ; 15 CCDカメラ ; 16 コンピュータ
DESCRIPTION OF SYMBOLS 10 Appearance inspection apparatus; 11 Wafer; 12 Stages; 13 Transfer control mechanism part;
14 objective lens; 15 CCD camera; 16 computer

Claims (8)

物体の表面の一部領域を視野の中に設定して該一部領域の画像を取得する取得手段と、
前記画像に基づき、前記表面において前記視野からはみ出す大きさの異常の有無を判断する判断手段とを備えた
ことを特徴とする外観検査装置。
An acquisition means for setting a partial area of the surface of the object in the field of view and acquiring an image of the partial area;
An appearance inspection apparatus comprising: a determination unit configured to determine whether there is an abnormality of a size protruding from the visual field on the surface based on the image.
請求項1に記載の外観検査装置において、
前記取得手段は、前記異常があると判断されたときに、前記物体と前記視野とを相対移動させて前記異常のはみ出し部分を前記視野の中に再設定し、前記はみ出し部分を含む領域の画像をさらに取得する
ことを特徴とする外観検査装置。
The appearance inspection apparatus according to claim 1,
When the acquisition unit determines that there is an abnormality, the object and the visual field are relatively moved to reset the abnormal protruding part into the visual field, and an image of the region including the protruding part is obtained. A visual inspection apparatus characterized by further acquiring
請求項2に記載の外観検査装置において、
前記取得手段は、前記異常があると判断されたときに、前記物体と前記視野とを該視野の大きさ分だけ相対移動させて、前記はみ出し部分を含む領域の画像を取得する
ことを特徴とする外観検査装置。
The appearance inspection apparatus according to claim 2,
The acquisition means, when it is determined that there is an abnormality, relatively moves the object and the field of view by the size of the field of view, and acquires an image of a region including the protruding portion. Appearance inspection device.
請求項2または請求項3に記載の外観検査装置において、
前記取得手段が取得した前記一部領域の画像と前記はみ出し部分を含む領域の画像とを合成して、前記異常に関わる合成画像を生成する生成手段をさらに備えた
ことを特徴とする外観検査装置。
In the visual inspection apparatus according to claim 2 or 3,
An appearance inspection apparatus further comprising a generating unit that combines the image of the partial region acquired by the acquiring unit and the image of the region including the protruding portion to generate a composite image related to the abnormality. .
物体の表面の一部領域を視野の中に設定して該一部領域の画像を取得し、
前記画像に基づき、前記表面において前記視野からはみ出す大きさの異常の有無を判断する
ことを特徴とする外観検査方法。
Set a partial area of the surface of the object in the field of view to obtain an image of the partial area,
An appearance inspection method, wherein the presence or absence of an abnormality of a size that protrudes from the visual field on the surface is determined based on the image.
請求項5に記載の外観検査方法において、
前記異常があるときに、前記物体と前記視野とを相対移動させて前記異常のはみ出し部分を前記視野の中に再設定し、前記はみ出し部分を含む領域の画像をさらに取得する
ことを特徴とする外観検査方法。
The appearance inspection method according to claim 5,
When the abnormality is present, the object and the visual field are relatively moved to reset the abnormal protruding portion in the visual field, and an image of a region including the protruding portion is further acquired. Appearance inspection method.
請求項6に記載の外観検査方法において、
前記異常があるときに、前記物体と前記視野とを該視野の大きさ分だけ相対移動させて、前記はみ出し部分を含む領域の画像を取得する
ことを特徴とする外観検査方法。
The appearance inspection method according to claim 6,
When there is an abnormality, the object and the visual field are relatively moved by the size of the visual field, and an image of an area including the protruding portion is acquired.
請求項6または請求項7に記載の外観検査方法において、
前記一部領域の画像と前記はみ出し部分を含む領域の画像とを合成して、前記異常に関わる合成画像を生成する
ことを特徴とする外観検査方法。
In the appearance inspection method according to claim 6 or 7,
A visual inspection method comprising: synthesizing an image of the partial area and an image of an area including the protruding portion to generate a composite image related to the abnormality.
JP2006210878A 2006-08-02 2006-08-02 Visual examination system and visual examination method Withdrawn JP2008039465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210878A JP2008039465A (en) 2006-08-02 2006-08-02 Visual examination system and visual examination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210878A JP2008039465A (en) 2006-08-02 2006-08-02 Visual examination system and visual examination method

Publications (1)

Publication Number Publication Date
JP2008039465A true JP2008039465A (en) 2008-02-21

Family

ID=39174663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210878A Withdrawn JP2008039465A (en) 2006-08-02 2006-08-02 Visual examination system and visual examination method

Country Status (1)

Country Link
JP (1) JP2008039465A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075426A (en) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp Apparatus and method for inspecting surface irregularity in resist film and dtm manufacturing line
JP2017053671A (en) * 2015-09-08 2017-03-16 キヤノン株式会社 Shape measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075426A (en) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp Apparatus and method for inspecting surface irregularity in resist film and dtm manufacturing line
JP2017053671A (en) * 2015-09-08 2017-03-16 キヤノン株式会社 Shape measurement method

Similar Documents

Publication Publication Date Title
JP4652391B2 (en) Pattern inspection apparatus and pattern inspection method
JP2007305760A (en) Defect review method, and scanning electron microscope type defect review apparatus using scanning electron microscope type review apparatus
JP2007327836A (en) Appearance inspection apparatus and method
JP5085953B2 (en) Surface inspection device
JP5390215B2 (en) Defect observation method and defect observation apparatus
JP2010127748A (en) Defect review device and defect review method
JP2016145887A (en) Inspection device and method
JP4583155B2 (en) Defect inspection method and system, and photomask manufacturing method
JP2010080969A (en) Method and apparatus for observation of sample
JP2007078663A (en) Method and device for inspecting defect
JP5178781B2 (en) Sensor output data correction device and sensor output data correction method
JP2009097928A (en) Defect inspecting device and defect inspection method
KR101403860B1 (en) Wafer surface inspection device and wafer surface inspection method using thereof
JP2008039465A (en) Visual examination system and visual examination method
JP2000283929A (en) Wiring pattern inspection method, and its device
JP2007019270A (en) Method and device for observing defect by using microscope
JP5316924B2 (en) Observation apparatus and observation method
KR20080057597A (en) Emission detecting analysis system and method of detecting emission on an object
JP2009188175A (en) External appearance inspecting apparatus and method
JP2007072173A (en) Pattern inspection apparatus, pattern inspection method, and reticle
JP2012154895A (en) Defect inspection method and defect inspection device
JP2009121902A (en) Pattern test apparatus, pattern test method and program
JP2006308535A (en) Selection device for learning region
TW201514479A (en) Defect viewing device and defect viewing method
JP2002313861A (en) Pattern inspection apparatus and method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006