WO2013145574A1 - 長尺延伸フィルムの製造方法及び製造装置 - Google Patents

長尺延伸フィルムの製造方法及び製造装置 Download PDF

Info

Publication number
WO2013145574A1
WO2013145574A1 PCT/JP2013/001407 JP2013001407W WO2013145574A1 WO 2013145574 A1 WO2013145574 A1 WO 2013145574A1 JP 2013001407 W JP2013001407 W JP 2013001407W WO 2013145574 A1 WO2013145574 A1 WO 2013145574A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
zone
stretching
group
long
Prior art date
Application number
PCT/JP2013/001407
Other languages
English (en)
French (fr)
Inventor
晋平 畠山
大介 北條
真治 稲垣
博 南部
大輔 植野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014507374A priority Critical patent/JP5979224B2/ja
Publication of WO2013145574A1 publication Critical patent/WO2013145574A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/045Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a production method and production apparatus for a long stretched film.
  • a stretched film formed by stretching a resin is used as an optical film that performs various optical functions in various display devices by utilizing its optical anisotropy.
  • the stretched film is used as an optical compensation film for optical compensation such as anti-coloring and viewing angle expansion, or by bonding the stretched film and a polarizer, It is known to use as a retardation film that also serves as a polarizing plate protective film.
  • a self-luminous display device such as an organic electroluminescence display device has attracted attention as a new display device.
  • Self-luminous display devices have room to reduce power consumption compared to liquid crystal display devices in which the backlight is always lit. Further, self-luminous display devices such as organic electroluminescence display devices are lit with light sources corresponding to respective colors. In the light emitting display device, since it is not necessary to install a color filter that causes a reduction in contrast, the contrast can be further increased.
  • a reflector such as an aluminum plate is provided on the back side of the display in order to increase the light extraction efficiency, and external light incident on the display is reflected by this reflector so that an image is displayed.
  • a problem that the contrast is lowered For this reason, a technique is known in which a stretched film and a polarizer are bonded to each other and a circularly polarizing plate is used on the surface side of the display in order to improve contrast of light and darkness by preventing external light reflection.
  • Such a circularly polarizing plate needs to be bonded in such an arrangement that the in-plane slow axis of the stretched film is inclined at a desired angle with respect to the transmission axis of the polarizer.
  • a general polarizer (polarizing film) is obtained by stretching at a high magnification in the traveling direction, and its absorption axis coincides with the traveling direction, and the conventional retardation film is longitudinally stretched, or Manufactured by transverse stretching, the in-plane slow axis is in principle 0 ° or 90 ° with respect to the longitudinal direction of the film.
  • a long polarizing film and / or a stretched film is cut out at a specific angle.
  • Patent Document 1 production of a long retardation film that is stretched obliquely at a desired angle and whose slow axis is freely controllable in a direction that is neither 0 ° nor 90 ° with respect to the longitudinal direction of the film.
  • a method has been proposed. By this method, the polarizing film and the stretched film can be bonded to each other by roll-to-roll, so that the yield is not reduced and stable production can be performed.
  • Patent Document 1 has a problem that the film thickness and optical characteristics are not uniform at each position in the width direction of the film. For example, when obtaining a film having a large orientation angle, the non-uniformity in the width direction of the film appears more remarkably.
  • Patent Document 2 describes a technique for matching the orientation direction of the stretched film with the angle formed by the partition walls separating the zones provided in the heating furnace. .
  • Patent Document 3 the angle formed between the orientation direction of the film after stretching and the boundary between the stretching of the oven, heat setting, and the cooling zone is within a specific range, and the absolute value of the difference between the angles is within the specific range. The manufacturing method to manufacture is described.
  • Patent Document 4 when creating a circularly polarizing plate (broadband circularly polarizing plate) having a high degree of circular polarization over a wider visible light wavelength region, a ⁇ / 2 retardation film and a ⁇ / 4 retardation film are respectively provided.
  • a circularly polarizing plate in which the in-plane slow axis is overlapped and bonded so as to have an arbitrary angle. In order to produce such a film by roll-to-roll, the in-plane slow axis of each film needs to be inclined at different angles with respect to the width direction.
  • the present inventor has produced a long stretched film capable of obtaining a long stretched film with reduced variations in optical orientation on the film end side by the following configuration.
  • the inventors have found that a method can be obtained and have completed the present invention.
  • the method for producing a long stretched film according to the present invention includes a step of forming a long film containing a thermoplastic resin, and an oblique direction from a specific direction different from the running direction of the film after stretching the long film.
  • the long film was fed into a stretching apparatus, and the both ends of the long film in the width direction were gripped by a gripping tool of an oblique stretching tenter and the long film was moved from 0 ° to less than 90 ° with respect to the width direction.
  • the oblique stretch step includes a preheating zone, a stretch zone, and a heat setting zone.
  • the preheating zone and the stretching zone, and the stretching zone and the heat setting zone are each divided by partition walls.
  • at least one of the partition walls has at least one bent portion in the width direction, and the bending angle of the partition wall is adjusted according to the travel position of the long film.
  • FIG. 1 is a schematic view when oblique stretching is performed in a conventional heating zone.
  • FIG. 2 is a schematic top view showing the configuration of the oblique stretching apparatus according to one embodiment of the present invention.
  • FIG. 3 is a schematic side view showing the configuration of the oblique stretching apparatus according to one embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating an example of an obliquely stretched tenter used in the method for producing a long stretched film according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line VV shown in FIG. 2 as seen from the downstream side of the 17a (17b) partition wall.
  • FIG. 6 is an enlarged perspective view of the partition wall deformed by the elastic member and the bending member according to the embodiment of the present invention.
  • FIG. 7 is a schematic top view showing a part of the partition wall between the stretching zone and the heat setting zone that is deformed for each rail pattern.
  • FIG. 8 is a schematic top view showing a part of each partition wall between the preheating zone and the stretching zone deformed for each rail pattern.
  • FIG. 9 is a schematic diagram illustrating an example of the configuration of an organic EL image display device.
  • FIG. 10 is a diagram showing the synthesis of a sugar ester compound.
  • FIG. 11 is a schematic view showing a swirling pattern of the obliquely stretched tenter used in Example 1 and a deformed partition wall.
  • FIG. 12 is a schematic view showing a swirling pattern of the obliquely stretched tenter used in Examples 2 to 4 and a deformed partition wall.
  • FIG. 13 is a schematic diagram showing a turning pattern and partition walls of the obliquely stretched tenter used in Comparative Examples 1 and 2.
  • FIG. 14 is a schematic view showing a swirling pattern of the obliquely stretched tenter used in Examples 5 and 6 and a deformed partition wall.
  • FIG. 15 is a schematic view showing a turning pattern and partition walls of the obliquely stretched tenter used in Comparative Examples 3 and 4.
  • FIG. 16 is a schematic view showing a swirling pattern of the obliquely stretched tenter used in Examples 7 and 8 and a deformed partition wall.
  • FIG. 17 is a schematic view showing a swirling pattern of the obliquely stretched tenter used in Comparative Examples 5 and 6 and a deformed partition wall.
  • An object of the present invention is to provide a method and apparatus for producing a long stretched film that can reduce variations in the optical orientation of the film that occurs during oblique stretching and prevent color unevenness when used in a circularly polarizing plate. is there.
  • the inventors of the present invention have a variation in the optical orientation of the long stretched film obtained by the oblique stretching as described above due to the accompanying wind of the film when the film passes through the opening of the partition wall during the oblique stretching step.
  • the film was found to be uneven in temperature and examined.
  • the temperature unevenness tends to be greatly influenced by the rail pattern configuration unique to the oblique stretching because the vehicle runs while bending in the heating zone.
  • the heating zone has a preheating zone, a stretching zone, and a heat setting zone, and each zone is divided by a partition wall.
  • the temperature of each zone in the heating zone is set so that the temperature of the preheating zone and the stretching zone is set to be the same, or the temperature of the preheating zone is set so that the temperature during stretching does not decrease. It may be set higher than the stretching zone.
  • the temperature of the heat setting zone is set to be lower than that of the preheating zone or the stretching zone.
  • the temperature is set so that the temperature of each zone in the heating zone decreases in the order of the preheating zone, the stretching zone, and the heat fixing zone. This will be described below by taking the above conditions as an example.
  • FIG. 1 (a) is based on the technique described in Patent Document 3, and the angle between the orientation direction of the stretched film and the partition walls of the stretching zone and the heat setting zone is an acute angle (greater than 5 ° and less than 90 °). It is a figure showing an example of the film at the time of performing diagonal stretch so that it may become. In addition, the broken line drawn in the film shows the orientation axis of the film.
  • the film traveling from the stretching zone to the heat setting zone enters the heat setting zone where the inner peripheral side first has a lower temperature with respect to the orientation direction. .
  • the outer peripheral side is delayed and enters the heat fixing zone.
  • the inner peripheral side of the film is cooled first at both ends of the film having the coaxial orientation direction.
  • the outer peripheral side will be cooled later.
  • the thermal history of the film differs between the inner peripheral side and the outer peripheral side, resulting in variations in optical orientation at both ends of the film.
  • FIG. 1 (b) shows an acute angle (greater than 5 ° and 90 °) between the orientation direction of the stretched film and the boundary line between the stretching zone and the heat setting zone based on the technique described in Patent Document 2.
  • FIG. 5 is a diagram showing a film when the film is stretched obliquely by adjusting the orientation angles of the upper and lower partition plates to be equal to each other using the upper and lower partition plates of the film within the film width.
  • stretching like FIG.1 (b) a clearance gap arises between the said up-and-down partition plate and a partition.
  • the hot air in the stretching zone is poured into the heat fixing zone from the gaps on the inner peripheral side and the outer peripheral side when the accompanying air is generated in the direction of the arrow in FIG. Therefore, the temperature of the end face of the film on the side close to the stretching zone in the heat setting zone causes a temperature difference due to the hot air poured from the stretching zone, thereby causing optical unevenness on the left and right sides of the film.
  • the temperature distribution of the film after passing through the partition wall is greatly different between the end portions, the thermal history is different at both end portions of the film, and thus optical unevenness occurs.
  • the present invention has been completed as a result of studies to solve such problems.
  • the method for producing a long stretched film of the present embodiment includes a step of forming a long film containing a thermoplastic resin, and an oblique stretching device from a specific direction different from the running direction of the film after stretching the long film.
  • the long film is moved in the direction of greater than 0 ° and less than 90 ° with respect to the width direction while running while gripping the both ends in the width direction of the long film with a gripping device of an obliquely stretched tenter.
  • the oblique stretch step includes a preheating zone, the stretch zone, and the heat setting zone.
  • the preheating zone and the stretching zone, and the stretching zone and the heat setting zone are each divided by a partition wall.
  • At least one of the partition walls has at least one bent portion in the width direction, and the bending angle of the partition wall is adjusted according to the travel position of the long film.
  • the long film refers to the film before stretching
  • the long stretched film refers to the film after stretching
  • the long length means one having a length of at least about 5 times the width of the film, preferably 10 times or more, and specifically wound in a roll shape. (Film roll) having a length that can be stored or transported.
  • the manufacturing method of the elongate stretched film of this embodiment can be implemented using an apparatus as shown below. That is, the apparatus is a means for forming a long film containing a thermoplastic resin, and the long film is fed into an oblique stretching apparatus from a specific direction different from the traveling direction of the film after stretching, The long film is moved in a direction of greater than 0 ° and less than 90 ° with respect to the width direction while running while gripping and running both ends of the width direction with a gripping tool included in the gripping tool travel support tool of the obliquely stretched tenter.
  • a heating zone having a preheating zone, a stretching zone, and a heat setting zone in the oblique stretching means
  • the preheating zone and the stretching zone, and the stretching zone and the heat setting zone are each divided by partition walls, At least one has at least one bent portion in the width direction, and the bending angle of the partition wall can be adjusted according to the running position of the long film.
  • FIGS. 2 and 3 are diagrams schematically showing an oblique stretching apparatus used in each step of the method for producing a long stretched film according to one embodiment of the present embodiment.
  • this is an example, and the present embodiment is not limited to this.
  • the film forming step according to the manufacturing method of the present embodiment is a step of forming a long film containing a thermoplastic resin.
  • the film forming step is performed by various means depending on the type of the thermoplastic resin, and the details will be described later.
  • the oblique stretching step according to the manufacturing method of the present embodiment is performed by feeding from the film feeding device from a specific direction different from the running direction of the film after stretching, and gripping both ends of the long film in the width direction by the oblique stretching tenter.
  • This is a step of providing an in-plane slow axis at an arbitrary angle of more than 0 ° and less than 90 ° with respect to the width direction of the film by obliquely stretching the film while gripping and running with a tool.
  • the angle with respect to the width direction of the film is an angle within the film plane. Since the slow axis is usually expressed in the stretching direction or a direction perpendicular to the stretching direction, in the manufacturing method according to this embodiment, the slow axis is at an angle of more than 0 ° and less than 90 ° with respect to the direction perpendicular to the running direction of the film. A long stretched film having such a slow axis can be produced by stretching at a desired angle.
  • the film feeding device 3 can be slid and swiveled so that the film can be fed at a predetermined angle with respect to the obliquely stretched tenter inlet.
  • the film feeding device 3 is slidable, and it is preferable that the film can be fed to the entrance of the obliquely stretched tenter by the traveling direction changing device.
  • the traveling direction changing device By making the film feeding device 3 and the traveling direction changing device in such a configuration, it becomes possible to finely control the feeding position and angle of the film, and to produce a long stretched film with small variations in film thickness and optical value. Can be obtained.
  • the film feeding device 3 and the traveling direction changing device movable, it is possible to effectively prevent the gripping tool from being caught in the film.
  • the film feeding device 3 may be configured separately from the oblique stretching device 1 or may be configured integrally. In the case of the former, the long film is drawn out from the film feeding device 3 by loading the long film before oblique stretching into the film feeding device 3 after being wound around the core after film formation. It is. On the other hand, in the latter case, the film feeding device 3 feeds the long stretched film to the diagonally stretched tenter 2 without winding the long film after forming the long film before obliquely stretching.
  • the traveling roll 5 is a roll that sends the film fed from the feeding device to the gripping tool traveling support starting positions 11 and 12.
  • the number of the traveling rolls 5 is not particularly specified, and a slitting process for cutting the film end may be provided in the middle of disposing the traveling rolls. Moreover, you may provide the static elimination apparatus for neutralizing a film before and behind arrangement
  • an obliquely stretched tenter is used to impart an oblique orientation to the long film.
  • the oblique stretching tenter used in the present embodiment is an apparatus that heats a long film to an arbitrary temperature at which stretching can be performed and obliquely stretches the long film.
  • the obliquely stretched tenter includes a heating zone, a plurality of gripping tools paired on both sides for traveling while gripping both sides of the long film, and a gripping tool traveling support tool for supporting the traveling of the gripping tool. It has.
  • the gripping tool traveling support tool having the gripping tool has an endless continuous track, and the gripping tool that has released the grip of the long stretched film at the exit of the stretching device is sequentially returned to the gripping start point by the gripping tool travel support tool. It is supposed to be.
  • the gripping tool travel support tool may be, for example, a form in which an endless chain whose path is regulated by a guide rail or a gear is provided with a gripping tool, or a form in which an endless guide rail is provided with a gripping tool. It may be. That is, in the present embodiment, the gripping tool travel support tool may be, for example, an endless guide rail provided with an endless chain, or may be an endless guide rail provided with an endless chain. It may be an endless guide rail without a chain.
  • the gripper travel support tool does not include a chain, the gripper travels along the path of the gripper travel support tool itself.
  • the gripper travel support tool includes the chain, the gripper travel support tool travels along the path of the gripper travel support tool. Run.
  • the gripping tool travels along the path of the gripping tool travel support tool.
  • the gripping tool passes through a chain provided with the gripping tool.
  • the vehicle may travel along the path of the gripping tool travel support tool.
  • the gripping tool traveling support tool of the diagonally stretched tenter has an asymmetric shape on the left and right, depending on the orientation angle given to the long stretched film to be manufactured, the stretching ratio, etc., manually or It can be adjusted automatically.
  • the path of each gripping tool travel support tool can be freely set and the pattern of the path of the gripping tool travel support tool can be arbitrarily changed.
  • FIG. 4 is a schematic view showing an example of a rail pattern of an obliquely stretched tenter used in the method for producing a long stretched film according to the embodiment of the present embodiment.
  • this is an example, and the present invention is not limited to this.
  • the feeding direction D1 of the long film is different from the winding direction D2 of the elongated film after stretching, and forms a feeding angle ⁇ i.
  • the feeding angle ⁇ i can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
  • the long film is gripped by the right and left grippers at the entrance of the obliquely stretched tenter (position A in FIG. 4), and travels as the grippers travel.
  • the left and right gripping tools are diagonally stretched tenter inlets (position A in FIG. 4), and the left and right gripping tools Ci and Co that are opposed to a direction substantially perpendicular to the film traveling direction (feeding direction D1) are:
  • the film travels on the gripping tool travel support tools Ri and Ro that are asymmetrical to the left and right, and the film gripped at the position at the end of stretching (position B in FIG. 4) is released.
  • the right and left gripping tools opposed at the obliquely extending tenter inlet travel on the Ri side as they travel on the left and right asymmetric gripping tool travel support tools Ri and Ro.
  • Ci is a positional relationship that advances relative to the gripping tool Co traveling on the Ro side.
  • the gripping tools Ci and Co that are opposed to the direction D1 of the film at the oblique stretching tenter entrance (the gripping start position by the film gripping tool) A are positioned at the position B when the film stretching ends.
  • a straight line connecting the grippers Ci and Co is inclined by an angle ⁇ L with respect to a direction substantially perpendicular to the film winding direction D2.
  • the long film is obliquely stretched in the direction of ⁇ L.
  • substantially vertical means that it is in the range of 90 ⁇ 1 °.
  • the travel speed of the gripper can be selected as appropriate, but is usually 1 to 150 m / min. If stretching is performed at a high conveyance speed, the accompanying air that flows into the opening of the partition wall becomes stronger, so the problem becomes more prominent. Therefore, the effect of the present invention can be further improved when the travel speed is in the range of 15 to 150 m / min, and the effect of the present invention is further improved when the travel speed is in the range of 30 to 150 m / min. Can be made.
  • the difference in travel speed between the pair of left and right gripping tools is usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less of the travel speed. This is because if there is a difference in the traveling speed between the left and right sides of the film at the exit of the stretching process, wrinkles and shifts will occur at the exit of the stretching process, so the speed difference between the right and left gripping tools is required to be substantially the same speed. Because. In general tenter devices, etc., there are speed irregularities that occur in the order of seconds or less depending on the period of the sprocket teeth that drive the chain, the frequency of the drive motor, etc. This does not correspond to the speed difference described in the embodiment of the invention.
  • the oblique stretching tenter 2 travels with a heating zone 16 and a pair of gripping tools arranged so as to pass through the heating zone 16. Supports 6 and 7 are provided. And the film 15 sent out from the traveling roll 5 is gripped sequentially by a plurality of gripping tools disposed on the pair of gripping tool travel support tools 6 and 7 at the entrance of the obliquely stretched tenter, Travel with the travel.
  • the left and right gripping tools facing the direction substantially perpendicular to the film traveling direction at the entrance of the oblique stretching tenter travel on the gripping tool travel support tools 6 and 7 that are asymmetrical to the preheating zone, stretching zone, heat
  • a heating zone 16 having a fixed zone By passing through a heating zone 16 having a fixed zone, the film 15 is heated and stretched.
  • the heating zone 16 is a device for heating the film 15, for example.
  • the heating zone 16 is divided into a preheating zone, a stretching zone and a heat fixing zone in order from the supply side of the film 15 by partition walls 17a and 17b, and each zone can be controlled to a different temperature and pressure. It has become.
  • the preheating zone is a zone for performing preheating as a stage before stretching the film 15 in a section where the distance between the gripping tools gripping both ends of the film 15 from the heating zone inlet is kept constant. is there.
  • the stretching zone is a zone for actually tilting and orienting the film 15 in a section until the interval between the gripping tools that grip both ends of the film 15 starts to reach a predetermined interval.
  • the oblique stretching as described above is performed, but the stretching may be performed in the longitudinal direction or the transverse direction before and after the oblique stretching as necessary.
  • the heat setting zone is a period in which the gripping tool at both ends travels in parallel with each other during the period in which the interval between the gripping tools after the stretching zone becomes constant again. This is a zone for fixing the alignment state in the zone. Moreover, you may pass through the area (cooling zone) by which the temperature in a zone is set to below the glass transition temperature Tg degreeC of the thermoplastic resin which comprises a elongate film, after passing through a heat setting zone. At this time, in consideration of shrinkage of the long stretched film due to cooling, a route pattern that narrows the gap between the opposing gripping tools in advance may be used.
  • heating means means for supplying hot air to each zone, means for supplying heat by providing a heating source such as a heater near the top and bottom of the film, and the like can be used.
  • the temperature and pressure in each zone can be controlled by controlling the temperature of the hot air and the temperature of the heating source.
  • the partition walls 17a and 17b are formed with openings so that the film 15 can pass between the zones.
  • the set temperature of each zone may be appropriately adjusted according to the material of the film 15 and the purpose of stretching.
  • the temperature of the preheating zone is preferably set to Tg to Tg + 30 ° C., where Tg is the glass transition temperature of the thermoplastic resin contained in the film 15. If the temperature of the preheating zone is higher than Tg + 30 ° C., the film becomes soft and easily stretched, resulting in film thickness unevenness during film conveyance. Also, if the temperature of the preheating zone is lower than Tg, it may not be possible to reach a desired temperature during stretching. Therefore, the stress at the time of stretching becomes high, so that the film is broken or the film is detached from the gripping tool. There is a risk.
  • the temperature of the stretching zone is preferably set to Tg to Tg + 30 ° C. If the temperature of the stretching zone is higher than Tg + 30 ° C., the film becomes soft, so that stress during stretching is not easily applied, and optical unevenness may easily occur. If the temperature of the stretching zone is lower than the glass transition temperature, the stress at the time of stretching becomes high, so that the film may be broken or the film may be detached from the gripping tool.
  • the temperature of the heat setting zone is preferably set to Tg to Tg + 20 ° C. If the temperature of the heat setting zone is higher than Tg + 20 ° C., the alignment state cannot be sufficiently fixed, and optical unevenness may occur. On the other hand, if the temperature of the heat setting zone is lower than Tg, the film is rapidly cooled after the stretching zone, so that the shrinkage of the film increases and wrinkles may occur.
  • the temperature of the cooling zone is preferably set to Tg-30 to Tg ° C.
  • the temperature of the preheating zone is preferably set higher than the temperature of the stretching zone, and the temperature of the stretching zone is preferably set higher than the temperature of the heat setting zone.
  • the effect of this invention can be heightened more by setting in this way.
  • each zone of the heating zone can be appropriately selected, and the length of the preheating zone is usually 100 to 150% and the length of the heat fixing zone is usually 50 to 100% with respect to the length of the stretching zone. It is preferable.
  • partition wall 17a dividing the preheating zone and the stretching zone and the partition wall 17b separating the stretching zone and the heat fixing zone have the same configuration, only the partition wall 17a will be described below with reference to the drawings. To do.
  • partition wall 17b the same components as those of the partition wall 17a are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 5 is a cross-sectional view taken along the line VV shown in FIG. 2 as seen from the downstream side of the 17a (17b) partition wall.
  • the partition wall 17 a dividing the preheating zone and the stretching zone includes an opening 20 through which the film 15 can pass in the traveling direction, a central portion 21 a positioned above and below the opening 20, and Side portions 22a are respectively connected to both ends of the central portion 21a in the width direction. Further, the central portion 21a and the side portion 22a can be bent by the connecting member 18, respectively, and the respective bending angles can be adjusted.
  • the connecting member 18 is a member that can be bent independently at the boundary between the central portion 21a and the side portion 22a, the connecting member 18 is attached to a joint portion between the central portion 21a and the side portion 22a.
  • the connecting member 18 has a rotation mechanism such as a hinge.
  • the connecting member 18 has a rotation mechanism, the bending angle of each partition wall can be freely adjusted to a desired angle.
  • At least one bent portion may be provided in the width direction, but preferably two as shown in FIG. 5, and more preferably three or more. When there are many bent parts, it becomes easier to adjust the angle of the partition wall to a desired angle.
  • the angle formed by the side portion 22a and the running direction of the film is an acute angle. Preferably it is attached.
  • the central part 21a and the side part 22a of the partition wall 17a can be expanded and contracted, and the width of the central part 21a and the side part 22a is set by the elastic member 19 so that no gap is formed at the boundary between the preheating zone and the extending zone. It is preferable to have a structure that can freely adjust the angle.
  • the elastic member 19 is preferably configured to have a certain degree of flexibility so that it can expand and contract in the width direction of the central portion 21a and the side portion 22a.
  • a structure having flexibility includes a method in which the elastic member 19 has a bellows-like structure.
  • angle formed between the traveling direction of the film and the specific partition when referred to as “acute angle”, it means that the angle is less than 85 °. Similarly, “substantially vertical” means that the angle is in the range of 85 to 95 °.
  • the central part 21a and the side part 22a can change the angle which each part makes according to the running direction of a film. Further, when the angles of the respective portions of the partition walls are changed, the telescopic members 19 of the central portion 21a and the side portions 22a are extended so that the other ends of the side portions 22a are in contact with the side walls of the heating zone.
  • the elastic member 19 By extending the central part 21a and the side part 22a of the partition wall using the elastic member 19, it is possible to prevent a gap from being generated in the side wall of the heating zone at the boundary between the preheating zone and the stretching zone. As a result, since heat does not leak from the preheating zone to the stretching zone from places other than the opening, temperature control in the preheating zone and the stretching zone can be facilitated.
  • the connecting portion between the side wall of the heating zone and the side portion 22a is connected using a member that can be bent, or a member that can move on the side wall of the heating zone is provided on the side portion 22a.
  • the direction part 22a can be set as the structure which can move.
  • the partition partition is deformed so that an angle formed between the traveling direction of the film and the side portion is an acute angle, and the orientation direction of the film and the center It is preferable that the film is stretched by passing the film through the opening of the partition wall which is deformed so that the angle formed with the portion is substantially parallel.
  • the angle between the orientation direction of the film and the specific partition when referred to as “substantially parallel”, it means that the angle between the direction of the slow axis in the film and the partition is ⁇ 5 to 5 °. To do.
  • the stretching zone by adjusting the angle formed between the film running direction and the side wall of the partition, and the angle formed between the orientation direction of the film and the central portion, the stretching zone Since the entrained wind of the film that flows from the film can be easily flown uniformly into the heat setting zone, it is possible to reduce variations in the optical orientation on the film end side after stretching.
  • FIG. 7 is a schematic top view showing the main part of the partition wall 17b shown in FIG. 3 for each rail pattern.
  • the angle between the orientation direction of the film 15 (the thin broken line in FIG. 7A) and the partition wall central portion 21b is ⁇ LCE
  • the traveling direction of the film 15 The angle formed by the arrow (in the direction of the arrow in FIG. 7A) and the inner peripheral side of the partition side portion 22b (upper side of the drawing) is ⁇ LIN , and the running direction of the film 15 and the outer peripheral side of the partition side portion 22b ) And ⁇ LOUT .
  • the central portion 21b and the side portion of the partition wall are set so that ⁇ LCE is substantially parallel and ⁇ LIN and ⁇ LOUT are acute angles. It is preferable to deform 22b.
  • ⁇ LCE , ⁇ LIN , and ⁇ LOUT which are the respective angles between the traveling direction of the film 15 and each part of the partition wall, are adjusted by the connecting member, and the length of each part of the partition wall in the width direction is further adjusted by the elastic member.
  • ⁇ LCE is made substantially parallel and ⁇ LIN and ⁇ LOUT are made acute angles. It is preferable to deform the partition wall.
  • the angle formed between the rail pattern as shown in FIG. 7C that is, the traveling direction of the film 15 (the arrow direction in FIG. 7C) and the partition walls (the center portion 21b and the side portion 22b) is substantially vertical.
  • the angles between the traveling direction of the film 15 and each partition wall are 0 ° ⁇ LIN ⁇ 85 °, 0 ° ⁇ LOUT ⁇ It is preferable to adjust so that 85 ° and ⁇ 5 ° ⁇ ⁇ LCE ⁇ 5 °, and more preferable to adjust so that 0 ° ⁇ LIN ⁇ 80 ° and 0 ° ⁇ LOUT ⁇ 80 °.
  • an angle formed between the traveling direction of the film and the side portion is an acute angle, and an angle formed between the traveling direction of the film and the central portion. It is preferable to pass the film through the opening of the partition wall which is deformed so as to be substantially vertical.
  • the angle between the film running direction and the side wall of the partition and the angle between the orientation direction of the film and the central portion are adjusted to flow from the preheating zone. Further, the accompanying air of the film can be easily flown into the stretching zone, and variations in optical orientation at the film end after stretching can be further reduced.
  • FIG. 3 is a schematic top view showing each rail pattern.
  • the angle formed between the traveling direction of the film 15 (the arrow direction in FIG. 8A) and the partition wall central portion 21a is ⁇ RCE
  • the traveling direction of the film 15 is
  • An angle formed between the inner peripheral side of the partition side portion 22a and ⁇ RIN is defined as ⁇ RIN
  • an angle formed between the running direction of the film 15 and the outer peripheral side of the partition side portion 22a is defined as ⁇ ROUT .
  • ⁇ RCE is substantially vertical and ⁇ RIN and ⁇ ROUT are acute angles.
  • ⁇ RCE , ⁇ RIN , and ⁇ ROUT that are respective angles between the traveling direction of the film 15 and each part of the partition wall are adjusted by the connecting member, and the length of each part of the partition wall in the width direction is further adjusted by the elastic member.
  • ⁇ RCE is made substantially vertical, and ⁇ RIN and ⁇ ROUT are made acute angles. It is preferable to deform the central part 21a and the side part 22a of the partition wall.
  • the angle formed by the rail pattern as shown in FIG. 8C that is, the traveling direction of the film 15 (the arrow direction in FIG. 8C) and the partition wall (the center portion 21a and the side portion 22a) is substantially vertical.
  • the partition walls be deformed so that ⁇ RCE is kept substantially vertical and ⁇ RIN and ⁇ ROUT are acute angles.
  • the angles between the traveling direction of the film 15 and each partition wall are 0 ° ⁇ RIN ⁇ 85 °, 0 ° ⁇ ROUT ⁇ It is preferable to adjust so that 85 ° and 85 ° ⁇ ⁇ RCE ⁇ 95 °, and more preferable to adjust so that 0 ° ⁇ RIN ⁇ 80 ° and 0 ° ⁇ ROUT ⁇ 80 °.
  • the angle adjustment of each part of the partition wall that divides the stretching zone and the heat setting zone, and the angle adjustment of each part of the partition wall that divides the preheating zone and the stretching zone may be performed independently. Since the effect of invention can be improved more, it is preferable.
  • the material of the partition wall 17a (17b) and the expansion / contraction member 19 it is preferable to use a highly heat-insulating material such as metal or ceramic or a foam material. When such a material is used, there is an advantage that heat insulation can be secured.
  • the thickness of the partition wall 17a (17b) and the elastic member 19 is preferably 1 to 500 mm, and more preferably 100 to 400 mm. If the thickness of the partition wall 17a (17b) and the elastic member 19 is less than 1 mm, it is difficult to obtain a heat insulating effect, and a temperature difference occurs in each zone. On the other hand, when these thicknesses are greater than 500 mm, it takes time for the film to pass through the partition walls, so that the film cools when passing through the partition walls, resulting in optical unevenness.
  • a gripping tool traveling support that regulates the trajectory of the gripping tool is often required to have a high bending rate, particularly in a location where the film travels obliquely. .
  • the stretch ratio (W / W0) in the oblique stretching step is preferably 1.3 to 3.0, more preferably 1.5 to 2.8. If the draw ratio is in this range, thickness unevenness in the width direction is reduced, which is preferable. In the stretching zone of the oblique stretching tenter, if the stretching temperature is differentiated in the width direction, the thickness unevenness in the width direction can be further improved.
  • W0 represents the width of the film before stretching
  • W represents the width of the film after stretching.
  • traveling roll The number of traveling rolls 8 is not particularly defined, and a step of applying a protective sheet for protecting the long stretched film may be provided in the middle of the arrangement of the traveling rolls. Moreover, before winding up a film, you may provide the process of giving a embossing part (not shown) to a film edge part by giving a knurling process to the film right and left both ends by an embossing ring and a back roll.
  • a film thickness meter or an optical value measuring machine capable of online measurement may be arranged in the middle of the arrangement of the traveling rolls.
  • the static eliminator can be configured to apply a reverse potential by a static eliminator or a forced charging device at the time of winding so that the charging potential when the original winding is redrawn is ⁇ 2 kV or less. It is also possible to adopt a configuration in which static elimination is performed by a static eliminator that alternately converts positive and negative at 1 to 150 Hz.
  • an ionizer or static elimination bar that generates ion wind can be used.
  • the ionizer static elimination is performed by blowing ion wind toward the film that is wound up from the embossing device through the traveling roll.
  • the ion wind is generated by a static eliminator. Any known static eliminator can be used without limitation.
  • both ends (both sides) of the long stretched film may be trimmed for the purpose of excising grip marks on both sides of the long stretched film held by the tenter gripping tool or obtaining a desired width. desirable.
  • the above trimming may be performed at once or may be performed in a plurality of times.
  • the long stretched film is fed out again as necessary, trimming both ends of the long stretched film, and winding up again as a wound body of the long stretched film. Good.
  • Winding device The winding process which concerns on the manufacturing method of this embodiment is a process of winding up the elongate stretched film after the said slit process. Below, the winding apparatus used for a winding process is demonstrated.
  • the take-up device 4 can be finely controlled for the film take-up position and angle by forming the take-up device 4 so that the film can be taken at a predetermined angle with respect to the obliquely stretched tenter outlet.
  • the take-up device 4 can be finely controlled for the film take-up position and angle by forming the take-up device 4 so that the film can be taken at a predetermined angle with respect to the obliquely stretched tenter outlet.
  • the take-up tension T (N / m) of the stretched film is preferably adjusted between 100 N / m ⁇ T ⁇ 300 N / m, preferably 150 N / m ⁇ T ⁇ 250 N / m.
  • the take-up tension is 100 N / m or less, sagging and wrinkles of the film are likely to occur, and retardation and the profile in the width direction of the orientation axis are also deteriorated.
  • the take-up tension is 300 N / m or more, the variation in the orientation angle in the width direction is deteriorated, so that the width yield (taken efficiency in the width direction) is deteriorated.
  • the fluctuation of the take-up tension T it is preferable to control the fluctuation of the take-up tension T with an accuracy of less than ⁇ 5%, preferably less than ⁇ 3%.
  • the fluctuation of the take-up tension T is ⁇ 5% or more, the variation in the optical characteristics in the width direction and the flow direction becomes large.
  • general PID control is performed so that the load applied to the first roll at the tenter outlet, that is, the film tension is measured and the value is kept constant.
  • a method of controlling the rotation speed of the take-up roll by a method is mentioned.
  • Examples of the method for measuring the load include a method in which a load cell is attached to a bearing portion of a roll and a load applied to the roll, that is, a film tension is measured.
  • a load cell a known tensile type or compression type can be used.
  • the stretched film is released from the tenter exit after being held by the gripper, and is wound up around a winding core (winding roll) to form a wound body of a long stretched film.
  • a winding core winding roll
  • the masking film may be overlapped and wound up at the same time, or at least one of the long stretched films, preferably while winding tape or the like on both ends. You may take it.
  • the masking film is not particularly limited as long as it can protect the film, and examples thereof include a polyethylene terephthalate film, a polyethylene film, and a polypropylene film.
  • thermoplastic resin and film forming method As the thermoplastic resin that can be used in the present embodiment, polycarbonate resin, polyether sulfone resin, polyethylene terephthalate resin, polyimide resin, polymethyl methacrylate resin, polysulfone resin, polyarylate resin, Examples thereof include polyethylene resins, polyvinyl chloride resins, olefin polymer resins having an alicyclic structure, and cellulose ester resins.
  • polycarbonate resins olefin polymer resins having an alicyclic structure
  • cellulose ester resins are preferable from the viewpoints of transparency and mechanical strength.
  • an olefin polymer-based resin and a cellulose ester-based resin having an alicyclic structure, which can easily adjust the phase difference when an optical film is used, are more preferable.
  • Olefin polymer resin examples include cyclic olefin random multi-component copolymers described in JP-A No. 05-310845, hydrogenated polymers described in JP-A No. 05-97978, and JP-A No. 11 And thermoplastic dicyclopentadiene ring-opening polymers described in JP-A-124429 and hydrogenated products thereof.
  • the olefin polymer resin having an alicyclic structure will be described more specifically.
  • the alicyclic olefin polymer resin is a polymer having an alicyclic structure such as a saturated alicyclic hydrocarbon (cycloalkane) structure or an unsaturated alicyclic hydrocarbon (cycloalkene) structure.
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, but the mechanical strength is usually in the range of 4 to 30, preferably 5 to 20, more preferably 5 to 15.
  • the properties of heat resistance and film formability are highly balanced and suitable.
  • the proportion of the repeating unit containing the alicyclic structure in the alicyclic olefin polymer may be appropriately selected, but is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight. That's it.
  • the ratio of the repeating unit having an alicyclic structure in the alicyclic polyolefin resin is within this range, the transparency and heat resistance of an optical material such as a long stretched film obtained from the stretched film of the present embodiment are improved. Therefore, it is preferable.
  • olefin polymer resins having an alicyclic structure examples include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof. it can. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly preferable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, and lightness. It can be used suitably.
  • Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
  • monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof; and cyclic such as cyclohexadiene and cycloheptadiene. And conjugated dienes and derivatives thereof.
  • a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
  • monomers that can be copolymerized with a monomer having a norbornene structure include, for example, ethylene, propylene, ⁇ -olefins having 2 to 20 carbon atoms such as 1-butene and derivatives thereof; cyclobutene, cyclopentene And cycloolefins such as cyclohexene and derivatives thereof; and non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene.
  • ⁇ -olefin is preferable, and ethylene is more preferable.
  • An addition polymer of a monomer having a norbornene structure and an addition copolymer of a monomer having a norbornene structure with another monomer copolymerizable with a monomer having a norbornene structure are prepared in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure
  • Y tricyclo [4.3.0.12,5] decane-7, Having a 9-diyl-ethylene structure
  • the content of these repeating units is 90% by weight or more based on the total repeating units of the norbornene resin
  • the X content ratio and the Y content ratio The ratio is preferably 100: 0 to 40:60 by weight ratio of X: Y.
  • the molecular weight used for the norbornene-based resin is appropriately selected according to the purpose of use, but is converted to polyisoprene measured by gel permeation chromatography using cyclohexane (toluene if the thermoplastic resin does not dissolve) as the solvent (the solvent is In the case of toluene, the weight average molecular weight (Mw) in terms of polystyrene is usually 10,000 to 100,000, preferably 15,000 to 80,000, more preferably 20,000 to 50,000. When the weight average molecular weight is in such a range, it is preferable because the mechanical strength and molding processability of the optical material obtained by the stretched film of the present embodiment are highly balanced.
  • the glass transition temperature of the norbornene-based resin may be appropriately selected depending on the purpose of use, but is preferably 80 ° C. or higher, more preferably in the range of 100 to 250 ° C.
  • the optical material obtained by the stretched film of the present embodiment can be excellent in durability without causing deformation or stress in use at high temperatures.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the norbornene resin is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1 to 4.0, more preferably 1 The range is from 2 to 3.5.
  • the absolute value of the photoelastic coefficient C of norbornene-based resin is preferably 10 ⁇ 10 -12 Pa -1 or less, more preferably 7 ⁇ 10 -12 Pa -1 or less, 4 ⁇ 10 -12 Pa Particularly preferably, it is ⁇ 1 or less.
  • thermoplastic resin used in this embodiment is a colorant such as a pigment or dye, a fluorescent brightener, a dispersant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, an antioxidant, a lubricant, and a solvent.
  • the compounding agent such as may be appropriately blended.
  • the content of the residual volatile component in the stretched film of norbornene resin is not particularly limited, but is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and further preferably 0.02% by weight or less. is there.
  • the content of the volatile component in such a range, the dimensional stability can be improved, the change with time of the Re and the Rth can be reduced, and further the optical obtained from the stretched film of the present embodiment. Deterioration of the film, the polarizing plate, or the organic electroluminescence display device can be suppressed, and the display on the display device can be stably and satisfactorily maintained for a long time.
  • the residual volatile component is a substance having a molecular weight of 200 or less contained in a trace amount in the film, and examples thereof include a residual monomer and a solvent.
  • the content of residual volatile components can be quantified by analyzing the film by gas chromatography as the sum of the substances having a molecular weight of 200 or less contained in the film.
  • the saturated water absorption of the stretched film of norbornene resin is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, and particularly preferably 0.01% by weight or less.
  • the saturated water absorption is in the above range, the change with time of Re and Rth can be reduced, and further, deterioration of the optical film, polarizing plate or organic electroluminescence display device obtained from the stretched film of this embodiment can be suppressed. In the long term, the display on the display device can be kept stable and good.
  • the saturated water absorption is a value expressed as a percentage of the mass of the test piece before immersion, after the film specimen is immersed in water at a constant temperature for a certain period of time. Usually, it is measured by immersing in 23 ° C. water for 24 hours.
  • the saturated water absorption rate in the stretched film of the present embodiment can be adjusted to the above value by, for example, reducing the amount of polar groups in the thermoplastic resin, but is preferably a resin having no polar groups. It is desirable.
  • melt forming method of olefin polymer resin As a method for forming a film using the preferred norbornene-based resin described above, a solution casting method or a melt extrusion method is preferred. Examples of the melt extrusion method include an inflation method using a die, but a method using a T die is preferable in terms of excellent productivity and thickness accuracy.
  • the extrusion molding method using a T-die is a method for maintaining retardation and orientation by a method of keeping a molten thermoplastic resin in a stable state when closely contacting a cooling drum as described in JP-A-2004-233604. It is possible to produce a film having favorable optical characteristics such as corners.
  • a sheet-like thermoplastic resin extruded from a die is brought into close contact with a cooling drum under a pressure of 50 kPa or less; 2) melting When producing a long film by extrusion, the enclosure member covers from the die opening to the first cooling drum that is in close contact, and the distance from the enclosure member to the die opening or the first contact cooling drum is 100 mm or less.
  • Method 3 Method of heating the temperature of the atmosphere within 10 mm to a specific temperature from the sheet-like thermoplastic resin extruded from the die opening when producing a long film by the melt extrusion method; A sheet-like thermoplastic resin extruded from a die so as to satisfy the above condition is brought into close contact with a cooling drum under a pressure of 50 kPa or less; A method in which a wind having a speed difference of 0.2 m / s or less from the take-up speed of the cooling drum that is first brought into close contact with the sheet-like thermoplastic resin extruded from the die opening is produced. It is done.
  • the long film containing the above olefin polymer resin may be a single layer or a laminated film of two or more layers.
  • the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
  • Cellulose ester resin A preferable cellulose ester-based resin film contains a cellulose acylate satisfying the following formulas (i) and (ii) and contains a compound represented by the following general formula (A). Can be mentioned.
  • Formula (ii) 0 ⁇ X ⁇ 3.0 (In formulas (i) and (ii), Z1 represents the total acyl substitution degree of cellulose acylate, and X represents the sum of the propionyl substitution degree and butyryl substitution degree of cellulose acylate.)
  • L 1 and L 2 each independently represent a single bond or a divalent linking group.
  • L 1 and L 2 include structures represented by the following formulas. (The following R represents a hydrogen atom or a substituent.)
  • L 1 and L 2 are preferably —O—, —COO—, and —OCO—.
  • R 1 , R 2 and R 3 each independently represent a substituent.
  • substituent represented by R 1 , R 2 and R 3 include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, Isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.) , Cycloalkenyl groups (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl groups (ethynyl group, propargyl group, etc.),
  • R 1 and R 2 are preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted cyclohexyl group. More preferred are a phenyl group having a substituent and a cyclohexyl group having a substituent, and further preferred are a phenyl group having a substituent at the 4-position and a cyclohexyl group having a substituent at the 4-position.
  • R 3 is preferably a hydrogen atom, halogen atom, alkyl group, alkenyl group, aryl group, heterocyclic group, hydroxyl group, carboxyl group, alkoxy group, aryloxy group, acyloxy group, cyano group, amino group, More preferably, they are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, and an alkoxy group.
  • Wa and Wb represent a hydrogen atom or a substituent.
  • Wa and Wb may be bonded to each other to form a ring, and
  • at least one of Wa and Wb may have a ring structure.
  • at least one of Wa and Wb may be an alkenyl group or an alkynyl group.
  • substituent represented by Wa and Wb include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, tert- Butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.), cycloalkenyl group ( 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (ethynyl group, propargyl group etc.), aryl group (phenyl group, p-tolyl group, naphthyl group etc.),
  • Etc. mercapto group, alkylthio group (methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (N-ethylsulfide group, etc.) Famoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N'phenylcarbamoyl) Sulfamoyl Group), sulfo group, acyl group (acetyl group, pivaloylbenzoyl group, etc.), carbamoyl
  • the above substituent may be further substituted with the above substituent.
  • Wa and Wb are bonded to each other to form a ring, it is preferably a nitrogen-containing 5-membered ring or a sulfur-containing 5-membered ring, particularly preferably represented by the following general formula (1) or general formula (2). It is a compound.
  • a 1 and A 2 each independently represent —O—, —S—, —NRx— (Rx represents a hydrogen atom or a substituent) or —CO—.
  • Rx represents a hydrogen atom or a substituent
  • the example of the substituent represented by Rx is synonymous with the specific example of the substituent represented by said Wa and Wb.
  • Rx is preferably a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • X represents a nonmetallic atom belonging to Groups 14-16.
  • Rc, Rd, and Re represent substituents, and examples thereof are synonymous with specific examples of the substituents represented by Wa and Wb.
  • L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
  • Q 1 is —O—, —S—, —NRy— (Ry represents a hydrogen atom or a substituent), —CRaRb— (Ra and Rb represent a hydrogen atom or a substituent) or Represents —CO—.
  • Ry, Ra, and Rb represent substituents, and examples are synonymous with specific examples of the substituents represented by Wa and Wb.
  • Y represents a substituent
  • Examples of the substituent represented by Y are the same as the specific examples of the substituent represented by Wa and Wb.
  • Y is preferably an aryl group, a heterocyclic group, an alkenyl group, or an alkynyl group.
  • Examples of the aryl group represented by Y include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
  • a phenyl group and a naphthyl group are preferable, and a phenyl group is more preferable.
  • heterocyclic group examples include heterocyclic groups containing at least one hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group.
  • a heterocyclic group containing at least one hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group.
  • Group, pyrrolyl group, thienyl group, pyridinyl group and thiazolyl group are preferred.
  • aryl groups or heterocyclic groups may have at least one substituent.
  • substituents include a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, and 1 to 6 alkylsulfinyl groups, alkylsulfonyl groups having 1 to 6 carbon atoms, carboxyl groups, fluoroalkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, alkylthio groups having 1 to 6 carbon atoms, 1 carbon atom N-alkylamino group having 6 to 6, N, N-dialkylamino group having 2 to 12 carbon atoms, N-alkylsulfamoyl group having 1 to 6 carbon atoms, N, N-dialkylsulfur group having 2 to 12 carbon atoms
  • substituent include a moyl group.
  • L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
  • Q 3 represents ⁇ N— or ⁇ CRz— (Rz represents a hydrogen atom or a substituent), and Q 4 represents a nonmetallic atom belonging to Groups 14-16.
  • Z represents a nonmetallic atom group forming a ring together with Q 3 and Q 4 .
  • the ring formed from Q 3 , Q 4 and Z may be condensed with another ring.
  • the ring formed from Q 3 , Q 4 and Z is preferably a nitrogen-containing 5-membered ring or 6-membered ring condensed with a benzene ring.
  • L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
  • Wa and Wb is an alkenyl group or an alkynyl group
  • a vinyl group having a substituent and an ethynyl group are preferable.
  • the compound represented by general formula (3) is particularly preferable.
  • the compound represented by the general formula (3) is superior in heat resistance and light resistance to the compound represented by the general formula (1), and is an organic solvent compared to the compound represented by the general formula (2).
  • the solubility with respect to and the compatibility with a polymer are favorable.
  • the compound represented by the general formula (A) according to this embodiment can be contained by appropriately adjusting the amount for imparting desired wavelength dispersibility and anti-bleeding property.
  • the content of the derivative is preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass. If it is in this range, sufficient wavelength dispersibility and bleeding prevention property can be imparted to the cellulose derivative of this embodiment.
  • General Formula (A), General Formula (1), General Formula (2), and General Formula (3) can be performed with reference to a known method. Specifically, Journal of Chemical Crystallography (1997); 27 (9); 512-526), JP 2010-31223 A, JP 2008-107767 A, and the like can be referred to.
  • the cellulose acylate film used in the production method of the present embodiment contains cellulose acylate as a main component.
  • the cellulose acylate film preferably contains cellulose acylate in the range of 60 to 100% by mass with respect to 100% by mass of the total mass of the film. Further, the total acyl group substitution degree of cellulose acylate is 2.0 or more and less than 3.0, and more preferably 2.2 to 2.7.
  • cellulose acylate examples include esters of cellulose and aliphatic carboxylic acids and / or aromatic carboxylic acids having about 2 to 22 carbon atoms, and in particular, esters of cellulose and lower fatty acids having 6 or less carbon atoms. Preferably there is.
  • the acyl group bonded to the hydroxyl group of cellulose may be linear or branched, and may form a ring. Furthermore, another substituent may be substituted.
  • the degree of substitution is the same, birefringence decreases when the number of carbon atoms described above is large. Therefore, the number of carbon atoms is preferably selected from acyl groups having 2 to 6 carbon atoms.
  • the degree of propionyl substitution and the degree of butyryl substitution Is a sum of 0 or more and less than 3.0.
  • the cellulose acylate preferably has 2 to 4 carbon atoms, more preferably 2 to 3 carbon atoms.
  • cellulose acylate includes propionate group, butyrate group or phthalyl group in addition to acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate or cellulose acetate phthalate.
  • Bound cellulose mixed fatty acid esters can be used.
  • the butyryl group that forms butyrate may be linear or branched.
  • cellulose acetate, cellulose acetate butyrate, or cellulose acetate propionate is particularly preferably used as the cellulose acylate.
  • the cellulose acylate according to this embodiment preferably satisfies the following mathematical formulas (iii) and (iv).
  • the mixing ratio is preferably 1:99 to 99: 1 (mass ratio).
  • cellulose acetate propionate is particularly preferably used as the cellulose acylate.
  • 0 ⁇ Y ⁇ 2.5 and 0.5 ⁇ X ⁇ 3.0 are preferable (where 2.0 ⁇ X + Y ⁇ 3.0), More preferably, 0.5 ⁇ Y ⁇ 2.0 and 1.0 ⁇ X ⁇ 2.0 (where 2.0 ⁇ X + Y ⁇ 3.0).
  • the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • the number average molecular weight of cellulose acylate is preferably in the range of 60,000 to 300,000, since the mechanical strength of the resulting film becomes strong. More preferably, cellulose acylate having a number average molecular weight of 70,000 to 200,000 is used.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of cellulose acylate are measured using gel permeation chromatography (GPC).
  • the measurement conditions are as follows.
  • this measuring method can be used also as a measuring method of the other polymer in this embodiment.
  • the residual sulfuric acid content in the cellulose acylate is preferably in the range of 0.1 to 45 mass ppm in terms of elemental sulfur. These are considered to be contained in the form of salts. If the residual sulfuric acid content exceeds 45 ppm by mass, there is a tendency to break during hot stretching or slitting after hot stretching.
  • the residual sulfuric acid content is more preferably in the range of 1 to 30 ppm by mass.
  • the residual sulfuric acid content can be measured by the method prescribed in ASTM D817-96.
  • the free acid content in the cellulose acylate is preferably 1 to 500 ppm by mass.
  • the above range is preferable because it is difficult to break as described above.
  • the free acid content is preferably in the range of 1 to 100 ppm by mass, and is more difficult to break.
  • the range of 1 to 70 ppm by mass is particularly preferable.
  • the free acid content can be measured by the method prescribed in ASTM D817-96.
  • the residual alkaline earth metal content, residual sulfuric acid content, and residual acid content are within the above ranges. And can be preferable.
  • a cellulose acylate has few bright spot foreign materials when it is made into a film.
  • Bright spot foreign matter means that when two polarizing plates are placed in a crossed Nicol state, an optical film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It means a point (foreign matter) where light from the opposite side appears to leak.
  • the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less, more preferably 100 / cm 2 or less, and 50 / cm 2 or less. Is more preferably 30 pieces / cm 2 or less, particularly preferably 10 pieces / cm 2 or less, and most preferably none.
  • the bright spot having a diameter of 0.005 to 0.01 mm or less is also preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, and 50 pieces / cm 2 or less. Is more preferably 30 pieces / cm 2 or less, particularly preferably 10 pieces / cm 2 or less, and most preferably none.
  • cellulose as a raw material for cellulose acylate, but examples include cotton linters, wood pulp, and kenaf. Moreover, the cellulose acylate obtained from them can be mixed and used at an arbitrary ratio.
  • Cellulose acylate can be produced by a known method. Specifically, for example, the method described in JP-A No. 10-45804 can be referred to and combined.
  • cellulose acylate is also affected by trace metal components in cellulose acylate.
  • trace metal components are thought to be related to the water used in the production process, but it is preferable that there are few components that can become insoluble nuclei, in particular, metal ions such as iron, calcium, magnesium,
  • An insoluble matter may be formed by forming a salt form with a polymer decomposition product or the like that may contain an organic acidic group, and it is preferable that the amount is small.
  • the calcium (Ca) component easily forms a coordination compound (that is, a complex) with an acidic component such as a carboxylic acid or a sulfonic acid, and many ligands. Insoluble starch and turbidity) may be formed.
  • the content in cellulose acylate is preferably 1 mass ppm or less.
  • the content in the cellulose acylate is preferably 60 ppm by mass or less, more preferably 0 to 30 ppm by mass.
  • the magnesium (Mg) component too much content will cause insoluble matter, so the content in the cellulose acylate is preferably 0 to 70 ppm by mass, particularly preferably 0 to 20 ppm by mass. .
  • the content of metal components such as the content of iron (Fe) component, the content of calcium (Ca) component, the content of magnesium (Mg) component, etc.
  • Fe iron
  • Ca calcium
  • Mg magnesium
  • analysis can be performed using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer).
  • the long stretched film obtained by the production method according to this embodiment may be obtained by appropriately mixing polymer components other than the cellulose ester described later.
  • the polymer component to be mixed is preferably one having excellent compatibility with the cellulose ester, and the transmittance when formed into a film is preferably 80% or more, more preferably 90% or more, and further preferably 92% or more.
  • Additives added to the dope include plasticizers, ultraviolet absorbers, retardation adjusting agents, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, fine particles, and the like.
  • additives other than the fine particles may be added during the preparation of the cellulose ester solution, or may be added during the preparation of the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to the polarizing plate used in the liquid crystal image display device.
  • These compounds are preferably contained in an amount of 1 to 30% by mass, preferably 1 to 20% by mass, based on the cellulose ester.
  • a compound having a vapor pressure at 200 ° C. of 1400 Pa or less is preferable.
  • These compounds may be added together with the cellulose ester and the solvent during the preparation of the cellulose ester solution, or may be added during or after the solution preparation.
  • the compound added to adjust the retardation of the cellulose ester resin film used in the production method of the present embodiment has two or more aromatic rings as described in the specification of European Patent 911,656A2.
  • the aromatic compound which has can be used.
  • the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. Particularly preferred is an aromatic heterocycle, and the aromatic heterocycle is generally an unsaturated heterocycle. Of these, a 1,3,5-triazine ring is particularly preferred.
  • the cellulose ester resin film used in the production method of the present embodiment has a cellulose ester and a substituent selected from a carboxyl group, a hydroxyl group, an amino group, an amide group, and a sulfonic acid group, and has a weight average molecular weight of 500. It is preferable to contain a polymer or oligomer of a vinyl compound that is in the range of ⁇ 200,000.
  • the mass ratio of the content of the cellulose ester and the polymer or oligomer is preferably in the range of 95: 5 to 50:50.
  • the cellulose ester resin film used in the production method of the present embodiment can contain fine particles as a matting agent in the stretched film, which makes it easy to run and wind up when the stretched film is a long film. can do.
  • the particle size of the matting agent is preferably primary particles or secondary particles of 10 nm to 0.1 ⁇ m.
  • a substantially spherical matting agent having a primary particle acicular ratio of 1.1 or less is preferably used.
  • silicon dioxide is particularly preferable.
  • silicon dioxide for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) manufactured by Nippon Aerosil Co., Ltd.
  • commercially available products such as Aerosil 200V, R972, R972V, R974, R202, and R812 can be preferably used.
  • polymer fine particles include silicone resin, fluorine resin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. Examples include Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.). Can do.
  • the fine silicon dioxide particles preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / L or more.
  • the average primary particle diameter is more preferably 5 to 16 nm, further preferably 5 to 12 nm. A smaller primary particle average diameter is preferred because haze is low.
  • the apparent specific gravity is preferably 90 to 200 g / L or more, and more preferably 100 to 200 g / L or more. Higher apparent specific gravity makes it possible to produce a high-concentration fine particle dispersion, which is preferable because no haze or aggregates are generated.
  • the addition amount of the matting agent in the present embodiment is preferably long stretched film 1 m 2 per 0.01 ⁇ 1.0 g, more preferably 0.03 ⁇ 0.3 g, more preferably 0.08 ⁇ 0.16 g.
  • thermal stabilizers such as inorganic fine particles such as kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, and alumina, and salts of alkaline earth metals such as calcium and magnesium may be added.
  • a surfactant, a peeling accelerator, an antistatic agent, a flame retardant, a lubricant, an oil agent and the like may be added.
  • the cellulose ester resin film used in the production method of the present embodiment may be formed by either a solution casting method or a melt casting method.
  • a dope is prepared by dissolving a resin and an additive in an organic solvent, the dope is cast on a belt-shaped or drum-shaped metal support, and the cast dope is dried as a web. It is performed by a step, a step of peeling from a metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
  • the solution casting method is preferably used because it is excellent in suppressing coloration of the film, suppressing foreign matter defects, suppressing optical defects such as die lines, and having excellent flatness and transparency of the film.
  • the concentration of cellulose acetate in the dope is preferably higher because the drying load after casting on a metal support can be reduced. However, if the concentration of cellulose acetate is too high, the load during filtration increases and the filtration accuracy increases. Becomes worse.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the surface temperature of the metal support in the casting process is set to ⁇ 50 ° C. to a temperature at which the solvent boils and does not foam. Higher temperatures are preferable because the web can be dried faster, but if the temperature is too high, the web may foam or flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130%. % By mass, particularly preferably 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less. Particularly preferably, it is 0 to 0.01% by mass or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method of drying while running the web by a tenter method are generally employed.
  • the organic solvent useful for forming the dope when the cellulose ester resin film according to the present embodiment is produced by the solution casting method is not limited as long as it dissolves cellulose acetate and other additives simultaneously. Can be used.
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the dope composition is dissolved in%.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • the melt film forming method is a preferable film forming method from the viewpoints that it is easy to reduce the retardation Rt in the thickness direction after oblique stretching, the amount of residual volatile components is small, and the dimensional stability of the film is excellent.
  • the melt film-forming method refers to heating and melting a composition containing an additive such as a resin and a plasticizer to a temperature exhibiting fluidity, and then casting a melt containing fluid cellulose acetate.
  • Methods formed by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method is preferable, in which a film having excellent mechanical strength and surface accuracy can be obtained.
  • a plurality of raw materials used for melt extrusion are usually kneaded and pelletized in advance.
  • Pelletization may be performed by a known method. For example, dry cellulose acetate, a plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and formed into a strand form from a die. It can be done by extrusion, water cooling or air cooling and cutting.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
  • the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die.
  • the film is nipped by a cooling roll and an elastic touch roll, and solidified on the cooling roll.
  • the extrusion flow rate is preferably carried out stably by introducing a gear pump.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roll side when the film is nipped by the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film.
  • a well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
  • the elastic touch roll is also called a pinching rotator.
  • As the elastic touch roll a commercially available one can be used.
  • the long film containing the above cellulose ester resin may be a single layer or a laminated film of two or more layers.
  • the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
  • the long stretched film according to the present embodiment is produced by the production method.
  • the film thickness of the long film before oblique stretching is preferably 20 to 400 ⁇ m, more preferably 30 to 200 ⁇ m.
  • the thickness unevenness ⁇ m in the flow direction of the long film supplied to the oblique stretching apparatus maintains the film take-up tension at the entrance of the oblique stretching tenter, which will be described later, and stabilizes the optical characteristics such as the orientation angle and retardation. From the viewpoint of achieving the above, it is necessary to be less than 0.30 ⁇ m, preferably less than 0.25 ⁇ m, more preferably less than 0.20 ⁇ m.
  • ⁇ m is a value represented by an average value of the standard deviation ⁇ in the flow direction at each width position.
  • a film having a thickness gradient in the width direction may be supplied as the long film before oblique stretching.
  • the gradient of the thickness of the long film before the oblique stretching is to stretch a film with various thickness gradients experimentally changed so that the film thickness at the position where stretching in the subsequent process is completed can be made the most uniform. This can be determined empirically.
  • the gradient of the thickness of the long film before oblique stretching can be adjusted, for example, so that the end on the thick side is about 0.5 to 3% thicker than the end on the thin side. it can.
  • the width of the long film after oblique stretching is not particularly limited, but can be 500 to 4000 mm, preferably 1000 to 2000 mm.
  • the preferable elastic modulus at the stretching temperature at the time of oblique stretching of the long film is 0.01 Mpa or more and 5000 Mpa or less, more preferably 0.1 Mpa or more and 500 Mpa or less, expressed as Young's modulus. If the elastic modulus is too low, the shrinkage rate during stretching and after stretching will be low, and wrinkles will be difficult to disappear. If it is too high, the tension applied during stretching will increase, and the strength of the part holding both side edges of the film will be increased. It is necessary to increase the load, and the load on the tenter in the subsequent process increases.
  • the long film before oblique stretching a non-oriented film may be used, or a film having an orientation in advance may be supplied. Further, if necessary, the width distribution of the orientation of the long film before oblique stretching may be a bow shape, so-called bowing. In short, the orientation state of the long film before oblique stretching can be adjusted so that the orientation of the film at the position where stretching in the subsequent step is completed can be made desirable.
  • the long stretched film of the present embodiment is inclined in a range where the orientation angle ⁇ is greater than 0 ° and less than 90 ° with respect to the winding direction, preferably in the range of 30 ° or more and 60 ° or less. It is preferable to incline, and more preferably in the range of 40 ° or more and 50 ° or less.
  • the variation of the orientation angle ⁇ of the long stretched film according to this embodiment is preferably less than 0.6 °, and more preferably less than 0.4 °.
  • a long stretched film with a variation in orientation angle ⁇ of less than 0.6 ° is bonded to a polarizer to obtain a circularly polarizing plate, and when this is installed in an image display device such as an organic electroluminescence display device, the display quality is improved. It becomes possible to make the uniformity good.
  • the retardation value Ro (550) measured at a wavelength of 550 nm of the long stretched film of the present embodiment is preferably in the range of 120 nm or more and 160 nm or less, more preferably in the range of 130 nm or more and 150 nm or less.
  • the variation of the in-plane retardation Ro of the long stretched film according to the present embodiment is 3 nm or less, preferably 1 nm or less.
  • the in-plane retardation Ro of the long stretched film according to this embodiment is selected to be an optimum value depending on the design of the display device used.
  • the average thickness of the long stretched film according to the present embodiment is preferably 10 to 200 ⁇ m, more preferably 10 to 60 ⁇ m from the viewpoint of mechanical strength, etc., but also due to the inclination of the orientation angle on the inner peripheral side.
  • the problem of scratches and dents at the time of slitting becomes prominent when a thin long stretched film is produced from the viewpoint of mechanical strength. Therefore, the production method of this embodiment is particularly preferably used when producing a thin film in which the average thickness of the long stretched film is in the range of 15 to 35 ⁇ m.
  • the thickness unevenness in the width direction is preferably 3 ⁇ m or less, and more preferably 2 ⁇ m or less, because it affects the availability of winding.
  • a polarizing plate protective film, a polarizer, a ⁇ / 4 retardation film, and an adhesive layer are laminated in this order, and the slow axis of the ⁇ / 4 retardation film and the absorption axis of the polarizer Is an angle of 45 °.
  • a long polarizing plate protective film, a long polarizer, and a long ⁇ / 4 retardation film (stretched film) using the long stretched film according to this embodiment are laminated in this order. It is preferable.
  • the circularly polarizing plate using the long stretched film according to the present embodiment uses a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and is a ⁇ / 4 retardation film / polarizer. It can be manufactured by pasting in a configuration.
  • the film thickness of the circularly polarizing plate is 5 to 40 ⁇ m, preferably 5 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the circularly polarizing plate can be produced by a general method.
  • the ⁇ / 4 retardation film subjected to the alkali saponification treatment is preferably bonded to one surface of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
  • the circularly polarizing plate can be configured by further bonding a release film on the opposite surface of the polarizing plate protective film of the polarizing plate.
  • the protective film and the release film are used for the purpose of protecting the polarizing plate at the time of shipment of the polarizing plate, product inspection, and the like.
  • the circularly polarizing plate using the long stretched film according to the present embodiment having the above-described configuration has particularly few black spots and good quality.
  • the display device is preferably an organic EL display.
  • FIG. 9 shows an example of the configuration of the organic EL image display device, but the organic EL image display device when the long stretched film according to the present embodiment is used is not limited to this.
  • a polarizer is formed on an organic electroluminescence element having a metal electrode 102, a light emitting layer 103, a transmissive electrode (ITO) 104, and a sealing layer 105 in this order on a substrate 101 made of glass, polyimide, or the like via an adhesive tank 106.
  • An organic electroluminescence image display device is configured by providing a circularly polarizing plate in which 108 is sandwiched between a ⁇ / 4 retardation film 107 and a protective film 109.
  • the protective film 109 is preferably laminated with a cured layer.
  • the cured layer not only prevents scratches on the surface of the organic electroluminescence image display device but also has an effect of preventing warpage due to the circularly polarizing plate. Further, an antireflection layer may be provided on the cured layer.
  • the thickness of the organic electroluminescence element itself is about 1 ⁇ m.
  • the light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or Structures with various combinations, such as a laminate of such a light-emitting layer and an electron injection layer composed of a perylene derivative, and / or a laminate of these hole injection layer, light-emitting layer, and electron injection layer, are known. ing.
  • holes and electrons are injected into the light emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by the recombination of these holes and electrons is reduced by the fluorescent material. It emits light on the principle that it is excited and emits light when the excited fluorescent material returns to the ground state.
  • the mechanism of recombination on the way is the same as that of a general diode, and as can be expected from this, the current and the light emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • an organic electroluminescence image display device in order to extract light emitted from the light emitting layer, at least one of the electrodes must be transparent, and usually a transparent electrode formed of a transparent conductor such as indium tin oxide (ITO) is used. Used as the anode.
  • ITO indium tin oxide
  • metal electrodes such as Mg—Ag and Al—Li are used.
  • the light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the light emitting layer transmits light almost completely like the transparent electrode. As a result, the light that is incident from the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the light emitting layer, and is reflected by the metal electrode again exits to the surface side of the transparent substrate.
  • the display surface of the electroluminescence image display device looks like a mirror surface.
  • the circularly polarizing plate for an organic electroluminescence display device using the long stretched film according to this embodiment is suitable for a display device for organic electroluminescence in which such external light reflection is particularly problematic.
  • the method for producing a long stretched film includes a step of forming a long film containing a thermoplastic resin, and a specific direction different from a running direction of the film after stretching the long film.
  • the long film is fed into an oblique stretching device from the direction, and the both ends of the long film in the width direction are gripped by the gripping device of the oblique stretching tenter and run while the long film is larger than 0 ° with respect to the width direction.
  • the oblique stretch step includes a preheating zone, a stretch zone, and It is carried out in a heating zone having a heat setting zone, and the preheating zone and the drawing zone, and the drawing zone and the heat setting zone are respectively formed by partition walls.
  • the partition walls has at least one bent portion in the width direction, and the bending angle of the partition wall is adjusted according to the travel position of the long film. To do. According to such a configuration, it is possible to reduce variations in optical orientation on the film end side that occur during oblique stretching.
  • the partition which has the said bending part has the opening part which the said film can pass, the center part located above and below the said opening part, and the width direction of the said center part It is preferable that a side part connected to each end of the side part is bent, and the center part and the side part can be bent, and a bending angle between the center part and the side part is adjusted. Furthermore, it is preferable that at least one of the center part and the side part of the partition wall having the bent part can be expanded and contracted in the width direction. With such a configuration, it is possible to reduce variations in optical orientation in various stretching patterns.
  • the partition wall that divides the stretch zone and the heat setting zone, the partition wall is deformed so that an angle formed between the traveling direction of the film and the side portion is an acute angle. It is preferable that the film is stretched by passing the film through the opening of the partition wall which has been deformed so that the angle formed by the orientation direction of the film and the central portion is substantially parallel. According to such a configuration, the effect of the present invention can be further enhanced.
  • an angle formed between the running direction of the film and the side portion is an acute angle
  • the film is stretched by passing the film through the opening of the partition wall which is deformed so that the angle formed by the running direction and the central portion is substantially vertical.
  • a traveling speed of the gripping tool that travels on the gripping tool traveling support tool that is asymmetrical of the obliquely stretched tenter is 15 to 150 m / min. Is preferred. According to such a structure, the effect of this invention can be exhibited more.
  • the manufacturing apparatus of the elongate stretched film which concerns on the other situation of this invention is a specification different from the running direction of the film after extending
  • the long film is moved in the width direction while being run while being gripped by the gripping tool provided in the gripping tool traveling support tool of the oblique stretching tenter.
  • a heating zone having a preheating zone, a stretching zone and a heat setting zone is provided, and the preheating zone and the stretching zone, and the stretching zone and the heat setting zone are
  • the partition wall is divided by at least one partition wall, and at least one of the partition walls has at least one bent portion in the width direction, and the bending angle of the partition wall can be adjusted according to the travel position of the long film. It is possible to do.
  • the partition having the bent portion includes an opening through which the film can pass, a central portion positioned above and below the opening, and the central portion. Side portions respectively connected to both ends in the width direction of the first and second side portions, and a bendable portion between the central portion and the side portion, and adjusting a bending angle between the central portion and the side portion. It is preferable that it is possible. Further, at least one of the central part and the side part of the partition wall having the bent part can be expanded and contracted in the width direction.
  • Example 1 Manufacture of cycloolefin film
  • dehydrated cyclohexane 500 parts
  • 1-hexene 1.2 parts
  • dibutyl ether 0.15 parts
  • triisobutylaluminum 0.30 parts
  • DCP dicyclopentadiene
  • 1,4-methano-1,4,4a 9a-tetrahydrofluorene
  • MTD 8-methyl-tetracyclo [4.4.0.12, 5.17,10] -dodec-3-ene
  • This hydrogenated ring-opened polymer had a weight average molecular weight (Mw) of 31,000, a molecular weight distribution (Mw / Mn) of 2.5, a hydrogenation rate of 99.9%, and a Tg of 134 ° C.
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Hg hydrogenation rate
  • pellets were melt extruded using a short shaft extruder having a coat hanger type T die (Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip material is tungsten carbide, peel strength 44N from molten resin).
  • a long film of 75 ⁇ m thick cycloolefin polymer was produced by molding.
  • extrusion molding a long film A having a width of 1000 mm was obtained in a clean room of class 10,000 or less under molding conditions of a molten resin temperature of 240 ° C. and a T die temperature of 240 ° C. The long film A was wound up on a roll.
  • the norbornene-based resin long film A obtained above was stretched by the method shown below using the oblique stretching apparatus according to the present invention to obtain a stretched film. Further, an endless guide rail without a chain was used as the gripping tool travel support tool, and a clip was used as the gripping tool.
  • the angle (turning angle) formed by the film running direction and the feeding direction was set to 47 °.
  • the both ends of the elongate film A sent from a film delivery apparatus were hold
  • the long film is gripped by moving the clip levers of the first and second clips with a clip closer.
  • both ends of the long film are simultaneously gripped by the first and second clips at the same time, and the lines connecting the gripping positions at both ends are parallel to the axis parallel to the lateral direction of the film.
  • the gripped unstretched film is heated by the first and second clips by passing the preheating zone, the stretching zone, and the heat setting zone in the heating zone with the film traveling speed set to 20 m / min,
  • the film was stretched with an oblique stretching tenter having a swirl pattern 1 to be described later to obtain a stretched film.
  • the preheating zone was adjusted to 142 ° C
  • the stretching zone was adjusted to 140 ° C
  • the heat setting zone was adjusted to 137 ° C.
  • the swivel pattern 1 of the obliquely stretched tenter used in Example 1 is shown in FIG.
  • a partition wall that separates the preheating zone and the stretching zone, and the angle between the original partition wall arranged perpendicular to the side wall of the heating zone and the film traveling direction in the preheating zone is ⁇ 1
  • the stretching zone and heat setting If the angle between the partition wall that divides the zone and the partition wall originally arranged and the orientation direction of the film in the stretching zone is ⁇ 2, in the turning pattern 1, ⁇ 1 and ⁇ 2 are both 45 °.
  • the angle formed between the running direction of the film before stretching according to the present invention and the central portion of the partition partitioning the preheating zone and the stretching zone is ⁇ RCE
  • the side of the partition located on the guide rail inner peripheral side is ⁇ RCE
  • ⁇ RIN is an angle formed with the portion
  • ⁇ ROUT is an angle formed between the traveling direction of the film and the side wall portion on the rail outer peripheral side.
  • the angle between the orientation direction of the film after stretching and the central part of the partition partitioning the stretching zone and the heat setting zone is ⁇ LCE
  • the traveling direction of the film after stretching and the side wall of the partition on the inner periphery of the guide rail Is defined as ⁇ LIN
  • the angle formed between the running direction of the stretched film and the side wall portion on the outer periphery of the guide rail is defined as ⁇ LOUT .
  • Example 1 as shown in Table 1, the partition wall that separates the preheating zone and the stretching zone has ⁇ RIN of 45 °, ⁇ ROUT of 115 °, and ⁇ RCE of 65 °.
  • the partition walls to be divided were left at the angles originally arranged.
  • the film was stretched twice before and after stretching, so that the film after stretching had a thickness of 52 ⁇ m.
  • the long stretched film of cycloolefin obtained by the above steps was evaluated by the following evaluation method.
  • A A difference is not seen in the color taste for every part in the whole display surface.
  • B On the entire surface of the display, there is a slight difference in color at the edge of the screen, but there is no problem.
  • C A level in which the color difference is seen at the edge of the screen on the entire display surface and it cannot be used as a product.
  • D A level in which there is a large difference in color for each location of the pasted sample piece and it cannot be used as a product.
  • Example 2 In Example 2, as shown in Table 1 below, the partition walls separating the preheating zone and the stretching zone are the same as in Example 1, and ⁇ RIN is 45 °, ⁇ ROUT is 115 °, ⁇ RCE is 65 °, and the stretching zone
  • a long stretched film of cycloolefin was produced in the same manner as in Example 1 except that ⁇ LIN was changed to 75 °, ⁇ LOUT was changed to 80 °, and ⁇ LCE was changed to 0 °.
  • FIG. 12 is applicable also to Examples 3 and 4 below.
  • Example 3 In Example 3, as shown in Table 1 below, a long stretched film of cycloolefin was produced in the same manner as in Example 1 except that the running speed of the film was changed to 50 m / min.
  • Example 4 In Example 4, as shown in Table 1 below, a long stretched film of cellulose ester was produced in the same manner as in Example 3 except that the cellulose ester obtained by the following production process was used as a film type.
  • the inside of the Kolben was depressurized to 4 ⁇ 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 ⁇ 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off. Finally, 100 g of water was added to the collected toluene layer, and after washing with water at room temperature for 30 minutes, the toluene layer was collected, and toluene was distilled off at 60 ° C. under reduced pressure (4 ⁇ 10 2 Pa or less). A mixture of compounds A-1, A-2, A-3, A-4 and A-5 as shown in 10 was obtained.
  • A-1 was 1.3% by mass
  • A-2 was 13.4% by mass
  • A-3 was 13.1% by mass
  • A-4 was 31% by mass.
  • 0.7% by mass and A-5 was 40.5% by mass.
  • the average degree of substitution was 5.5.
  • the measurement conditions for the HPLC-MASS are as follows.
  • MS unit Device LCQ DECA (manufactured by Thermo Quest Co., Ltd.)
  • Ionization method Electrospray ionization (ESI) method Spray Voltage: 5 kV
  • Capillary temperature 180 ° C
  • Vaporizer temperature 450 ° C
  • Ester Compound 1 >> 251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with thermometer, stirrer, and slow cooling tube The flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream. The ester compound 1 was obtained by carrying out a dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction.
  • the ester compound 1 has an ester of benzoic acid at the end of a polyester chain formed by condensation of 1,2-propylene glycol, phthalic anhydride and adipic acid.
  • the ester compound 1 had an acid value of 0.10 and a number average molecular weight of 450.
  • Fine particle additive liquid 1 After 11 parts by mass of fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) and 89 parts by mass of ethanol were stirred and mixed with a dissolver for 50 minutes, dispersion with Manton Gorin was performed to prepare Fine Particle Additive Solution 1.
  • fine particle dispersion 1 1 part by mass of the fine particle dispersion 1 was slowly added while sufficiently stirring the dissolution tank containing 99 parts by mass of methylene chloride. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • the dope solution was uniformly cast on a stainless steel belt support using an endless belt casting apparatus.
  • the solvent was evaporated until the residual solvent amount in the cast (cast) film was 75%, and the film was peeled off from the stainless steel belt support.
  • the peeled cellulose ester film was stretched 1.1 times in the width direction by a transverse stretching tenter.
  • the temperature conditions of the transverse stretching tenter oven at that time were 160 ° C. in the preheating zone, 165 ° C. in the stretching zone, 172 ° C. in the holding zone, and 110 ° C. in the cooling zone.
  • the tenter clip marks at both ends of the film are trimmed, the drying temperature is 130 ° C., and the drying is finished while the long film is conveyed through the drying zone using a number of rolls, and then wound in the winding process. It was wound up as a circular body. As described above, a roll-shaped long film having a dry film thickness of 75 ⁇ m was obtained.
  • the long film of the cellulose resin obtained above was obliquely stretched as shown in Table 1 below to obtain a long stretched film.
  • the moving speed of the film is 50 m / min
  • the temperature of the preheating zone is 188 ° C.
  • the temperature of the stretching zone is 186 ° C.
  • the temperature of the heat setting zone is 172 ° C.
  • the stretching ratio is 2.0 times
  • the thickness is 52 ⁇ m. I made a film like this.
  • Comparative Examples 1 and 2 In Comparative Example 1, both the partition wall separating the preheating zone and the stretching zone and the partition wall separating the stretching zone and the heat fixing zone were originally arranged perpendicular to the side wall of the heating zone. A septum was used. However, the upper and lower partition plates of the film were used for the partition walls within the film width, and those adjusted so that the upper and lower partition plates and the orientation angle of the film were equal were used. Then, as shown in Table 1 below, a long stretched film of each cycloolefin was produced in the same manner as in Example 1 except that the angle of each part of the partition wall was changed.
  • Comparative Example 2 a long stretched film of each cycloolefin was produced in the same manner as Comparative Example 1 except that the traveling speed of the film in Comparative Example 1 was changed.
  • FIG. 13 is a schematic diagram showing the turning pattern 1 used in Comparative Examples 1 and 2 and the angles of the partition walls. The evaluation results are shown in Table 1 below.
  • Orientation angle (°) average value of the slow axis angle (orientation angle) ⁇ of the sample measured in the quantitative evaluation.
  • Example 1 since the blowing of the accompanying air from the previous zone to the next zone was adjusted, a film having slight alignment unevenness and color unevenness could be produced. Further, for Example 2 in which ⁇ LIN and ⁇ LOUT are acute angles and ⁇ LCE is 0 °, the angle of each part of the partition wall is inclined to suppress temperature unevenness that occurs at the boundary between the stretching zone and the heat fixing zone, The color unevenness seen on the end side disappeared, and a good quality film was obtained.
  • Example 3 was stretched under a higher speed condition than Example 2, a film having a slight alignment unevenness and color unevenness was obtained, and it was at a level with no problem on the product.
  • Example 4 although the cellulose ester was used as a film seed
  • Example 5 In Example 5, the swirl pattern 2 of the obliquely stretched tenter as shown in FIG. 14 was used, and as shown in Table 2 below, the length of the cycloolefin was the same as in Example 1 except that the angle of each part of the partition wall was changed. A stretched film was produced. Further, in Example 6, each of the cycloolefins in the same manner as in Example 5 except that the angle of ⁇ RIN , ⁇ ROUT , ⁇ LIN , ⁇ LOUT in Example 5 and the traveling speed were changed to obliquely stretch the film. A long stretched film was produced.
  • FIG. 15 shows a schematic diagram of the revolving pattern 2 and the heating zone partition used in Comparative Examples 3 and 4.
  • Comparative Example 3 partition walls having the same configuration as in Comparative Example 1 were used. Then, as shown in Table 2 below, a long stretched film of each cycloolefin was produced in the same manner as in Example 3 except that the angle of each part of the partition wall was changed.
  • Comparative Example 4 a long stretched film of each cycloolefin was produced in the same manner as Comparative Example 3 except that the traveling speed of the film in Comparative Example 3 was changed.
  • Comparative Example 3 since the inner peripheral side is particularly wide in the opening width of the partition wall between the stretching zone and the heat setting zone, the entrained wind of the film flows unevenly to the next zone, which is caused by temperature unevenness. Unevenness of orientation of the film occurred, and as a result, the evaluation of unevenness of color was inferior. Moreover, since the comparative example 4 is extended
  • Example 7 the swirl pattern 3 of the obliquely stretched tenter as shown in FIG. 16 was used, and as shown in Table 3 below, the length of the cycloolefin was the same as in Example 1 except that the angle of each part of the partition wall was changed. A stretched film was produced. Further, in Example 8, each of the cycloolefins in the same manner as in Example 7 except that the film was obliquely stretched by changing the angles of ⁇ RIN , ⁇ ROUT , ⁇ LIN , ⁇ LOUT in Example 7 and the traveling speed. A long stretched film was produced.
  • FIG. 17 shows a schematic diagram of the turning pattern 3 and the partition walls of the heating zone used in Comparative Examples 5 and 6.
  • Comparative Example 5 partition walls having the same configuration as in Comparative Example 1 were used. Then, as shown in Table 3 below, a long stretched film of each cycloolefin was produced in the same manner as in Example 3 except that the angle of each part of the partition wall was changed.
  • Comparative Example 6 a long stretched film of each cycloolefin was produced in the same manner as Comparative Example 5 except that the traveling speed of the film in Comparative Example 5 was changed.
  • Example 7 Although ⁇ RIN , ⁇ ROUT , ⁇ LIN , and ⁇ LOUT are acute angles and ⁇ RCE is a right angle, although the turning pattern is changed from Example 1 and the like. , ⁇ LCE was set to 0 °, and each of the angles was optimized to optimize the color unevenness seen on the end side, and a film with good quality was obtained. Further, in Example 8, a film having a level of no problem in terms of orientation unevenness and color unevenness was obtained although it was stretched under a higher speed than Example 7.
  • Comparative Example 5 the difference in wind speed occurs between the edge and the center of the film, and the accompanying air of the film flows non-uniformly to the next zone. As a result, it was inferior to the evaluation of uneven coloring. Further, Comparative Example 6 is stretched under a higher speed condition than Comparative Example 5, and the flow of the entrained air flowing to the next zone is remarkable. Therefore, Comparative Example 6 is more susceptible to temperature unevenness than Comparative Example 5. As a result.
  • the present invention has wide industrial applicability in the technical field of a long stretched film and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記斜め延伸工程は、予熱ゾーン、延伸ゾーン及び熱固定ゾーンを有する加熱ゾーン内で行われ、前記予熱ゾーン及び前記延伸ゾーン並びに、延伸ゾーン及び熱固定ゾーンはそれぞれ隔壁によって区分され、前記隔壁の少なくとも一つは、幅手方向に少なくとも一か所の屈曲部を有し、前記長尺フィルムの走行位置に応じて前記隔壁の屈曲角度を調整することを特徴とする長尺延伸フィルムの製造方法に関する。

Description

長尺延伸フィルムの製造方法及び製造装置
 本発明は、長尺延伸フィルムの製造方法及び製造装置に関する。
 樹脂を延伸してなる延伸フィルムは、その光学異方性を利用して、各種ディスプレイ装置において様々な光学的機能を果たす光学フィルムとして用いられている。例えば、液晶表示装置において、該延伸フィルムを着色防止、視野角拡大などの光学補償などのための光学補償フィルムとして用いたり、該延伸フィルムと偏光子とを貼り合わせることで、該延伸フィルムを、偏光板保護フィルムを兼ねた位相差フィルムとして用いたりすることが知られている。
 一方、近年では新たなディスプレイ装置として、有機エレクトロルミネッセンス表示装置のような自発光型の表示装置が注目されている。自発光型表示装置は、バックライトが常に点灯している液晶表示装置に対して消費電力を抑制できる余地があり、更に、有機エレクトロルミネッセンス表示装置のような各色に対応した光源がそれぞれ点灯する自発光表示装置では、コントラスト低減の要因となるカラーフィルターを設置する必要がないため、コントラストを更に高めることが可能である。
 しかしながら、有機エレクトロルミネッセンス表示装置においては、光取り出し効率を高めるためにディスプレイの背面側にアルミニウム板等の反射体が設けられ、ディスプレイに入射した外光がこの反射体で反射されることで画像のコントラストを低下させるといった問題が生じる。そのため、外光反射防止による明暗コントラスト向上のために該延伸フィルムと偏光子とを貼り合わせて円偏光板をディスプレイに表面側に用いる技術が知られている。
 このような円偏光板は、偏光子の透過軸に対して、該延伸フィルムの面内遅相軸を所望の角度で傾斜するような配置で貼り合わされる必要がある。
 しかしながら、一般的な偏光子(偏光フィルム)は、走行方向に高倍率延伸することで得られるもので、その吸収軸が走行方向と一致しており、従来の位相差フィルムは、縦延伸、又は横延伸で製造され、原理的に面内の遅相軸がフィルムの長尺方向に対し0°または90°方向になる。このため、上記のように偏光子の吸収軸と延伸フィルムの遅相軸との関係を傾斜した所望の角度にするには長尺の偏光フィルム及び/または延伸フィルムを特定の角度で切り出してフィルム片同士を1枚ずつ貼り合せるバッチ式で行わざるを得なくなり、遅相軸のばらつきによる生産性の悪化や切り屑等の付着による製品の歩留まりの低下が問題として挙げられていた。
 そこで特許文献1では、所望の角度で斜め方向に延伸し、遅相軸がフィルムの長尺方向に対し、0°でも90°でもない方向に自在に制御可能な長尺の位相差フィルムの製造方法が提案されている。この方法により偏光フィルムと延伸フィルムをロール・トゥ・ロールで貼り合わせることができるため、歩留まりの低下がなくなり、安定した生産を行うことができた。
 しかし、特許文献1に記載の斜め延伸法では、フィルムの幅方向の各位置において膜厚や光学特性が不均一になる問題が発生した。例えば配向角の大きなフィルムを得る場合、フィルムの幅手方向に対する不均一性はより顕著に現れていた。このような問題を解決するため、特許文献2においては、延伸後のフィルムの配向方向と、加熱炉内に設けられた各ゾーンを分離させる隔壁との成す角度を一致させる技術が記載されている。また特許文献3では、延伸後のフィルムの配向方向とオーブンの延伸、熱固定、冷却ゾーンの境界の成す角度を一定の特定範囲内とし、それぞれの角度の差の絶対値を特定範囲内に満たすように製造する製造方法が記載されている。
 しかし、前記従来の製造方法において、特に速い搬送速度で斜め延伸を行った場合に、フィルム端部側の光学配向のばらつきが生じ、フィルム全体として大きな配向ムラが生じていた。また、このような配向ムラを有するフィルムを円偏光板に用いると、その円偏光板には部分的に色ムラが生じ品質が大きく低下するといった問題があった。
 また、特許文献4には、より広い可視光波長領域にわたって円偏光度の高い円偏光板(広帯域円偏光板)を作成するにあたり、λ/2位相差フィルムとλ/4位相差フィルムを、それぞれの面内遅相軸が任意の角度となるように重ねて貼り合わせた円偏光板が提案されている。このようなフィルムをロール・トゥ・ロールで作成するためには、各々のフィルムの面内遅相軸が幅手方向に対して異なる角度で傾斜している必要がある。
 そのため、特定の角度方向にしか延伸できない斜め延伸装置よりも、1台の斜め延伸装置の延伸パターンを変更することで任意の角度方向に延伸でき、任意の面内遅相軸の傾斜角度を持つ長尺延伸フィルムを作成できる斜め延伸装置が好ましく用いられる。
 それに対して前述した従来の製造方法では、延伸パターンを変更した場合には、フィルムの光学配向のばらつきがより顕著に生じてしまい、フィルムを円偏光板に用いると、大きな色ムラが生じてしまうため、製品を製造することができないといった問題が生じた。
特開2006-159775号公報 特開2007-175974号公報 特開2009-78474号公報 特開2002-372622号公報
 本発明者は、前記目的を達するために鋭意検討を行った結果、下記構成によって、フィルム端部側の光学配向のばらつきが低減された長尺延伸フィルムを得ることができる長尺延伸フィルムの製造方法が得られることを見出し、本発明を完成させた。
 すなわち、本発明に係る長尺延伸フィルムの製造方法は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して走行しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記斜め延伸工程は、予熱ゾーン、延伸ゾーン及び熱固定ゾーンを有する加熱ゾーン内で行われ、前記予熱ゾーン及び前記延伸ゾーン並びに、前記延伸ゾーン及び前記熱固定ゾーンはそれぞれ隔壁によって区分され、前記隔壁の少なくとも一つは、幅手方向に少なくとも一か所の屈曲部を有し、前記長尺フィルムの走行位置に応じて前記隔壁の屈曲角度を調整することを特徴とする。
 本発明によれば、斜め延伸時に生じるフィルム端部側の光学配向のばらつきを低減することが可能な長尺延伸フィルムの製造方法を提供することができる。
図1は、従来の加熱ゾーンにおいて斜め延伸を行う場合の概略図である。 図2は、本発明の一実施形態に係る斜め延伸装置の構成を示す概略上面図である。 図3は、本発明の一実施形態に係る斜め延伸装置の構成を示す概略側面図である。 図4は、本発明の実施形態に係る長尺延伸フィルムの製造方法に用いられる斜め延伸テンターの一例を示す概略図である。 図5は、図2に示すV-Vに沿って、17a(17b)隔壁より下流側の位置から見た断面図である。 図6は、本発明の一実施形態に係る伸縮部材と屈曲部材によって変形した隔壁を拡大した斜視図である。 図7は、延伸ゾーンと熱固定ゾーンとの間の隔壁各部をレールパターン毎に変形したものを示す概略上面図である。 図8は、予熱ゾーンと延伸ゾーンとの間の隔壁各部をレールパターン毎に変形したものを示す概略上面図である。 図9は、有機EL画像表示装置の構成の一例を示す概略図である。 図10は、糖エステル化合物の合成を示す図である。 図11は、実施例1において用いた斜め延伸テンターの旋回パターン及び変形された隔壁を示す概略図である。 図12は、実施例2~4において用いた斜め延伸テンターの旋回パターン及び変形された隔壁を示す概略図である。 図13は、比較例1,2において用いた斜め延伸テンターの旋回パターン及び隔壁を示す概略図である。 図14は、実施例5,6において用いた斜め延伸テンターの旋回パターン及び変形された隔壁を示す概略図である。 図15は、比較例3,4において用いた斜め延伸テンターの旋回パターン及び隔壁を示す概略図である。 図16は、実施例7,8において用いた斜め延伸テンターの旋回パターン及び変形された隔壁を示す概略図である。 図17は、比較例5,6において用いた斜め延伸テンターの旋回パターン及び変形された隔壁を示す概略図である。
 本発明の目的は、斜め延伸時に生じるフィルムの光学配向のばらつきを低減し、円偏光板に用いた場合における色ムラの防止が可能な長尺延伸フィルムの製造方法及び製造装置を提供することにある。
 本発明者らは、上述したような斜め延伸によって得られた長尺延伸フィルムの光学配向のばらつきの原因は、斜め延伸工程時におけるフィルムが隔壁の開口部を通過する際のフィルムの同伴風によるフィルムの温度ムラにあることを見出し、検討を行った。
 斜め延伸においては、加熱ゾーン内を屈曲して走行するため、前記温度ムラは斜め延伸固有のレールパターン構成によって大きく影響を受ける傾向にあった。
 前記加熱ゾーンは、予熱ゾーン、延伸ゾーン及び熱固定ゾーンを有し、各ゾーンは隔壁によって区分されている。
 一般に、加熱ゾーン中の各ゾーンの温度は、予熱ゾーンと延伸ゾーンの温度は同じに設定されるか、もしくは延伸時の温度が低くならないように、十分に加熱させるために、予熱ゾーンの温度を延伸ゾーンより高く設定されることがある。また、熱固定ゾーンの温度は前記予熱ゾーンや延伸ゾーンより低い温度になるよう設定される。
 前記のような温度構成となる加熱ゾーン内をフィルムが通過する際に生じる温度ムラの課題について、加熱ゾーン中の各ゾーンの温度を予熱ゾーン、延伸ゾーン、熱固定ゾーンの順に低くなるよう温度設定した条件下を例にして、以下に説明する。
 長尺フィルム及び長尺延伸フィルムを加熱ゾーン中の各ゾーンへ順に走行すると、予熱ゾーンを通過したフィルムの同伴風の流れが隔壁の開口部から、予熱ゾーンより温度が低く設定された延伸ゾーンに流れる。そして、延伸ゾーンを通過したフィルムの同伴風も同様に延伸ゾーンより温度が低く設定された熱固定ゾーンに流れる。そのため、各ゾーンの境界部分では、ゾーン間の温度が違う事による温度ムラが生じ易く、特に速い搬送速度で延伸する場合においては、フィルムの同伴風の勢いが強くなる傾向にあるため、開口部へ流れ込む風の流れは特に強くなり、ゾーン境界部分の温度ムラは顕著になる。
 図1(a)は、前記特許文献3記載の技術に基づき、延伸後のフィルムの配向方向と、延伸ゾーン及び熱固定ゾーンの隔壁とのなす角度が鋭角(5°より大きく90°未満)となるように斜め延伸を行った場合のフィルムの一例を表した図である。なお、フィルム中に描かれている破線は、フィルムの配向軸を示したものである。
 図1(a)のようにフィルム延伸を行なった場合、延伸ゾーンから熱固定ゾーンへ走行されるフィルムは、配向方向に対して内周側が先に温度のより低い熱固定ゾーンへ入ることになる。そして、外周側が遅れて熱固定ゾーンへ入る。このように、斜め延伸された長尺延伸フィルムはフィルムの進行方向に対して、斜めに配向していることから、配向方向が同軸であるフィルムの両端において、フィルムの内周側は先に冷却され、外周側は後から冷却されることになる。その結果、フィルムの熱履歴が内周側と外周側で違いが出てくるため、フィルム両端部にて光学配向のばらつきが生じてしまう。
 続いて、図1(b)は、前記特許文献2記載の技術に基づき、延伸後のフィルムの配向方向と、延伸ゾーン及び熱固定ゾーンの境界線とのなす角度を鋭角(5°より大きく90°未満)とし、フィルム幅内にフィルムの上下仕切り板を用い、前記上下仕切り板とフィルムとの配向角が等しくなるように調節して斜め延伸を行った場合のフィルムを表した図である。図1(b)のように延伸を行なった場合、前記上下仕切り板と隔壁との間に隙間が生じる。そのため、延伸ゾーンの高温の空気は、図1(b)の矢印の向きに同伴風が発生することによって、内周側、及び外周側の隙間から熱固定ゾーンへ注がれてしまう。そのため熱固定ゾーン内の延伸ゾーンに近い側のフィルムの端面の温度は、前記延伸ゾーンから注がれた熱風が温度差を与えるため、フィルムの左右で光学ムラを生じさせてしまう。このように、前記隔壁通過後のフィルムの温度分布が各端部間で大きく異なることから、フィルム両端部にて熱履歴が違うため、光学ムラが生じてしまう。
 以上のように、従来技術における斜め延伸においては、特定の延伸パターン条件では所望の品質条件を満たす延伸フィルムを製造できるが、延伸パターンを変更した場合においては、前記課題が発生するため、光学ムラの生じた延伸フィルムとなる。つまり、従来技術においては加熱ゾーンを区分する隔壁が固定されているため、前記長尺フィルムの繰出方向、前記長尺延伸フィルムの延伸後の走行方向、及び前記長尺フィルムを延伸する方向等を変更した場合においては、前記隔壁部分でフィルムの温度ムラが、各条件で様々に生じてしまうため、前記従来技術を用いて延伸パターンを変更した様々な長尺延伸フィルムを製造しても光学ムラが生じたフィルムとなってしまう。
 また、速い搬送速度で斜め延伸を行った場合、同伴風が強くなるだけでなく、同伴風の影響範囲が周囲に広がってしまう。つまり、同伴風影響はフィルム幅方向においてフィルム領域内だけでなく、フィルムの端部から外の広い領域においても同伴風の影響が強く現れ、結果として、加熱ゾーンを区分する隔壁部の幅方向において大きな温度ムラを生じてしまう。そのため、フィルム領域内のみの隔壁の調整を行っている従来技術では、速い搬送速度で斜め延伸を行った場合において、上記課題が更に顕著に生じてしまう。
 本発明はこのような問題を解消するため検討された結果、完成されたものである。
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 まず、本実施形態に係る長尺延伸フィルムの製造方法について説明する。
 <長尺延伸フィルムの製造方法>
 本実施形態の長尺延伸フィルムの製造方法は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して走行しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記斜め延伸工程は、予熱ゾーン、前記延伸ゾーン及び前記熱固定ゾーンを有する加熱ゾーン内で行われ、前記予熱ゾーン及び前記延伸ゾーン並びに、前記延伸ゾーン及び前記熱固定ゾーンはそれぞれ隔壁によって区分され、前記隔壁の少なくとも一つは、幅手方向に少なくとも一か所の屈曲部を有し、前記長尺フィルムの走行位置に応じて前記隔壁の屈曲角度を調整することを特徴とする。
 本実施形態に係る態様において、長尺フィルムとは延伸前のフィルムを指し、長尺延伸フィルムとは延伸後のフィルムを指すものとする。
 また長尺とは、フィルムの幅に対し、少なくとも5倍程度以上の長さを有するものをいい、好ましくは10倍もしくはそれ以上の長さを有し、具体的にはロール状に巻回されて保管または運搬される程度の長さを有するもの(フィルムロール)である。
 また、本実施形態の長尺延伸フィルムの製造方法は以下に示すような装置を用いて実施可能である。すなわち、前記装置は、熱可塑性樹脂を含有する長尺フィルムを製膜する手段、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具走行支持具が備える把持具によって把持して走行しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する手段、前記斜め延伸後の長尺延伸フィルムを巻き取る手段を少なくとも有する長尺延伸フィルムの製造装置において、前記斜め延伸手段内に、予熱ゾーン、延伸ゾーン及び熱固定ゾーンを有する加熱ゾーンが設けられ、前記予熱ゾーン及び前記延伸ゾーン並びに、前記延伸ゾーン及び前記熱固定ゾーンはそれぞれ隔壁によって区分され、前記隔壁の少なくとも一つは、幅手方向に少なくとも一か所の屈曲部を有し、前記長尺フィルムの走行位置に応じて前記隔壁の屈曲角度を調整することができることを特徴とする。
 図2及び図3は本実施形態の一実施形態に係る長尺延伸フィルムの製造方法の各工程に用いる斜め延伸装置を模式的に示した図である。ただし、これは一例であって本実施形態はこれに限定されるものではない。
 なお、各図面において主な符号は以下の通りである:1 斜め延伸装置、2 斜め延伸テンター、3 フィルム繰り出し装置、4 フィルム巻き取り装置、5,8 走行ロール、6 内側の把持具走行支持具、7 外側の把持具走行支持具、11,12 把持具走行支持具開始位置、13,14 把持具走行支持具終了位置、15 長尺フィルム(長尺延伸フィルム)、16 加熱ゾーン、17a,17b 隔壁、18 接続部材、19 伸縮部材、20 開口部、21a,21b 隔壁中央部、22a,22b 隔壁側方部。
 以下、本実施形態の製膜方法の各工程について説明する。
 〔製膜工程〕
 本実施形態の製造方法に係る製膜工程は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程である。製膜工程は、熱可塑性樹脂の種類等によって種々の手段で行われるが、詳細は後述する。
 〔斜め延伸工程〕
 本実施形態の製造方法に係る斜め延伸工程は、延伸後のフィルムの走行方向とは異なる特定の方向からフィルム繰り出し装置から繰り出し、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して走行しつつ、フィルムを斜め延伸することによって、フィルムの幅手方向に対して0°を超え90°未満の任意の角度に面内遅相軸を付与する工程である。
 ここで、フィルムの幅手方向に対する角度とは、フィルム面内における角度である。遅相軸は、通常延伸方向又は延伸方向に直角な方向に発現するため、本実施形態に係る製造方法では、フィルムの走行方向に直交する方向に対して0°を超え90°未満の角度で、所望の角度に任意に設定して延伸を行うことにより、かかる遅相軸を有する長尺延伸フィルムを製造することができる。
 (繰り出し装置)
 図2、図3に示すように、フィルム繰り出し装置3は、斜め延伸テンター入口に対して所定角度でフィルムを送り出せるように、スライドおよび旋回可能となっている。そして、フィルム繰り出し装置3は、スライド可能となっており、走行方向変更装置により斜め延伸テンター入口に前記フィルムを送り出せるようになっていることが好ましい。前記フィルム繰り出し装置3、及び走行方向変更装置をこのような構成とすることにより、フィルムの送り出し位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。また、前記フィルム繰り出し装置3、及び走行方向変更装置を移動可能とすることにより、把持具のフィルムへの噛込み不良を有効に防止することができる。
 また前記フィルム繰り出し装置3は、斜め延伸装置1と別体で構成されていてもよいし、一体的に構成されてもよい。前者の場合、斜め延伸前の長尺フィルムを製膜後に一度巻芯に巻き取って巻回体となったものをフィルム繰り出し装置3に装填することで、フィルム繰り出し装置3から長尺フィルムが繰り出される。一方、後者の場合、フィルム繰り出し装置3は、斜め延伸前の長尺フィルムの製膜後、その長尺フィルムを巻き取ることなく、斜め延伸テンター2に対して繰り出すことになる。
 (走行ロール)
 走行ロール5は、前記繰り出し装置から繰り出されたフィルムを、把持具走行支持具開始位置11,12まで送るロールである。
 前記走行ロール5の数は特に特定されず、走行ロールを配置した途中にフィルム端部を裁断するためのスリッター工程を設けてもよい。また、走行ロールの配置前後や、複数の走行ロールの間に、フィルムの除電を行うための除電装置を設けてもよい。前記除電装置は後ほど説明するスリット工程で用いられる除電装置と同様のものが使用できる。
 (斜め延伸テンター)
 本実施形態に係る製造方法においては、長尺フィルムに斜め方向の配向を付与するために斜め延伸テンターを用いる。本実施形態で用いられる斜め延伸テンターは、長尺フィルムを延伸可能な任意の温度に加熱し、斜め延伸する装置である。この斜め延伸テンターは、加熱ゾーンと、長尺フィルムの両側を把持して走行するための両側で一対となる複数の把持具と、前記把持具の走行を支持するための把持具走行支持具とを備えている。
 斜め延伸テンターの入口部(把持開始点)に順次供給される長尺フィルムの両端を、把持具で把持し、加熱ゾーン内に長尺フィルムを導き、斜め延伸テンターの出口部(把持解放点)で把持具から長尺延伸フィルムを解放する。把持具から解放された長尺延伸フィルムは巻芯に巻き取られる。把持具を備える把持具走行支持具は無端状の連続軌道を有し、延伸装置の出口部で長尺延伸フィルムの把持を解放した把持具は、把持具走行支持具によって順次把持開始点に戻されるようになっている。
 把持具走行支持具とは、例えば、ガイドレールやギアによってそれぞれ経路を規制されている無端状のチェーンが把持具を備える形態であってもよいし、無端状のガイドレールが把持具を備える形態であってもよい。すなわち、本実施形態では、把持具走行支持具は、たとえば無端状のチェーンを備えた有端状のガイドレールであってもよく、無端状のチェーンを備えた無端状のガイドレールであってもよく、チェーンを備えない無端状のガイドレールであってもよい。把持具は、把持具走行支持具がチェーンを備えない場合には、把持具走行支持具そのものの経路を走行し、チェーンを備える場合には、当該チェーンを介して把持具走行支持具の経路を走行する。
 以下、本実施形態では、一例として、把持具走行支持具の経路を把持具が走行する場合を説明するが、いずれの場合であっても、把持具は、把持具が設けられたチェーンを介して把持具走行支持具の経路を走行してもよい。
 なお、斜め延伸テンターの把持具走行支持具は、左右で非対称な形状となっており、製造すべき長尺延伸フィルムに与える配向角、延伸倍率等に応じて、経路のパターンを手動で、または自動で調整できるようになっている。
 本実施形態の斜め延伸テンターでは、各把持具走行支持具の経路を自由に設定し、把持具走行支持具の経路のパターンを任意に変更できることが好ましい。
 図4は、本実施形態の実施形態に係る長尺延伸フィルムの製造方法に用いられる斜め延伸テンターのレールパターンの一例を示した概略図である。ただし、これは一例であって本発明はこれに限定されるものではない。
 長尺フィルムの繰出方向D1は、延伸後の長尺延伸フィルムの巻取方向D2と異なっており、繰出角度θiを成している。繰出し角度θiは0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。
 長尺フィルムは斜め延伸テンター入口(図4中Aの位置)においてその両端を左右の把持具によって把持され、把持具の走行に伴い走行される。左右の把持具は、斜め延伸テンター入口(図4中Aの位置)で、フィルムの進行方向(繰出方向D1)に対して略垂直な方向に相対している左右の把持具Ci、Coは、左右非対称な把持具走行支持具Ri,Ro上を走行し、延伸終了時の位置(図4中Bの位置)で把持したフィルムを解放する。
 このとき、斜め延伸テンター入口(図4中Aの位置)で相対していた左右の把持具は、左右非対称な把持具走行支持具Ri,Ro上を走行するにつれて、Ri側を走行する把持具Ciは、Ro側を走行する把持具Coに対して進行する位置関係となる。
 すなわち、斜め延伸テンター入口(フィルムの把持具による把持開始位置)Aでフィルムの繰出方向D1に対して略垂直な方向に相対していた把持具Ci、Coがフィルムの延伸終了時の位置Bにある状態で、該把持具Ci、Coを結んだ直線がフィルムの巻取方向D2に対して略垂直な方向に対して角度θLだけ傾斜している。
 以上の所作をもって、長尺フィルムがθLの方向に斜め延伸されることとなる。ここでの略垂直とは、90±1°の範囲にあることを示す。
 前記把持具の走行速度は適宜選択できるが、通常、1~150m/分である。速い搬送速度で延伸を行うと、隔壁の開口部分に流れ込む同伴風が強くなるため、課題がより顕著になってくる。したがって、走行速度が15~150m/分である範囲で実施すると本発明の効果をより向上させることができ、前記走行速度が30~150m/分である範囲で実施すると本発明の効果をさらに向上させることができる。
 左右一対の把持具の走行速度の差は、走行速度の通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下である。これは、延伸工程出口でフィルムの左右に進行速度差があると、延伸工程出口におけるシワ、寄りが発生するため、左右の把持具の速度差は、実質的に同速度であることが求められるためである。一般的なテンター装置等では、チェーンを駆動するスプロケットの歯の周期、駆動モーターの周波数等に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数%のムラを生ずるが、これらは本発明の実施形態で述べる速度差には該当しない。
 図2、図3は本発明の一実施形態に係る斜め延伸装置の構成であり、斜め延伸テンター2は加熱ゾーン16と、加熱ゾーン16内を通過するように配置されている一対の把持具走行支持具6,7とを有している。そして、走行ロール5から送り出されたフィルム15は、斜め延伸テンター入口において、その両端を一対の把持具走行支持具6,7上に配置されている複数の把持具によって順次把持されて、把持具の走行に伴って走行する。斜め延伸テンター入口において、フィルム進行方向に対して略垂直な方向に相対している左右の把持具は、左右非対称な把持具走行支持具6,7上を走行し、予熱ゾーン、延伸ゾーン、熱固定ゾーンを有する加熱ゾーン16を通過することによって、フィルム15は加熱、延伸される。
 また、加熱ゾーン16は、例えばフィルム15を加熱するための装置である。この加熱ゾーン16は、隔壁17a、17bにより、フィルム15の供給側から順に、予熱ゾーン、延伸ゾーン及び熱固定ゾーンに区分されており、各ゾーンは、それぞれ異なった温度および圧力に制御できるようになっている。
 前記予熱ゾーンとは、加熱ゾーン入口部からフィルム15の両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間において、フィルム15を延伸する前段階として予熱を行うためのゾーンである。
 また、前記延伸ゾーンとは、フィルム15の両端を把持した把持具の間隔が開きだし、所定の間隔になるまでの区間において、フィルム15を実際に傾斜配向するためのゾーンである。このとき、上述のような斜め延伸が行われるが、必要に応じて斜め延伸前後において縦方向あるいは横方向に延伸してもよい。
 熱固定ゾーンとは、前記延伸ゾーンより後の把持具の間隔が再び一定となる期間において、両端の把持具が互いに平行を保ったまま走行する区間において、延伸による余分な応力を緩和させ、延伸ゾーンでの配向状態を固定化するためのゾーンである。また、熱固定ゾーンを通過した後に、ゾーン内の温度が長尺フィルムを構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間(冷却ゾーン)を通過してもよい。このとき、冷却による長尺延伸フィルムの縮みを考慮して、予め対向する把持具間隔を狭めるような経路パターンとしてもよい。
 具体的な加熱手段としては、各ゾーンに熱風を供給する手段や、ヒーター等の加熱源をフィルムの上下近傍に設けて熱を供給する手段等を用いることができる。前記熱風の温度や、加熱源の温度を制御することにより、各ゾーン内の温度、圧力を制御できるようになっている。なお、隔壁17a、17bは、フィルム15が各ゾーン間を通過できるように開口部が形成されている。
 前記各ゾーンの設定温度は、フィルム15の材質や延伸目的等に応じて適宜調整すればよい。例えば、予熱ゾーンの温度は、フィルム15に含有される熱可塑性樹脂のガラス転移温度をTgとすると、Tg~Tg+30℃に設定することが好ましい。予熱ゾーンの温度がTg+30℃より高いと、フィルムが柔らかくなることで伸びやすくなるため、フィルム搬送時に膜厚ムラが生じてしまう。また、予熱ゾーンの温度がTgより低いと、延伸時に所望の温度に到達できなくなることがあるため、延伸時の応力が高くなってしまうことで、フィルムが破断したり、把持具からフィルムが外れるなどのおそれがある。
 また、前記延伸ゾーンの温度(延伸温度)はTg~Tg+30℃に設定することが好ましい。延伸ゾーンの温度がTg+30℃より高いと、フィルムが柔らかくなることで延伸時の応力がかかりにくくなり、光学ムラが発生し易くなるおそれがある。延伸ゾーンの温度がガラス転移温度より低いと、延伸時の応力が高くなってしまうことで、フィルムが破断したり、把持具からフィルムが外れるなどのおそれがある。
 熱固定ゾーンの温度は、Tg~Tg+20℃に設定することが好ましい。熱固定ゾーンの温度がTg+20℃より高いと、配向状態を十分に固定化させる事ができなくなり、光学ムラとなるおそれがある。また、熱固定ゾーンの温度がTgより低いと、延伸ゾーン後に急冷となってしまうため、フィルムの収縮が大きくなり、シワ等が発生するおそれがある。また、冷却ゾーンの温度は、Tg-30~Tg℃に設定することが好ましい。
 また、予熱ゾーンの温度は延伸ゾーンの温度より高く設定されていることが好ましく、延伸ゾーンの温度は熱固定ゾーンの温度より高く設定されていることが好ましい。このように設定することで、本発明の効果をより高めることができる。
 また、加熱ゾーンの各ゾーンの長さは適宜選択でき、延伸ゾーンの長さに対して、予熱ゾーンの長さが通常100~150%、熱固定ゾーンの長さが通常50~100%であることが好ましい。
 次いで、図2及び図3に示す隔壁17a及び隔壁17bについて図5を用いて以下に説明する。
 なお、予熱ゾーンと延伸ゾーンを区分けしている隔壁17aと、延伸ゾーンと熱固定ゾーンを区分けしている隔壁17bは同様の構成を有するため、前記隔壁17aのみを以下に図を参照して説明する。また、隔壁17bについては前記隔壁17aと同様の構成部分を同一の符号で表し、図示による説明を省略することにする。
 図5は、図2に示すV-V線に沿って、17a(17b)隔壁より下流側の位置から見た断面図である。
 図5に示すように、予熱ゾーンと延伸ゾーンとを区分けしている隔壁17aは、フィルム15が走行方向に通過可能である開口部20、前記開口部20の上下に位置する中央部21a、及び前記中央部21aの幅手方向の両端にそれぞれ連結した側方部22aを有する。また、中央部21aと側方部22aとは接続部材18によってそれぞれ屈曲可能であり、それぞれの屈曲角度の調節が可能な構造となっている。
 前記接続部材18は、前記中央部21aと前記側方部22aとの境界においてそれぞれ独立に屈曲させることが可能な部材であることから、中央部21a及び側方部22aの接合箇所に取り付けられる。具体的には、接続部材18は例えばヒンジ等による回動機構を有していることが好ましい。このように、接続部材18が回動機構を有していると、各隔壁の屈曲角を所望の角度となるよう自在に調節することができる。
 なお、本実施形態における前記屈曲部は、幅手方向に少なくとも1つあればよいが、好ましくは図5に記載したように2つであり、更に好ましくは3つ以上である。屈曲部が多いと、隔壁の角度をより所望の角度に調整し易くなる。
 本実施形態において、後述するように側方部22aとフィルムの走行方向とのなす角を鋭角とすることが好ましいことから、ヒンジ等の回動機構は各接合箇所において上流側にあるゾーン側に取り付けられることが好ましい。
 また、フィルムの走行方向に対して略垂直に配置された隔壁17aを屈曲前と同じ幅のまま前記接続部材18によって屈曲させると、予熱ゾーンと延伸ゾーンとの境界において加熱ゾーンの側壁に隙間が生じてしまい、開口部20以外の箇所から予熱ゾーンから延伸ゾーンへ熱が漏れてしまうことになる。更に、隔壁17aに設けたフィルムが通過できる開口部分に、違う幅のフィルムを通過させると、予熱ゾーンと延伸ゾーンとの境界においてフィルムと側方部22aに隙間が生じてしまい、開口部20が広くなり、予熱ゾーンから延伸ゾーンへ熱が漏れてしまうことになる。したがって、隔壁17aの中央部21a及び側方部22aはそれぞれ伸縮可能であり、予熱ゾーンと延伸ゾーンとの境界において隙間が生じないように、伸縮部材19によって中央部21a及び側方部22aの幅を自在に調節することができる構造とすることが好ましい。
 具体的には、伸縮部材19は、前記中央部21a及び側方部22aの幅手方向に対して伸縮できるように、柔軟性をある程度有するような構造で構成されていることが好ましい。具体的には、柔軟性を有するような構造としては、伸縮部材19をジャバラ状等の構造とする方法が挙げられる。
 図6は、図5の伸縮部材19をジャバラ状の構造とし、フィルム15の走行方向と側方部22aとのなす角度が鋭角となるように、かつフィルム15の走行方向と中央部21aとのなす角度が略垂直となるように変形した場合の隔壁の一部を拡大した斜視図である。
 本実施形態において、フィルムの走行方向と特定の隔壁とのなす角度について、「鋭角」という場合、前記角度が85°未満であることを意味する。また、同様に、「略垂直」とは、前記角度が85~95°の範囲であることを意味する。
 図6に示すように、中央部21a及び側方部22aは、フィルムの走行方向に応じて各部同士のなす角度を変更することができる。また、これら隔壁各部の角度を変更した場合には、側方部22aの各他端が加熱ゾーンの側壁に接するように中央部21a及び側方部22aの伸縮部材19を延長させる。このように伸縮部材19を用いて隔壁の中央部21a及び側方部22aを延長させることで、予熱ゾーンと延伸ゾーンとの境界において加熱ゾーンの側壁に隙間を生じさせないようにすることができる。その結果、開口部以外の箇所から予熱ゾーンから延伸ゾーンへ熱が漏れなくなるため、予熱ゾーンと延伸ゾーンにおける温度制御を容易にすることができる。
 また、前記加熱ゾーンの側壁と側方部22aの接続部においては屈曲させることが可能な部材を用いて接続したり、側方部22aに加熱ゾーンの側壁上を移動できる部材を設けて、側方部22aが移動可能である構成とすることができる。
 また、前記延伸ゾーン及び前記熱固定ゾーンを区分する隔壁において、前記フィルムの走行方向と前記側方部とのなす角度が鋭角となるように前記隔壁を変形し、前記フィルムの配向方向と前記中央部とのなす角度が略平行となるように変形された隔壁の開口部に、フィルムを通過させることによって延伸することが好ましい。
 本実施形態において、フィルムの配向方向と特定の隔壁とのなす角度について「略平行」という場合、フィルムにおける遅相軸の方向と当該隔壁とのなす角度が-5~5°であることを意味する。
 このように、延伸ゾーン及び前記熱固定ゾーンを区分する隔壁において、フィルム走行方向と隔壁側方部とのなす角度、フィルムの配向方向と前記中央部とのなす角度を調節することで、延伸ゾーンから流れたフィルムの同伴風を熱固定ゾーンへ均一に流れ込みやすくすることができるため、延伸後のフィルム端部側の光学配向のばらつきを低減することができる。
 ここで、図3に示す隔壁17bの要部をレールパターン毎に示す概略上面図である図7を用いて以下に具体的に説明する。
 図7(a)~(c)に示すレールパターンについて、フィルム15の配向方向(図7(a)中の細線の破線)と隔壁中央部21bとのなす角度をθLCE、フィルム15の走行方向(図7(a)中の矢印方向)と隔壁側方部22bの内周側(図面上側)とのなす角度をθLIN、フィルム15の走行方向と隔壁側方部22bの外周側(図面上側)とのなす角度をθLOUTとする。
 ここで、図7(a)に示すようなレールパターンとした場合、θLCEを略平行となるように、かつθLIN及びθLOUTとを鋭角となるように隔壁の中央部21b及び側方部22bを変形することが好ましい。このように、フィルム15の走行方向と隔壁の各部とのそれぞれの角度であるθLCE、θLIN、及びθLOUTを前記接続部材によって調節し、さらに前記伸縮部材によって隔壁の各部の幅方向の長さを調節することによって、予熱ゾーンから延伸ゾーンへ走行するフィルムの同伴流を均一に流し、延伸後のフィルム端部における光学配向のばらつきをより低減することができる。
 また、図7(b)に示すようなレールパターンとした場合、前記図7(a)と同様に、θLCEを略平行となるように、かつθLIN及びθLOUTとを鋭角となるように隔壁を変形することが好ましい。
 さらに、図7(c)に示すようなレールパターン、つまりフィルム15の走行方向(図7(c)中の矢印方向)と隔壁(中央部21b及び側方部22b)とのなす角度が略垂直である場合についても、θLCEを略平行となるように、かつθLIN及びθLOUTとを鋭角となるように隔壁を変形することが好ましい。
 より具体的には、以上の図7(a)~(c)のレールパターンについて、フィルム15の走行方向と各隔壁との角度は、0°<θLIN<85°、0°<θLOUT<85°及び-5°≦θLCE≦5°となるように調節することが好ましく、0°<θLIN≦80°、0°<θLOUT≦80°なるように調節することがより好ましい。このような条件下において各隔壁の角度及び幅を調節すると、延伸後のフィルム端部における光学配向のばらつきをより低減することができる。
 また、前記予熱ゾーン及び前記延伸ゾーンを区分する隔壁において、前記フィルムの走行方向と前記側方部とのなす角度が鋭角となるように、かつ前記フィルムの走行方向と前記中央部とのなす角度が略垂直となるように変形された隔壁の開口部にフィルムを通過させることが好ましい。
 このように、予熱ゾーン及び延伸ゾーンを区分する隔壁において、フィルム走行方向と隔壁側方部とのなす角度、フィルムの配向方向と前記中央部とのなす角度を調節することで、予熱ゾーンから流れたフィルムの同伴風を延伸ゾーンへ均一に流れ込みやすくすることができ、延伸後のフィルム端部における光学配向のばらつきをより低減することができる。
 続いて、図3に示す隔壁17aをレールパターン毎に示す概略上面図である、図8を用いて以下に具体的に説明する。
 図8(a)~(c)に示すレールパターンについて、フィルム15の走行方向(図8(a)中の矢印方向)と隔壁中央部21aとのなす角度をθRCE、フィルム15の走行方向と隔壁側方部22aの内周側とのなす角度をθRIN、フィルム15の走行方向と隔壁側方部22aの外周側とのなす角度をθROUTとする。
 ここで、図8(a)に示すようなレールパターンとした場合、θRCEを略垂直となるように、かつθRIN及びθROUTとを鋭角となるように隔壁を変形することが好ましい。このように、フィルム15の走行方向と隔壁の各部とのそれぞれの角度であるθRCE、θRIN、及びθROUTを前記接続部材によって調節し、さらに前記伸縮部材によって隔壁の各部の幅方向の長さを調節することによって、予熱ゾーンから延伸ゾーンへ走行するフィルムの同伴流を均一に流し、延伸後のフィルム端部における光学配向のばらつきを低減することができる。
 また、図8(b)に示すようなレールパターンとした場合、前記図8(a)と同様に、θRCEを略垂直となるように、かつθRIN及びθROUTとを鋭角となるように隔壁の中央部21a及び側方部22aを変形することが好ましい。
 さらに、図8(c)に示すようなレールパターン、つまりフィルム15の走行方向(図8(c)中の矢印方向)と隔壁(中央部21a及び側方部22a)とのなす角度が略垂直である場合についても、θRCEが略垂直となるように保持し、かつθRIN及びθROUTが鋭角となるように隔壁を変形することが好ましい。
 より具体的には、以上の図8(a)~(c)のレールパターンについて、フィルム15の走行方向と各隔壁との角度は、0°<θRIN<85°、0°<θROUT<85°及び85°≦θRCE≦95°となるように調節することが好ましく、0°<θRIN≦80°、0°<θROUT≦80°となるように調節することがより好ましい。このような条件下において各隔壁の角度及び幅を調節すると、延伸後のフィルム端部における光学配向のばらつきをより低減することができる。
 以上の延伸ゾーン及び熱固定ゾーンを区分する隔壁各部の角度調整、及び予熱ゾーン及び延伸ゾーンを区分する隔壁各部の角度調整はそれぞれ単独で行われてもよく、これらの角度調整を同時に行うと本発明の効果をより向上させることができるため好ましい。
 また、隔壁17a(17b)、伸縮部材19の素材としては、たとえば金属、セラミック等の断熱性の高い材料や発泡材料を用いることが好ましい。このような素材を用いると、断熱性を確保することができるという利点がある。
 また、隔壁17a(17b)、伸縮部材19の厚みは1~500mmとすることが好ましく、100~400mmとすることがより好ましい。隔壁17a(17b)、伸縮部材19の厚みが1mm未満であると断熱効果が得難くなり、各ゾーンに温度差が発生してしまう。一方、これらの厚みが500mmよりも厚くなると、フィルムが隔壁を通過するのに時間を要してしまうため、隔壁通過時にフィルムが冷えてしまい、光学ムラが生じてしてしまう。
 また、本実施形態に係る製造方法で用いられる斜め延伸テンターにおいて、特にフィルムの走行が斜めになる箇所において、把持具の軌跡を規制する把持具走行支持具には、しばしば大きい屈曲率が求められる。急激な屈曲による把持具同士の干渉、あるいは局所的な応力集中を避ける目的から、屈曲部では把持具の軌跡が曲線を描くようにすることが望ましい。
 前記斜め延伸工程における延伸倍率(W/W0)は、好ましくは1.3~3.0、より好ましくは1.5~2.8である。延伸倍率がこの範囲にあると幅方向厚みムラが小さくなるので好ましい。斜め延伸テンターの延伸ゾーンにおいて、幅方向で延伸温度に差を付けると幅方向厚みムラをさらに良好なレベルにすることが可能になる。なお、W0は延伸前のフィルムの幅、Wは延伸後のフィルムの幅を表す。
 (走行ロール)
 走行ロール8の数は特に規定されず、また、走行ロールの配置途中において、長尺延伸フィルムを保護する保護シートを貼る工程を設けてよい。また、フィルムを巻取前までに、フィルム左右両端部に、エンボスリング及びバックロールによってナーリング加工を施して、フィルム端部にエンボス部(図示せず)を付与する工程を設けてよい。
 なお、走行ロール配置途中において、オンライン測定の可能な膜厚計や光学値測定機などを配置してもよい。
 また、走行ロールの配置前後や、複数の走行ロールの間に、長尺延伸フィルムの除電を行うための除電装置を設けてもよい。前記除電装置は、元巻を再繰り出しした際の帯電電位が±2kV以下となるように、巻取時に除電装置あるいは強制帯電装置により逆電位を与える構成で行うことができるが、強制帯電電位が、1~150Hzで正負交互に変換される除電器により除電する構成とすることもできる。
 また、上記の除電器に代えて、イオン風を発生させるイオナイザーや除電バーを利用することができる。ここで、イオナイザー除電は、エンボス加工装置から走行ロールを経て巻き取られていくフィルムに向けてイオン風を吹き付けることによって行われる。イオン風は、除電器により発生される。除電器としては、公知のものを制限なく用いることができる。
 また、テンターの把持具で把持されていた長尺延伸フィルムの両側についた把持痕を切除したり、所望の幅を得たりする目的で、長尺延伸フィルムの両端(両側)をトリミングすることが望ましい。
 上記トリミングは、一度に行ってもよいし、複数回に分けて実施してもよい。
 また、長尺延伸フィルムを一旦巻き取った後に、必要に応じて再度長尺延伸フィルムを繰り出して、長尺延伸フィルムの両端をトリミングし、再度巻き取って長尺延伸フィルムの巻回体としてもよい。
 (巻き取り装置)
 本実施形態の製造方法に係る巻き取り工程は、前記スリット工程後の長尺延伸フィルムを巻き取る工程である。以下に、巻き取り工程に用いられる巻き取り装置について説明する。
 図2、図3に示すように、巻き取り装置4は、斜め延伸テンター出口に対して所定角度でフィルムを引き取れるように形成することにより、フィルムの引き取り位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。そのため、フィルムのシワの発生を有効に防止することができるとともに、フィルムの巻き取り性が向上するため、フィルムを長尺で巻き取ることが可能となる。
 本実施形態において、延伸後のフィルムの引取張力T(N/m)は、100N/m<T<300N/m、好ましくは150N/m<T<250N/mの間で調整することが好ましい。前記引取張力が100N/m以下ではフィルムのたるみや皺が発生しやすく、リタデーション、配向軸の幅方向のプロファイルも悪化する。逆に引取張力が300N/m以上となると幅方向の配向角のバラツキが悪化することから、幅収率(幅方向の取り効率)を悪化させてしまう。
 また、本実施形態においては、上記引取張力Tの変動を±5%未満、好ましくは±3%未満の精度で制御することが好ましい。上記引取張力Tの変動が±5%以上であると、幅方向及び流れ方向の光学特性のバラツキが大きくなる。上記引取張力Tの変動を上記範囲内に制御する方法としては、テンター出口部の最初のロールにかかる荷重、すなわちフィルムの張力を測定し、その値を一定とするように、一般的なPID制御方式により引取ロールの回転速度を制御する方法が挙げられる。前記荷重を測定する方法としては、ロールの軸受部にロードセルを取り付け、ロールに加わる荷重、すなわちフィルムの張力を測定する方法が挙げられる。ロードセルとしては、引張型や圧縮型の公知のものを用いることができる。
 延伸後のフィルムは、把持具による把持が開放され、テンター出口から排出され、順次巻芯(巻き取りロール)に巻き取られて、長尺延伸フィルムの巻回体にすることができる。
 また、巻き取る前に、フィルム同士のブロッキングを防止する目的で、マスキングフィルムを重ねて同時に巻き取ってもよいし、長尺延伸フィルムの少なくとも一方、好ましくは両方の端にテープ等を張り合わせながら巻き取ってもよい。マスキングフィルムとしては、上記フィルムを保護することができるものであれば特に制限されず、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどが挙げられる。
 〔熱可塑性樹脂と製膜方法〕
 本実施形態において使用することができる熱可塑性樹脂としては、ポリカーボネート系樹脂、ポリエーテルスルフォン系樹脂、ポリエチレンテレフタレート系樹脂、ポリイミド系樹脂、ポリメチルメタクリレート系樹脂、ポリスルフォン系樹脂、ポリアリレート系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂などが挙げられる。
 これらの中でも、透明性や機械強度などの観点からポリカーボネート系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂が好ましい。その中でも光学フィルムとした場合の位相差を調整することが容易である、脂環構造を有するオレフィンポリマー系樹脂とセルロースエステル系樹脂が更に好ましい。
 以下に脂環構造を有するオレフィンポリマー系樹脂とセルロースエステル系樹脂についての構成、及びこれらをそれぞれ含有する長尺フィルムの製膜方法を以下に示す。
 (オレフィンポリマー系樹脂)
 脂環式オレフィンポリマー系樹脂としては、特開平05-310845号公報に記載されている環状オレフィンランダム多元共重合体、特開平05-97978号公報に記載されている水素添加重合体、特開平11-124429号公報に記載されている熱可塑性ジシクロペンタジエン系開環重合体及びその水素添加物等を挙げることができる。
 脂環構造を有するオレフィンポリマー系樹脂をより具体的に説明する。脂環式オレフィンポリマー系樹脂は、飽和脂環炭化水素(シクロアルカン)構造や不飽和脂環炭化水素(シクロアルケン)構造のごとき脂環式構造を有するポリマーである。脂環式構造を構なする炭素原子数には、格別な制限はないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個の範囲であるときに、機械強度、耐熱性、及びフィルムの成形性の特性が高度にバランスされ、好適である。
 脂環式オレフィンポリマー中の脂環式構造を含有してなる繰り返し単位の割合は、適宜選択すればよいが、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式ポリオレフィン樹脂中の脂環式構造を有する繰り返し単位の割合がこの範囲にあると、本実施形態の延伸フィルムより得られる長尺延伸フィルム等の光学材料の透明性および耐熱性が向上するので好ましい。
 脂環構造を有するオレフィンポリマー系樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
 ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体又はそれらの水素化物等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、及び軽量性などの観点から、特に好適に用いることができる。
 ノルボルネン構造を有する単量体としては、ビシクロ〔2.2.1〕ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ〔4.3.0.12,5〕デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ〔4.3.0.12,5〕デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ〔4.4.0.12,5.17,10〕ドデカ-3-エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、及び極性基などを挙げることができる。また、これらの置換基は、同一または相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 極性基の種類としては、ヘテロ原子、またはヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、及びハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、及びスルホン基などが挙げられる。
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、及びシクロオクテンなどのモノ環状オレフィン類やその誘導体;並びにシクロヘキサジエン、及びシクロヘプタジエンなどの環状共役ジエンやその誘導体;などが挙げられる。
 ノルボルネン構造を有する単量体の開環重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。
 ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、及び1-ブテンなどの炭素数2~20のα-オレフィンやこれらの誘導体;シクロブテン、シクロペンテン、及びシクロヘキセンなどのシクロオレフィンやこれらの誘導体;並びに1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、及び5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。
 ノルボルネン構造を有する単量体の付加重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。
 ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、およびノルボルネン構造を有する単量体とこれと共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。
 ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ〔3.3.0〕オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ〔4.3.0.12,5〕デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90重量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの重量比で100:0~40:60であるものが好ましい。このような樹脂を用いることにより、本実施形態の延伸フィルムにより得られる光学材料を、長期的に寸法変化がなく、光学特性の安定性に優れるものにすることができる。
 ノルボルネン系樹脂に用いる分子量は使用目的に応じて適宜選定されるが、溶媒としてシクロヘキサン(熱可塑性樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン換算(溶媒がトルエンのときは、ポリスチレン換算)の重量平均分子量(Mw)で、通常10,000~100,000、好ましくは15,000~80,000、より好ましくは20,000~50,000である。重量平均分子量がこのような範囲にあるときに、本実施形態の延伸フィルムにより得られる光学材料の機械的強度および成型加工性が高度にバランスされるため好適である。
 ノルボルネン系樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよいが、好ましくは80℃以上、より好ましくは100~250℃の範囲である。ガラス転移温度がこのような範囲にあると、本実施形態の延伸フィルムにより得られる光学材料を、高温下での使用における変形や応力が生じることがなく耐久性に優れるものにすることができる。
 ノルボルネン系樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に制限されないが、通常1.0~10.0、好ましくは1.1~4.0、より好ましくは1.2~3.5の範囲である。
 ノルボルネン系樹脂の光弾性係数Cの絶対値は、10×10-12Pa-1以下であることが好ましく、7×10-12Pa-1以下であることがより好ましく、4×10-12Pa-1以下であることが特に好ましい。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、C=Δn/σで表される値である。熱可塑性樹脂の光弾性係数がこのような範囲にあると、後述する、面内方向のレターデーション(Re)のばらつきを小さくすることができる。
 本実施形態に用いる熱可塑性樹脂は、顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、及び溶剤などの配合剤が適宜配合されたものであってもよい。
 ノルボルネン系樹脂の延伸フィルム中の残留揮発性成分の含有量は特に制約されないが、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下である。揮発性成分の含有量をこのような範囲にすることにより、寸法安定性が向上し、前記Reや前記Rthの経時変化を小さくすることができ、さらには本実施形態の延伸フィルムから得られる光学フィルム、偏光板又は有機エレクトロルミネッセンス表示装置の劣化を抑制でき、長期的に表示装置のディスプレイの表示を安定で良好に保つことができる。残留揮発性成分は、フィルム中に微量含まれる分子量200以下の物質であり、例えば、残留単量体や溶媒などが挙げられる。残留揮発性成分の含有量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをガスクロマトグラフィーにより分析することにより定量することができる。
 ノルボルネン系樹脂の延伸フィルムの飽和吸水率は好ましくは0.03重量%以下、さらに好ましくは0.02重量%以下、特に好ましくは0.01重量%以下である。飽和吸水率が上記範囲であると、ReやRthの経時変化を小さくすることができ、さらには本実施形態の延伸フィルムから得られる光学フィルム、偏光板又は有機エレクトロルミネッセンス表示装置の劣化を抑制でき、長期的に表示装置のディスプレイの表示を安定で良好に保つことができる。
 飽和吸水率は、フィルムの試験片を一定温度の水中に一定時間、浸漬し、増加した質量の浸漬前の試験片質量に対する百分率で表される値である。通常は、23℃の水中に24時間、浸漬して測定される。本実施形態の延伸フィルムにおける飽和吸水率は、例えば、熱可塑性樹脂中の極性基の量を減少させることにより、前記値に調節することができるが、好ましくは、極性基を持たない樹脂であることが望まれる。
 (オレフィンポリマー系樹脂のフィルム製膜方法)
 前記で説明した好ましいノルボルネン系樹脂を用いたフィルムを成形する方法としては、溶液製膜法や溶融押出法の製造方法が好まれる。溶融押出法としては、ダイスを用いるインフレーション法等が挙げられるが、生産性や厚さ精度に優れる点でTダイを用いる方法が好ましい。
 Tダイを用いた押出成形法は、特開2004-233604号公報に記載されているような、冷却ドラムに密着させる時の溶融状態の熱可塑性樹脂を安定な状態に保つ方法により、リタデーションや配向角といった光学特性のバラツキが良好なフィルムを製造できる。
 具体的には、1)溶融押出法で長尺フィルムを製造する際に、ダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;2)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から最初に密着する冷却ドラムまでを囲い部材で覆い、囲い部材からダイス開口部又は最初に密着する冷却ドラムまでの距離を100mm以下とする方法;3)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂より10mm以内の雰囲気の温度を特定の温度に加温する方法;4)関係を満たすようにダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;5)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂に、最初に密着する冷却ドラムの引取速度との速度差が0.2m/s以下の風を吹き付ける方法;等が挙げられる。
 以上のオレフィンポリマー系樹脂を含む長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。
 (セルロースエステル系樹脂)
 好ましいセルロースエステル系樹脂フィルムとしては、下記式(i)及び(ii)を満たすセルロースアシレートを含有し、かつ、下記一般式(A)で表される化合物を含有することを特徴とするものが挙げられる。
 式(i) 2.0≦Z1<3.0
 式(ii) 0≦X<3.0
 (式(i)及び(ii)において、Z1はセルロースアシレートの総アシル置換度を表し、Xはセルロースアシレートのプロピオニル置換度及びブチリル置換度の総和を表す。)
 〈一般式(A)の化合物〉
 以下、一般式(A)について詳細に説明する。
Figure JPOXMLDOC01-appb-C000001
 一般式(A)において、L及びLは各々独立に単結合又は2価の連結基を表す。
 L及びLとしては、例えば、下記式で表される構造が挙げられる。(下記Rは水素原子又は置換基を表す。)
Figure JPOXMLDOC01-appb-C000002
 L及びLとして、好ましくは-O-、-COO-、-OCO-である。
 R、R及びRは各々独立に置換基を表す。R、R及びRで表わされる置換基の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキルおよびアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)が挙げられる。
 R及びRとしては、好ましくは、置換もしくは無置換のフェニル基、置換もしくは無置換のシクロヘキシル基である。より好ましくは置換基を有するフェニル基、置換基を有するシクロヘキシル基であり、さらに好ましくは4位に置換基を有するフェニル基、4位に置換基を有するシクロヘキシル基である。
 Rとして、好ましくは、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、水素原子、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。
 Wa及びWbは水素原子又は置換基を表すが、(I)Wa及びWbが互いに結合して環を形成してもよく、(II)Wa及びWbの少なくとも一つが環構造を有してもよく、又は(III)Wa及びWbの少なくとも一つがアルケニル基又はアルキニル基であってもよい。
 Wa及びWbで表わされる置換基の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキルおよびアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)が挙げられる。
 上記の置換基は、更に上記の置換基で置換されていてもよい。
 (1)Wa及びWbが互いに結合して環を形なする場合、以下のような構造が挙げられる。
 Wa及びWbが互いに結合して環を形なする場合、好ましくは、含窒素5員環又は含硫黄5員環であり、特に好ましくは、下記一般式(1)又は一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、A及びAは各々独立に、-O-、-S-、-NRx-(Rxは水素原子又は置換基を表す)又は-CO-を表す。Rxで表される置換基の例は、上記Wa及びWbで表わされる置換基の具体例と同義である。Rxとして、好ましくは水素原子、アルキル基、アリール基、ヘテロ環基である。
 一般式(1)において、Xは第14~16族の非金属原子を表す。
 Xとしては、=O、=S、=NRc、=C(Rd)Reが好ましい。ここでRc、Rd、Reは置換基を表し、例としては上記Wa及びWbで表わされる置換基の具体例と同義である。
 L、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)において、Qは-O-、-S-、-NRy-(Ryは水素原子又は置換基を表す)、-CRaRb-(Ra及びRbは水素原子又は置換基を表す)又は-CO-を表す。ここで、Ry、Ra、Rbは置換基を表し、例としては上記Wa及びWbで表わされる置換基の具体例と同義である。
 Yは置換基を表す。
 Yで表わされる置換基の例としては、上記Wa及びWbで表される置換基の具体例と同義である。
 Yとして好ましくは、アリール基、ヘテロ環基、アルケニル基、アルキニル基である。
 Yで表わされるアリール基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。
 ヘテロ環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも一つ含むヘテロ環基が挙げられ、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基が好ましい。
 これらのアリール基又はヘテロ環基は、少なくとも一つの置換基を有していてもよく、置換基としては、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、炭素数2~12のN,N-ジアルキルスルファモイル基等が挙げられる。
 L、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
 (2)一般式(A)において、Wa及びWbの少なくとも一つが環構造を有する場合の具体例としては、好ましくは、下記一般式(3)である。
Figure JPOXMLDOC01-appb-C000005
 一般式(3)において、Qは=N-又は=CRz-(Rzは水素原子又は置換基)を表し、Qは第14~16族の非金属原子を表す。ZはQ及びQと共に環を形なする非金属原子群を表す。
 Q、Q及びZから形成される環は、更に別の環で縮環していてもよい。
 Q、Q及びZから形成される環として、好ましくは、ベンゼン環で縮環した含窒素5員環又は6員環である。
 L、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
 (3)Wa及びWbの少なくとも一つがアルケニル基又はアルキニル基である場合には、好ましくは、置換基を有するビニル基、エチニル基である。
 上記一般式(1)、一般式(2)及び一般式(3)で表される化合物のうち、特に、一般式(3)で表される化合物が好ましい。
 一般式(3)で表される化合物は、一般式(1)で表される化合物に比べて耐熱性及び耐光性に優れており、一般式(2)で表される化合物に比べ、有機溶媒に対する溶解性やポリマーとの相溶性が良好である。
 本実施形態に係る一般式(A)で表される化合物は、所望の波長分散性、及び滲み防止性を付与するのに適宜量を調整して含有することができるが、添加量としてはセルロース誘導体に対して、1~15質量%含むことが好ましく、特には、2~10質量%含むことが好ましい。この範囲内であれば、本実施形態のセルロース誘導体に十分な波長分散性、及び滲み防止性を付与することができる。
 なお、一般式(A)、一般式(1)、一般式(2)及び一般式(3)で表わされる化合物は、既知の方法を参照して行うことができる。具体的には、Journal of Chemical Crystallography(1997);27(9);512-526)、特開2010-31223号公報、特開2008-107767号公報等を参照に合なすることができる。
 〈セルロースアシレート〉
 本実施形態の製造方法において用いられるセルロースアシレートフィルムは、セルロースアシレートを主成分として含有する。
 前記セルロースアシレートフィルムは、フィルムの全質量100質量%に対して、セルロースアシレートを好ましくは60~100質量%の範囲で含む。また、セルロースアシレートの総アシル基置換度は、2.0以上3.0未満であり、2.2~2.7であることがより好ましい。
 セルロースアシレートとしては、セルロースと、炭素数2~22程度の脂肪族カルボン酸および/または芳香族カルボン酸とのエステルが挙げられ、特に、セルロースと炭素数が6以下の低級脂肪酸とのエステルであることが好ましい。
 セルロースの水酸基に結合するアシル基は、直鎖であっても分岐していてもよく、また環を形成してもよい。さらに別の置換基が置換してもよい。同じ置換度である場合、上述した炭素数が多いと複屈折性が低下するため、炭素数としては炭素数2~6のアシル基の中で選択することが好ましく、プロピオニル置換度及びブチリル置換度の総和は0以上3.0未満である。前記セルロースアシレートとしての炭素数が2~4であることが好ましく、炭素数が2~3であることがより好ましい。
 具体的には、セルロースアシレートとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートまたはセルロースアセテートフタレートのようなアセチル基の他にプロピオネート基、ブチレート基またはフタリル基が結合したセルロースの混合脂肪酸エステルを用いることができる。なお、ブチレートを形なするブチリル基は、直鎖であっても分岐していてもよい。
 本実施形態においては、セルロースアシレートとして、セルロースアセテート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートが特に好ましく用いられる。
 また、本実施形態に係るセルロースアシレートは、下記の数式(iii)および数式(iv)を同時に満足するものが好ましい。
 式(iii)  2.0≦X+Y<3.0
 式(iv) 0≦X<3.0
 (式(iii)及び(iv)において、Yはアセチル基の置換度を表し、Xはプロピオニル基もしくはブチリル基またはその混合物の置換度を表す。)
 また、目的に叶う光学特性を得るために、置換度の異なる樹脂を混合して用いてもよい。その際の混合比としては、1:99~99:1(質量比)が好ましい。
 上述した中でも、特にセルロースアセテートプロピオネートが、セルロースアシレートとして好ましく用いられる。セルロースアセテートプロピオネートでは、0≦Y≦2.5であり、かつ、0.5≦X<3.0である(ただし、2.0≦X+Y<3.0である)ことが好ましく、0.5≦Y≦2.0であり、かつ、1.0≦X≦2.0である(ただし、2.0≦X+Y<3.0である)ことがより好ましい。なお、アシル基の置換度は、ASTM-D817-96に準じて測定されうる。
 セルロースアシレートの数平均分子量は、60000~300000の範囲であると、得られるフィルムの機械的強度が強くなるため、好ましい。より好ましくは、数平均分子量が70000~200000のセルロースアシレートが用いられる。
 セルロースアシレートの重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される。測定条件は以下の通りである。なお、本測定方法は、本実施形態における他の重合体の測定方法としても使用することができる。
 溶媒:メチレンクロライド;
 カラム:Shodex K806、K805、K803G(昭和電工株式会社製)を3本接続して使用する;
 カラム温度:25℃;
 試料濃度:0.1質量%;
 検出器:RI Model 504(GLサイエンス社製);
 ポンプ:L6000(日立製作所株式会社製);
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー株式会社製)Mw=1000000~500の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
 セルロースアシレート中の残留硫酸含有量は、硫黄元素換算で0.1~45質量ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。残留硫酸含有量が45質量ppmを超えると、熱延伸時や熱延伸後でのスリッティングの際に破断しやすくなる傾向がある。なお、残留硫酸含有量は、1~30質量ppmの範囲がより好ましい。残留硫酸含有量は、ASTM D817-96に規定の方法により測定することができる。
 また、セルロースアシレート中の遊離酸含有量は、1~500質量ppmであることが好ましい。上記の範囲であると、上記と同様に破断しにくいため、好ましい。なお、遊離酸含有量は、1~100質量ppmの範囲であることが好ましく、さらに破断しにくくなる。特に1~70質量ppmの範囲が好ましい。遊離酸含有量はASTM D817-96に規定の方法により測定することができる。
 合成したセルロースアシレートの洗浄を、溶液流延法に用いられる場合に比べて、さらに十分に行うことによって、残留アルカリ土類金属含有量、残留硫酸含有量、および残留酸含有量を上記の範囲とすることができ好ましい。
 また、セルロースアシレートは、フィルムにしたときの輝点異物が少ないものであることが好ましい。輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)を意味する。輝点異物は、直径0.01mm以上の輝点の個数が200個/cm以下であることが好ましく、100個/cm以下であることがより好ましく、50個/cm以下であることがさらに好ましく、30個/cm以下であることがいっそう好ましく、10個/cm以下であることが特に好ましく、皆無であることが最も好ましい。
 また、直径0.005~0.01mm以下の輝点についても、200個/cm以下であることが好ましく、100個/cm以下であることがより好ましく、50個/cm以下であることがさらに好ましく、30個/cm以下であることがいっそう好ましく、10個/cm以下であることが特に好ましく、皆無であることが最も好ましい。
 セルロースアシレートの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどが挙げられる。また、それらから得られたセルロースアシレートは、それぞれ任意の割合で混合使用されうる。
 セルロースアシレートは、公知の方法により製造することができる。具体的には、例えば、特開平10-45804号に記載の方法を参考にして合なすることができる。
 また、セルロースアシレートは、セルロースアシレート中の微量金属成分によっても影響を受ける。これらの微量金属成分は、製造工程で使われる水に関係していると考えられるが、不溶性の核となりうるような成分は少ない方が好ましく、特に、鉄、カルシウム、マグネシウム等の金属イオンは、有機の酸性基を含んでいる可能性のあるポリマー分解物等と塩形なすることにより不溶物を形なする場合があり、少ないことが好ましい。また、カルシウム(Ca)成分は、カルボン酸やスルホン酸等の酸性成分と、また多くの配位子と配位化合物(すなわち、錯体)を形成しやすく、多くの不溶なカルシウムに由来するスカム(不溶性の澱、濁り)を形なするおそれがあるため、少ないことが好ましい。
 具体的には、鉄(Fe)成分については、セルロースアシレート中の含有量が1質量ppm以下であることが好ましい。また、カルシウム(Ca)成分については、セルロースアシレート中の含有量が好ましくは60質量ppm以下であり、より好ましくは0~30質量ppmである。さらに、マグネシウム(Mg)成分については、やはり多過ぎると不溶分を生ずるため、セルロースアシレート中の含有量が0~70質量ppmであることが好ましく、特に0~20質量ppmであることが好ましい。
 なお、鉄(Fe)成分の含有量、カルシウム(Ca)成分の含有量、マグネシウム(Mg)成分の含有量などの金属成分の含有量は、絶乾したセルロースアシレートをマイクロダイジェスト湿式分解装置(硫硝酸分解)、アルカリ溶融で前処理を行った後、ICP-AES(誘導結合プラズマ発光分光分析装置)を用いて分析することができる。
 〈添加剤〉
 本実施形態に係る製造方法により得られた長尺延伸フィルムは後述するセルロースエステル以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロースエステルと相溶性に優れるものが好ましく、フィルムにした時の透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。
 ドープ中に添加される添加剤としては、可塑剤、紫外線吸収剤、リタデーション調整剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等がある。本実施形態において、微粒子以外の添加剤についてはセルロースエステル溶液の調製の際に添加してもよいし、微粒子分散液の調製の際に添加してもよい。液晶画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。
 これらの化合物は、セルロースエステルに対して1~30質量%、好ましくは1~20質量%となるように含まれていることが好ましい。また、延伸及び乾燥中のブリードアウト等を抑制させるため、200℃における蒸気圧が1400Pa以下の化合物であることが好ましい。
 これらの化合物は、セルロースエステル溶液の調製の際に、セルロースエステルや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。
 〈リタデーション調整剤〉
 本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムのリタデーションを調整するために添加する化合物は、欧州特許911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することができる。
 また、二種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。中でも1,3,5-トリアジン環が特に好ましい。
 〈ポリマー又はオリゴマー〉
 本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムは、セルロースエステルと、カルボキシル基、ヒドロキシル基、アミノ基、アミド基、及びスルホン酸基から選ばれる置換基を有しかつ重量平均分子量が500~200,000の範囲内であるビニル系化合物のポリマー又はオリゴマーとを含有することが好ましい。当該セルロースエステルと、当該ポリマー又はオリゴマーとの含有量の質量比が、95:5~50:50の範囲内であることが好ましい。
 〈マット剤〉
 本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムは、マット剤として微粒子を延伸フィルム中に含有させることができ、これによって、延伸フィルムが長尺フィルムの場合、走行や巻き取りをしやすくすることができる。
 マット剤の粒径は10nm~0.1μmの1次粒子もしくは2次粒子であることが好ましい。1次粒子の針状比は1.1以下の略球状のマット剤が好ましく用いられる。
 微粒子としては、ケイ素を含むものが好ましく、特に二酸化珪素が好ましい。本実施形態に好ましい二酸化珪素の微粒子としては、例えば、日本アエロジル(株)製のアエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。ポリマーの微粒子の例として、シリコーン樹脂、弗素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(東芝シリコーン(株)製)を挙げることができる。
 二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/L以上であるものが好ましい。1次粒子の平均径が5~16nmがより好ましく、5~12nmが更に好ましい。1次粒子の平均径が小さい方がヘイズが低く好ましい。見かけ比重は90~200g/L以上が好ましく、100~200g/L以上がより好ましい。見かけ比重が大きい程、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、凝集物が発生せず好ましい。
 本実施形態におけるマット剤の添加量は、長尺延伸フィルム1m当たり0.01~1.0gが好ましく、0.03~0.3gがより好ましく、0.08~0.16gが更に好ましい。
 〈その他の添加剤〉
 その他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えてもよい。更に界面活性剤、剥離促進剤、帯電防止剤、難燃剤、滑剤、油剤等も加えてもよい。
 (セルロースエステル系樹脂のフィルム製膜方法)
 本実施形態の製造方法において用いられるセルロースエステル系樹脂フィルムは溶液流延法でも溶融流延法のどちらで製膜してもよい。
 以下に溶液流延法及び溶融流延法について説明する。
 〈溶液流延法〉
 溶液流延法では、樹脂および添加剤を有機溶媒に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
 溶液流延法は、フィルムの着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制、フィルムの平面性、透明度に優れるため好ましく用いられる。
 ドープ中のセルロースアセテートの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースアセテートの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
 流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化したりする場合がある。
 好ましい支持体温度としては0~100℃で適宜決定され、5~30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。
 温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。
 特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 セルロースエステル系樹脂フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。
 残留溶媒量は下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
また、セルロース系樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。
フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを走行させながら乾燥する方式が採られる。
本実施形態に係るセルロースエステル系樹脂フィルムを溶液流延法で製造する場合のドープを形なするのに有用な有機溶媒は、セルロースアセテート、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。
ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのセルロースアセテートの溶解を促進する役割もある。
特に、メチレンクロライド、及び炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。
炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。
〈溶融流延法〉

 溶融製膜法は、斜め延伸後の厚み方向のリタデーションRtを小さくすることが容易となり、残留揮発性成分量が少なくフィルムの寸法安定性にも優れる等の観点から好ましい製膜法である。溶融製膜法は、樹脂および可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースアセテートを含む溶融物を流延することをいう。溶融流延によって形成される方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる、溶融押出し法が好ましい。
 溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。
 ペレット化は、公知の方法でよく、例えば、乾燥セルロースアセテートや可塑剤、その他添加剤をフィーダーで押出し機に供給し1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。
 粒子や酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。
 上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールでフィルムをニップされ、冷却ロール上で固化させる。
 供給ホッパーから押出し機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。
 可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。
 冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。
 弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
 以上のセルロースエステル系樹脂を含む長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。
 <長尺延伸フィルム>
 本実施形態に係る長尺延伸フィルムは、前記製造方法によって製造されたものである。
 以下、熱可塑性樹脂を含む延伸前の長尺フィルムについて説明する。
 前記長尺フィルムの斜め延伸前のフィルム厚さは、好ましくは20~400μm、より好ましくは30~200μmである。
 本実施形態では、斜め延伸装置に供給される長尺フィルムの流れ方向の厚みムラσmは、後述する斜め延伸テンター入口でのフィルムの引取張力を一定に保ち、配向角やリタデーションといった光学特性を安定させる観点から、0.30μm未満、好ましくは0.25μm未満、さらに好ましくは0.20μm未満である必要がある。斜め延伸前の長尺フィルムの流れ方向の厚みムラσmが0.30μm以上となると長尺延伸フィルムのリタデーションや配向角といった光学特性のバラツキが顕著に悪化する。ここでσmとは、各幅手位置における、流れ方向の標準偏差σの平均値で表した値である。
 また、斜め延伸前の長尺フィルムとして、幅方向の厚み勾配を有するフィルムが供給されてもよい。前記斜め延伸前の長尺フィルムの厚みの勾配は、後工程の延伸が完了した位置におけるフィルム厚みを最も均一なものとしうるよう、実験的に厚み勾配を様々に変化させたフィルムを延伸することにより、経験的に求めることができる。斜め延伸前の長尺フィルムの厚みの勾配は、例えば、厚みの厚い側の端部の厚みが、厚みの薄い側の端部よりも0.5~3%程度厚くなるように調整することができる。
 次いで、延伸後の長尺延伸フィルムについて説明する。
 斜め延伸後の長尺フィルムの幅は、特に限定されないが、500~4000mm、好ましくは1000~2000mmとすることができる。
 長尺フィルムの斜め延伸時の延伸温度での好ましい弾性率は、ヤング率で表して、0.01Mpa以上5000Mpa以下、更に好ましくは0.1Mpa以上500Mpa以下である。弾性率が低すぎると、延伸時・延伸後の収縮率が低くなり、シワが消えにくくなり、また高すぎると、延伸時にかかる張力が大きくなり、フィルムの両側縁部を保持する部分の強度を高くする必要が生じ、後工程のテンターに対する負荷が大きくなる。
 斜め延伸前の長尺フィルムとしては、無配向なものを用いてもよいし、あらかじめ配向を有するフィルムが供給されてもよい。また、必要であれば斜め延伸前の長尺フィルムの配向の幅手分布が弓なり状、いわゆるボーイングを成していてもよい。要は、斜め延伸前の長尺フィルムの配向状態を、後工程の延伸が完了した位置におけるフィルムの配向を所望なものとしうるよう、調整することができる。
 また、本実施形態の長尺延伸フィルムは、配向角θが巻き取り方向に対して、0°より大きく90°未満の範囲に傾斜しており、好ましくは30°以上、60°以下の範囲に傾斜していることが好ましく、更に好ましくは40°以上、50°以下の範囲に傾斜しているのがよい。また、本実施形態に係る長尺延伸フィルムの配向角θのバラツキは、0.6°未満が好ましく、0.4°未満であることがより好ましい。配向角θのバラツキが0.6°未満となる長尺延伸フィルムを偏光子と貼り合せて円偏光板を得て、これを有機エレクトロルミネッセンス表示装置などの画像表示装置に据え付けると、表示品質の均一性を良好なものにすることが可能になる。
 また、本実施形態の長尺延伸フィルムの波長550nmで測定したリタデーション値Ro(550)が、120nm以上、160nm以下の範囲にあることが好ましく、更に好ましくは130nm以上、150nm以下の範囲である。また、本実施形態に係る長尺延伸フィルムの面内リタデーションRoのバラツキは、3nm以下、好ましくは1nm以下であることが好ましい。面内リタデーションRoのバラツキを、上記範囲にすることにより、有機エレクトロルミネッセンス表示装置用のフィルムとして用いた場合に表示品質の均一性を良好なものにすることが可能になる。
 尚、本実施形態に係る長尺延伸フィルムの面内リタデーションRoは、用いられる表示装置の設計によって最適値が選択される。なお、前記Roは、面内遅相軸方向の屈折率nxと面内で前記遅相軸に直交する方向の屈折率nyとの差にフィルムの平均厚みdを乗算した値(Ro=(nx-ny)×d)である。
 本実施形態に係る長尺延伸フィルムの平均厚みは、機械的強度などの観点から、好ましくは10~200μm、更に好ましくは10~60μmであるが、また内周側の配向角の傾きを起因とするスリット時のキズや凹みの課題については、機械強度の観点より、薄い長尺延伸フィルムを製造する際に顕著になってくる。そのため長尺延伸フィルムの平均厚みが15~35μmの範囲となるような薄膜のフィルムを製造する際に本実施形態の製造方法は特に好適に用いられる。
 また、幅方向の厚みムラは、巻き取りの可否に影響を与えるため、3μm以下であることが好ましく、2μm以下であることがより好ましい。
 <円偏光板>
 本実施形態に係る長尺延伸フィルムを用いた場合の円偏光板について説明する。
 前記円偏光板は、偏光板保護フィルム、偏光子、λ/4位相差フィルム、粘着層がこの順で積層されており、前記λ/4位相差フィルムの遅相軸と偏光子の吸収軸とのなす角度が45°である。
 本実施形態に係る長尺延伸フィルムを用いた、長尺状偏光板保護フィルム、長尺状偏光子、長尺状λ/4位相差フィルム(延伸フィルム)がこの順で積層して形成されることが好ましい。
 本実施形態に係る長尺延伸フィルムを用いた円偏光板は、偏光子としてヨウ素、又は二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、λ/4位相差フィルム/偏光子の構成で貼合して製造することができる。
 円偏光板の膜厚は、5~40μm、好ましくは5~30μmであり、特に好ましくは5~20μmである。
 前記円偏光板は、一般的な方法で作製することができる。アルカリ鹸化処理したλ/4位相差フィルムは、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
 前記円偏光板は、更に当該偏光板の偏光板保護フィルムの反対面に剥離フィルムを貼合して構成することができる。保護フィルム及び剥離フィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。
 以上のような構成による本実施形態に係る長尺延伸フィルムを用いた円偏光板は、黒抜け状の箇所が特に少なく、品質が良好である。
 <表示装置>
 本実施形態に係る長尺延伸フィルムを用いて作製した円偏光板を表示装置に組み込むことによって、種々の視認性に優れた表示装置を作なすることができる。また、前記表示装置は、有機ELディスプレイであることが好ましい。
 図9に、前記有機EL画像表示装置の構成の一例を示すが、本実施形態に係る長尺延伸フィルムを用いた場合における有機EL画像表示装置としては、これに限定されるものではない。
 ガラスやポリイミド等を用いた基板101上に順に金属電極102、発光層103、透電極(ITO等)104、封止層105を有する有機エレクトロルミネッセンス素子上に、接着槽106を介して、偏光子108をλ/4位相差フィルム107と保護フィルム109によって挟持した円偏光板を設けて、有機エレクトロルミネッセンス画像表示装置を構なする。該保護フィルム109には硬化層が積層されていることが好ましい。硬化層は、有機エレクトロルミネッセンス画像表示装置の表面のキズを防止するだけではなく、円偏光板による反りを防止する効果を有する。更に、硬化層上には、反射防止層を有していてもよい。上記有機エレクトロルミネッセンス素子自体の厚さは1μm程度である。
 一般に、有機エレクトロルミネッセンス画像表示装置は、透明基板上に金属電極と発光層と透明電極とを順に積層して発光体である素子(有機エレクトロルミネッセンス素子)を形成している。ここで、発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、及び電子注入層の積層体等、種々の組み合わせをもった構成が知られている。
 有機エレクトロルミネッセンス画像表示装置は、透明電極と金属電極とに電圧を印加することによって、発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。
 有機エレクトロルミネッセンス画像表示装置においては、発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、Al-Liなどの金属電極を用いている。
 このような構成の有機エレクトロルミネッセンス画像表示装置において、発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機エレクトロルミネッセンス画像表示装置の表示面が鏡面のように見える。
 本実施形態に係る長尺延伸フィルムを用いた有機エレクトロルミネッセンス表示装置用円偏光板は、このような外光反射が特に問題となる有機エレクトロルミネッセンス用表示装置に適している。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 すなわち、本発明の一局面に係る長尺延伸フィルムの製造方法は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して走行しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記斜め延伸工程は、予熱ゾーン、延伸ゾーン及び熱固定ゾーンを有する加熱ゾーン内で行われ、前記予熱ゾーン及び前記延伸ゾーン並びに、前記延伸ゾーン及び前記熱固定ゾーンはそれぞれ隔壁によって区分され、前記隔壁の少なくとも一つは、幅手方向に少なくとも一か所の屈曲部を有し、前記長尺フィルムの走行位置に応じて前記隔壁の屈曲角度を調整することを特徴とする。このような構成によれば、斜め延伸時に生じるフィルム端部側の光学配向のばらつきの低減が可能となる。
 また、前記長尺延伸フィルムの製造方法において、前記屈曲部を有する隔壁は、前記フィルムが通過可能である開口部と、前記開口部の上下に位置する中央部と、前記中央部の幅手方向の両端にそれぞれ連結した側方部とを有し、前記中央部と前記側方部との間が屈曲可能であり、前記中央部と前記側方部との屈曲角度を調節することが好ましい。更に、前記屈曲部を有する隔壁の、前記中央部及び前記側方部の少なくとも一方は、幅手方向に伸縮可能であることが好ましい。このような構成とすることで、様々な延伸パターンにおいて、光学配向のばらつきの低減が可能となる。
 さらに、前記長尺延伸フィルムの製造方法において、前記延伸ゾーン及び前記熱固定ゾーンを区分する隔壁において、前記フィルムの走行方向と前記側方部とのなす角度が鋭角となるように前記隔壁を変形し、前記フィルムの配向方向と前記中央部とのなす角度が略平行となるように変形された隔壁の開口部に、フィルムを通過させることによって延伸することが好適である。このような構成によれば、本発明の効果をより高めることができる。
 また、前記長尺延伸フィルムの製造方法において、前記予熱ゾーン及び前記延伸ゾーンを区分する隔壁において、前記フィルムの走行方向と前記側方部とのなす角度が鋭角となるように、かつ前記フィルムの走行方向と前記中央部とのなす角度が略垂直となるように変形された隔壁の開口部に、フィルムを通過させることによって延伸することが好適である。このような構成によれば、斜め延伸時に生じるフィルム端部側の光学配向のばらつきをさらに低減することができる。
 また、前記長尺延伸フィルムの製造方法において、前記斜め延伸工程において、前記斜め延伸テンターの左右非対称な把持具走行支持具上を走行する把持具の走行速度が15~150m/分であることが好適である。このような構成によれば、本発明の効果をより発揮させることができる。
 また、本発明の他の局面に係る長尺延伸フィルムの製造装置は、熱可塑性樹脂を含有する長尺フィルムを製膜する手段、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具走行支持具が備える把持具によって把持して走行しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する手段、前記斜め延伸後の長尺延伸フィルムを巻き取る手段を少なくとも有する長尺延伸フィルムの製造装置において、前記斜め延伸手段内に、予熱ゾーン、延伸ゾーン及び熱固定ゾーンを有する加熱ゾーンが設けられ、前記予熱ゾーン及び前記延伸ゾーン並びに、前記延伸ゾーン及び前記熱固定ゾーンはそれぞれ隔壁によって区分され、前記隔壁の少なくとも一つは、幅手方向に少なくとも一か所の屈曲部を有し、前記長尺フィルムの走行位置に応じて前記隔壁の屈曲角度を調整することができることを特徴とする。
 このような構成によれば、斜め延伸時に生じるフィルム端部側の光学配向のばらつきが低減された長尺延伸フィルムを得ることができる。
 また、前記長尺延伸フィルムの製造装置において、更に好ましくは、前記屈曲部を有する隔壁が、前記フィルムが通過可能である開口部と、前記開口部の上下に位置する中央部と、前記中央部の幅手方向の両端にそれぞれ連結した側方部とが設けられ、前記中央部と前記側方部との間が屈曲可能であり、前記中央部と前記側方部との屈曲角度を調節することができることが好ましい。更に、前記屈曲部を有する隔壁の、前記中央部及び前記側方部の少なくとも一方は、幅手方向に伸縮可能であることを特徴とする。
 このような構成によれば、様々な延伸パターンにおいて、光学配向のばらつきが低減された長尺延伸フィルムを得ることができる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれらにより限定されるものではない。
 [実施例1]
 (シクロオレフィンフィルムの製造)
 窒素雰囲気下、脱水したシクロヘキサン500部に、1-ヘキセン1.2部、ジブチルエーテル0.15部、トリイソブチルアルミニウム0.30部を室温で反応器に入れ混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(ジシクロペンタジエン、以下、DCPと略記)20部、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(以下、MTFと略記)140部、及び8-メチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン(以下、MTDと略記)40部からなるノルボルネン系モノマー混合物と、六塩化タングステン(0.7%トルエン溶液)40部とを、2時間かけて連続的に添加し重合した。重合溶液にブチルグリシジルエーテル1.06部とイソプロピルアルコール0.52部を加えて重合触媒を不活性化し重合反応を停止させた。
 次いで、得られた開環重合体を含有する反応溶液100部に対して、シクロヘキサン270部を加え、さらに水素化触媒としてニッケル-アルミナ触媒(日揮化学社製)5部を加え、水素により5MPaに加圧して撹拌しながら温度200℃まで加温した後、4時間反応させ、DCP/MTF/MTD開環重合体水素化ポリマーを20%含有する反応溶液を得た。濾過により水素化触媒を除去した後、軟質重合体(クラレ社製;セプトン2002)、及び酸化防止剤(チバスペシャリティ・ケミカルズ社製;イルガノックス1010)を、得られた溶液にそれぞれ添加して溶解させた(いずれも重合体100部あたり0.1部)。
 次いで、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を、円筒型濃縮乾燥器(日立製作所製)を用いて除去し、水素化ポリマーを溶融状態で押出機からストランド状に押出し、冷却後ペレット化して回収した。重合体中の各ノルボルネン系モノマーの共重合比率を、重合後の溶液中の残留ノルボルネン類組成(ガスクロマトグラフィー法による)から計算したところ、DCP/MTF/MTD=10/70/20でほぼ仕込み組成に等しかった。この開環重合体水素添加物の、重量平均分子量(Mw)は31,000、分子量分布(Mw/Mn)は2.5、水素添加率は99.9%、Tgは134℃であった。得られた開環重合体水素添加物のペレットを、空気を流通させた熱風乾燥器を用いて70℃で2時間乾燥して水分を除去した。
 次いで、前記ペレットを、コートハンガータイプのTダイを有する短軸押出機(三菱重工業株式会社製:スクリュー径90mm、Tダイリップ部材質は炭化タングステン、溶融樹脂との剥離強度44N)を用いて溶融押出成形して厚み75μmのシクロオレフィンポリマーの長尺フィルムを製造した。押出成形は、クラス10,000以下のクリーンルーム内で、溶融樹脂温度240℃、Tダイ温度240℃の成形条件にて幅1000mmの長尺フィルムAを得た。長尺フィルムAはロールに巻き取った。
 (斜め延伸工程)
 上記にて得られたノルボルネン系樹脂の長尺フィルムAを、本発明に係る斜め延伸装置を用いて、以下に示す方法により延伸して、延伸フィルムを得た。また、把持具走行支持具として、チェーンを備えていない無端状のガイドレールを用い、把持具としてクリップを用いた。
 まず、フィルムの走行方向と繰り入れ方向とがなす角度(旋回角)を47°とした。そして、フィルム繰り出し装置から送られてくる長尺フィルムAの両端を、第1クリップ(ガイドレールの内周側)及び第2クリップ(ガイドレールの外周側)で把持した。
 なお、長尺フィルムを把持する際には、第1、第2クリップのクリップレバーを、クリップクローザーにより動かすことにより長尺フィルムを把持する。また、クリップ把持時の際は、長尺フィルムの両端を同時に第1、第2クリップで同時に把持し、かつフィルムの横方向に平行な軸に対して、両端の把持位置を結ぶ線が並行となるように把持する。
 次いで、把持した未延伸のフィルムを上記第1、第2クリップにより、加熱ゾーン内の予熱ゾーン、延伸ゾーンおよび熱固定ゾーンをフィルム走行速度を20m/分に設定して通過させることにより加熱し、後述する旋回パターン1を有する斜め延伸テンターにて延伸し、延伸フィルムを得た。その時の加熱ゾーンの温度条件として、予熱ゾーンは142℃、延伸ゾーンは140℃、熱固定ゾーンは137℃に調整して製造した。
 ここで、本実施例1において用いた斜め延伸テンターの旋回パターン1を図11に示す。予熱ゾーンと延伸ゾーンを区分けする隔壁であって、加熱ゾーンの側壁に対して垂直に配置されていた元来の隔壁と予熱ゾーンにおけるフィルムの進行方向とのなす角度をθ1、延伸ゾーンと熱固定ゾーンを区分けする隔壁であって、元来配置されていた前記隔壁と延伸ゾーンにおけるフィルムの配向方向とのなす角度をθ2とすると、旋回パターン1ではθ1及びθ2はいずれも45°である。
 また、本発明に係る延伸前のフィルムの走行方向と、予熱ゾーン及び延伸ゾーンを区分けする隔壁中央部とのなす角度をθRCE、前記フィルムの走行方向とガイドレール内周側にある隔壁側方部とのなす角度をθRIN、前記フィルムの走行方向とレール外周側にある隔壁側方部とのなす角度をθROUTとする。また、延伸後のフィルムの配向方向と、延伸ゾーン及び熱固定ゾーンを区分けする隔壁中央部とのなす角度をθLCE、延伸後のフィルムの走行方向とガイドレール内周側にある隔壁側方部とのなす角度をθLIN、延伸後のフィルムの走行方向とガイドレール外周側にある隔壁側方部とのなす角度をθLOUTとする。
 実施例1においては、予熱ゾーン及び延伸ゾーンを区分けする隔壁は、表1に示すように、θRINを45°、θROUTを115°、θRCEを65°とし、延伸ゾーン及び熱固定ゾーンを区分けする隔壁は、元来配置されていた角度のままとした。
 また、延伸前後におけるフィルムの延伸倍率を2倍とし、延伸後のフィルムの厚みが52μmとなるようなフィルムとした。
 以上の工程によって得られたシクロオレフィンの長尺延伸フィルムを以下の評価方法にて評価した。
 (定量評価)
 各長尺延伸フィルムを幅方向に等間隔で20個のサンプルを切り出し、そのサンプルの遅相軸の角度(配向角)θを自動複屈折率測定装置(王子計測機器株式会社製のKOBRA-21ADH)を用いて測定した。上記幅方向の測定を走行方向に3回実施して、結果としては、前述した全データの平均値と、そのバラつき(測定したフィルム配向角度の最大値と最小値の差)を算出し、下記の基準にて評価した。
 A:配向角のばらつきが0.4°未満である。
 B:配向角のばらつきが0.4°以上0.6°未満である。
 C:配向角のばらつきが0.6°以上1.0°未満である。
 D:配向角のばらつきが1.0°以上1.5°未満である。
 E:配向角のばらつきが1.5°以上である。
 (官能評価)
 長尺延伸フィルムを用いて、上記で説明した有機EL画像表示装置を作成して、黒表示した際のディスプレイ全面における色味ムラを、以下の基準で目視評価した。
 A:ディスプレイ全面における箇所ごとの色味に違いは見られない。
 B:ディスプレイ全面において、画面端の部分で僅かに色味に違いが見られる部分があるが、問題のないレベル。
 C:ディスプレイ全面において、画面端の部分で色味に違いが見られ、製品として使用できないレベル。
 D:貼り付けたサンプル片の箇所ごとに色味違いが大きく、製品として使用できないレベル。
 [実施例2]
 実施例2では、下記表1に示すように、予熱ゾーン及び延伸ゾーンを区切る隔壁は実施例1と同様で、θRINを45°、θROUTを115°、θRCEを65°とし、延伸ゾーン及び熱固定ゾーンを区切る隔壁は、θLINを75°、θLOUTを80°、θLCEを0°に変更した他は前記実施例1と同様にしてシクロオレフィンの長尺延伸フィルムを製造した。また、本実施例2において用いた旋回パターン1及び隔壁各部の角度を表した概略図を図12に示す。なお、以下実施例3,4についても図12を適用することができる。
 [実施例3]
 実施例3では、下記表1に示すように、フィルムの走行速度を50m/分に変更した他は前記実施例1と同様にしてシクロオレフィンの長尺延伸フィルムを製造した。
 [実施例4]
 実施例4では、下記表1に示すように、下記の製造工程によって得られたセルロースエステルをフィルム種として用いた他は前記実施例3と同様にしてセルロースエステルの長尺延伸フィルムを製造した。
 (セルロースエステルフィルムの製造)
 《糖エステル化合物1の合成》
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.6モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、図10に示すような化合物A-1、A-2、A-3、A-4及びA-5の混合物を得た。
 得られた混合物をHPLC及びLC-MASSで解析したところ、A-1が1.3質量%、A-2が13.4質量%、A-3が13.1質量%、A-4が31.7質量%、A-5が40.5質量%であった。平均置換度は5.5であった。
 また、前記HPLC-MASSの測定条件は、以下の通りである。
 1)LC部
 装置:日本分光(株)製カラムオーブン(JASCO CO-965)、ディテクター(JASCO UV-970-240nm)、ポンプ(JASCO PU-980)、デガッサ-(JASCO DG-980-50)
 カラム:Inertsil ODS-3 粒子径5μm 4.6×250mm(ジーエルサイエンス(株)製)
 カラム温度:40℃
 流速:1ml/min
 移動相:THF(1%酢酸):HO(50:50)
 注入量:3μl
 2)MS部
 装置:LCQ DECA(Thermo Quest(株)製)
 イオン化法:エレクトロスプレーイオン化(ESI)法
 Spray Voltage:5kV
 Capillary温度:180℃
 Vaporizer温度:450℃
 《エステル化合物1の合成》
 1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物1を得た。エステル化合物1は、1,2-プロピレングリコール、無水フタル酸及びアジピン酸が縮合して形成されたポリエステル鎖の末端に安息香酸のエステルを有する。エステル化合物1の酸価0.10、数平均分子量450であった。
 《微粒子添加液1の調整》
 微粒子(アエロジル R972V 日本アエロジル(株)製)11質量部、エタノール89質量部をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行い、微粒子添加液1を調整した。
 続いて、メチレンクロライド99質量部を入れた溶解タンクを十分攪拌しながら、微粒子分散液1、1質量部をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
 《主ドープの調整》
 メチレンクロライド、エタノール、セルロースアセテートプロピオネート、下記の化学式6に示す化合物(C)、前述した糖エステル化合物1、エステル化合物1、微粒子添加液1を下記記載の組成となるようドープ液を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースアセテートプロピオネート(アセチル基置換度1.39、プロピオニル基置換度0.50、総置換度1.89)
                            100質量部
 化合物(C)                     5.0質量部
 糖エステル化合物1                  5.0質量部
 エステル化合物1                   2.5質量部
 微粒子添加液1                      1質量部
Figure JPOXMLDOC01-appb-C000006
 続いて、無端ベルト流延装置を用い、上記ドープ液をステンレススティールベルト支持体上に均一に流延した。ステンレススティールベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、ステンレススティールベルト支持体上から剥離した。
 剥離したセルロースエステルフィルムを、横延伸テンターにて幅方向に1.1倍延伸した。そのときの横延伸テンターオーブンの温度条件としては、予熱ゾーンでは160℃、延伸ゾーンでは165℃、保持ゾーンでは172℃、冷却ゾーンでは110℃にて延伸した。次いで、フィルム両端部のテンタークリップ痕部をトリミングし、乾燥温度は130℃で、長尺フィルムを多数のロールを用いて乾燥ゾーン内を搬送させながら乾燥を終了させた後、巻取工程において巻回体として巻き取った。以上のようにして、乾燥膜厚75μmのロール状の長尺フィルムを得た。
 上記にて得られたセルロース系樹脂の長尺フィルムを、下記表1に示すように斜め延伸し、長尺延伸フィルムを得た。このとき、フィルムの移動速度を50m/分、予熱ゾーンの温度は188℃、延伸ゾーンの温度は186℃、熱固定ゾーンの温度は172℃、延伸倍率を2.0倍として、厚みが52μmとなるようなフィルムにした。
 [比較例1、2]
 比較例1では、予熱ゾーンと延伸ゾーンとを区分けしている隔壁も、延伸ゾーンと熱固定ゾーンとを区分けしている隔壁も、加熱ゾーンの側壁に対して垂直に配置されていた元来の隔壁を用いた。ただし、フィルム幅内の隔壁にフィルムの上下仕切り板を用い、前記上下仕切り板とフィルムの配向角とが等しくなるように調節したものを用いた。そして、下記表1に示すように、隔壁各部の角度を変えた以外は、前記実施例1と同様にして各シクロオレフィンの長尺延伸フィルムを製造した。
 また、比較例2は、前記比較例1におけるフィルムの走行速度を変えた他は比較例1と同様にして各シクロオレフィンの長尺延伸フィルムを製造した。
 比較例1,2において用いた旋回パターン1及び隔壁各部の角度を表した概略図を図13に示す。また、上記評価結果を下記表1に示す。
 各延伸条件については以下の通りである。
 配向角(°):前記定量評価で測定したサンプルの遅相軸の角度(配向角)θの平均値。
 走行速度(m/分):斜め延伸テンターの左右非対称なガイドレール上を走行する把持具の走行速度。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例1では前ゾーンから次ゾーンへの同伴風の吹き込みを調節したため、やや配向ムラや色味ムラのないフィルムを製造できた。また、θLIN、θLOUTを鋭角とし、θLCEを0°とした実施例2については、隔壁各部の角度を傾けて延伸ゾーンと熱固定ゾーンの境界部で生じる温度ムラを抑制することで、端部側で見られた色味ムラがなくなり、良好な品質のフィルムが得られた。
 また、実施例3については、実施例2に比べて高速条件下で延伸したが、やや配向ムラや色味ムラのないフィルムが得られ、製品上問題ないレベルであった。実施例4については、フィルム種としてセルロースエステルを用いたが、前記実施例3より配向ムラや色味ムラの改善された良好なフィルムを提供することができた。
 一方で、比較例1については、延伸ゾーンと熱固定ゾーン間の隔壁の開口幅において内周側及び外周側が広く開いているため、当該箇所からフィルムの同伴風が次のゾーンへ不均一に流れてしまい、温度ムラが生じてしまった。この温度ムラによって延伸後のフィルムに配向ムラが生じてしまい、色味ムラの評価に劣る結果となった。また、比較例2は比較例1より高速条件下で延伸しており、次のゾーンへ流れる同伴風の流れが顕著なため、比較例1に比べて比較例2の方が温度ムラを生じ易いことが明らかとなった。
 [実施例5,6]
 実施例5では、図14に示すような斜め延伸テンターの旋回パターン2とし、下記表2に示すように、隔壁各部の角度を変更した他は前記実施例1と同様にしてシクロオレフィンの長尺延伸フィルムを製造した。また、実施例6では、前記実施例5におけるθRIN、θROUT、θLIN、θLOUTの角度及び走行速度を変えてフィルムを斜め延伸させた他は実施例5と同様にして各シクロオレフィンの長尺延伸フィルムを製造した。
 [比較例3,4]
 比較例3,4について用いた旋回パターン2及び加熱ゾーンの隔壁の概略図を図15に示す。
 比較例3では、前記比較例1と同様の構成を有する隔壁をそれぞれ用いた。そして、下記表2に示すように、隔壁各部の角度が変わった以外は、前記実施例3と同様にして各シクロオレフィンの長尺延伸フィルムを製造した。
 また、比較例4は、前記比較例3におけるフィルムの走行速度を変えた他は比較例3と同様にして各シクロオレフィンの長尺延伸フィルムを製造した。
 上記評価結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、実施例5は前記実施例2等と旋回パターンが変更されたとしても、θRIN、θROUT、θLIN、θLOUTを鋭角とし、θRCEを直角、θLCEを0°とし、前記角度をそれぞれ傾けて最適化することで、端部側で見られた色味ムラがなくなり、良好な品質のフィルムが得られた。また、実施例6についても、実施例5に比べて高速条件下にて延伸したにも関わらず、配向ムラや色味ムラについて製品上問題のないレベルのフィルムが得られた。
 一方で、比較例3は、延伸ゾーンと熱固定ゾーン間の隔壁の開口幅において特に内周側が広く開いているため、フィルムの同伴風が次のゾーンへ不均一に流れてしまい、温度ムラによるフィルムの配向ムラが生じてしまい、その結果、色味ムラの評価に劣ってしまった。また、比較例4は比較例3より高速条件下で延伸しており、次のゾーンへ流れる同伴風の流れが顕著なため、比較例3に比べて比較例4の方が温度ムラを生じ易い結果となった。
 [実施例7,8]
 実施例7では、図16に示すような斜め延伸テンターの旋回パターン3とし、下記表3に示すように、隔壁各部の角度を変更した他は前記実施例1と同様にしてシクロオレフィンの長尺延伸フィルムを製造した。また、実施例8では、前記実施例7におけるθRIN、θROUT、θLIN、θLOUTの角度及び走行速度を変えてフィルムを斜め延伸させた他は実施例7と同様にして各シクロオレフィンの長尺延伸フィルムを製造した。
 [比較例5,6]
 比較例5,6について用いた旋回パターン3及び加熱ゾーンの隔壁の概略図を図17に示す。
 比較例5では、前記比較例1と同様の構成を有する隔壁をそれぞれ用いた。そして、下記表3に示すように、隔壁各部の角度を変わった以外は、前記実施例3と同様にして各シクロオレフィンの長尺延伸フィルムを製造した。
 また、比較例6は、前記比較例5におけるフィルムの走行速度を変えた他は比較例5と同様にして各シクロオレフィンの長尺延伸フィルムを製造した。
 上記評価結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から明らかなように、実施例7は前記実施例1等から旋回パターンが変更されたにも関わらず、θRIN、θROUT、θLIN、θLOUTを鋭角とし、θRCEを直角、θLCEを0°とし、前記角度をそれぞれ傾けて最適化することで、端部側で見られた色味ムラがなくなり、良好な品質のフィルムが得られた。また、実施例8についても、実施例7に比べて高速条件下にて延伸したにも関わらず、配向ムラや色味ムラについて製品上問題のないレベルのフィルムが得られた。
 一方で、比較例5は、フィルムの端部と中央において風速差が生じてしまい、フィルムの同伴風が次のゾーンへ不均一に流れてしまうことから、温度度ムラによるフィルムの配向ムラが生じてしまい、その結果、色味ムラの評価に劣ってしまった。また、比較例6は比較例5より高速条件下で延伸しており、次のゾーンへ流れる同伴風の流れが顕著なため、比較例5に比べて比較例6の方が温度ムラを生じ易い結果となった。
 この出願は、2012年3月30日に出願された日本国特許出願特願2012-79263を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、長尺延伸フィルムおよびその製造方法の技術分野において、広範な産業上の利用可能性を有する。

Claims (9)

  1.  熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して走行しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、及び前記斜め延伸工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、
     前記斜め延伸工程は、予熱ゾーン、延伸ゾーン及び熱固定ゾーンを有する加熱ゾーン内で行われ、
     前記予熱ゾーン及び前記延伸ゾーン並びに、前記延伸ゾーン及び前記熱固定ゾーンは、それぞれ隔壁によって区分され、
     前記隔壁の少なくとも一つは、幅手方向に少なくとも一か所の屈曲部を有し、前記長尺フィルムの走行位置に応じて前記隔壁の屈曲角度を調整することを特徴とする、長尺延伸フィルムの製造方法。
  2.  前記屈曲部を有する隔壁は、前記フィルムが通過可能である開口部と、前記開口部の上下に位置する中央部と、前記中央部の幅手方向の両端にそれぞれ連結した側方部とを有し、前記中央部と前記側方部との間が屈曲可能であり、前記中央部と前記側方部との屈曲角度を調節することを特徴とする、請求項1に記載の長尺延伸フィルムの製造方法。
  3.  前記屈曲部を有する隔壁の、前記中央部及び前記側方部の少なくとも一方は、幅手方向に伸縮可能であることを特徴とする、請求項2に記載の長尺延伸フィルムの製造方法。
  4.  前記延伸ゾーン及び前記熱固定ゾーンを区分する隔壁において、
     前記フィルムの走行方向と前記側方部とのなす角度が鋭角となるように前記隔壁を変形し、前記フィルムの配向方向と前記中央部とのなす角度が略平行となるように変形された隔壁の開口部に、フィルムを通過させることによって延伸することを特徴とする、請求項2又は3に記載の長尺延伸フィルムの製造方法。
  5.  前記予熱ゾーン及び前記延伸ゾーンを区分する隔壁において、
     前記フィルムの走行方向と前記側方部とのなす角度が鋭角となるように、かつ前記フィルムの走行方向と前記中央部とのなす角度が略垂直となるように変形された隔壁の開口部に、フィルムを通過させることによって延伸することを特徴とする、請求項2~4のいずれかに記載の長尺延伸フィルムの製造方法。
  6.  前記斜め延伸工程において、前記斜め延伸テンターのレール上を走行する把持具の走行速度が15~150m/分である、請求項1~5のいずれかに記載の長尺延伸フィルムの製造方法。
  7.  熱可塑性樹脂を含有する長尺フィルムを製膜する手段、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具走行支持具が備える把持具によって把持して走行しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する手段、前記斜め延伸後の長尺延伸フィルムを巻き取る手段を少なくとも有する長尺延伸フィルムの製造装置において、
     前記斜め延伸手段内に、予熱ゾーン、前記延伸ゾーン及び前記熱固定ゾーンを有する加熱ゾーンが設けられ、
     前記予熱ゾーン及び前記延伸ゾーン並びに、前記延伸ゾーン及び前記熱固定ゾーンはそれぞれ隔壁によって区分され、
     前記隔壁の少なくとも一つは、幅手方向に少なくとも一か所の屈曲部を有し、前記長尺フィルムの走行位置に応じて前記隔壁の屈曲角度を調整することができることを特徴とする、長尺延伸フィルムの製造装置。
  8.  前記屈曲部を有する隔壁は、前記フィルムが通過可能である開口部と、前記開口部の上下に位置する中央部と、前記中央部の幅手方向の両端にそれぞれ連結した側方部とが設けられ、前記中央部と前記側方部との間が屈曲可能であり、前記中央部と前記側方部との屈曲角度を調節することができることを特徴とする、請求項7に記載の長尺延伸フィルムの製造装置。
  9.  前記屈曲部を有する隔壁の、前記中央部及び前記側方部の少なくとも一方は、幅手方向に伸縮可能であることを特徴とする、請求項8に記載の長尺延伸フィルムの製造装置。
PCT/JP2013/001407 2012-03-30 2013-03-06 長尺延伸フィルムの製造方法及び製造装置 WO2013145574A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507374A JP5979224B2 (ja) 2012-03-30 2013-03-06 長尺延伸フィルムの製造方法及び製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-079263 2012-03-30
JP2012079263 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145574A1 true WO2013145574A1 (ja) 2013-10-03

Family

ID=49258894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001407 WO2013145574A1 (ja) 2012-03-30 2013-03-06 長尺延伸フィルムの製造方法及び製造装置

Country Status (2)

Country Link
JP (1) JP5979224B2 (ja)
WO (1) WO2013145574A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095414A (ja) * 2014-11-14 2016-05-26 日本ゼオン株式会社 光学フィルムの製造方法、偏光板の製造方法、及び光学フィルム
WO2016152381A1 (ja) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 斜め延伸フィルムの製造方法
WO2020121823A1 (ja) * 2018-12-11 2020-06-18 Dic株式会社 液晶組成物及び表示素子、ならびに化合物
JP7015950B1 (ja) 2021-03-26 2022-02-14 日東電工株式会社 延伸フィルムの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230714A (ja) * 2003-01-30 2004-08-19 Fuji Photo Film Co Ltd テンター装置
JP2006159775A (ja) * 2004-12-09 2006-06-22 Nippon Zeon Co Ltd フィルム延伸装置およびフィルム延伸方法
JP2007175974A (ja) * 2005-12-27 2007-07-12 Nippon Zeon Co Ltd フィルム延伸装置およびフィルム延伸方法
JP5177332B1 (ja) * 2012-03-22 2013-04-03 コニカミノルタアドバンストレイヤー株式会社 長尺延伸フィルムの製造方法及び製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3527639B2 (ja) * 1998-06-25 2004-05-17 積水化学工業株式会社 位相差フィルムの製造方法
JP5151356B2 (ja) * 2007-09-26 2013-02-27 日本ゼオン株式会社 延伸フィルムの製造方法、延伸フィルム、偏光板、及び液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230714A (ja) * 2003-01-30 2004-08-19 Fuji Photo Film Co Ltd テンター装置
JP2006159775A (ja) * 2004-12-09 2006-06-22 Nippon Zeon Co Ltd フィルム延伸装置およびフィルム延伸方法
JP2007175974A (ja) * 2005-12-27 2007-07-12 Nippon Zeon Co Ltd フィルム延伸装置およびフィルム延伸方法
JP5177332B1 (ja) * 2012-03-22 2013-04-03 コニカミノルタアドバンストレイヤー株式会社 長尺延伸フィルムの製造方法及び製造装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095414A (ja) * 2014-11-14 2016-05-26 日本ゼオン株式会社 光学フィルムの製造方法、偏光板の製造方法、及び光学フィルム
WO2016152381A1 (ja) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 斜め延伸フィルムの製造方法
WO2020121823A1 (ja) * 2018-12-11 2020-06-18 Dic株式会社 液晶組成物及び表示素子、ならびに化合物
JPWO2020121823A1 (ja) * 2018-12-11 2021-02-15 Dic株式会社 液晶組成物及び表示素子、ならびに化合物
CN112739799A (zh) * 2018-12-11 2021-04-30 Dic株式会社 液晶组合物和显示元件、以及化合物
JP7015950B1 (ja) 2021-03-26 2022-02-14 日東電工株式会社 延伸フィルムの製造方法
JP2022150149A (ja) * 2021-03-26 2022-10-07 日東電工株式会社 延伸フィルムの製造方法

Also Published As

Publication number Publication date
JP5979224B2 (ja) 2016-08-24
JPWO2013145574A1 (ja) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5177332B1 (ja) 長尺延伸フィルムの製造方法及び製造装置
WO2013161581A1 (ja) 斜め延伸フィルムの製造方法
JP5083483B1 (ja) 長尺延伸フィルムの製造方法
JP5088718B1 (ja) 延伸フィルムの製造方法、延伸フィルムの製造装置および延伸フィルムの製造システム
JP2013202979A (ja) 斜め延伸フィルムの製造方法および製造装置
JP5979224B2 (ja) 長尺延伸フィルムの製造方法及び製造装置
JP5126456B1 (ja) 長尺斜め延伸フィルムの製造方法および製造装置
JP5083482B1 (ja) 長尺延伸フィルムの製造方法
JP5105034B1 (ja) 延伸フィルムの製造方法、延伸フィルムの製造装置および延伸フィルムの製造システム
JP5862687B2 (ja) 長尺延伸フィルムの製造方法
WO2014156416A1 (ja) 光学フィルムの製造方法
JP5983732B2 (ja) 長尺延伸フィルムの製造方法
JP5987896B2 (ja) 長尺延伸フィルムの製造方法、及び斜め延伸装置
JP5862686B2 (ja) 長尺延伸フィルムの製造方法
JP5979217B2 (ja) 長尺延伸フィルムの製造方法および斜め延伸装置
JP5110234B1 (ja) 長尺斜め延伸フィルムの製造方法および製造装置
WO2013125195A1 (ja) 長尺延伸フィルムの製造方法
JP2013193226A (ja) 長尺延伸フィルムの製造方法
JP5971327B2 (ja) 長尺延伸フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507374

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13768437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE