WO2013125195A1 - 長尺延伸フィルムの製造方法 - Google Patents
長尺延伸フィルムの製造方法 Download PDFInfo
- Publication number
- WO2013125195A1 WO2013125195A1 PCT/JP2013/000849 JP2013000849W WO2013125195A1 WO 2013125195 A1 WO2013125195 A1 WO 2013125195A1 JP 2013000849 W JP2013000849 W JP 2013000849W WO 2013125195 A1 WO2013125195 A1 WO 2013125195A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- group
- stretched film
- long
- stretching
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/045—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2001/00—Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
- B29K2001/08—Cellulose derivatives
Definitions
- the present invention relates to a method for producing a long stretched film.
- a stretched film formed by stretching a resin is used as an optical film that performs various optical functions in various display devices by utilizing its optical anisotropy.
- the stretched film is used as an optical compensation film for optical compensation such as anti-coloring and viewing angle expansion, or by bonding the stretched film and a polarizer, It is known to use as a retardation film that also serves as a polarizing plate protective film.
- a self-luminous display device such as an organic electroluminescence display device has attracted attention as a new display device.
- Self-luminous display devices have room to reduce power consumption compared to liquid crystal display devices in which the backlight is always lit. Further, self-luminous display devices such as organic electroluminescence display devices are lit with light sources corresponding to respective colors. In the light emitting display device, since it is not necessary to install a color filter that causes a reduction in contrast, the contrast can be further increased.
- a reflector such as an aluminum plate is provided on the back side of the display in order to increase the light extraction efficiency, and external light incident on the display is reflected by this reflector so that an image is displayed.
- Such a circularly polarizing plate needs to be bonded in such an arrangement that the in-plane slow axis of the stretched film is inclined at a desired angle with respect to the transmission axis of the polarizer.
- a general polarizer (polarizing film) is obtained by stretching at a high magnification in the transport direction, and its absorption axis coincides with the transport direction, and the conventional retardation film is longitudinally stretched, or Manufactured by transverse stretching, the in-plane slow axis is in principle 0 ° or 90 ° with respect to the longitudinal direction of the film.
- a long polarizing film and / or a stretched film is cut out at a specific angle.
- Patent Document 1 production of a long retardation film that is stretched obliquely at a desired angle and whose slow axis is freely controllable in a direction that is neither 0 ° nor 90 ° with respect to the longitudinal direction of the film.
- a method has been proposed. By this method, since the polarizing film and the stretched film can be bonded together by roll-to-roll, the yield is not reduced and stable production can be performed.
- One aspect of the present invention is a method for producing a long stretched film according to the present invention, in which a process for forming a long film containing a thermoplastic resin is different from a running direction of the film after stretching the long film.
- the long film is fed into the oblique stretching apparatus from the direction of the film, and the both ends of the long film in the width direction are gripped and conveyed by the gripping device of the oblique stretching tenter, and the long film is larger than 0 ° with respect to the width direction.
- An oblique stretching process that obliquely stretches in a direction less than 90 °, a slit process that cuts both ends of the elongated film after the oblique stretching process with a slitting device, and a process that winds the elongated film after the slit process.
- the orientation in the transport direction of the cut portion at least on the inner peripheral side of the long stretched film is performed before cutting.
- a weakening process is performed.
- the manufacturing method of the elongate stretched film using diagonally stretched film formation adheres at the time of a slit process by the process which weakens the orientation to the conveyance direction of a cutting location, before cut
- FIG. 1 is a schematic diagram illustrating a film orientation distribution in the case of cutting a laterally stretched film or a diagonally stretched film, and a schematic diagram illustrating an orientation loss process.
- FIG. 2 is a schematic top view showing the configuration of the oblique stretching apparatus according to the embodiment of the present invention.
- FIG. 3 is a schematic side view showing the configuration of the oblique stretching apparatus according to the embodiment of the present invention.
- FIG. 4 is a schematic view showing an example of a rail pattern of an obliquely stretched tenter used in the method for producing a long stretched film according to an embodiment of the present invention.
- FIG. 5 is a schematic view showing the configuration of the slit process according to the embodiment of the present invention.
- FIG. 6 is a schematic diagram illustrating an example of an inkjet head unit and a nozzle plate according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram illustrating an example of the configuration of an organic EL image display device according to an embodiment of the present invention.
- FIG. 8 is a diagram showing the synthesis of a sugar ester compound according to one embodiment of the present invention.
- the purpose of the present invention is to reduce film pieces and debris that adhere to the film at the time of slitting at both ends of a long stretched film by oblique stretching, while preventing flaws from sticking to the film surface and suppressing the risk of production stoppage.
- An object of the present invention is to provide a method for producing a long stretched film capable of securing a sufficient product width.
- the resin since it is strongly pulled in the transport direction in the vicinity of the end gripped by the gripping tool, the resin is oriented in a direction inclined further to the downstream side in the transport direction as compared with the film center.
- the resin film When the resin of the film is greatly inclined to the downstream side in the film transport direction, the resin film exhibits a characteristic that it is easy to tear in the orientation direction. When a minute vibration of the film occurs, tearing and roughening are likely to occur at the end.
- This invention is made
- the objective is to obtain the elongate stretched film by which the film piece and residue adhering at the time of a slit process were reduced, and the adhesion of the crack to the surface was prevented. It is providing the manufacturing method of an optical film which can be performed.
- the present inventors have found and studied that the cause of the trouble in the oblique stretch film formation as described above is the film orientation angle direction when the oblique angle is changed.
- FIG. 1 (a) is a schematic diagram of a film orientation distribution when a transversely stretched film is cut.
- the symbols are: 1 oblique stretching device, 2 oblique stretching tenter, 3 film feeding device, 4 film winding device, 5, 8 transport roll, 6 inner guide rail, 7 outer guide rail, 10 outer Slit blade, 11, 12 guide rail start position, 13, 14 guide rail end position, 15 long film (long stretched film), 16 inkjet head, 110 substrate, 260 heater, 270 heater power supply, 280 electric heating member, 310 liquid Drop, 320 nozzle.
- the center of the film is horizontally oriented by lateral stretching, but the end of the film is inclined several degrees from the center of the film due to bowing (becomes a bow). Therefore, as the cutting width in this case, as shown by the wavy arrow in FIG. 1 (a), the film is slit using a slitting device or the like from the opposite side of the conveyance direction to the extent that it remains several tens of mm from the range that satisfies the product standard It is common to do.
- FIG. 1B shows a schematic diagram of the film orientation distribution when the above-described obliquely stretched film is cut.
- the right side of the film in FIG. 1B is the inner side during oblique stretching
- the left side is the outer side.
- the film since the orientation direction of the film is inclined, the film has a characteristic of being easily torn in an oblique direction, and is more easily torn than in the case of cutting the laterally stretched film.
- slit 2 when cutting the inner side of the film (slit 2), it has characteristics that it is easier to tear to the film side when viewed from the cutting direction side than when cutting the outer side of the film (slit 1). It becomes easy to influence the sex.
- the present invention has been completed as a result of studies to solve such problems.
- the method for producing a long stretched film of the present embodiment includes a step of forming a long film containing a thermoplastic resin, and an oblique stretching device from a specific direction different from the running direction of the film after stretching the long film.
- the long film is held in the direction of greater than 0 ° and less than 90 ° with respect to the width direction while conveying the both ends of the long film in the width direction with a gripping tool of an obliquely stretched tenter.
- a long stretched film having at least a step of obliquely stretching, a slit step of cutting both ends of the long stretched film after the oblique stretch step with a slit device, and a step of winding the long stretched film after the slit step
- a process of weakening the orientation in the transport direction of at least the inner peripheral cut portion of the long stretched film may be performed before cutting.
- FIG. 4 is a schematic diagram showing the rail pattern of the obliquely stretched tenter, where the left and right gripping tools Ci and Co are positioned at the end of stretching from the obliquely stretched tenter entrance (position A in FIG. 4) (in FIG. 4). Travel on asymmetric rails Ri, Ro connecting to B). Since the rail pattern of FIG. 4 is a case of turning to the left, the inner peripheral side is the rail Ri side, and the outer peripheral side is the Ro side. Further, when the rail pattern turns to the right, Ri and Ro change in the opposite direction.
- the long length means one having a length of at least about 5 times the width of the film, preferably 10 times or more, and specifically wound in a roll shape. (Film roll) having a length that can be stored or transported.
- the slit process can also be applied to the case where the slit is formed when the rewinding is performed again after the oblique stretching process and the winding process without slitting.
- the manufacturing method of the present embodiment can also be applied to the case where slitting is performed when rewinding is performed again after passing through the winding process without slitting after the oblique stretching process.
- FIGS. 2 and 3 are diagrams schematically showing an oblique stretching apparatus used in each step of the method for producing a long stretched film according to an embodiment of the present invention.
- this is an example, and the present invention is not limited to this.
- the film forming step according to the manufacturing method of the present embodiment is a step of forming a long film containing a thermoplastic resin.
- the film forming step is performed by various means depending on the type of the thermoplastic resin, and the details will be described later.
- the long film formed in the film forming process is fed out from a film feeding device from a specific direction different from the film winding direction after stretching, and the long film
- An arbitrary angle of more than 0 ° and less than 90 ° with respect to the width direction of the film by obliquely stretching the film while gripping and conveying the both ends of the width direction of the film with a gripping tool of an oblique stretching tenter Is a step of providing an in-plane slow axis to the surface.
- the angle with respect to the width direction of the film is an angle within the film plane. Since the slow axis is usually expressed in the stretching direction or a direction perpendicular to the stretching direction, in the manufacturing method according to this embodiment, the slow axis is at an angle of more than 0 ° and less than 90 ° with respect to the direction perpendicular to the film transport direction. A long stretched film having such a slow axis can be produced by stretching at a desired angle.
- the film feeding device 3 can be slid and swiveled so that the film can be fed at a predetermined angle with respect to the obliquely stretched tenter inlet.
- the film feeding device 3 is slidable, and it is preferable that the film can be fed to the entrance of the obliquely stretched tenter by the transport direction changing device.
- the transport roll 5 is a roll that sends the film fed from the feeding device to the guide rail start positions 11 and 12.
- the number of the transport rolls 5 is not particularly specified, and a slitter process for cutting the film end portion may be provided in the middle of disposing the transport rolls. Moreover, you may provide the static elimination apparatus for neutralizing a film before and behind arrangement
- an obliquely stretched tenter is used to impart an oblique orientation to the long film.
- the oblique stretching tenter used in the present embodiment is preferably a film stretching apparatus that can freely set the orientation angle of the film by variously changing the rail pattern. Furthermore, it is preferable that the film stretching apparatus is capable of highly accurately orienting the orientation axis of the film across the width direction of the film and controlling the film thickness and retardation with high precision.
- FIG. 4 is a schematic view showing an example of a rail pattern of an obliquely stretched tenter used in the method for producing a long stretched film according to an embodiment of the present invention.
- this is an example, and the present invention is not limited to this.
- the feeding direction D1 of the long film is different from the winding direction D2 of the elongated film after stretching, and forms a feeding angle ⁇ i.
- the feeding angle ⁇ i can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
- the long film is gripped by the right and left grippers at the entrance of the obliquely stretched tenter (position A in FIG. 4), and travels as the grippers travel.
- the left and right gripping tools are diagonally stretched tenter inlets (position A in FIG. 4), and the left and right gripping tools Ci and Co that are opposed to a direction substantially perpendicular to the film traveling direction (feeding direction D1) are:
- the film travels on the left and right asymmetric rails Ri and Ro, and the film gripped at the position at the end of stretching (position B in FIG. 4) is released.
- the gripping tools Ci and Co that are opposed to the direction D1 of the film at the oblique stretching tenter entrance (the gripping start position by the film gripping tool) A are positioned at the position B when the film stretching ends.
- a straight line connecting the grippers Ci and Co is inclined by an angle ⁇ L with respect to a direction substantially perpendicular to the film winding direction D2.
- the long film original fabric is obliquely stretched in the direction of ⁇ L.
- substantially vertical indicates that the angle is in a range of 90 ⁇ 1 °.
- the oblique stretching tenter can heat a long film to an arbitrary temperature at which stretching can be performed.
- the diagonally stretched tenter includes a heating zone, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rail. Both ends of the film sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the heating zone, and the film is released from the gripping tool at the exit portion of the tenter. The film released from the gripping tool is wound around the core.
- Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the entrance portion.
- the rail pattern of the tenter has an asymmetric shape on the left and right, so that the rail pattern can be adjusted manually or automatically according to the orientation angle ⁇ , the draw ratio, etc. given to the long stretched film to be manufactured. It has become.
- the position of each rail part and the rail connecting part can be freely set and the rail pattern can be arbitrarily changed.
- the tenter gripping tool is configured to travel at a constant speed with a constant distance from the front and rear gripping tools.
- the travel speed of the gripper can be selected as appropriate, but is usually 1 to 150 m / min. Under high-speed production conditions, the inclination of the orientation angle on the inner peripheral side becomes larger, so the problem of scratches and dents at the time of slitting becomes more prominent. Therefore, the effect of the present invention can be further improved by implementing the present invention in a range where the traveling speed is 20 to 150 m / min. The effect of the present invention can be further improved if the traveling speed is in the range of 30 to 150 m / min, and the effect of the present invention can be further improved if the traveling speed is in the range of 50 to 150 m / min. .
- the difference in travel speed between the pair of left and right gripping tools is usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less of the travel speed. This is because if there is a difference in the traveling speed between the left and right sides of the film at the exit of the stretching process, wrinkles and shifts will occur at the exit of the stretching process, so the speed difference between the right and left gripping tools is required to be substantially the same speed. Because. In general tenter devices, etc., there are speed irregularities that occur in the order of seconds or less depending on the period of the sprocket teeth that drive the chain, the frequency of the drive motor, etc. This does not correspond to the speed difference described in the embodiment of the invention.
- a rail that regulates the trajectory of the gripping tool is often required to have a high bending rate, particularly where the film is transported obliquely.
- the long film is sequentially gripped by the left and right gripping tools at the obliquely stretched tenter entrance (position A in FIG. 4), and travels as the gripping tool travels.
- the left and right gripping tools facing the direction substantially perpendicular to the film traveling direction D1 at the oblique stretching tenter entrance (position A in FIG. 4) run on the left and right asymmetric rails, and the preheating zone and stretching zone Through a heating zone having a heat setting zone.
- the preheating zone refers to a section where the distance between the gripping tools gripping both ends is kept constant at the heating zone entrance.
- the stretching zone refers to the interval until the gap between the gripping tools gripping both ends starts to reach a predetermined interval.
- the oblique stretching as described above is performed, but the stretching may be performed in the longitudinal direction or the transverse direction before and after the oblique stretching as necessary.
- the heat setting zone refers to the section in which the gripping tools at both ends run parallel to each other during the period when the spacing between the gripping tools after the stretching zone becomes constant again.
- the heat setting zone After passing through the heat setting zone, it may pass through a section (cooling zone) where the temperature in the zone is set to the glass transition temperature Tg ° C. or lower of the thermoplastic resin constituting the film.
- a rail pattern that narrows the gap between the opposing grippers in advance may be used.
- each zone is Tg to Tg + 30 ° C.
- the temperature of the stretching zone is Tg to Tg + 30 ° C.
- the temperature of the cooling zone is Tg ⁇ 30 ° C. with respect to the glass transition temperature Tg of the thermoplastic resin. It is preferable to set to ⁇ Tg.
- a temperature difference in the width direction may be applied in the stretching zone in order to control thickness unevenness in the width direction.
- a method of adjusting the opening degree of the nozzle for sending warm air into the temperature-controlled room so as to make a difference in the width direction, or controlling the heating by arranging the heaters in the width direction is known. Can be used.
- the length of the preheating zone, the stretching zone and the cooling zone can be appropriately selected. The length of the preheating zone is usually 100 to 150% and the length of the fixed zone is usually 50 to 100% with respect to the length of the stretching zone. .
- the stretch ratio (W / W0) in the oblique stretching step is preferably 1.3 to 3.0, more preferably 1.5 to 2.8. If the draw ratio is in this range, thickness unevenness in the width direction is reduced, which is preferable. In the stretching zone of the oblique stretching tenter, if the stretching temperature is differentiated in the width direction, the thickness unevenness in the width direction can be further improved.
- W0 represents the width of the film before stretching
- W represents the width of the film after stretching.
- the slit process which concerns on the manufacturing method of this embodiment is a process of cut
- both ends of the long stretched film are deformed by the gripping tool in the above-described oblique stretching process, it is necessary to excise both end portions where the shape is unstable.
- the inner peripheral film has a large tilt orientation behavior, so it is easy to tear in the oblique direction. .
- a film piece or residue resulting from insufficient cutting of the film adheres to the slit portion, and the roll being transported and the film are rubbed, resulting in scratches on the film surface.
- the film is cut at the orientation of the location where the orientation angle of the inner peripheral film is large (for example, the location indicated by S in FIG. 1C).
- a process to weaken the orientation in the transport direction is performed before.
- the process of weakening the orientation in the transport direction refers to a process of changing the angle formed by the orientation direction and the transport direction of the film to a direction in which the angle is increased, or a process of changing the arrangement of molecules in a random direction. From the viewpoint of being able to suppress the generation of film pieces and debris, the latter treatment of weakening the orientation and changing the arrangement of molecules in a random direction is more preferable.
- Examples of the treatment for weakening the orientation include a heat treatment, an organic solvent dropping treatment, a treatment of further additional stretching after oblique stretching, and the like.
- a heat treatment and an organic solvent dropping treatment are preferable in that the region in which the orientation is weakened is narrow, has little influence on the product width of the film, and is excellent as a treatment for weakening the orientation.
- the timing for performing the treatment for weakening the orientation in the transport direction may be any position as long as the slit device is in contact with the film after the oblique stretching step, but the processing for weakening the orientation in the transport direction immediately before cutting.
- the film is soft, the film is deformed at the time of cutting, and causes a winding failure in the subsequent winding process. Therefore, after the treatment for weakening the orientation in the transport direction, It is preferable to cut after a certain time.
- the fixed time is preferably in the range of 3 seconds to 300 seconds, and more preferably in the range of 5 seconds to 60 seconds.
- the molecular chain structure of the heated film part is weakened, and the chain connection with the non-heated part can be reduced.
- film pieces and debris are less likely to occur during cutting with the slitting device, and scratches on the film surface caused by rubbing between the roll being transported and the film can be prevented.
- the heat treatment is preferably performed by a heat generator.
- the heat generating device is not particularly limited as long as it can heat the long stretched film to be conveyed to a predetermined temperature, and a known one can be used, for example, an infrared heater, a heat gun, a laser heating device, and the like. . Since it is preferable that the region for weakening the orientation is narrow, a laser-type heating device having a small heating spot diameter is preferably used.
- the heat generating device is disposed between the oblique stretching tenter 2 and the slit devices 9 and 10.
- the film is heated by a heat generating device, and the position where the orientation is weakened by the heating is cut using the slitter device.
- the heating temperature is preferably Tg to 600 ° C. If the film is cut by heating to Tg or less, the effect of weakening the orientation cannot be obtained sufficiently, so that the generation of film residue may not be suppressed. When heated to 600 ° C. or higher, the heated portion of the film becomes too soft and deforms, thereby disturbing the cross section of the film at the cut portion and causing a winding failure in the subsequent winding process.
- the Tg is a glass transition temperature of a thermoplastic resin contained in the long stretched film.
- the laser heating device is preferably capable of irradiating laser light having a circular cross-sectional shape in a direction perpendicular to the laser light irradiation direction.
- a laser beam that can be irradiated with laser light by providing a focal point in front of the laser light irradiation direction and reducing the diameter of the circle toward the focal point is preferably used.
- the means for reducing the circular diameter of the laser beam is not particularly limited, and examples thereof include commonly used means such as a lens, a prism, and a mirror.
- the laser beam there is no limitation in particular as said laser beam, A well-known thing can be used.
- CO 2 laser, YAG laser, UV laser and the like can be mentioned.
- the laser beam irradiation time, the irradiation intensity, the spot diameter is not particularly limited, and the laser irradiation conditions can be appropriately selected within a range in which the irradiation part does not melt or deform during heating of the film, As the irradiation means, heating may be performed by a single irradiation or by a plurality of irradiations.
- the output of the laser irradiation is, for example, 1 W to 300 W, preferably 5 W to 50 W.
- the dust when dust is generated by performing laser light irradiation, the dust can be recovered by suction while irradiating the laser light. That is, while irradiating laser light with a laser light irradiation device, a gas supply pipe or the like can be installed, and gas can be sprayed onto the laser light irradiation part, and dust and vaporized gas can be recovered simultaneously with the gas suction pipe. .
- an inkjet head using an inkjet method for the dropping treatment of the organic solvent.
- the discharge droplets of the organic solvent can be made small and can be uniformly distributed.
- FIGS. 2 and 3 illustrate the inkjet head 16 disposed between the oblique stretching tenter 2 and the slit devices 9 and 10, but this is an example, and the inkjet head 16 is obliquely stretched. There is no particular limitation as long as it is between the tenter 2 and the slit devices 9 and 10.
- FIG. 6 is a schematic diagram illustrating an example of an inkjet head unit and a nozzle plate that can be used in the present embodiment.
- FIG. 6A is a sectional view of the head portion
- FIG. 6B is a plan view of the nozzle plate.
- 16 is an inkjet head
- 110 is a substrate
- 260 is a heater
- 270 is a heater power supply
- 280 is a heat transfer member
- 310 is a droplet
- 320 is a nozzle.
- the droplet 310 of the organic solvent ejected from the nozzle 320 flies in the direction of the base film 201 and adheres.
- the organic solvent droplets landed on the long stretched film wet and spread around the periphery. And the position where the droplet of the organic solvent was dripped and the orientation to the conveyance direction was weakened is cut
- the time from when the organic solvent is dropped onto the long stretched film until it is cut is preferably 3 to 300 seconds, more preferably 5 to 60 seconds.
- the time is shorter than the above time, the dropped liquid is not dried, and the resin is deformed at the time of cutting by the slitting device, causing a winding failure in the subsequent winding process.
- the time is longer than the above time, since the time after the dropping process is long, the number of times the dropping unit contacts the transport roll during transport increases, so that dirt or the like adheres to the transport roll, and the upstream film Is unfavorable because the film becomes dirty when it comes into contact with the portion.
- the nozzles 320 of the ink jet head unit may be arranged in a staggered manner, and multiple stages are arranged in parallel in the conveyance direction of the long stretched film 15. May be provided.
- the distance between the inkjet head and the long stretched film is preferably 0.2 to 100 mm.
- the discharge speed of the organic solvent can be generally controlled in the range of 0.1 to 20 m / s by increasing or decreasing the voltage applied to the piezo element of the piezo-type ink jet device for the droplet tip speed V1.
- the range is preferably 1 to 20 m / s.
- a preferable lower limit of the velocity V1 of the droplet tip is 5 m / s.
- the discharge time is set to 3 ⁇ s to 1 ms depending on the control condition of the voltage applied to the piezo element.
- the control conditions for the voltage applied to the piezo element are set according to the waveform control conditions, the surface tension, the viscosity, etc. of the droplets so that the droplets can be ejected stably.
- the droplet size can be controlled to various sizes.
- the inkjet head used in the present embodiment is disposed at least on the inner peripheral portion in the width direction of the long stretched film, and discharges an organic solvent onto the surface of the long stretched film while being transported.
- a large number of nozzles are arranged in a line, the inkjet head is fixed and the organic head is ejected, or the organic head is ejected onto the surface while the inkjet head moves in the sub-scanning direction.
- a serial head method can be used, but in this embodiment, the line head method is preferable from the viewpoint of productivity.
- the organic solvent is not particularly limited as long as it is soluble in a thermoplastic resin as a solute.
- a good solvent for a solute such as dichloromethane or cyclohexane may be used, or a mixed solvent of a good solvent and a poor solvent such as methanol, ethanol, butanol, isobutanol, isopropanol, acetone, or toluene may be used.
- the ratio of the poor solvent is preferably in the range of 0 to 90% by weight.
- the slit device of the present embodiment is a device that cuts both ends of the long stretched film 15 in a direction along the transport direction (the arrow F direction in FIG. 5).
- the two slit devices are arranged on the extension lines of the inner guide rail 6 and the outer guide rail 7 of the obliquely extending tenter 2, respectively.
- the inner slit device is a circular shape for supporting the upper blade 9 a disposed on the upper side outside the long stretched film 15, the lower blade 9 b disposed on the lower side, and the long stretched film 15 from the lower side.
- a support member (not shown) is provided.
- the outer slit device supports the upper blade 10a disposed on the upper side inside the long stretched film 15, the lower blade 10b disposed on the lower side, and the long stretched film 15 from the lower side.
- a circular support member (not shown) is provided.
- the upper blade 9a (10a) and the lower blade 9b (10b) are circular blades that are rotatably supported.
- the upper blade 9a (10a) is rotatably supported so as to be passively rotated according to the conveyance of the long stretched film 15, and the lower blade 9b (10b) is elongated by a drive motor (not shown). It is driven to rotate in accordance with the conveyance of the long stretched film 15 so as to coincide with the conveyance speed of the film 15.
- the lower blade 9b (10b) is rotatably supported so as to passively rotate according to the conveyance of the long stretched film 15, and the upper blade 9a (10a) is driven by a drive motor (not shown). You may make it rotationally drive in the reverse rotation direction with respect to conveyance of the elongate stretched film 15 so that it may correspond with the conveyance speed of the elongate stretched film 15 roughly.
- both the upper blade 9a (10a) and the lower blade 9b (10b) may be rotationally driven so as to substantially coincide with the conveying speed of the long stretched film 15, or both may be rotated without being rotationally driven. You may make it support freely. Further, one or both of the upper blade 9a (10a) and the lower blade 9b (10b) may be driven in reverse rotation.
- the upper blade 9a (10a) and the lower blade 9b (10b) may be so-called dish-shaped blades, saddle-shaped blades, or other shapes of circular blades.
- the upper blade 9a (10a) is a dish-shaped blade.
- the lower blade 9b (10b) is a saddle blade.
- the material of the upper blade 9a (10a) and the lower blade 9b (10b) may be made of metal or ceramic, but it is preferable to use cemented carbide or high-speed steel. From the viewpoint of the amount of cut residue generated and the smoothness of the cut surface, it is preferable to use a cemented carbide blade made of a cemented carbide.
- the upper blade 9a (10a) has a diameter of about 90 mm to 150 mm and a thickness of about 1 mm to 5 mm.
- the diameter of the lower blade 9b (10b) is about 90 mm to 150 mm, and the thickness is about 1 mm to 10 mm.
- the slit device may be further provided at a single location or a plurality of locations in order to divide the long stretched film 15 into a plurality along the transport direction to form a narrow stretched film.
- the end of the film in film formation by normal transverse stretching and longitudinal stretching is deformed by gripping the clip and cannot be used as a product, so it must be discarded.
- the cutting width is generally set to be slightly wider than the width that can be effectively used as a product without deformation of the grip portion.
- the cutting width is appropriately changed depending on the stretching conditions of the film, it can be appropriately selected within a range in which the film does not have any scratches or dents.
- the cutting width when the film width after stretching is in the range of 500 mm to 4000 mm is preferably 50 mm to 300 mm, more preferably 60 mm to 200 mm.
- the slit device has a mechanism that follows in accordance with the stretching direction of the long stretched film.
- the stretching direction and the winding direction can be arbitrarily set in order to obtain a long stretched film in which the orientation axis has an inclination as required with respect to the width direction of the film. Therefore, the slit device of this embodiment is also required to have a mechanism that operates following the conveyance in the stretching direction and the winding direction.
- the slit device since the slit device has the following mechanism, both ends of the long stretched film can be easily cut.
- the inclination angle in the stretching direction and the winding direction is changed, and in that case, it is not necessary to remove or reconstruct the slitting device, so that the productivity is excellent. Become.
- Specific examples of the following mechanism include, for example, from a guide rail terminal position of 13 and 14 to a winding device of 4 including a slitter device for the transport rolls 8 and 9 to 10 and a processing device 16 for weakening the orientation in the transport direction. It is possible to use a single unit that is movable, for example, fixed on a movable plate or fixed on a movable rail. That is, there is a method such as allowing the movement from the terminal position of the guide rails 13 and 14 to the winding device 4 to move together, but is not particularly limited.
- the slit device has a mechanism capable of confirming an angular position between a stretching direction of the long stretched film and a traveling direction of the slit blade.
- a confirmation mechanism By having such a confirmation mechanism, the slit device can be more easily operated with conveyance in the stretching direction.
- the slit device may be provided between the transport rolls 8 as shown in FIGS. 2 and 3, and may be installed anywhere between the transport rolls 8.
- the number of the transport rolls 8 is not particularly defined, and a step of applying a protective sheet for protecting the long stretched film may be provided in the middle of the placement of the transport rolls. Moreover, before winding up a film, you may provide the process of giving a embossing part (not shown) to a film edge part by giving a knurling process to the film right and left both ends by an embossing ring and a back roll.
- a film thickness meter or an optical value measuring device capable of online measurement may be arranged in the middle of the arrangement of the transport roll.
- the static eliminator can be configured to apply a reverse potential by a static eliminator or a forced charging device at the time of winding so that the charging potential when the original winding is redrawn is ⁇ 2 kV or less. It is also possible to adopt a configuration in which static elimination is performed by a static eliminator that alternately converts positive and negative at 1 to 150 Hz.
- an ionizer or static elimination bar that generates ion wind can be used.
- the ionizer static elimination is performed by blowing an ion wind toward the film wound up from the embossing device via the transport roll.
- the ion wind is generated by a static eliminator. Any known static eliminator can be used without limitation.
- Winding process The winding process which concerns on the manufacturing method of this embodiment is a process of winding up the elongate stretched film after the said slit process. Below, the winding apparatus used for a winding process is demonstrated.
- the take-up device 4 can be finely controlled for the film take-up position and angle by forming the take-up device 4 so that the film can be taken at a predetermined angle with respect to the obliquely stretched tenter outlet.
- the take-up device 4 can be finely controlled for the film take-up position and angle by forming the take-up device 4 so that the film can be taken at a predetermined angle with respect to the obliquely stretched tenter outlet.
- the take-up tension T (N / m) of the stretched film is preferably adjusted between 100 N / m ⁇ T ⁇ 300 N / m, preferably 150 N / m ⁇ T ⁇ 250 N / m. .
- the take-up tension is 100 N / m or less, sagging and wrinkles of the film are likely to occur, and retardation and the profile in the width direction of the orientation axis are also deteriorated.
- the take-up tension is 300 N / m or more, the variation in the orientation angle in the width direction is deteriorated, so that the width yield (taken efficiency in the width direction) is deteriorated.
- the fluctuation of the take-up tension T it is preferable to control the fluctuation of the take-up tension T with an accuracy of less than ⁇ 5%, preferably less than ⁇ 3%.
- the fluctuation of the take-up tension T is ⁇ 5% or more, the variation in the optical characteristics in the width direction and the flow direction becomes large.
- general PID control is performed so that the load applied to the first roll at the tenter outlet, that is, the film tension is measured and the value is kept constant.
- a method of controlling the rotation speed of the take-up roll by a method is mentioned.
- Examples of the method for measuring the load include a method in which a load cell is attached to a bearing portion of a roll and a load applied to the roll, that is, a film tension is measured.
- a load cell a known tensile type or compression type can be used.
- the stretched film is released from the tenter outlet after being gripped by the gripper, cut off at both ends (both sides) of the film, and then wound around a winding core (winding roll) in order to be a long stretched film
- the wound body can be made.
- the winding process of the present embodiment may be rewound again after being wound without passing through the slit process of the present embodiment, and in that case, the slit process of the present embodiment is performed. You can also.
- the masking film may be overlapped and wound up at the same time, or at least one of the long stretched films, preferably while winding tape or the like on both ends. You may take it.
- the masking film is not particularly limited as long as it can protect the film, and examples thereof include a polyethylene terephthalate film, a polyethylene film, and a polypropylene film.
- the static elimination at the time of film-winding can use the static elimination method and static elimination apparatus described in the slit process.
- thermoplastic resin and film forming method As the thermoplastic resin that can be used in the present embodiment, polycarbonate resin, polyether sulfone resin, polyethylene terephthalate resin, polyimide resin, polymethyl methacrylate resin, polysulfone resin, polyarylate resin, Examples thereof include polyethylene resins, polyvinyl chloride resins, olefin polymer resins having an alicyclic structure, and cellulose ester resins.
- polycarbonate resins olefin polymer resins having an alicyclic structure
- cellulose ester resins are preferable from the viewpoints of transparency and mechanical strength.
- an olefin polymer-based resin and a cellulose ester-based resin having an alicyclic structure, which can easily adjust the phase difference when an optical film is used, are more preferable.
- Olefin polymer resin examples include cyclic olefin random multi-component copolymers described in JP-A No. 05-310845, hydrogenated polymers described in JP-A No. 05-97978, and JP-A No. 11 And thermoplastic dicyclopentadiene ring-opening polymers described in JP-A-124429 and hydrogenated products thereof.
- the olefin polymer resin having an alicyclic structure will be described more specifically.
- the alicyclic olefin polymer resin is a polymer having an alicyclic structure such as a saturated alicyclic hydrocarbon (cycloalkane) structure or an unsaturated alicyclic hydrocarbon (cycloalkene) structure.
- the number of carbon atoms constituting the alicyclic structure is not particularly limited, but when it is usually in the range of 4 to 30, preferably 5 to 20, more preferably 5 to 15, the mechanical strength, The properties of heat resistance and film formability are highly balanced and suitable.
- the proportion of the repeating unit containing the alicyclic structure in the alicyclic olefin polymer may be appropriately selected, but is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight. That's it.
- the ratio of the repeating unit having an alicyclic structure in the alicyclic polyolefin resin is within this range, the transparency and heat resistance of an optical material such as a long stretched film obtained from the stretched film of the present embodiment are improved. Therefore, it is preferable.
- olefin polymer resins having an alicyclic structure examples include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof. it can. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
- Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure.
- a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly preferable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, and lightness. It can be used suitably.
- Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent in the ring).
- examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
- Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
- Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
- Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
- monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof; and cyclic such as cyclohexadiene and cycloheptadiene. And conjugated dienes and derivatives thereof.
- a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
- monomers that can be copolymerized with a monomer having a norbornene structure include, for example, ethylene, propylene, ⁇ -olefins having 2 to 20 carbon atoms such as 1-butene and derivatives thereof; cyclobutene, cyclopentene And cycloolefins such as cyclohexene and derivatives thereof; and non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene.
- ⁇ -olefin is preferable, and ethylene is more preferable.
- An addition polymer of a monomer having a norbornene structure and an addition copolymer of a monomer having a norbornene structure with another monomer copolymerizable with a monomer having a norbornene structure are prepared in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
- X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure
- Y tricyclo [4.3.0.12,5] decane-7, Having a 9-diyl-ethylene structure
- the content of these repeating units is 90% by weight or more based on the total repeating units of the norbornene resin
- the X content ratio and the Y content ratio The ratio is preferably 100: 0 to 40:60 by weight ratio of X: Y.
- the molecular weight used for the norbornene-based resin is appropriately selected according to the purpose of use, but is converted to polyisoprene measured by gel permeation chromatography using cyclohexane (toluene if the thermoplastic resin does not dissolve) as the solvent (the solvent is In the case of toluene, the weight average molecular weight (Mw) in terms of polystyrene is usually 10,000 to 100,000, preferably 15,000 to 80,000, more preferably 20,000 to 50,000. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the optical material obtained by the stretched film of the present embodiment are highly balanced and suitable.
- the glass transition temperature of the norbornene-based resin may be appropriately selected depending on the purpose of use, but is preferably 80 ° C. or higher, more preferably in the range of 100 to 250 ° C.
- the optical material obtained by the stretched film of the present embodiment can be excellent in durability without causing deformation or stress in use at high temperatures.
- the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the norbornene resin is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1 to 4.0, more preferably 1 The range is from 2 to 3.5.
- the absolute value of the photoelastic coefficient C of norbornene-based resin is preferably 10 ⁇ 10 -12 Pa -1 or less, more preferably 7 ⁇ 10 -12 Pa -1 or less, 4 ⁇ 10 -12 Pa Particularly preferably, it is ⁇ 1 or less.
- thermoplastic resin used in this embodiment is a colorant such as a pigment or dye, a fluorescent brightener, a dispersant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, an antioxidant, a lubricant, and a solvent.
- the compounding agent such as may be appropriately blended.
- the content of the residual volatile component in the stretched film of norbornene resin is not particularly limited, but is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and further preferably 0.02% by weight or less. is there.
- the content of the volatile component in such a range, the dimensional stability can be improved, the change with time of the Re and the Rth can be reduced, and further the optical obtained from the stretched film of the present embodiment. Deterioration of the film, the polarizing plate, or the organic electroluminescence display device can be suppressed, and the display on the display device can be stably and satisfactorily maintained for a long time.
- the residual volatile component is a substance having a molecular weight of 200 or less contained in a trace amount in the film, and examples thereof include a residual monomer and a solvent.
- the content of residual volatile components can be quantified by analyzing the film by gas chromatography as the sum of the substances having a molecular weight of 200 or less contained in the film.
- the saturated water absorption of the stretched film of norbornene resin is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, and particularly preferably 0.01% by weight or less.
- the saturated water absorption is in the above range, the change with time of Re and Rth can be reduced, and further, deterioration of the optical film, polarizing plate or organic electroluminescence display device obtained from the stretched film of this embodiment can be suppressed. In the long term, the display on the display device can be kept stable and good.
- the saturated water absorption is a value expressed as a percentage of the mass of the test piece before immersion, after the film specimen is immersed in water at a constant temperature for a certain period of time. Usually, it is measured by immersing in 23 ° C. water for 24 hours.
- the saturated water absorption rate in the stretched film of the present embodiment can be adjusted to the above value by, for example, reducing the amount of polar groups in the thermoplastic resin, but is preferably a resin having no polar groups. It is desirable.
- melt forming method of olefin polymer resin As a method for forming a film using the preferred norbornene-based resin described above, a solution casting method or a melt extrusion method is preferred. Examples of the melt extrusion method include an inflation method using a die, but a method using a T die is preferable in terms of excellent productivity and thickness accuracy.
- the extrusion molding method using a T-die is a method for maintaining retardation and orientation by a method of keeping a molten thermoplastic resin in a stable state when closely contacting a cooling drum as described in JP-A-2004-233604. Films with good optical properties such as corners can be produced.
- a sheet-like thermoplastic resin extruded from a die is brought into close contact with a cooling drum under a pressure of 50 kPa or less; 2) melting When producing a long film by extrusion, the enclosure member covers from the die opening to the first cooling drum that is in close contact, and the distance from the enclosure member to the die opening or the first contact cooling drum is 100 mm or less.
- Method 3 Method of heating the temperature of the atmosphere within 10 mm to a specific temperature from the sheet-like thermoplastic resin extruded from the die opening when producing a long film by the melt extrusion method; A sheet-like thermoplastic resin extruded from a die so as to satisfy the above condition is brought into close contact with a cooling drum under a pressure of 50 kPa or less; A method in which a wind having a speed difference of 0.2 m / s or less from the take-up speed of the cooling drum that is first brought into close contact with the sheet-like thermoplastic resin extruded from the die opening is produced. It is done.
- the long film containing the above olefin polymer resin may be a single layer or a laminated film of two or more layers.
- the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
- Cellulose ester resin A preferable cellulose ester-based resin film contains a cellulose acylate satisfying the following formulas (i) and (ii) and contains a compound represented by the following general formula (A). Can be mentioned.
- Formula (ii) 0 ⁇ X ⁇ 3.0 (In formulas (i) and (ii), Z1 represents the total acyl substitution degree of cellulose acylate, and X represents the sum of the propionyl substitution degree and butyryl substitution degree of cellulose acylate.)
- L 1 and L 2 each independently represent a single bond or a divalent linking group.
- L 1 and L 2 include structures represented by the following chemical formulas. (The following R represents a hydrogen atom or a substituent.)
- L 1 and L 2 are preferably —O—, —COO—, and —OCO—.
- R 1 , R 2 and R 3 each independently represent a substituent.
- substituent represented by R 1 , R 2 and R 3 include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, Isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.) , Cycloalkenyl groups (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl groups (ethynyl group, propargyl group, etc.),
- R 1 and R 2 are preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted cyclohexyl group. More preferred are a phenyl group having a substituent and a cyclohexyl group having a substituent, and further preferred are a phenyl group having a substituent at the 4-position and a cyclohexyl group having a substituent at the 4-position.
- R 3 is preferably a hydrogen atom, halogen atom, alkyl group, alkenyl group, aryl group, heterocyclic group, hydroxyl group, carboxyl group, alkoxy group, aryloxy group, acyloxy group, cyano group, amino group, More preferably, they are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, and an alkoxy group.
- Wa and Wb represent a hydrogen atom or a substituent.
- Wa and Wb may be bonded to each other to form a ring, and
- at least one of Wa and Wb may have a ring structure.
- at least one of Wa and Wb may be an alkenyl group or an alkynyl group.
- substituent represented by Wa and Wb include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, tert- Butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.), cycloalkenyl group ( 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (ethynyl group, propargyl group etc.), aryl group (phenyl group, p-tolyl group, naphthyl group etc.),
- Etc. mercapto group, alkylthio group (methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (N-ethylsulfide group, etc.) Famoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N'phenylcarbamoyl) Sulfamoyl Group), sulfo group, acyl group (acetyl group, pivaloylbenzoyl group, etc.), carbamoyl
- Wa and Wb are bonded to each other to form a ring, it is preferably a nitrogen-containing 5-membered ring or a sulfur-containing 5-membered ring, particularly preferably represented by the following general formula (1) or general formula (2). It is a compound.
- a 1 and A 2 each independently represent —O—, —S—, —NRx— (Rx represents a hydrogen atom or a substituent) or —CO—.
- Rx represents a hydrogen atom or a substituent
- the example of the substituent represented by Rx is synonymous with the specific example of the substituent represented by said Wa and Wb.
- Rx is preferably a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
- X represents a nonmetallic atom belonging to Groups 14-16.
- Rc, Rd, and Re represent substituents, and examples thereof are synonymous with specific examples of the substituents represented by Wa and Wb.
- L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
- Q 1 is —O—, —S—, —NRy— (Ry represents a hydrogen atom or a substituent), —CRaRb— (Ra and Rb represent a hydrogen atom or a substituent) or Represents —CO—.
- Ry, Ra, and Rb represent substituents, and examples are synonymous with specific examples of the substituents represented by Wa and Wb.
- Y represents a substituent
- Examples of the substituent represented by Y are the same as the specific examples of the substituent represented by Wa and Wb.
- Y is preferably an aryl group, a heterocyclic group, an alkenyl group, or an alkynyl group.
- Examples of the aryl group represented by Y include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
- a phenyl group and a naphthyl group are preferable, and a phenyl group is more preferable.
- heterocyclic group examples include heterocyclic groups containing at least one hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group.
- a heterocyclic group containing at least one hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group.
- Group, pyrrolyl group, thienyl group, pyridinyl group and thiazolyl group are preferred.
- aryl groups or heterocyclic groups may have at least one substituent.
- substituents include a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, and 1 to 6 alkylsulfinyl groups, alkylsulfonyl groups having 1 to 6 carbon atoms, carboxyl groups, fluoroalkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, alkylthio groups having 1 to 6 carbon atoms, 1 carbon atom N-alkylamino group having 6 to 6, N, N-dialkylamino group having 2 to 12 carbon atoms, N-alkylsulfamoyl group having 1 to 6 carbon atoms, N, N-dialkylsulfur group having 2 to 12 carbon atoms
- substituent include a moyl group.
- L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
- Q 3 represents ⁇ N— or ⁇ CRz— (Rz represents a hydrogen atom or a substituent), and Q 4 represents a nonmetallic atom belonging to Groups 14-16.
- Z represents a nonmetallic atom group that forms a ring with Q 3 and Q 4 .
- the ring formed from Q 3 , Q 4 and Z may be condensed with another ring.
- the ring formed from Q 3 , Q 4 and Z is preferably a nitrogen-containing 5-membered ring or 6-membered ring condensed with a benzene ring.
- L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
- Wa and Wb is an alkenyl group or an alkynyl group
- a vinyl group having a substituent and an ethynyl group are preferable.
- the compound represented by general formula (3) is particularly preferable.
- the compound represented by the general formula (3) is superior in heat resistance and light resistance to the compound represented by the general formula (1), and is an organic solvent compared to the compound represented by the general formula (2).
- the solubility with respect to and the compatibility with a polymer are favorable.
- the compound represented by the general formula (A) according to this embodiment can be contained by appropriately adjusting the amount for imparting desired wavelength dispersibility and anti-bleeding property.
- the content of the derivative is preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass. If it is in this range, sufficient wavelength dispersibility and bleeding prevention property can be imparted to the cellulose derivative of this embodiment.
- the compound represented by General Formula (A), General Formula (1), General Formula (2), and General Formula (3) can be performed with reference to a known method. Specifically, it can be synthesized with reference to Journal of Chemical Crystallography (1997); 27 (9); 512-526), JP 2010-31223 A, JP 2008-107767 A, and the like.
- the cellulose acylate film used in the production method of the present embodiment contains cellulose acylate as a main component.
- the cellulose acylate film preferably contains cellulose acylate in the range of 60 to 100% by mass with respect to 100% by mass of the total mass of the film. Further, the total acyl group substitution degree of cellulose acylate is 2.0 or more and less than 3.0, and more preferably 2.2 to 2.7.
- cellulose acylate examples include esters of cellulose and aliphatic carboxylic acids and / or aromatic carboxylic acids having about 2 to 22 carbon atoms, and in particular, esters of cellulose and lower fatty acids having 6 or less carbon atoms. Preferably there is.
- the acyl group bonded to the hydroxyl group of cellulose may be linear or branched, and may form a ring. Furthermore, another substituent may be substituted.
- the degree of substitution is the same, birefringence decreases when the number of carbon atoms described above is large. Therefore, the number of carbon atoms is preferably selected from acyl groups having 2 to 6 carbon atoms.
- the degree of propionyl substitution and the degree of butyryl substitution Is a sum of 0 or more and less than 3.0.
- the cellulose acylate preferably has 2 to 4 carbon atoms, more preferably 2 to 3 carbon atoms.
- cellulose acylate includes propionate group, butyrate group or phthalyl group in addition to acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate or cellulose acetate phthalate.
- Bound cellulose mixed fatty acid esters can be used.
- the butyryl group forming butyrate may be linear or branched.
- cellulose acetate, cellulose acetate butyrate, or cellulose acetate propionate is particularly preferably used as the cellulose acylate.
- the cellulose acylate according to this embodiment preferably satisfies the following mathematical formulas (iii) and (iv).
- Formula (iii) 2.0 ⁇ X + Y ⁇ 3.0
- Formula (iv) 0.5 ⁇ X
- Y represents the degree of substitution of the acetyl group
- X represents the degree of substitution of the propionyl group or butyryl group or a mixture thereof.
- the mixing ratio is preferably 1:99 to 99: 1 (mass ratio).
- cellulose acetate propionate is particularly preferably used as the cellulose acylate.
- 0 ⁇ Y ⁇ 2.5 and 0.5 ⁇ X ⁇ 3.0 are preferable (where 2.0 ⁇ X + Y ⁇ 3.0), More preferably, 0.5 ⁇ Y ⁇ 2.0 and 1.0 ⁇ X ⁇ 2.0 (where 2.0 ⁇ X + Y ⁇ 3.0).
- the substitution degree of the acyl group can be measured according to ASTM-D817-96.
- the number average molecular weight of cellulose acylate is preferably in the range of 60,000 to 300,000, since the mechanical strength of the resulting film becomes strong. More preferably, cellulose acylate having a number average molecular weight of 70,000 to 200,000 is used.
- the weight average molecular weight (Mw) and number average molecular weight (Mn) of cellulose acylate are measured using gel permeation chromatography (GPC).
- the measurement conditions are as follows.
- this measuring method can be used also as a measuring method of the other polymer in this embodiment.
- the residual sulfuric acid content in the cellulose acylate is preferably in the range of 0.1 to 45 mass ppm in terms of elemental sulfur. These are considered to be contained in the form of salts. If the residual sulfuric acid content exceeds 45 ppm by mass, there is a tendency to break during hot stretching or slitting after hot stretching.
- the residual sulfuric acid content is more preferably in the range of 1 to 30 ppm by mass.
- the residual sulfuric acid content can be measured by the method prescribed in ASTM D817-96.
- the free acid content in the cellulose acylate is preferably 1 to 500 ppm by mass.
- the above range is preferable because it is difficult to break as described above.
- the free acid content is preferably in the range of 1 to 100 ppm by mass, and is more difficult to break.
- the range of 1 to 70 ppm by mass is particularly preferable.
- the free acid content can be measured by the method prescribed in ASTM D817-96.
- the residual alkaline earth metal content, residual sulfuric acid content, and residual acid content are within the above ranges. And can be preferable.
- a cellulose acylate has few bright spot foreign materials when it is made into a film.
- Bright spot foreign matter means that when two polarizing plates are placed in a crossed Nicol state, an optical film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It means a point (foreign matter) where light from the opposite side appears to leak.
- the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less, more preferably 100 / cm 2 or less, and 50 / cm 2 or less. Is more preferably 30 pieces / cm 2 or less, particularly preferably 10 pieces / cm 2 or less, and most preferably none.
- the bright spot having a diameter of 0.005 to 0.01 mm or less is also preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, and 50 pieces / cm 2 or less. Is more preferably 30 pieces / cm 2 or less, particularly preferably 10 pieces / cm 2 or less, and most preferably none.
- cellulose as a raw material for cellulose acylate, but examples include cotton linters, wood pulp, and kenaf. Moreover, the cellulose acylate obtained from them can be mixed and used at an arbitrary ratio.
- Cellulose acylate can be produced by a known method. Specifically, for example, it can be synthesized with reference to the method described in JP-A-10-45804.
- cellulose acylate is also affected by trace metal components in cellulose acylate.
- trace metal components are thought to be related to the water used in the production process, but it is preferable that there are few components that can become insoluble nuclei, in particular, metal ions such as iron, calcium, magnesium,
- An insoluble matter may be formed by salt formation with a polymer degradation product or the like that may contain an organic acidic group, and it is preferable that the amount is small.
- the calcium (Ca) component easily forms a coordination compound (that is, a complex) with an acidic component such as a carboxylic acid or a sulfonic acid, and many ligands. Insoluble starch, turbidity) may be formed.
- the content in cellulose acylate is preferably 1 mass ppm or less.
- the content in the cellulose acylate is preferably 60 ppm by mass or less, more preferably 0 to 30 ppm by mass.
- the magnesium (Mg) component too much content will cause insoluble matter, so the content in the cellulose acylate is preferably 0 to 70 ppm by mass, particularly preferably 0 to 20 ppm by mass. .
- the content of metal components such as the content of iron (Fe) component, the content of calcium (Ca) component, the content of magnesium (Mg) component, etc.
- Fe iron
- Ca calcium
- Mg magnesium
- analysis can be performed using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer).
- the long stretched film obtained by the production method according to this embodiment may be obtained by appropriately mixing polymer components other than the cellulose ester described later.
- the polymer component to be mixed is preferably one having excellent compatibility with the cellulose ester, and the transmittance when formed into a film is preferably 80% or more, more preferably 90% or more, and further preferably 92% or more.
- Additives added to the dope include plasticizers, ultraviolet absorbers, retardation adjusting agents, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, fine particles, and the like.
- additives other than the fine particles may be added during the preparation of the cellulose ester solution, or may be added during the preparation of the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to the polarizing plate used in the liquid crystal image display device.
- These compounds are preferably contained in an amount of 1 to 30% by mass, preferably 1 to 20% by mass, based on the cellulose ester.
- a compound having a vapor pressure at 200 ° C. of 1400 Pa or less is preferable.
- These compounds may be added together with the cellulose ester and the solvent during the preparation of the cellulose ester solution, or may be added during or after the solution preparation.
- the compound added to adjust the retardation of the cellulose ester resin film used in the production method of the present embodiment has two or more aromatic rings as described in the specification of European Patent 911,656A2.
- the aromatic compound which has can be used.
- the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. Particularly preferred is an aromatic heterocycle, and the aromatic heterocycle is generally an unsaturated heterocycle. Of these, a 1,3,5-triazine ring is particularly preferred.
- the cellulose ester resin film used in the production method of the present embodiment has a cellulose ester and a substituent selected from a carboxyl group, a hydroxyl group, an amino group, an amide group, and a sulfonic acid group, and has a weight average molecular weight of 500. It is preferable to contain a polymer or oligomer of a vinyl compound that is in the range of ⁇ 200,000.
- the mass ratio of the content of the cellulose ester and the polymer or oligomer is preferably in the range of 95: 5 to 50:50.
- the cellulose ester resin film used in the production method of the present embodiment can contain fine particles as a matting agent in a stretched film, which makes it easy to transport and wind up when the stretched film is a long film. can do.
- the particle size of the matting agent is preferably primary particles or secondary particles of 10 nm to 0.1 ⁇ m.
- a substantially spherical matting agent having a primary particle acicular ratio of 1.1 or less is preferably used.
- silicon dioxide is particularly preferable.
- silicon dioxide for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) manufactured by Nippon Aerosil Co., Ltd.
- commercially available products such as Aerosil 200V, R972, R972V, R974, R202, and R812 can be preferably used.
- polymer fine particles include silicone resin, fluorine resin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. Examples include Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.). Can do.
- the fine silicon dioxide particles preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / L or more.
- the average primary particle diameter is more preferably 5 to 16 nm, further preferably 5 to 12 nm. A smaller primary particle average diameter is preferred because haze is low.
- the apparent specific gravity is preferably 90 to 200 g / L or more, and more preferably 100 to 200 g / L or more. Higher apparent specific gravity makes it possible to produce a high-concentration fine particle dispersion, which is preferable because no haze or aggregates are generated.
- the addition amount of the matting agent in the present embodiment is preferably long stretched film 1 m 2 per 0.01 ⁇ 1.0 g, more preferably 0.03 ⁇ 0.3 g, more preferably 0.08 ⁇ 0.16 g.
- thermal stabilizers such as inorganic fine particles such as kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, and alumina, and salts of alkaline earth metals such as calcium and magnesium may be added.
- a surfactant, a peeling accelerator, an antistatic agent, a flame retardant, a lubricant, an oil agent and the like may be added.
- the cellulose ester resin film used in the production method of the present embodiment may be formed by either a solution casting method or a melt casting method.
- a dope is prepared by dissolving a resin and an additive in an organic solvent, the dope is cast on a belt-shaped or drum-shaped metal support, and the cast dope is dried as a web. It is performed by a step, a step of peeling from a metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
- the solution casting method is preferably used because it is excellent in suppressing coloration of the film, suppressing foreign matter defects, suppressing optical defects such as die lines, and having excellent flatness and transparency of the film.
- the concentration of cellulose acetate in the dope is preferably higher because the drying load after casting on a metal support can be reduced. However, if the concentration of cellulose acetate is too high, the load during filtration increases and the filtration accuracy increases. Becomes worse.
- the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
- the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
- the surface temperature of the metal support in the casting process is set to ⁇ 50 ° C. to a temperature at which the solvent boils and does not foam. Higher temperatures are preferable because the web can be dried faster, but if the temperature is too high, the web may foam or flatness may deteriorate.
- a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
- the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
- the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130%. % By mass, particularly preferably 20 to 30% by mass or 70 to 120% by mass.
- the amount of residual solvent is defined by the following formula.
- Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
- the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less. Particularly preferably, it is 0 to 0.01% by mass or less.
- a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
- An organic solvent useful for forming a dope when the cellulose ester resin film according to this embodiment is produced by a solution casting method is used without limitation as long as it dissolves cellulose acetate and other additives simultaneously. be able to.
- methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
- Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
- the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
- a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
- the proportion of alcohol in the dope increases, the web gels and becomes easy to peel off from the metal support.
- the proportion of alcohol is small, the role of promoting cellulose acetate dissolution in non-chlorine organic solvent systems There is also.
- the dope composition is dissolved in%.
- linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
- the melt film forming method is a preferable film forming method from the viewpoints that it is easy to reduce the retardation Rt in the thickness direction after oblique stretching, the amount of residual volatile components is small, and the dimensional stability of the film is excellent.
- the melt film-forming method refers to heating and melting a composition containing an additive such as a resin and a plasticizer to a temperature exhibiting fluidity, and then casting a melt containing fluid cellulose acetate.
- Methods formed by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method is preferable, in which a film having excellent mechanical strength and surface accuracy can be obtained.
- a plurality of raw materials used for melt extrusion are usually kneaded and pelletized in advance.
- Pelletization may be performed by a known method. For example, dry cellulose acetate, a plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and formed into a strand form from a die. It can be done by extrusion, water cooling or air cooling and cutting.
- Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
- a small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
- the extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.).
- a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
- Film formation is performed using the pellets obtained as described above.
- the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
- the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die.
- the film is nipped by a cooling roll and an elastic touch roll, and solidified on the cooling roll.
- the extrusion flow rate is preferably carried out stably by introducing a gear pump.
- a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
- the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
- Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
- the film temperature on the touch roll side when the film is nipped by the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film.
- a well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
- the elastic touch roll is also called a pinching rotator.
- As the elastic touch roll a commercially available one can be used.
- the long film containing the above cellulose ester resin may be a single layer or a laminated film of two or more layers.
- the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
- the long stretched film according to the present embodiment is produced by the production method.
- thermoplastic resin a long film containing a thermoplastic resin
- the film thickness of the long film before oblique stretching is preferably 30 to 300 ⁇ m, more preferably 40 to 150 ⁇ m.
- the thickness unevenness ⁇ m in the flow direction of the long film supplied to the oblique stretching apparatus maintains the film take-up tension at the entrance of the oblique stretching tenter, which will be described later, and stabilizes the optical characteristics such as the orientation angle and retardation. From the viewpoint of achieving the above, it is necessary to be less than 0.30 ⁇ m, preferably less than 0.25 ⁇ m, more preferably less than 0.20 ⁇ m.
- ⁇ m is a value represented by an average value of the standard deviation ⁇ in the flow direction at each width position.
- a film having a thickness gradient in the width direction may be supplied as the long film before oblique stretching.
- the gradient of the thickness of the long film before the oblique stretching is to stretch a film with various thickness gradients experimentally changed so that the film thickness at the position where stretching in the subsequent process is completed can be made the most uniform. This can be determined empirically.
- the gradient of the thickness of the long film before oblique stretching can be adjusted, for example, so that the end on the thick side is about 0.5 to 3% thicker than the end on the thin side. it can.
- the width of the long film after oblique stretching is not particularly limited, but can be 500 to 4000 mm, preferably 1000 to 2000 mm.
- the preferable elastic modulus at the stretching temperature at the time of oblique stretching of the long film is 0.01 Mpa or more and 5000 Mpa or less, more preferably 0.1 Mpa or more and 500 Mpa or less, expressed as Young's modulus. If the elastic modulus is too low, the shrinkage rate during stretching and after stretching will be low, and wrinkles will be difficult to disappear. If it is too high, the tension applied during stretching will increase, and the strength of the part holding both side edges of the film will be increased. It is necessary to increase the load, and the load on the tenter in the subsequent process increases.
- the long film before oblique stretching a non-oriented film may be used, or a film having an orientation in advance may be supplied. Further, if necessary, the width distribution of the orientation of the long film before oblique stretching may be a bow shape, so-called bowing. In short, the orientation state of the long film before oblique stretching can be adjusted so that the orientation of the film at the position where stretching in the subsequent step is completed can be made desirable.
- the long stretched film of the present embodiment is inclined in a range where the orientation angle ⁇ is greater than 0 ° and less than 90 ° with respect to the winding direction, preferably in the range of 30 ° or more and 60 ° or less. It is preferable to incline, more preferably in the range of 40 ° or more and 50 ° or less.
- the variation of the orientation angle ⁇ of the long stretched film according to this embodiment is preferably less than 0.6 °, and more preferably less than 0.4 °.
- a long stretched film with a variation in orientation angle ⁇ of less than 0.6 ° is bonded to a polarizer to obtain a circularly polarizing plate, and when this is installed in an image display device such as an organic electroluminescence display device, the display quality is improved. It becomes possible to make the uniformity good.
- the retardation value Ro (550) measured at a wavelength of 550 nm of the long stretched film of the present embodiment is preferably in the range of 120 nm to 160 nm, and more preferably in the range of 130 nm to 150 nm.
- the variation of the in-plane retardation Ro of the long stretched film according to the present embodiment is 4 nm or less, preferably 3 nm or less.
- the in-plane retardation Ro of the long stretched film according to this embodiment is selected to be an optimum value depending on the design of the display device used.
- the average thickness of the long stretched film according to the present embodiment is preferably 5 to 100 ⁇ m, more preferably 10 to 80 ⁇ m from the viewpoint of mechanical strength and the like, but it is also caused by the inclination of the orientation angle on the inner peripheral side.
- the problem of scratches and dents at the time of slitting becomes prominent when manufacturing a thin long stretched film from the viewpoint of mechanical strength. Therefore, the production method of this embodiment is particularly preferably used when producing a thin film in which the average thickness of the long stretched film is in the range of 10 to 35 ⁇ m.
- the thickness unevenness in the width direction is preferably 3 ⁇ m or less, and more preferably 2 ⁇ m or less, because it affects the availability of winding.
- a polarizing plate protective film, a polarizer, a ⁇ / 4 retardation film, and an adhesive layer are laminated in this order, and the slow axis of the ⁇ / 4 retardation film and the absorption axis of the polarizer Is an angle of 45 °.
- a long polarizing plate protective film, a long polarizer, and a long ⁇ / 4 retardation film (stretched film) using the long stretched film according to this embodiment are laminated in this order. It is preferable.
- the circularly polarizing plate using the long stretched film according to the present embodiment uses a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and is a ⁇ / 4 retardation film / polarizer. It can be manufactured by pasting in a configuration.
- the film thickness of the circularly polarizing plate is 5 to 40 ⁇ m, preferably 5 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
- the circularly polarizing plate can be produced by a general method.
- the ⁇ / 4 retardation film subjected to the alkali saponification treatment is preferably bonded to one surface of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
- the circularly polarizing plate can be configured by further bonding a release film on the opposite surface of the polarizing plate protective film of the polarizing plate.
- the protective film and the release film are used for the purpose of protecting the polarizing plate at the time of shipment of the polarizing plate, product inspection, and the like.
- the display device is preferably an organic EL display.
- FIG. 7 shows an example of the configuration of the organic EL image display device, but the organic EL image display device in the case of using the long stretched film according to the present embodiment is not limited to this.
- a polarizer is formed on an organic electroluminescence element having a metal electrode 102, a light emitting layer 103, a transmissive electrode (ITO) 104, and a sealing layer 105 in this order on a substrate 101 made of glass, polyimide, or the like via an adhesive tank 106.
- An organic electroluminescence image display device is configured by providing a circularly polarizing plate in which 108 is sandwiched between a ⁇ / 4 retardation film 107 and a protective film 109.
- the protective film 108 is preferably laminated with a cured layer.
- the cured layer not only prevents scratches on the surface of the organic electroluminescence image display device but also has an effect of preventing warpage due to the circularly polarizing plate. Further, an antireflection layer may be provided on the cured layer.
- the thickness of the organic electroluminescence element itself is about 1 ⁇ m.
- the light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or Structures with various combinations, such as a laminate of such a light-emitting layer and an electron injection layer composed of a perylene derivative, and / or a laminate of these hole injection layer, light-emitting layer, and electron injection layer, are known. ing.
- holes and electrons are injected into the light emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by the recombination of these holes and electrons is reduced by the fluorescent material. It emits light on the principle that it is excited and emits light when the excited fluorescent material returns to the ground state.
- the mechanism of recombination on the way is the same as that of a general diode, and as can be expected from this, the current and the light emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
- an organic electroluminescence image display device in order to extract light emitted from the light emitting layer, at least one of the electrodes must be transparent, and usually a transparent electrode formed of a transparent conductor such as indium tin oxide (ITO) is used. Used as the anode.
- ITO indium tin oxide
- metal electrodes such as Mg—Ag and Al—Li are used.
- the light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the light emitting layer transmits light almost completely like the transparent electrode. As a result, the light that is incident from the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the light emitting layer, and is reflected by the metal electrode again exits to the surface side of the transparent substrate.
- the display surface of the electroluminescence image display device looks like a mirror surface.
- the circularly polarizing plate for an organic electroluminescence display device using the long stretched film according to this embodiment is suitable for a display device for organic electroluminescence in which such external light reflection is particularly problematic.
- the method for producing a long stretched film according to the present invention includes a step of forming a long film containing a thermoplastic resin, and an oblique stretching device from a specific direction different from the traveling direction of the film after stretching the long film.
- the long film is slanted in the direction of greater than 0 ° and less than 90 ° with respect to the width direction while feeding and transporting both ends of the long film in the width direction with the gripping tool of the oblique stretching tenter.
- An elongated stretched film having at least a stretching step, a slitting step of cutting both ends of the elongated stretched film after the oblique stretching step with a slitting device, and a step of winding the elongated stretched film after the slitting step
- a process of weakening the orientation in the conveying direction of at least the inner peripheral cut portion of the long stretched film may be performed before cutting.
- the treatment for weakening the orientation in the transport direction is preferably a treatment for heating the cut portion of the long stretched film. According to such a configuration, tearing or roughening of the cut surface of the film during cutting is less likely to occur.
- the process which weakens the orientation to a conveyance direction is a process which dripping an organic solvent to the cutting location of a elongate stretched film.
- the slit process can be performed more easily.
- the slit device has a mechanism that follows in accordance with a change in a turning angle of the long stretched film.
- the manufacturing method of the elongate stretched film using diagonally stretched film formation adheres at the time of a slit process by the process which weakens the orientation to the conveyance direction of a cutting location, before cut
- DCP dicyclopentadiene
- 1,4-methano-1,4,4a 9a-tetrahydrofluorene
- MTD 8-methyl-tetracyclo [4.4.0.12, 5.17,10] -dodec-3-ene
- This hydrogenated ring-opened polymer had a weight average molecular weight (Mw) of 31,000, a molecular weight distribution (Mw / Mn) of 2.5, a hydrogenation rate of 99.9%, and a Tg of 134 ° C.
- Mw weight average molecular weight
- Mw / Mn molecular weight distribution
- Hg hydrogenation rate
- pellets were melt extruded using a short shaft extruder having a coat hanger type T die (Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip material is tungsten carbide, peel strength 44N from molten resin).
- a cycloolefin polymer film having a thickness of 100 ⁇ m was produced by molding.
- extrusion molding a long film original fabric A having a width of 900 mm was obtained in molding conditions of a molten resin temperature of 240 ° C. and a T die temperature of 240 ° C. in a clean room of class 10,000 or less.
- the long film original fabric A was wound up on a roll.
- the angle (swivel angle) formed by the film feeding direction and the winding direction was set to 47 °.
- the both ends of the elongate film A sent from a film delivery apparatus were hold
- the long film is gripped by moving the clip levers of the first and second clips with a clip closer.
- both ends of the long film are simultaneously gripped by the first and second clips at the same time, and the line drawing connecting the gripping positions at both ends is parallel to the axis parallel to the lateral direction of the film. Grip like so.
- the gripped unstretched film was heated by passing the preheating zone, the stretching zone, and the heat setting zone in the heating zone with the first and second clips, and stretched in the width direction to obtain a stretched film.
- stretching was 10 m / min, and the extending
- the stretch ratio of the film before and after stretching was doubled so that the film after stretching had a thickness of 50 ⁇ m and a width of 1800 mm.
- stretched film 1 The long stretched film of cycloolefin obtained by the above steps was designated as stretched film 1.
- Table 1 below describes the stretching conditions for each long stretched film.
- the stretching conditions are as follows. Orientation angle after stretching (°): average orientation angle measured at a pitch of 50 mm in the film width direction. Film thickness after stretching ( ⁇ m): Average film thickness measured at 20 mm pitch in the film width direction. Conveying speed (m / min): Traveling speed of the gripping tool that travels on the left-right asymmetric rail of the obliquely stretched tenter. Swivel angle (°): Angle formed by the film feeding direction and the film winding direction. Stretching temperature (° C.): Temperature at which the film is stretched. Stretch ratio: A value represented by W / W0 when the width of the film before oblique stretching is W0 and the film width after oblique stretching is W.
- the inside of the Kolben was depressurized to 4 ⁇ 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 ⁇ 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off. Finally, 100 g of water was added to the collected toluene layer, washed with water at room temperature for 30 minutes, the toluene layer was collected, and toluene was distilled off at 60 ° C. under reduced pressure (4 ⁇ 10 2 Pa or less). A mixture of compounds A-1, A-2, A-3, A-4 and A-5 as shown in FIG. 8 was obtained.
- A-1 was 1.3% by mass
- A-2 was 13.4% by mass
- A-3 was 13.1% by mass
- A-4 was 31% by mass.
- 0.7% by mass and A-5 was 40.5% by mass.
- the average degree of substitution was 5.5.
- the measurement conditions for the HPLC-MASS are as follows.
- MS unit Device LCQ DECA (manufactured by Thermo Quest Co., Ltd.)
- Ionization method Electrospray ionization (ESI) method Spray Voltage: 5 kV
- Capillary temperature 180 ° C
- Vaporizer temperature 450 ° C
- Ester Compound 1 >> 251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with thermometer, stirrer, and slow cooling tube The flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream. The ester compound 1 was obtained by carrying out a dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction.
- the ester compound 1 has an ester of benzoic acid at the end of a polyester chain formed by condensation of 1,2-propylene glycol, phthalic anhydride and adipic acid.
- the ester compound 1 had an acid value of 0.10 and a number average molecular weight of 450.
- Fine particle additive liquid 1 After 11 parts by mass of fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) and 89 parts by mass of ethanol were stirred and mixed with a dissolver for 50 minutes, dispersion was performed with Manton Gorin to prepare a fine particle dispersion 1.
- fine particle dispersion 1 1 part by mass of the fine particle dispersion 1 was slowly added while sufficiently stirring the dissolution tank containing 99 parts by mass of methylene chloride. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
- the dope solution was uniformly cast on a stainless steel belt support using an endless belt casting apparatus.
- the solvent was evaporated until the residual solvent amount in the cast (cast) film was 75%, and the film was peeled off from the stainless steel belt support.
- the peeled cellulose ester film was stretched 1.1 times in the width direction by a transverse stretching tenter.
- the temperature conditions of the transverse stretching tenter oven at that time were adjusted to 160 ° C for the preheating zone, 165 ° C for the stretching zone, 172 ° C for the holding zone, and 110 ° C for the cooling zone.
- the tenter clip traces at both ends of the film are trimmed, the drying temperature is 130 ° C., and drying is finished while the long film is conveyed in the drying zone using a number of rolls.
- Rolled up as B As described above, a long film original fabric B having a thickness of 60 ⁇ m and a width of 900 mm was obtained.
- Example 1 After heating the inner peripheral side of the long stretched film 1 at a position 120 mm in the width direction from the end of the film using a CO 2 laser light irradiation device (wavelength 10.6 ⁇ m, laser light output 30 W), a slit blade The long stretched film was cut at the same position as the portion irradiated with heating.
- a CO 2 laser light irradiation device wavelength 10.6 ⁇ m, laser light output 30 W
- a slit device it is composed of a disk-shaped rotating upper blade and a roll-shaped rotating lower blade, and the rotating upper blade is made of super steel material, and the diameter of the rotating upper blade is 200 mm, And the thickness of the blade at the cut location was 0.5 mm.
- the material of the roll-shaped rotary lower blade was a super steel material, and the roll diameter of the rotary lower blade was 100 mm.
- Example 2 to 6 each long stretched film was cut in the same manner as in Example 1 except that the slit process was performed by changing the type of the long stretched film as shown in Table 2 below.
- Example 7 In Example 7, the same type of long stretched film as in Example 6 was used, and the means for weakening the orientation was changed to organic solvent dropping.
- a mixed solution of methylene chloride and methanol was used as a dropping solution, and an organic solvent was dropped onto the inner periphery of the film using an inkjet method as an organic solvent dropping device.
- the inkjet discharge device was an inkjet head having a nozzle having a nozzle diameter of 3.5 ⁇ m. Then, the amount of the organic solvent dropped from the inkjet head was adjusted, and the organic solvent was dropped at a position 120 mm from the inner peripheral end of the film surface 10 seconds before cutting the film. Further, the slitting apparatus was cut using the same one as in Examples 1-6.
- Example 8 In Example 8, as shown in Table 2 below, the same type of long stretched film as in Examples 6 and 7 was used, and 120 mm from the end on the inner peripheral side in the width direction of the film surface before cutting the film. Was heated under the condition that the blowing air temperature was 300 ° C. with a heat gun having a blower opening of ⁇ 30 mm. The slitting device used was the same as in Examples 1-7.
- Example 9 In Example 9, the long stretched film to be used was changed to a cellulose ester type, and after the treatment by the laser heating apparatus performed in Examples 1 to 6, the film surface end on the inner peripheral side in the width direction was used. Cutting with a slitting device was performed at a position 120 mm from the part. Further, the same slitting device as in Examples 1 to 8 was used.
- Comparative Examples 1 to 6 In Comparative Examples 1 to 6, the type of the long stretched film as shown in Table 2 below was changed, and the width direction of the film surface was not performed without performing solvent dripping or heat treatment as in Examples 1 to 9 above. The slit process was performed at a position of 120 mm from the end portion on the inner peripheral side. The slitting device used was the same as in Examples 1-9.
- the smoothness of the end of the film was determined according to the following evaluation criteria by touching the cut surface of the end of each elongated stretched film after the slitting step with the naked eye and by hand.
- A The film cross section of the cut part is smooth.
- B When the film cross section of the cut part is traced with a finger, it feels rough.
- C When the film cross section of a cut part is seen visually, the crack etc. have generate
- Example 6 in which the film before cutting was heated with a laser-type heating device and cut using the slitting device, no cutting residue was seen on the slit blade, and the cutting part A film having a smooth film cross section and no scratches could be obtained.
- Example 6 although a film was formed under a higher speed condition than in Examples 1 to 5, a film having an excellent appearance so as not to be visually pressed or scratched could be obtained. It was.
- Example 7 in which the organic solvent was dropped onto the film before cutting, the film was cut at the slit blade, although the film was formed under high speed conditions. Was a smooth film with few scratches.
- disconnection was heated using the heat gun and cut
- the cellulose ester film is heated and cut using a laser-type heating device in the same manner as in Example 1, so that no cut residue is seen on the slit blade, the film cross section of the cut portion is smooth, and A scratch-free film could be obtained.
- Comparative Examples 1 to 6 in which the pretreatment as in each Example was not performed before cutting were inferior to each evaluation.
- the present invention has wide industrial applicability in the technical field of stretched film and its production method.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
本発明は、熱可塑性樹脂を含有する長尺延伸フィルムの製造方法において、スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の配向を弱める処理を行うことを特徴とする長尺延伸フィルムの製造方法に関する。
Description
本発明は、長尺延伸フィルムの製造方法に関する。
樹脂を延伸してなる延伸フィルムは、その光学異方性を利用して、各種ディスプレイ装置において様々な光学的機能を果たす光学フィルムとして用いられている。例えば、液晶表示装置において、該延伸フィルムを着色防止、視野角拡大などの光学補償などのための光学補償フィルムとして用いたり、該延伸フィルムと偏光子とを貼り合わせることで、該延伸フィルムを、偏光板保護フィルムを兼ねた位相差フィルムとして用いたりすることが知られている。
一方、近年では新たなディスプレイ装置として、有機エレクトロルミネッセンス表示装置のような自発光型の表示装置が注目されている。自発光型表示装置は、バックライトが常に点灯している液晶表示装置に対して消費電力を抑制できる余地があり、更に、有機エレクトロルミネッセンス表示装置のような各色に対応した光源がそれぞれ点灯する自発光表示装置では、コントラスト低減の要因となるカラーフィルターを設置する必要がないため、コントラストを更に高めることが可能である。
しかしながら、有機エレクトロルミネッセンス表示装置においては、光取り出し効率を高めるためにディスプレイの背面側にアルミニウム板等の反射体が設けられ、ディスプレイに入射した外光がこの反射体で反射されることで画像のコントラストを低下させるといった問題が生じる。そのため、外光反射防止による明暗コントラスト向上のために該延伸フィルムと偏光子とを貼り合わせて円偏光板をディスプレイの表面側に用いる技術が知られている。
このような円偏光板は、偏光子の透過軸に対して、該延伸フィルムの面内遅相軸を所望の角度で傾斜するような配置で貼り合わされる必要がある。
しかしながら、一般的な偏光子(偏光フィルム)は、搬送方向に高倍率延伸することで得られるもので、その吸収軸が搬送方向と一致しており、従来の位相差フィルムは、縦延伸、又は横延伸で製造され、原理的に面内の遅相軸がフィルムの長尺方向に対し0°または90°方向になる。このため、上記のように偏光子の吸収軸と延伸フィルムの遅相軸との関係を傾斜した所望の角度にするには長尺の偏光フィルム及び/または延伸フィルムを特定の角度で切り出してフィルム片同士を1枚ずつ貼り合せるバッチ式で行わざるを得なくなり、遅相軸のばらつきによる生産性の悪化や切り屑等の付着による製品の歩留まりの低下が問題として挙げられていた。
そこで特許文献1では、所望の角度で斜め方向に延伸し、遅相軸がフィルムの長尺方向に対し、0°でも90°でもない方向に自在に制御可能な長尺の位相差フィルムの製造方法が提案されている。この方法により偏光フィルムと延伸フィルムをロール-トゥ-ロールで貼り合わせることができるため、歩留まりの低下がなくなり、安定した生産を行うことができた。
しかしながら、前記の斜め延伸製膜法で高速製造・薄膜品質のものを生産した場合において、出来上がったフィルムの外観品質を評価した際、延伸フィルムにキズや凹みが発生する問題が生じた。また、これを前述した表示装置に組み込んだ場合は、点状の色ヌケといったことを発生させ、製品品質上の問題が生じた。
本発明の一局面は、本発明に係る長尺延伸フィルムの製造方法は熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断するスリット工程、及びスリット工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の搬送方向への配向を弱める処理を行うことを特徴とする。
本発明によれば、斜め延伸製膜を用いた長尺延伸フィルムの製造方法において、フィルムの内周側を切断する前に切断箇所の搬送方向への配向を弱める処理によって、スリット工程時に付着するフィルム片やカスが低減され、表面へのキズの付着が防止された長尺延伸フィルムを得ることができ、十分な製品幅を確保することが可能な長尺延伸フィルムの製造方法を提供することができる。
本発明の目的は、斜め延伸製膜による長尺延伸フィルム両端のスリット時にフィルムへ付着するフィルム片やカスの低減、フィルム表面へのキズの付着の防止、及び製造停止リスクの抑制を可能としながら、十分な製品幅を確保することが可能な長尺延伸フィルムの製造方法を提供することにある。
この課題について調査すると、前記キズや凹みの発生位置がフィルム端部を切断するスリット工程後にあることを見つけた。この対策として、スリットの切断幅を変えた施策を行った際、切断幅を広く取るとキズや凹みが改善し、逆に切断幅を狭くするとキズや凹みが悪化することを見出した。
一般的に、端部を把持して延伸するフィルムの製造方法においては、クリップ等により把持されたフィルムの端部は、クリップ把持によって変形してしまい、製品として用いることができなくなるため、スリッターと呼ばれる切断具で切断して除去する必要がある。しかしながらキズや凹みをなくすレベルまで切断幅を広く取ると、製品となる有効なフィルム幅が確保出来なくなってしまい、新たな問題となった。
そこで更に調査を行った結果、斜め延伸装置における内周側におけるフィルムの切断断面の方が粗くなっており、キズや凹みの発生も内周側が顕著であることを発見した。上記要因について検討を行ったところ、上記の問題が斜めに延伸されたフィルムをスリットする際に発生するものであることを見出した。
一方、特許文献1に記載されるような、フィルムの繰り出し方向と巻取り方向が異なる延伸装置により、斜めに延伸する方法においては、内周側(把持具により把持される長さが短い側)が延伸時に先行することで、フィルムが斜めに延伸されてフィルムを構成する樹脂が斜めに配向するとともに遅相軸が斜めに配向したフィルムを得ることができる。その際、内周側では樹脂(分子)の配向方向がフィルムの搬送方向の下流側に傾いている。
また、把持具により把持される端部付近では搬送方向に強く引っ張られるため、フィルム中央部と比較して更に搬送方向の下流側に傾斜した方向に樹脂が配向することとなる。フィルムの樹脂がフィルムの搬送方向の下流側に大きく傾斜している場合、樹脂フィルムは配向方向に裂けやすい特性を示すため、フィルムの進行方向から切断の力を加えた際、切断の力や切断時のフィルムの微小な振動が起きた場合に、端部で裂けや荒れが生じやすくなる。
一方、外周側(把持具により把持される長さが長い側)では、斜め延伸時にフィルムを搬送方向上流側に引っ張る力が発生するため、フィルム端部付近の樹脂はフィルムの搬送方向の上流側への傾斜が大きくなる。そのため、外周側では切断時の切断面の裂けや荒れが発生しにくい。したがって、スリッターにより端部から同じ幅ずつ切断した場合では内周側の方が裂け易くなり、端部から発生するフィルム片等によりキズや凹みといった課題が大きくなっていたのである。
一般的なフィルムを横に延伸するような延伸フィルムの製造方法においても、フィルム中央部がやや搬送方向の上流側に撓む、いわゆるボーイングという現象が発生し、若干端部がフィルムの搬送方向の下流側に傾斜する場合はあるが、わずかであり、上記のようなスリット時の課題は認識されていなかった。
本発明はかかる課題に鑑みてなされたものであって、その目的は、スリット工程時に付着するフィルム片やカスが低減され、表面へのキズの付着が防止された長尺延伸フィルムを得ることができる光学フィルムの製造方法を提供することである。
本発明者らは、上述したような斜め延伸製膜におけるトラブルの原因は、斜交する角度を変えて製膜した場合におけるフィルムの配向角方向にあることを見出し、検討を行った。
図1(a)は横延伸製膜したフィルムの切断を行った場合のフィルム配向分布の概略図である。なお、図中、符号は:1 斜め延伸装置、2 斜め延伸テンター、3 フィルム繰り出し装置、4 フィルム巻き取り装置、5,8 搬送ロール、6 内側のガイドレール、7 外側のガイドレール、10 外側のスリット刃、11,12 ガイドレール開始位置、13,14 ガイドレール終了位置、15 長尺フィルム(長尺延伸フィルム)、16 インクジェットヘッド、110 基板、260 ヒーター、270 ヒーター電源、280 電熱部材、310 液滴、320 ノズルを示す。
フィルム中央部は横延伸により横配向するが、フィルムの端部はボーイング(弓なり状になること)によってフィルム中央部より数度傾いてしまう。したがって、この場合の切断幅としては、図1(a)中の波線矢印のように、製品規格に満たす範囲から数十mm残す程度に搬送方向の反対側からスリット装置などを用いてフィルムをスリットするのが一般的である。
続いて、図1(b)に前述の斜め延伸製膜したフィルムの切断を行った場合のフィルム配向分布の概略図を示す。それぞれ、図1(b)中のフィルムの右側が斜め延伸時の内側であり、左側が外側を示す。この場合、フィルムの配向方向は傾斜しているため、フィルムは斜め方向に裂け易い特性を有しており、前記横延伸製膜したフィルムを切断する場合に比べてより裂け易くなる。特に、フィルム内側を切断する場合(スリット2)は、フィルム外側を切断する場合(スリット1)に比べて切断方向側から見てフィルム側へ裂け易い特性を有しているため、特にフィルムの生産性に影響し易くなる。
以上のように、斜め延伸製膜したフィルムの両端を切断する場合、スリット部にフィルムの切断不足に伴うフィルム片やカスが付着し、また切断中に前記カスが舞い上がることでフィルム片やカスがフィルムに付着したまま搬送してしまう。このことが原因となって搬送中のロールとフィルムが擦れてしまい、フィルム表面にキズ等をつけてしまうという問題が生じていた。更にスリット後のフィルム端部に裂け等が生じて、最終的にはフィルムが破断して製膜が中止されるといった問題も生じていた。
特に、フィルムの幅方向に対して延伸方向の傾斜角度が大きくなった場合、上記問題が発生する頻度が多くなっていた。更に、フィルム製造速度を高速化した場合、延伸応力が上昇しフィルム端部側の配向角度がより傾斜してくるため、上記問題がより発生し易くなっていた。また、フィルムを薄膜化した場合にも、そのフィルム物性が弱くなることから上記問題が発生し易くなっていた。
本発明はこのような問題を解消するため検討された結果、完成されたものである。
以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
以下に本実施形態に係る長尺延伸フィルムの製造方法について説明する。
<長尺延伸フィルムの製造方法>
本実施形態の長尺延伸フィルムの製造方法は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断するスリット工程、及びスリット工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の搬送方向への配向を弱める処理を行うことを特徴とする。
本実施形態の長尺延伸フィルムの製造方法は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断するスリット工程、及びスリット工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の搬送方向への配向を弱める処理を行うことを特徴とする。
ここで内周側とは、把持具の走行距離が短い方を指し、外周側とは把持具の走行距離が長い方を指している。ここで図4は、斜め延伸テンターのレールパターンを示す概略図であり、左右の把持具Ci、Coが斜め延伸テンター入り口(図4中のAの位置)から延伸終了時の位置(図4のB)までを結ぶ非対称なレールRi、Ro上を走行する。図4のレールパターンは左に旋回した場合であるため、内周側はレールRi側であり、外周側はRo側である。また、レールパターンが右に旋回した場合においては前記Ri、Roは反対に変わることになる。
また長尺とは、フィルムの幅に対し、少なくとも5倍程度以上の長さを有するものをいい、好ましくは10倍もしくはそれ以上の長さを有し、具体的にはロール状に巻回されて保管または運搬される程度の長さを有するもの(フィルムロール)である。
また、前記スリット工程は、斜め延伸工程後にスリットをせずに巻取る工程を経た後、再度巻き替えを行う際にスリットを行う場合にも適用することができる。
また本実施形態の製造方法は、斜め延伸工程後にスリットをせずに巻取り工程を経た後、再度巻き替えを行う際にスリットを行う場合にも適用できる。
図2及び図3は本発明の一実施形態に係る長尺延伸フィルムの製造方法の各工程に用いる斜め延伸装置を模式的に示した図である。ただし、これは一例であって本発明はこれに限定されるものではない。
図2、3中、符号は以下の部材、装置等を表す。1 斜め延伸装置、2 斜め延伸テンター、3 フィルム繰り出し装置、4 フィルム巻き取り装置、5、8 搬送ロール、6 内側のガイドレール、7 外側のガイドレール、9 内側のスリット装置、10 外側のスリット装置、11、12 ガイドレール開始位置、13、14 ガイドレール終了位置、15 長尺フィルム(長尺延伸フィルム)、16 搬送方向への配向を弱める処理装置。
以下、本実施形態の製膜方法の各工程について説明する。
〔製膜工程〕
本実施形態の製造方法に係る製膜工程は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程である。製膜工程は、熱可塑性樹脂の種類等によって種々の手段で行われるが、詳細は後述する。
本実施形態の製造方法に係る製膜工程は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程である。製膜工程は、熱可塑性樹脂の種類等によって種々の手段で行われるが、詳細は後述する。
〔斜め延伸工程〕
本実施形態の製造方法に係る斜め延伸工程は、前記製膜工程において製膜した長尺フィルムを、延伸後のフィルムの巻き取り方向とは異なる特定の方向からフィルム繰り出し装置から繰り出し、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、フィルムを斜め延伸することによって、フィルムの幅手方向に対して0°を超え90°未満の任意の角度に面内遅相軸を付与する工程である。
本実施形態の製造方法に係る斜め延伸工程は、前記製膜工程において製膜した長尺フィルムを、延伸後のフィルムの巻き取り方向とは異なる特定の方向からフィルム繰り出し装置から繰り出し、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、フィルムを斜め延伸することによって、フィルムの幅手方向に対して0°を超え90°未満の任意の角度に面内遅相軸を付与する工程である。
ここで、フィルムの幅手方向に対する角度とは、フィルム面内における角度である。遅相軸は、通常延伸方向又は延伸方向に直角な方向に発現するため、本実施形態に係る製造方法では、フィルムの搬送方向に直交する方向に対して0°を超え90°未満の角度で、所望の角度に任意に設定して延伸を行うことにより、かかる遅相軸を有する長尺延伸フィルムを製造することができる。
(繰り出し装置)
図2、図3に示すように、フィルム繰り出し装置3は、斜め延伸テンター入口に対して所定角度でフィルムを送り出せるように、スライドおよび旋回可能となっている。そして、フィルム繰り出し装置3は、スライド可能となっており、搬送方向変更装置により斜め延伸テンター入口に前記フィルムを送り出せるようになっていることが好ましい。前記フィルム繰り出し装置3、及び搬送方向変更装置をこのような構成とすることにより、より製造装置全体の幅を狭くすることが可能となるほか、フィルムの送り出し位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。また、前記フィルム繰り出し装置3、及び搬送方向変更装置を移動可能とすることにより、把持具のフィルムへの噛込み不良を有効に防止することができる。
図2、図3に示すように、フィルム繰り出し装置3は、斜め延伸テンター入口に対して所定角度でフィルムを送り出せるように、スライドおよび旋回可能となっている。そして、フィルム繰り出し装置3は、スライド可能となっており、搬送方向変更装置により斜め延伸テンター入口に前記フィルムを送り出せるようになっていることが好ましい。前記フィルム繰り出し装置3、及び搬送方向変更装置をこのような構成とすることにより、より製造装置全体の幅を狭くすることが可能となるほか、フィルムの送り出し位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。また、前記フィルム繰り出し装置3、及び搬送方向変更装置を移動可能とすることにより、把持具のフィルムへの噛込み不良を有効に防止することができる。
なお、図2、3には斜め延伸前の長尺フィルムを一度巻いたものを使用した図面を記載したが、特に限定されず、斜め延伸前の長尺フィルムを途中で巻かずに、斜め延伸前フィルムを製造後、続けて斜め延伸を行う方法を行ってもよい。
(搬送ロール)
搬送ロール5は、前記繰り出し装置から繰り出されたフィルムを、ガイドレール開始位置11,12まで送るロールである。
搬送ロール5は、前記繰り出し装置から繰り出されたフィルムを、ガイドレール開始位置11,12まで送るロールである。
前記搬送ロール5の数は特に特定されず、搬送ロールを配置した途中にフィルム端部を切断するためのスリッター工程を設けてもよい。また、搬送ロールの配置前後や、複数の搬送ロールの間に、フィルムの除電を行うための除電装置を設けてもよい。前記除電装置は、後述するスリット工程で用いられる除電装置と同様のものを使用することができる。
(斜め延伸テンター)
本実施形態に係る製造方法においては、長尺フィルムに斜め方向の配向を付与するために斜め延伸テンターを用いる。本実施形態で用いられる斜め延伸テンターは、レールパターンを多様に変化させることにより、フィルムの配向角を自在に設定できるフィルム延伸装置であることが好ましい。さらに、フィルムの配向軸をフィルム幅方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚みやリタデーションを制御できるフィルム延伸装置であることが好ましい。
本実施形態に係る製造方法においては、長尺フィルムに斜め方向の配向を付与するために斜め延伸テンターを用いる。本実施形態で用いられる斜め延伸テンターは、レールパターンを多様に変化させることにより、フィルムの配向角を自在に設定できるフィルム延伸装置であることが好ましい。さらに、フィルムの配向軸をフィルム幅方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚みやリタデーションを制御できるフィルム延伸装置であることが好ましい。
図4は、本発明の実施形態に係る長尺延伸フィルムの製造方法に用いられる斜め延伸テンターのレールパターンの一例を示した概略図である。ただし、これは一例であって本発明はこれに限定されるものではない。
長尺フィルムの繰出方向D1は、延伸後の長尺延伸フィルムの巻取方向D2と異なっており、繰出角度θiを成している。繰出し角度θiは0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。
長尺フィルムは斜め延伸テンター入口(図4中Aの位置)においてその両端を左右の把持具によって把持され、把持具の走行に伴い走行される。左右の把持具は、斜め延伸テンター入口(図4中Aの位置)で、フィルムの進行方向(繰出方向D1)に対して略垂直な方向に相対している左右の把持具Ci、Coは、左右非対称なレールRi,Ro上を走行し、延伸終了時の位置(図4中Bの位置)で把持したフィルムを解放する。
このとき、斜め延伸テンター入口(図4中Aの位置)で相対していた左右の把持具は、左右非対称なレールRi,Ro上を走行するにつれて、Ri側を走行する把持具Ciは、Ro側を走行する把持具Coに対して進行する位置関係となる。
すなわち、斜め延伸テンター入口(フィルムの把持具による把持開始位置)Aでフィルムの繰出方向D1に対して略垂直な方向に相対していた把持具Ci、Coがフィルムの延伸終了時の位置Bにある状態で、該把持具Ci、Coを結んだ直線がフィルムの巻取方向D2に対して略垂直な方向に対して角度θLだけ傾斜している。
以上の所作をもって、長尺フィルム原反がθLの方向に斜め延伸されることとなる。ここで略垂直とは、90±1°の範囲にあることを示す。
前記斜め延伸テンターは、長尺フィルムを、延伸可能な任意の温度に加熱することができる。前記斜め延伸テンターは加熱ゾーンと、フィルムを搬送するための把持具が走行する左右で一対のレールと、該レール上を走行する多数の把持具とを備えている。テンターの入口部に順次供給されるフィルムの両端を、把持具で把持し、加熱ゾーン内にフィルムを導き、テンターの出口部で把持具からフィルムを開放する。把持具から開放されたフィルムは巻芯に巻き取られる。一対のレールは、それぞれ無端状の連続軌道を有し、テンターの出口部でフィルムの把持を開放した把持具は、外側を走行して順次入口部に戻されるようになっている。
なお、テンターのレールパターンは左右で非対称な形状となっており、製造すべき長尺延伸フィルムに与える配向角θ、延伸倍率等に応じて、そのレールパターンは手動で又は自動で調整できるようになっている。本実施形態に係る製造方法で用いられる斜め延伸テンターでは、各レール部及びレール連結部の位置を自由に設定し、レールパターンを任意に変更できることが好ましい。
本実施形態において、テンターの把持具は、前後の把持具と一定間隔を保って、一定速度で走行するようになっている。
前記把持具の走行速度は適宜選択できるが、通常、1~150m/分である。高速生産条件下であると、内周側の配向角の傾きがより大きくなってしまうため、スリット時のキズや凹みの課題がより顕著になってくる。そこで走行速度が20~150m/分である範囲で本発明を実施すると本発明の効果をより向上させることができる。また前記走行速度が30~150m/分である範囲で実施すると本発明の効果をさらに向上させることができ、50~150m/分である範囲で実施すると本発明の効果をさらに向上させることができる。
左右一対の把持具の走行速度の差は、走行速度の通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下である。これは、延伸工程出口でフィルムの左右に進行速度差があると、延伸工程出口におけるシワ、寄りが発生するため、左右の把持具の速度差は、実質的に同速度であることが求められるためである。一般的なテンター装置等では、チェーンを駆動するスプロケットの歯の周期、駆動モーターの周波数等に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数%のムラを生ずるが、これらは本発明の実施形態で述べる速度差には該当しない。
本実施形態に係る製造方法で用いられる斜め延伸テンターにおいて、特にフィルムの搬送が斜めになる箇所において、把持具の軌跡を規制するレールには、しばしば大きい屈曲率が求められる。急激な屈曲による把持具同士の干渉、あるいは局所的な応力集中を避ける目的から、屈曲部では把持具の軌跡が曲線を描くようにすることが望ましい。
本実施形態において、長尺フィルムは斜め延伸テンター入口(図4中Aの位置)において、その両端を左右の把持具によって順次把持されて、把持具の走行に伴い走行される。斜め延伸テンター入口(図4中Aの位置)で、フィルム進行方向D1に対して略垂直な方向に相対している左右の把持具は、左右非対称なレール上を走行し、予熱ゾーン、延伸ゾーン、熱固定ゾーンを有する加熱ゾーンを通過する。
予熱ゾーンとは、加熱ゾーン入口部において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。
また、延伸ゾーンとは、両端を把持した把持具の間隔が開きだし、所定の間隔になるまでの区間をさす。
このとき、上述のような斜め延伸が行われるが、必要に応じて斜め延伸前後において縦方向あるいは横方向に延伸してもよい。
熱固定ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、両端の把持具が互いに平行を保ったまま走行する区間をさす。
熱固定ゾーンを通過した後に、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間(冷却ゾーン)を通過してもよい。
このとき、冷却によるフィルムの縮みを考慮して、予め対向する把持具間隔を狭めるようなレールパターンとしてもよい。
各ゾーンの温度は、熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg~Tg+30℃、延伸ゾーンの温度(延伸温度)はTg~Tg+30℃、冷却ゾーンの温度はTg-30℃~Tgに設定することが好ましい。
なお、幅方向の厚みムラの制御のために延伸ゾーンにおいて幅方向に温度差を付けてもよい。延伸ゾーンにおいて幅方向に温度差をつけるには、温風を恒温室内に送り込むノズルの開度を幅方向で差を付けるように調整する方法や、ヒーターを幅方向に並べて加熱制御するなどの公知の手法を用いることができる。予熱ゾーン、延伸ゾーン及び冷却ゾーンの長さは適宜選択でき、延伸ゾーンの長さに対して、予熱ゾーンの長さが通常100~150%、固定ゾーンの長さが通常50~100%である。
前記斜め延伸工程における延伸倍率(W/W0)は、好ましくは1.3~3.0、より好ましくは1.5~2.8である。延伸倍率がこの範囲にあると幅方向厚みムラが小さくなるので好ましい。斜め延伸テンターの延伸ゾーンにおいて、幅方向で延伸温度に差を付けると幅方向厚みムラをさらに良好なレベルにすることが可能になる。なお、W0は延伸前のフィルムの幅、Wは延伸後のフィルムの幅を表す。
〔スリット工程〕
本実施形態の製造方法に係るスリット工程は、後述する斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断する工程である。
本実施形態の製造方法に係るスリット工程は、後述する斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断する工程である。
長尺延伸フィルムの両端部は、前述の斜め延伸工程で把持具によって変形が生じているため、形状が不安定な両端部分を切除する必要がある。しかしながら、前述の図1(b)において説明したように、斜め延伸製膜したフィルムを切断する場合、内周側のフィルムは大きな傾斜の配向挙動を有していることから斜め方向に裂け易くなる。その結果、スリット部にフィルムの切断不足に伴うフィルム片やカスが付着し、搬送中のロールとフィルムが擦れてしまいフィルム表面にキズ等をつけてしまう。
特に、フィルムの幅方向に対して延伸方向の配向角度が大きい箇所を切断する場合、上記問題が発生する頻度が多くなる。そこで、本実施形態の斜め延伸製膜におけるスリット工程では、内周側のフィルムの配向角度が大きい箇所(例えば、図1(c)のSで示される箇所)の配向を、フィルムの切断を行う前に搬送方向への配向を弱める処理を行う。このように、搬送方向への配向を弱める処理を行うことによって製品となるフィルムに対してキズや凹み等の外観品質低下を防ぎ、かつ有効なフィルム幅を確保することができる。
搬送方向への配向を弱める処理とは、配向方向とフィルムの搬送方向の成す角度を大きくする方向へ変える処理のことや、分子の並びをランダムな方向へ変える処理のことをいう。フィルム片やカスの発生を抑制できることができるという観点では、配向性を弱め分子の並びをランダムな方向へ変える後者の処理が、より好ましい。
前記配向を弱める処理の態様としては、加熱処理、有機溶剤滴下処理、斜め延伸後に更なる追加延伸を行う処理等が挙げられる。これらの中でも配向を弱める領域が狭く、フィルムの製品幅への影響が少なく、また、配向を弱める処理として優れているという点において、加熱処理、有機溶剤滴下処理が好ましい。
また、前記搬送方向への配向を弱める処理を行うタイミングは、前記斜め延伸工程後からスリット装置がフィルムに接する前であればどの位置でもよいが、切断直前に前記搬送方向への配向を弱める処理を行うとフィルムが柔らかくなることによって、切断時にフィルムが変形してしまい、後の巻取工程で巻き不良を発生させる原因となるため、前記搬送方向への配向を弱める処理を行った後、ある一定の時間後に切断することが好ましい。前記一定時間としては、3秒~300秒の範囲が好ましく、5秒~60秒の範囲であることがより好ましい。
スリット装置が接するフィルム位置に対して前記加熱処理を行うことによって、加熱されたフィルム箇所の分子鎖構成が弱められ、非加熱箇所との分子鎖繋がりを低減することができる。その結果、スリット装置での裁断時にフィルム片やカスが発生しにくくなり、搬送中のロールとフィルムとの擦れによって生じるフィルム表面のキズ等を防ぐことができる。
前記加熱処理は熱発生装置によって行われることが好ましい。前記熱発生装置は搬送する長尺延伸フィルムを所定の温度まで加熱できるものであれば特に限定はなく、公知のものが使用でき、例えば、赤外線ヒーター、ヒートガン、レーザー式の加熱装置等が挙げられる。配向を弱める領域は狭いことが好ましいことから、加熱スポット径の小さいレーザー式の加熱装置が好ましく用いられる。
前記熱発生装置は、斜め延伸テンター2と前記スリット装置9,10との間に配置される。熱発生装置によってフィルムを加熱し、その加熱によって配向を弱めた位置を、前記スリッター装置を用いて切断していく。
前記加熱温度はTg~600℃であることが好ましい。Tg以下に加熱してフィルムを切断すると、配向を弱める効果が十分に得られないため、フィルムカスの発生は抑制できない場合がある。また600℃以上に加熱すると、フィルムの加熱部分が柔らかくなり過ぎ、変形してしまうことで、切断部分のフィルム断面が乱れてしまい、後の巻取工程で巻き不良を発生させる原因となる。
ここで前記Tgとは長尺延伸フィルムに含有される熱可塑性樹脂のガラス転移温度である。
また、レーザー式の加熱装置は、レーザー光照射方向に垂直な方向の断面形状が円形となるレーザー光を照射することができるものであることが好ましい。また、レーザー光照射方向前方に焦点を設けて、この焦点に向けて前記円形の径を縮径させてレーザー光を照射し得るもの等も好ましく用いられる。このレーザー光の円形の径を縮径する手段としては、特に限定されるものではなく、例えば、レンズ、プリズム、ミラーなどによる一般に用いられている手段をあげることができる。
前記レーザー光としては特に限定はなく、公知のものが使用できる。例えば、CO2レーザー、YAGレーザー、UVレーザー等が挙げられる。前記レーザー光を照射する際には、レーザー光照射時間、照射強度、スポット径は特に制限されず、フィルム加熱時に照射部が溶けたり、変形したりしない範囲で適宜レーザー照射条件を選択でき、前記照射手段としては、一回の照射で加熱しても、複数の照射で加熱してもよい。前記レーザー照射の出力は、例えば、1W~300Wであって、好ましくは5W~50Wの範囲で照射することが好ましい。
また、レーザー光の照射を行うことによって、粉塵が発生した場合に、前記粉塵を前記レーザー光照射しながら吸引により回収することもできる。すなわち、レーザー光照射装置によりレーザー光を照射しながら、気体供給管等を設置して、レーザー光照射部への気体の吹き付け、および気体吸引管による粉塵や蒸発気体の回収を同時に行うこともできる。
続いて、前記有機溶剤滴下処理について説明する。
前記の加熱処理と同様に、スリット装置が当たるフィルム位置に対して有機溶剤を滴下することによって、スリット装置が当たるフィルム位置に溶剤を滴下した箇所とそれ以外の箇所との分子鎖繋がりを低減することができる。よって、スリット装置での裁断時にフィルム片やカスが発生しにくくなり、搬送中のロールとフィルムとの擦れによって生じるフィルム表面のキズ等を防ぐことができる。
前記有機溶剤の滴下処理は、インクジェット方式を用いたインクジェットヘッドを用いることが好ましい。前記インクジェット方式を用いることにより、有機溶剤の吐出液滴を小さくでき、かつ均一に散布することができる。
図2,3に、前記インクジェットヘッド16を、斜め延伸テンター2と前記スリット装置9,10との間に配置したものを図示しているが、これは一例であり、前記インクジェットヘッド16は斜め延伸テンター2と前記スリット装置9、10の間であれば、特に限定しない。
図6は、本実施形態で用いることのできるインクジェットヘッド部、ノズルプレートの一例を示す概略図である。
図6(a)はヘッド部の断面図、図6(b)はノズルプレートの平面図である。図中、16はインクジェットヘッド、110は基板、260はヒーター、270はヒーター電源、280は伝熱部材、310は液滴、320はノズルである。ノズル320より噴射した有機溶剤の液滴310は基材フィルム201方向に飛翔して付着する。長尺延伸フィルム上に着弾した有機溶剤の液滴は、周辺に濡れ広がる。そして有機溶剤の液滴が滴下され搬送方向への配向が弱められた位置を前記スリッター装置によって切断していく。
また、前記有機溶剤が長尺延伸フィルム上に滴下されてから切断されるまでの時間は、3~300秒が好ましく、5~60秒がより好ましい。前記時間より短い場合は、滴下した液が乾燥されず、スリット装置による切断時に樹脂が変形してしまい、後の巻取工程で巻き不良を発生させる原因となる。また上記時間より長い場合は、滴下処理を行ってからの時間が長いために、搬送中に滴下部が搬送ロールに接触する回数が増えるため、搬送ロールに汚れ等が付着し、上流側のフィルムがその箇所に接触する際、フィルム汚れとなってしまうため好ましくない。
本実施形態においては、図6(b)に記載されているように、インクジェットヘッド部のノズル320は、千鳥状に配置してもよく、また、長尺延伸フィルム15の搬送方向に並列に多段に設けてもよい。
インクジェットヘッドと長尺延伸フィルムとの距離は0.2~100mmが好ましい。
有機溶剤の吐出速度は、液滴先端の速度V1をピエゾ式のインクジェット装置のピエゾ素子に印加する電圧を増減させることにより一般に0.1~20m/sの範囲で制御できる。好ましくは1~20m/sの範囲である。更に、液滴先端の速度V1の好ましい下限は5m/sである。
吐出時間は、ピエゾ素子に印加する電圧の制御条件に応じて3μs~1msに設定される。ピエゾ素子に印加する電圧の制御条件は、安定的に液滴を吐出できるように、波形制御条件、液滴の表面張力や粘度等に応じて設定される。
またピエゾの変形量を制御させることで、液滴サイズを多様な大きさに制御させることができる。
本実施形態に用いられるインクジェットヘッドは、長尺延伸フィルムの幅手方向の少なくとも内周部に配置し、長尺延伸フィルムを搬送しながらその表面に有機溶剤を吐出する。インクジェットヘッドには、多数のノズルをライン状に配置し、インクジェットヘッドを固定して、有機溶剤を吐出するラインヘッド方式や、インクジェットヘッドが副走査方向に移動しながらその表面に有機溶剤を吐出するシリアルヘッド方式を用いることができるが、本実施形態においては、生産性の観点からラインヘッド方式が好ましい。
前記有機溶剤としては、溶質である熱可塑性樹脂に対して可溶であれば良く、特に限定されるものでない。例えばジクロロメタン、シクロヘキサンなどの溶質に対する良溶媒のみでも、良溶媒とメタノール、エタノール、ブタノール、イソブタノール、イソプロパノール、アセトン、トルエン等の貧溶媒との混合溶剤でも良い。前記貧溶媒の比率は、0~90重量%の範囲が好ましい。
本実施形態のスリット装置は、長尺延伸フィルム15の両端部を搬送方向(図5中、矢印F方向)に沿う方向に切断する装置である。
前記スリット装置は、斜め延伸テンター2の内側のガイドレール6と外側のガイドレール7の延長線上にそれぞれ2つ配置される。また、内側のスリット装置は、長尺延伸フィルム15の外側における上側に配置される上刃9a、下側に配置される下刃9b、及び長尺延伸フィルム15を下側から支持するための円形支持部材(図示せず)を備えて構成されている。同様に、外側のスリット装置は、長尺延伸フィルム15の内側における上側に配置される上刃10a、下側に配置される下刃10b、及び長尺延伸フィルム15を下側から支持するための円形支持部材(図示せず)を備えて構成されている。
上刃9a(10a)及び下刃9b(10b)は、回転可能に軸支された円形刃である。ここでは、上刃9a(10a)は長尺延伸フィルム15の搬送に従って受動的に回転するように回転自在に軸支されており、下刃9b(10b)は不図示の駆動モーターによって長尺延伸フィルム15の搬送速度と一致するように、長尺延伸フィルム15の搬送に従って回転駆動される。ただし、これらは逆、すなわち、下刃9b(10b)を長尺延伸フィルム15の搬送に従って受動的に回転するように回転自在に軸支し、上刃9a(10a)を不図示の駆動モーターによって長尺延伸フィルム15の搬送速度と概略一致するように、長尺延伸フィルム15の搬送とは逆回転方向に回転駆動するようにしてもよい。
また、上刃9a(10a)及び下刃9b(10b)の両者を長尺延伸フィルム15の搬送速度と概略一致するように回転駆動するようにしてもよく、あるいは両者とも回転駆動することなく回転自在に軸支するようにしてもよい。また、上刃9a(10a)及び下刃9b(10b)の一方又は双方を逆回転駆動するようにしてもよい。
上刃9a(10a)及び下刃9b(10b)としては、いわゆる皿型刃や椀型刃、その他の形状の円形刃のいずれでもよいが、ここでは、上刃9a(10a)は皿形刃、下刃9b(10b)は椀型刃であるものとする。上刃9a(10a)及び下刃9b(10b)の素材としては、金属製でもセラミック製でもよいが、超硬合金やハイス鋼を用いることが好ましい。切りカスの発生量及び切断面の滑らかさの観点からは、超硬合金からなる超硬刃を用いることが好ましい。上刃9a(10a)の直径は90mm~150mm程度、厚さは1mm~5mm程度である。また、下刃9b(10b)の直径は90mm~150mm程度、厚さは1mm~10mm程度である。
前記スリット装置は、長尺延伸フィルム15を搬送方向に沿って複数に分割して幅狭の長尺延伸フィルムを形成するために、さらに単一又は複数箇所に設けてもよい。
ここで、前記スリット装置で切断する切断幅について説明する。
通常の横延伸や縦延伸での製膜におけるフィルムの端部は、クリップ把持によって変形してしまい、製品として用いることができなくなるため、廃棄する必要がある。その切断幅としては、把持部の変形がなく、かつ製品として有効に使える幅より少し広く取ることが一般的である。
前記切断幅は、フィルムの延伸条件で適宜変わるため、フィルムにキズや凹みがない範囲で適宜選択できる。延伸後のフィルム幅が500mm~4000mmの範囲での切断幅としては、50mm~300mmが好ましく、60mm~200mmがより好ましい。
前記スリット装置は前記長尺延伸フィルムの延伸方向に応じて追随する機構を有していることが好ましい。後述する斜め延伸テンターでは、フィルムの幅方向に対して配向軸が必要に応じた傾斜を有する長尺延伸フィルムを得るために、延伸方向及び巻き取り方向を任意に設定することができる。したがって、本実施形態のスリット装置についても、前記延伸方向及び巻き取り方向への搬送に伴い追随して動作する機構を有することが求められる。
このように、スリット装置が前記追随機構を有することで、長尺延伸フィルム両端の切断を容易に行うことができる。特に、斜め延伸製造法では、延伸方向及び巻き取り方向の傾斜角度を変更する場合が生じるが、その際にスリット装置を取り外したり、再構築したりする必要がなくなることから生産性に優れることとなる。
前記追随機構の具体例としては、例えば、搬送ロール8、9~10のスリッター装置、搬送方向への配向を弱める処理装置16を含む、13、14のガイドレール終端位置から4の巻取装置までを移動可能な板状の上に固定したり、移動可能なレール上の上に固定したりと、移動可能な1つのユニットとすることが挙げられる。つまり、13、14のガイドレールの終端位置から4の巻取装置までが一緒に移動できるようにすることなどの方法があるが、特に限定されない。
また、前記スリット装置は、前記長尺延伸フィルムの延伸方向とスリット刃の進行方向との角度の位置を確認できる機構を有することが好ましい。このような確認機構を有することで、より簡便にスリット装置が延伸方向への搬送に伴って動作することができる。
また、前記スリット装置は図2、3に図示されているように、搬送ロール8の間に設けてもよく、搬送ロール8の間のどこに設置してもよい。
前記搬送ロール8の数は特に規定されず、また、搬送ロールの配置途中において、長尺延伸フィルムを保護する保護シートを貼る工程を設けてよい。また、フィルムを巻取前までに、フィルム左右両端部に、エンボスリング及びバックロールによってナーリング加工を施して、フィルム端部にエンボス部(図示せず)を付与する工程を設けてよい。
なお、搬送ロール配置途中において、オンライン測定の可能な膜厚計や光学値測定機などを配置してもよい。
また、搬送ロールの配置前後や、複数の搬送ロールの間に、長尺延伸フィルムの除電を行うための除電装置を設けてもよい。前記除電装置は、元巻を再繰り出しした際の帯電電位が±2kV以下となるように、巻取時に除電装置あるいは強制帯電装置により逆電位を与える構成で行うことができるが、強制帯電電位が、1~150Hzで正負交互に変換される除電器により除電する構成とすることもできる。
また、上記の除電器に代えて、イオン風を発生させるイオナイザーや除電バーを利用することができる。ここで、イオナイザー除電は、エンボス加工装置から搬送ロールを経て巻き取られていくフィルムに向けてイオン風を吹き付けることによって行われる。イオン風は、除電器により発生される。除電器としては、公知のものを制限なく用いることができる。
〔巻き取り工程〕
本実施形態の製造方法に係る巻き取り工程は、前記スリット工程後の長尺延伸フィルムを巻き取る工程である。以下に、巻き取り工程に用いられる巻き取り装置について説明する。
本実施形態の製造方法に係る巻き取り工程は、前記スリット工程後の長尺延伸フィルムを巻き取る工程である。以下に、巻き取り工程に用いられる巻き取り装置について説明する。
(巻き取り装置)
図2、図3に示すように、巻き取り装置4は、斜め延伸テンター出口に対して所定角度でフィルムを引き取れるように形成することにより、フィルムの引き取り位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。そのため、フィルムのシワの発生を有効に防止することができるとともに、フィルムの巻き取り性が向上するため、フィルムを長尺で巻き取ることが可能となる。
図2、図3に示すように、巻き取り装置4は、斜め延伸テンター出口に対して所定角度でフィルムを引き取れるように形成することにより、フィルムの引き取り位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。そのため、フィルムのシワの発生を有効に防止することができるとともに、フィルムの巻き取り性が向上するため、フィルムを長尺で巻き取ることが可能となる。
本実施形態において、延伸後のフィルムの引取り張力T(N/m)は、100N/m<T<300N/m、好ましくは150N/m<T<250N/mの間で調整することが好ましい。前記引取張力が100N/m以下ではフィルムのたるみや皺が発生しやすく、リタデーション、配向軸の幅方向のプロファイルも悪化する。逆に引取張力が300N/m以上となると幅方向の配向角のバラツキが悪化することから、幅収率(幅方向の取り効率)を悪化させてしまう。
また、本実施形態においては、上記引取張力Tの変動を±5%未満、好ましくは±3%未満の精度で制御することが好ましい。上記引取張力Tの変動が±5%以上であると、幅方向及び流れ方向の光学特性のバラツキが大きくなる。上記引取張力Tの変動を上記範囲内に制御する方法としては、テンター出口部の最初のロールにかかる荷重、すなわちフィルムの張力を測定し、その値を一定とするように、一般的なPID制御方式により引取ロールの回転速度を制御する方法が挙げられる。前記荷重を測定する方法としては、ロールの軸受部にロードセルを取り付け、ロールに加わる荷重、すなわちフィルムの張力を測定する方法が挙げられる。ロードセルとしては、引張型や圧縮型の公知のものを用いることができる。
延伸後のフィルムは、把持具による把持が開放され、テンター出口から排出され、フィルムの両端(両側)が切断された後に、順次巻芯(巻き取りロール)に巻き取られて、長尺延伸フィルムの巻回体にすることができる。また、本実施形態の巻取工程は、前記本実施形態のスリット工程を経ずに巻き取られた後に、再度巻き直しを行ってもよく、その際に本実施形態のスリット工程を実施することもできる。
また、巻き取る前に、フィルム同士のブロッキングを防止する目的で、マスキングフィルムを重ねて同時に巻き取ってもよいし、長尺延伸フィルムの少なくとも一方、好ましくは両方の端にテープ等を張り合わせながら巻き取ってもよい。マスキングフィルムとしては、上記フィルムを保護することができるものであれば特に制限されず、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどが挙げられる。
製膜巻取り時の除電は、スリット工程で記載した除電方法及び除電装置を用いることができる。
〔熱可塑性樹脂と製膜方法〕
本実施形態において使用することができる熱可塑性樹脂としては、ポリカーボネート系樹脂、ポリエーテルスルフォン系樹脂、ポリエチレンテレフタレート系樹脂、ポリイミド系樹脂、ポリメチルメタクリレート系樹脂、ポリスルフォン系樹脂、ポリアリレート系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂などが挙げられる。
本実施形態において使用することができる熱可塑性樹脂としては、ポリカーボネート系樹脂、ポリエーテルスルフォン系樹脂、ポリエチレンテレフタレート系樹脂、ポリイミド系樹脂、ポリメチルメタクリレート系樹脂、ポリスルフォン系樹脂、ポリアリレート系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂などが挙げられる。
これらの中でも、透明性や機械強度などの観点からポリカーボネート系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂が好ましい。その中でも光学フィルムとした場合の位相差を調整することが容易である、脂環構造を有するオレフィンポリマー系樹脂とセルロースエステル系樹脂が更に好ましい。
以下に脂環構造を有するオレフィンポリマー系樹脂とセルロースエステル系樹脂についての構成、及びこれらをそれぞれ含有する長尺フィルムの製膜方法を以下に示す。
(オレフィンポリマー系樹脂)
脂環式オレフィンポリマー系樹脂としては、特開平05-310845号公報に記載されている環状オレフィンランダム多元共重合体、特開平05-97978号公報に記載されている水素添加重合体、特開平11-124429号公報に記載されている熱可塑性ジシクロペンタジエン系開環重合体及びその水素添加物等を挙げることができる。
脂環式オレフィンポリマー系樹脂としては、特開平05-310845号公報に記載されている環状オレフィンランダム多元共重合体、特開平05-97978号公報に記載されている水素添加重合体、特開平11-124429号公報に記載されている熱可塑性ジシクロペンタジエン系開環重合体及びその水素添加物等を挙げることができる。
脂環構造を有するオレフィンポリマー系樹脂をより具体的に説明する。脂環式オレフィンポリマー系樹脂は、飽和脂環炭化水素(シクロアルカン)構造や不飽和脂環炭化水素(シクロアルケン)構造のごとき脂環式構造を有するポリマーである。脂環式構造を構成する炭素原子数には、格別な制限はないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個の範囲であるときに、機械強度、耐熱性、及びフィルムの成形性の特性が高度にバランスされ、好適である。
脂環式オレフィンポリマー中の脂環式構造を含有してなる繰り返し単位の割合は、適宜選択すればよいが、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式ポリオレフィン樹脂中の脂環式構造を有する繰り返し単位の割合がこの範囲にあると、本実施形態の延伸フィルムより得られる長尺延伸フィルム等の光学材料の透明性および耐熱性が向上するので好ましい。
脂環構造を有するオレフィンポリマー系樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体又はそれらの水素化物等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、及び軽量性などの観点から、特に好適に用いることができる。
ノルボルネン構造を有する単量体としては、ビシクロ〔2.2.1〕ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ〔4.3.0.12,5〕デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ〔4.3.0.12,5〕デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ〔4.4.0.12,5.17,10〕ドデカ-3-エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、及び極性基などを挙げることができる。また、これらの置換基は、同一または相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。
極性基の種類としては、ヘテロ原子、またはヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、及びハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、及びスルホン基などが挙げられる。
ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、及びシクロオクテンなどのモノ環状オレフィン類やその誘導体;並びにシクロヘキサジエン、及びシクロヘプタジエンなどの環状共役ジエンやその誘導体;などが挙げられる。
ノルボルネン構造を有する単量体の開環重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。
ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、及び1-ブテンなどの炭素数2~20のα-オレフィンやこれらの誘導体;シクロブテン、シクロペンテン、及びシクロヘキセンなどのシクロオレフィンやこれらの誘導体;並びに1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、及び5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。
ノルボルネン構造を有する単量体の付加重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。
ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、およびノルボルネン構造を有する単量体とこれと共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。
ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ〔3.3.0〕オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ〔4.3.0.12,5〕デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90重量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの重量比で100:0~40:60であるものが好ましい。このような樹脂を用いることにより、本実施形態の延伸フィルムにより得られる光学材料を、長期的に寸法変化がなく、光学特性の安定性に優れるものにすることができる。
ノルボルネン系樹脂に用いる分子量は使用目的に応じて適宜選定されるが、溶媒としてシクロヘキサン(熱可塑性樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン換算(溶媒がトルエンのときは、ポリスチレン換算)の重量平均分子量(Mw)で、通常10,000~100,000、好ましくは15,000~80,000、より好ましくは20,000~50,000である。重量平均分子量がこのような範囲にあるときに、本実施形態の延伸フィルムにより得られる光学材料の機械的強度および成型加工性が高度にバランスされ好適である。
ノルボルネン系樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよいが、好ましくは80℃以上、より好ましくは100~250℃の範囲である。ガラス転移温度がこのような範囲にあると、本実施形態の延伸フィルムにより得られる光学材料を、高温下での使用における変形や応力が生じることがなく耐久性に優れるものにすることができる。
ノルボルネン系樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に制限されないが、通常1.0~10.0、好ましくは1.1~4.0、より好ましくは1.2~3.5の範囲である。
ノルボルネン系樹脂の光弾性係数Cの絶対値は、10×10-12Pa-1以下であることが好ましく、7×10-12Pa-1以下であることがより好ましく、4×10-12Pa-1以下であることが特に好ましい。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、C=Δn/σで表される値である。熱可塑性樹脂の光弾性係数がこのような範囲にあると、後述する、面内方向のレターデーション(Re)のばらつきを小さくすることができる。
本実施形態に用いる熱可塑性樹脂は、顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、及び溶剤などの配合剤が適宜配合されたものであってもよい。
ノルボルネン系樹脂の延伸フィルム中の残留揮発性成分の含有量は特に制約されないが、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下である。揮発性成分の含有量をこのような範囲にすることにより、寸法安定性が向上し、前記Reや前記Rthの経時変化を小さくすることができ、さらには本実施形態の延伸フィルムから得られる光学フィルム、偏光板又は有機エレクトロルミネッセンス表示装置の劣化を抑制でき、長期的に表示装置のディスプレイの表示を安定で良好に保つことができる。残留揮発性成分は、フィルム中に微量含まれる分子量200以下の物質であり、例えば、残留単量体や溶媒などが挙げられる。残留揮発性成分の含有量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをガスクロマトグラフィーにより分析することにより定量することができる。
ノルボルネン系樹脂の延伸フィルムの飽和吸水率は好ましくは0.03重量%以下、さらに好ましくは0.02重量%以下、特に好ましくは0.01重量%以下である。飽和吸水率が上記範囲であると、ReやRthの経時変化を小さくすることができ、さらには本実施形態の延伸フィルムから得られる光学フィルム、偏光板又は有機エレクトロルミネッセンス表示装置の劣化を抑制でき、長期的に表示装置のディスプレイの表示を安定で良好に保つことができる。
飽和吸水率は、フィルムの試験片を一定温度の水中に一定時間、浸漬し、増加した質量の浸漬前の試験片質量に対する百分率で表される値である。通常は、23℃の水中に24時間、浸漬して測定される。本実施形態の延伸フィルムにおける飽和吸水率は、例えば、熱可塑性樹脂中の極性基の量を減少させることにより、前記値に調節することができるが、好ましくは、極性基を持たない樹脂であることが望まれる。
(オレフィンポリマー系樹脂のフィルム製膜方法)
前記で説明した好ましいノルボルネン系樹脂を用いたフィルムを成形する方法としては、溶液製膜法や溶融押出法の製造方法が好まれる。溶融押出法としては、ダイスを用いるインフレーション法等が挙げられるが、生産性や厚さ精度に優れる点でTダイを用いる方法が好ましい。
前記で説明した好ましいノルボルネン系樹脂を用いたフィルムを成形する方法としては、溶液製膜法や溶融押出法の製造方法が好まれる。溶融押出法としては、ダイスを用いるインフレーション法等が挙げられるが、生産性や厚さ精度に優れる点でTダイを用いる方法が好ましい。
Tダイを用いた押出成形法は、特開2004-233604号公報に記載されているような、冷却ドラムに密着させる時の溶融状態の熱可塑性樹脂を安定な状態に保つ方法により、リタデーションや配向角といった光学特性のバラツキが良好なフィルムを製造出来る。
具体的には、1)溶融押出法で長尺フィルムを製造する際に、ダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;2)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から最初に密着する冷却ドラムまでを囲い部材で覆い、囲い部材からダイス開口部又は最初に密着する冷却ドラムまでの距離を100mm以下とする方法;3)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂より10mm以内の雰囲気の温度を特定の温度に加温する方法;4)関係を満たすようにダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;5)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂に、最初に密着する冷却ドラムの引取速度との速度差が0.2m/s以下の風を吹き付ける方法;等が挙げられる。
以上のオレフィンポリマー系樹脂を含む長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。
(セルロースエステル系樹脂)
好ましいセルロースエステル系樹脂フィルムとしては、下記式(i)及び(ii)を満たすセルロースアシレートを含有し、かつ、下記一般式(A)で表される化合物を含有することを特徴とするものが挙げられる。
好ましいセルロースエステル系樹脂フィルムとしては、下記式(i)及び(ii)を満たすセルロースアシレートを含有し、かつ、下記一般式(A)で表される化合物を含有することを特徴とするものが挙げられる。
式(i) 2.0≦Z1<3.0
式(ii) 0≦X<3.0
(式(i)及び(ii)において、Z1はセルロースアシレートの総アシル置換度を表し、Xはセルロースアシレートのプロピオニル置換度及びブチリル置換度の総和を表す。)
式(ii) 0≦X<3.0
(式(i)及び(ii)において、Z1はセルロースアシレートの総アシル置換度を表し、Xはセルロースアシレートのプロピオニル置換度及びブチリル置換度の総和を表す。)
〈一般式(A)の化合物〉
以下、一般式(A)について詳細に説明する。
以下、一般式(A)について詳細に説明する。
一般式(A)において、L1及びL2は各々独立に単結合又は2価の連結基を表す。
L1及びL2としては、例えば、下記化学式で表される構造が挙げられる。(下記Rは水素原子又は置換基を表す。)
L1及びL2として、好ましくは-O-、-COO-、-OCO-である。
R1、R2及びR3は各々独立に置換基を表す。R1、R2及びR3で表わされる置換基の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキルおよびアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)が挙げられる。
R1及びR2としては、好ましくは、置換もしくは無置換のフェニル基、置換もしくは無置換のシクロヘキシル基である。より好ましくは置換基を有するフェニル基、置換基を有するシクロヘキシル基であり、さらに好ましくは4位に置換基を有するフェニル基、4位に置換基を有するシクロヘキシル基である。
R3として、好ましくは、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、水素原子、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。
Wa及びWbは水素原子又は置換基を表すが、(I)Wa及びWbが互いに結合して環を形成してもよく、(II)Wa及びWbの少なくとも一つが環構造を有してもよく、又は(III)Wa及びWbの少なくとも一つがアルケニル基又はアルキニル基であってもよい。
Wa及びWbで表わされる置換基の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキルおよびアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)が挙げられる。
上記の置換基は、更に上記の基で置換されていてもよい。
(1)Wa及びWbが互いに結合して環を形成する場合、以下のような構造が挙げられる。
Wa及びWbが互いに結合して環を形成する場合、好ましくは、含窒素5員環又は含硫黄5員環であり、特に好ましくは、下記一般式(1)又は一般式(2)で表される化合物である。
一般式(1)において、A1及びA2は各々独立に、-O-、-S-、-NRx-(Rxは水素原子又は置換基を表す)又は-CO-を表す。Rxで表される置換基の例は、上記Wa及びWbで表わされる置換基の具体例と同義である。Rxとして、好ましくは水素原子、アルキル基、アリール基、ヘテロ環基である。
一般式(1)において、Xは第14~16族の非金属原子を表す。
Xとしては、=O、=S、=NRc、=C(Rd)Reが好ましい。ここでRc、Rd、Reは置換基を表し、例としては上記Wa及びWbで表わされる置換基の具体例と同義である。
L1、L2、R1、R2、R3、nは、一般式(A)におけるL1、L2、R1、R2、R3、nと同義である。
一般式(2)において、Q1は-O-、-S-、-NRy-(Ryは水素原子又は置換基を表す)、-CRaRb-(Ra及びRbは水素原子又は置換基を表す)又は-CO-を表す。ここで、Ry、Ra、Rbは置換基を表し、例としては上記Wa及びWbで表わされる置換基の具体例と同義である。
Yは置換基を表す。
Yで表わされる置換基の例としては、上記Wa及びWbで表される置換基の具体例と同義である。
Yとして、好ましくは、アリール基、ヘテロ環基、アルケニル基、アルキニル基である。
Yで表わされるアリール基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。
ヘテロ環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも一つ含むヘテロ環基が挙げられ、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基が好ましい。
これらのアリール基又はヘテロ環基は、少なくとも一つの置換基を有していてもよく、置換基としては、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、炭素数2~12のN,N-ジアルキルスルファモイル基等が挙げられる。
L1、L2、R1、R2、R3、nは、一般式(A)におけるL1、L2、R1、R2、R3、nと同義である。
(2)一般式(A)において、Wa及びWbの少なくとも一つが環構造を有する場合の具体例としては、好ましくは、下記一般式(3)である。
一般式(3)において、Q3は=N-又は=CRz-(Rzは水素原子又は置換基)を表し、Q4は第14~16族の非金属原子を表す。ZはQ3及びQ4と共に環を形成する非金属原子群を表す。
Q3、Q4及びZから形成される環は、更に別の環で縮環していてもよい。
Q3、Q4及びZから形成される環として、好ましくは、ベンゼン環で縮環した含窒素5員環又は6員環である。
L1、L2、R1、R2、R3、nは、一般式(A)におけるL1、L2、R1、R2、R3、nと同義である。
(3)Wa及びWbの少なくとも一つがアルケニル基又はアルキニル基である場合には、好ましくは、置換基を有するビニル基、エチニル基である。
上記一般式(1)、一般式(2)及び一般式(3)で表される化合物のうち、特に、一般式(3)で表される化合物が好ましい。
一般式(3)で表される化合物は、一般式(1)で表される化合物に比べて耐熱性及び耐光性に優れており、一般式(2)で表される化合物に比べ、有機溶媒に対する溶解性やポリマーとの相溶性が良好である。
本実施形態に係る一般式(A)で表される化合物は、所望の波長分散性、及び滲み防止性を付与するのに適宜量を調整して含有することができるが、添加量としてはセルロース誘導体に対して、1~15質量%含むことが好ましく、特には、2~10質量%含むことが好ましい。この範囲内であれば、本実施形態のセルロース誘導体に十分な波長分散性、及び滲み防止性を付与することができる。
なお、一般式(A)、一般式(1)、一般式(2)及び一般式(3)で表わされる化合物は、既知の方法を参照して行うことができる。具体的には、Journal of Chemical Crystallography(1997);27(9);512-526)、特開2010-31223号公報、特開2008-107767号公報等を参照に合成することができる。
〈セルロースアシレート〉
本実施形態の製造方法において用いられるセルロースアシレートフィルムは、セルロールアシレートを主成分として含有する。
本実施形態の製造方法において用いられるセルロースアシレートフィルムは、セルロールアシレートを主成分として含有する。
前記セルロースアシレートフィルムは、フィルムの全質量100質量%に対して、セルロースアシレートを好ましくは60~100質量%の範囲で含む。また、セルロースアシレートの総アシル基置換度は、2.0以上3.0未満であり、2.2~2.7であることがより好ましい。
セルロースアシレートとしては、セルロースと、炭素数2~22程度の脂肪族カルボン酸および/または芳香族カルボン酸とのエステルが挙げられ、特に、セルロースと炭素数が6以下の低級脂肪酸とのエステルであることが好ましい。
セルロースの水酸基に結合するアシル基は、直鎖であっても分岐していてもよく、また環を形成してもよい。さらに別の置換基が置換してもよい。同じ置換度である場合、上述した炭素数が多いと複屈折性が低下するため、炭素数としては炭素数2~6のアシル基の中で選択することが好ましく、プロピオニル置換度及びブチリル置換度の総和は0以上3.0未満である。前記セルロースアシレートとしての炭素数が2~4であることが好ましく、炭素数が2~3であることがより好ましい。
具体的には、セルロースアシレートとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートまたはセルロースアセテートフタレートのようなアセチル基の他にプロピオネート基、ブチレート基またはフタリル基が結合したセルロースの混合脂肪酸エステルを用いることができる。なお、ブチレートを形成するブチリル基は、直鎖であっても分岐していてもよい。
本実施形態においては、セルロースアシレートとして、セルロースアセテート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートが特に好ましく用いられる。
また、本実施形態に係るセルロースアシレートは、下記の数式(iii)および数式(iv)を同時に満足するものが好ましい。
式(iii) 2.0≦X+Y<3.0
式(iv) 0.5≦X
(式(iii)及び(iv)において、Yはアセチル基の置換度を表し、Xはプロピオニル基もしくはブチリル基またはその混合物の置換度を表す。)
式(iv) 0.5≦X
(式(iii)及び(iv)において、Yはアセチル基の置換度を表し、Xはプロピオニル基もしくはブチリル基またはその混合物の置換度を表す。)
また、目的に叶う光学特性を得るために、置換度の異なる樹脂を混合して用いてもよい。その際の混合比としては、1:99~99:1(質量比)が好ましい。
上述した中でも、特にセルロースアセテートプロピオネートが、セルロースアシレートとして好ましく用いられる。セルロースアセテートプロピオネートでは、0≦Y≦2.5であり、かつ、0.5≦X<3.0である(ただし、2.0≦X+Y<3.0である)ことが好ましく、0.5≦Y≦2.0であり、かつ、1.0≦X≦2.0である(ただし、2.0≦X+Y<3.0である)ことがより好ましい。なお、アシル基の置換度は、ASTM-D817-96に準じて測定されうる。
セルロースアシレートの数平均分子量は、60000~300000の範囲であると、得られるフィルムの機械的強度が強くなるため、好ましい。より好ましくは、数平均分子量が70000~200000のセルロースアシレートが用いられる。
セルロースアシレートの重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される。測定条件は以下の通りである。なお、本測定方法は、本実施形態における他の重合体の測定方法としても使用することができる。
溶媒:メチレンクロライド;
カラム:Shodex K806、K805、K803G(昭和電工株式会社製)を3本接続して使用する;
カラム温度:25℃;
試料濃度:0.1質量%;
検出器:RI Model 504(GLサイエンス社製);
ポンプ:L6000(日立製作所株式会社製);
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー株式会社製)Mw=1000000~500の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
カラム:Shodex K806、K805、K803G(昭和電工株式会社製)を3本接続して使用する;
カラム温度:25℃;
試料濃度:0.1質量%;
検出器:RI Model 504(GLサイエンス社製);
ポンプ:L6000(日立製作所株式会社製);
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー株式会社製)Mw=1000000~500の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
セルロースアシレート中の残留硫酸含有量は、硫黄元素換算で0.1~45質量ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。残留硫酸含有量が45質量ppmを超えると、熱延伸時や熱延伸後でのスリッティングの際に破断しやすくなる傾向がある。なお、残留硫酸含有量は、1~30質量ppmの範囲がより好ましい。残留硫酸含有量は、ASTM D817-96に規定の方法により測定することができる。
また、セルロースアシレート中の遊離酸含有量は、1~500質量ppmであることが好ましい。上記の範囲であると、上記と同様に破断しにくいため、好ましい。なお、遊離酸含有量は、1~100質量ppmの範囲であることが好ましく、さらに破断しにくくなる。特に1~70質量ppmの範囲が好ましい。遊離酸含有量はASTM D817-96に規定の方法により測定することができる。
合成したセルロースアシレートの洗浄を、溶液流延法に用いられる場合に比べて、さらに十分に行うことによって、残留アルカリ土類金属含有量、残留硫酸含有量、および残留酸含有量を上記の範囲とすることができ好ましい。
また、セルロースアシレートは、フィルムにしたときの輝点異物が少ないものであることが好ましい。輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)を意味する。輝点異物は、直径0.01mm以上の輝点の個数が200個/cm2以下であることが好ましく、100個/cm2以下であることがより好ましく、50個/cm2以下であることがさらに好ましく、30個/cm2以下であることがいっそう好ましく、10個/cm2以下であることが特に好ましく、皆無であることが最も好ましい。
また、直径0.005~0.01mm以下の輝点についても、200個/cm2以下であることが好ましく、100個/cm2以下であることがより好ましく、50個/cm2以下であることがさらに好ましく、30個/cm2以下であることがいっそう好ましく、10個/cm2以下であることが特に好ましく、皆無であることが最も好ましい。
セルロースアシレートの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどが挙げられる。また、それらから得られたセルロースアシレートは、それぞれ任意の割合で混合使用されうる。
セルロースアシレートは、公知の方法により製造することができる。具体的には、例えば、特開平10-45804号に記載の方法を参考にして合成することができる。
また、セルロースアシレートは、セルロースアシレート中の微量金属成分によっても影響を受ける。これらの微量金属成分は、製造工程で使われる水に関係していると考えられるが、不溶性の核となりうるような成分は少ない方が好ましく、特に、鉄、カルシウム、マグネシウム等の金属イオンは、有機の酸性基を含んでいる可能性のあるポリマー分解物等と塩形成することにより不溶物を形成する場合があり、少ないことが好ましい。また、カルシウム(Ca)成分は、カルボン酸やスルホン酸等の酸性成分と、また多くの配位子と配位化合物(すなわち、錯体)を形成しやすく、多くの不溶なカルシウムに由来するスカム(不溶性の澱、濁り)を形成するおそれがあるため、少ないことが好ましい。
具体的には、鉄(Fe)成分については、セルロースアシレート中の含有量が1質量ppm以下であることが好ましい。また、カルシウム(Ca)成分については、セルロースアシレート中の含有量が好ましくは60質量ppm以下であり、より好ましくは0~30質量ppmである。さらに、マグネシウム(Mg)成分については、やはり多過ぎると不溶分を生ずるため、セルロースアシレート中の含有量が0~70質量ppmであることが好ましく、特に0~20質量ppmであることが好ましい。
なお、鉄(Fe)成分の含有量、カルシウム(Ca)成分の含有量、マグネシウム(Mg)成分の含有量などの金属成分の含有量は、絶乾したセルロースアシレートをマイクロダイジェスト湿式分解装置(硫硝酸分解)、アルカリ溶融で前処理を行った後、ICP-AES(誘導結合プラズマ発光分光分析装置)を用いて分析することができる。
〈添加剤〉
本実施形態に係る製造方法により得られた長尺延伸フィルムは後述するセルロースエステル以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロースエステルと相溶性に優れるものが好ましく、フィルムにした時の透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。
本実施形態に係る製造方法により得られた長尺延伸フィルムは後述するセルロースエステル以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロースエステルと相溶性に優れるものが好ましく、フィルムにした時の透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。
ドープ中に添加される添加剤としては、可塑剤、紫外線吸収剤、リタデーション調整剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等がある。本実施形態において、微粒子以外の添加剤についてはセルロースエステル溶液の調製の際に添加してもよいし、微粒子分散液の調製の際に添加してもよい。液晶画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。
これらの化合物は、セルロースエステルに対して1~30質量%、好ましくは1~20質量%となるように含まれていることが好ましい。また、延伸及び乾燥中のブリードアウト等を抑制させるため、200℃における蒸気圧が1400Pa以下の化合物であることが好ましい。
これらの化合物は、セルロースエステル溶液の調製の際に、セルロースエステルや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。
〈リタデーション調整剤〉
本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムのリタデーションを調整するために添加する化合物は、欧州特許911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することができる。
本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムのリタデーションを調整するために添加する化合物は、欧州特許911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することができる。
また、二種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。中でも1,3,5-トリアジン環が特に好ましい。
〈ポリマー又はオリゴマー〉
本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムは、セルロースエステルと、カルボキシル基、ヒドロキシル基、アミノ基、アミド基、及びスルホン酸基から選ばれる置換基を有しかつ重量平均分子量が500~200,000の範囲内であるビニル系化合物のポリマー又はオリゴマーとを含有することが好ましい。当該セルロースエステルと、当該ポリマー又はオリゴマーとの含有量の質量比が、95:5~50:50の範囲内であることが好ましい。
本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムは、セルロースエステルと、カルボキシル基、ヒドロキシル基、アミノ基、アミド基、及びスルホン酸基から選ばれる置換基を有しかつ重量平均分子量が500~200,000の範囲内であるビニル系化合物のポリマー又はオリゴマーとを含有することが好ましい。当該セルロースエステルと、当該ポリマー又はオリゴマーとの含有量の質量比が、95:5~50:50の範囲内であることが好ましい。
〈マット剤〉
本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムは、マット剤として微粒子を延伸フィルム中に含有させることができ、これによって、延伸フィルムが長尺フィルムの場合、搬送や巻き取りをしやすくすることができる。
本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムは、マット剤として微粒子を延伸フィルム中に含有させることができ、これによって、延伸フィルムが長尺フィルムの場合、搬送や巻き取りをしやすくすることができる。
マット剤の粒径は10nm~0.1μmの1次粒子もしくは2次粒子であることが好ましい。1次粒子の針状比は1.1以下の略球状のマット剤が好ましく用いられる。
微粒子としては、ケイ素を含むものが好ましく、特に二酸化珪素が好ましい。本実施形態に好ましい二酸化珪素の微粒子としては、例えば、日本アエロジル(株)製のアエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。ポリマーの微粒子の例として、シリコーン樹脂、弗素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(東芝シリコーン(株)製)を挙げることができる。
二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/L以上であるものが好ましい。1次粒子の平均径が5~16nmがより好ましく、5~12nmが更に好ましい。1次粒子の平均径が小さい方がヘイズが低く好ましい。見かけ比重は90~200g/L以上が好ましく、100~200g/L以上がより好ましい。見かけ比重が大きい程、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、凝集物が発生せず好ましい。
本実施形態におけるマット剤の添加量は、長尺延伸フィルム1m2当たり0.01~1.0gが好ましく、0.03~0.3gがより好ましく、0.08~0.16gが更に好ましい。
〈その他の添加剤〉
その他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えてもよい。更に界面活性剤、剥離促進剤、帯電防止剤、難燃剤、滑剤、油剤等も加えてもよい。
その他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えてもよい。更に界面活性剤、剥離促進剤、帯電防止剤、難燃剤、滑剤、油剤等も加えてもよい。
(セルロースエステル系樹脂のフィルム製膜方法)
本実施形態の製造方法において用いられるセルロースエステル系樹脂フィルムは溶液流延法でも溶融流延法のどちらで製膜してもよい。
本実施形態の製造方法において用いられるセルロースエステル系樹脂フィルムは溶液流延法でも溶融流延法のどちらで製膜してもよい。
以下に溶液流延法及び溶融流延法について説明する。
〈溶液流延法〉
溶液流延法では、樹脂および添加剤を有機溶媒に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
溶液流延法では、樹脂および添加剤を有機溶媒に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
溶液流延法は、フィルムの着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制、フィルムの平面性、透明度に優れるため好ましく用いられる。
ドープ中のセルロースアセテートの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースアセテートの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化したりする場合がある。
好ましい支持体温度としては0~100℃で適宜決定され、5~30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。
温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。
特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
セルロースエステル系樹脂フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。
残留溶媒量は下記式で定義される。
残留溶媒量(質量%)={(M-N)/N}×100
なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
また、セルロース系樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。
フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
本実施形態に係るセルロースエステル系樹脂フィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、セルロースアセテート、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。
ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのセルロースアセテートの溶解を促進する役割もある。
特に、メチレンクロライド、及び炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。
炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることが出来る。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。
〈溶融流延法〉
溶融製膜法は、斜め延伸後の厚み方向のリタデーションRtを小さくすることが容易となり、残留揮発性成分量が少なくフィルムの寸法安定性にも優れる等の観点から好ましい製膜法である。溶融製膜法は、樹脂および可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースアセテートを含む溶融物を流延することをいう。溶融流延によって形成される方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる、溶融押出し法が好ましい。
溶融製膜法は、斜め延伸後の厚み方向のリタデーションRtを小さくすることが容易となり、残留揮発性成分量が少なくフィルムの寸法安定性にも優れる等の観点から好ましい製膜法である。溶融製膜法は、樹脂および可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースアセテートを含む溶融物を流延することをいう。溶融流延によって形成される方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる、溶融押出し法が好ましい。
溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。
ペレット化は、公知の方法でよく、例えば、乾燥セルロースアセテートや可塑剤、その他添加剤をフィーダーで押出し機に供給し1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。
添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。
粒子や酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。
上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールでフィルムをニップされ、冷却ロール上で固化させる。
供給ホッパーから押出し機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。
押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。
可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。
冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。
弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。
冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
以上のセルロースエステル系樹脂を含む長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。
<長尺延伸フィルム>
本実施形態に係る長尺延伸フィルムは、前記製造方法によって製造されたものである。
本実施形態に係る長尺延伸フィルムは、前記製造方法によって製造されたものである。
以下、熱可塑性樹脂を含む長尺フィルムについて説明する。
前記長尺フィルムの斜め延伸前のフィルム厚さは、好ましくは30~300μm、より好ましくは40~150μmである。
本実施形態では、斜め延伸装置に供給される長尺フィルムの流れ方向の厚みムラσmは、後述する斜め延伸テンター入口でのフィルムの引取張力を一定に保ち、配向角やリタデーションといった光学特性を安定させる観点から、0.30μm未満、好ましくは0.25μm未満、さらに好ましくは0.20μm未満である必要がある。斜め延伸前の長尺フィルムの流れ方向の厚みムラσmが0.30μm以上となると長尺延伸フィルムのリタデーションや配向角といった光学特性のバラツキが顕著に悪化する。ここでσmとは、各幅手位置における、流れ方向の標準偏差σの平均値で表した値である。
また、斜め延伸前の長尺フィルムとして、幅方向の厚み勾配を有するフィルムが供給されてもよい。前記斜め延伸前の長尺フィルムの厚みの勾配は、後工程の延伸が完了した位置におけるフィルム厚みを最も均一なものとしうるよう、実験的に厚み勾配を様々に変化させたフィルムを延伸することにより、経験的に求めることができる。斜め延伸前の長尺フィルムの厚みの勾配は、例えば、厚みの厚い側の端部の厚みが、厚みの薄い側の端部よりも0.5~3%程度厚くなるように調整することができる。
斜め延伸後の長尺フィルムの幅は、特に限定されないが、500~4000mm、好ましくは1000~2000mmとすることができる。
長尺フィルムの斜め延伸時の延伸温度での好ましい弾性率は、ヤング率で表して、0.01Mpa以上5000Mpa以下、更に好ましくは0.1Mpa以上500Mpa以下である。弾性率が低すぎると、延伸時・延伸後の収縮率が低くなり、シワが消えにくくなり、また高すぎると、延伸時にかかる張力が大きくなり、フィルムの両側縁部を保持する部分の強度を高くする必要が生じ、後工程のテンターに対する負荷が大きくなる。
斜め延伸前の長尺フィルムとしては、無配向なものを用いてもよいし、あらかじめ配向を有するフィルムが供給されてもよい。また、必要であれば斜め延伸前の長尺フィルムの配向の幅手分布が弓なり状、いわゆるボーイングを成していてもよい。要は、斜め延伸前の長尺フィルムの配向状態を、後工程の延伸が完了した位置におけるフィルムの配向を所望なものとしうるよう、調整することができる。
また、本実施形態の長尺延伸フィルムは、配向角θが巻き取り方向に対して、0°より大きく90°未満の範囲に傾斜しており、好ましくは30°以上、60°以下の範囲に傾斜している事が好ましく、更に好ましくは40°以上、50°以下の範囲に傾斜しているのがよい。また、本実施形態に係る長尺延伸フィルムの配向角θのバラツキは、0.6°未満が好ましく、0.4°未満であることがより好ましい。配向角θのバラツキが0.6°未満となる長尺延伸フィルムを偏光子と貼り合せて円偏光板を得て、これを有機エレクトロルミネッセンス表示装置などの画像表示装置に据え付けると、表示品質の均一性を良好なものにすることが可能になる。
また、本実施形態の長尺延伸フィルムの波長550nmで測定したリタデーション値Ro(550)が、120nm以上、160nm以下の範囲にある事が好ましく、更に好ましくは130nm以上、150nm以下の範囲である。また、本実施形態に係る長尺延伸フィルムの面内リタデーションRoのバラツキは、4nm以下、好ましくは3nm以下であることが好ましい。面内リタデーションRoのバラツキを、上記範囲にすることにより、有機エレクトロルミネッセンス表示装置用のフィルムとして用いた場合に表示品質の均一性を良好なものにすることが可能になる。
尚、本実施形態に係る長尺延伸フィルムの面内リタデーションRoは、用いられる表示装置の設計によって最適値が選択される。なお、前記Roは、面内遅相軸方向の屈折率nxと面内で前記遅相軸に直交する方向の屈折率nyとの差にフィルムの平均厚みdを乗算した値(Ro=(nx-ny)×d)である。
本実施形態に係る長尺延伸フィルムの平均厚みは、機械的強度などの観点から、好ましくは5~100μm、更に好ましくは10~80μmであるが、また内周側の配向角の傾き起因とするスリット時のキズや凹みの課題については、機械強度の観点より、薄い長尺延伸フィルムを製造する際に顕著になってくる。そのため長尺延伸フィルムの平均厚みが10~35μmの範囲となるような薄膜のフィルムを製造する際に本実施形態の製造方法は特に好適に用いられる。
また、幅方向の厚みムラは、巻き取りの可否に影響を与えるため、3μm以下であることが好ましく、2μm以下であることがより好ましい。
<円偏光板>
本実施形態に係る長尺延伸フィルムを用いた場合の円偏光板について説明する。
本実施形態に係る長尺延伸フィルムを用いた場合の円偏光板について説明する。
前記円偏光板は、偏光板保護フィルム、偏光子、λ/4位相差フィルム、粘着層がこの順で積層されており、前記λ/4位相差フィルムの遅相軸と偏光子の吸収軸とのなす角度が45°である。
本実施形態に係る長尺延伸フィルムを用いた、長尺状偏光板保護フィルム、長尺状偏光子、長尺状λ/4位相差フィルム(延伸フィルム)がこの順で積層して形成されることが好ましい。
本実施形態に係る長尺延伸フィルムを用いた円偏光板は、偏光子としてヨウ素、又は二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、λ/4位相差フィルム/偏光子の構成で貼合して製造することができる。
円偏光板の膜厚は、5~40μm、好ましくは5~30μmであり、特に好ましくは5~20μmである。
前記円偏光板は、一般的な方法で作製することができる。アルカリ鹸化処理したλ/4位相差フィルムは、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
前記円偏光板は、更に当該偏光板の偏光板保護フィルムの反対面に剥離フィルムを貼合して構成することができる。保護フィルム及び剥離フィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。
<表示装置>
本実施形態に係る長尺延伸フィルムを用いて作製した円偏光板を表示装置に組み込むことによって、種々の視認性に優れた表示装置を作成することができる。また、前記表示装置は、有機ELディスプレイであることが好ましい。
本実施形態に係る長尺延伸フィルムを用いて作製した円偏光板を表示装置に組み込むことによって、種々の視認性に優れた表示装置を作成することができる。また、前記表示装置は、有機ELディスプレイであることが好ましい。
図7に、前記有機EL画像表示装置の構成の一例を示すが、本実施形態に係る長尺延伸フィルムを用いた場合における有機EL画像表示装置としては、これに限定されるものではない。
ガラスやポリイミド等を用いた基板101上に順に金属電極102、発光層103、透電極(ITO等)104、封止層105を有する有機エレクトロルミネッセンス素子上に、接着槽106を介して、偏光子108をλ/4位相差フィルム107と保護フィルム109によって挟持した円偏光板を設けて、有機エレクトロルミネッセンス画像表示装置を構成する。該保護フィルム108には硬化層が積層されていることが好ましい。硬化層は、有機エレクトロルミネッセンス画像表示装置の表面のキズを防止するだけではなく、円偏光板による反りを防止する効果を有する。更に、硬化層上には、反射防止層を有していてもよい。上記有機エレクトロルミネッセンス素子自体の厚さは1μm程度である。
一般に、有機エレクトロルミネッセンス画像表示装置は、透明基板上に金属電極と発光層と透明電極とを順に積層して発光体である素子(有機エレクトロルミネッセンス素子)を形成している。ここで、発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、及び電子注入層の積層体等、種々の組み合わせをもった構成が知られている。
有機エレクトロルミネッセンス画像表示装置は、透明電極と金属電極とに電圧を印加することによって、発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。
有機エレクトロルミネッセンス画像表示装置においては、発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、Al-Liなどの金属電極を用いている。
このような構成の有機エレクトロルミネッセンス画像表示装置において、発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機エレクトロルミネッセンス画像表示装置の表示面が鏡面のように見える。
本実施形態に係る長尺延伸フィルムを用いた有機エレクトロルミネッセンス表示装置用円偏光板は、このような外光反射が特に問題となる有機エレクトロルミネッセンス用表示装置に適している。
本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
本発明に係る長尺延伸フィルムの製造方法は熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断するスリット工程、及びスリット工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の搬送方向への配向を弱める処理を行うことを特徴とする。
このような構成によれば、斜め延伸製膜による長尺延伸フィルム両端のスリット時にフィルムへ付着するフィルム片やカスの低減、フィルム表面へのキズの付着の防止、及び製造停止リスクの抑制が可能となる。
また、本発明の長尺延伸フィルムの製造方法において前記スリット工程において、前記搬送方向への配向を弱める処理は、長尺延伸フィルムの切断箇所を加熱する処理であることが好適である。このような構成によれば、切断時のフィルム切断面の裂けや荒れがより発生しにくい。
また、本発明の長尺延伸フィルムの製造方法において、前記スリット工程において、搬送方向への配向を弱める処理は、長尺延伸フィルムの切断箇所に有機溶剤を滴下する処理であることが好適である。
このような構成によれば、より簡便にスリット工程時を行うことができる。
また、本発明の長尺延伸フィルムの製造方法において、前記スリット装置が前記長尺延伸フィルムの旋回角度の変更に応じて追随する機構を有していることが好適である。
このような構成によれば、巻き取り方向の繰り出し方向に対する傾斜角度を変更する際に、スリット装置を取り外したり、再構築したりする必要がなくなり、その結果生産性に優れることとなる。
本発明によれば、斜め延伸製膜を用いた長尺延伸フィルムの製造方法において、フィルムの内周側を切断する前に切断箇所の搬送方向への配向を弱める処理によって、スリット工程時に付着するフィルム片やカスが低減され、表面へのキズの付着が防止された長尺延伸フィルムを得ることができ、十分な製品幅を確保することが可能な長尺延伸フィルムの製造方法を提供することができる。
以下に実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれらにより限定されるものではない。
〔長尺延伸フィルム1〕
(シクロオレフィンフィルムの製造)
窒素雰囲気下、脱水したシクロヘキサン500部に、1-ヘキセン1.2部、ジブチルエーテル0.15部、トリイソブチルアルミニウム0.30部を室温で反応器に入れ混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(ジシクロペンタジエン、以下、DCPと略記)20部、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(以下、MTFと略記)140部、及び8-メチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン(以下、MTDと略記)40部からなるノルボルネン系モノマー混合物と、六塩化タングステン(0.7%トルエン溶液)40部とを、2時間かけて連続的に添加し重合した。重合溶液にブチルグリシジルエーテル1.06部とイソプロピルアルコール0.52部を加えて重合触媒を不活性化し重合反応を停止させた。
(シクロオレフィンフィルムの製造)
窒素雰囲気下、脱水したシクロヘキサン500部に、1-ヘキセン1.2部、ジブチルエーテル0.15部、トリイソブチルアルミニウム0.30部を室温で反応器に入れ混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(ジシクロペンタジエン、以下、DCPと略記)20部、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(以下、MTFと略記)140部、及び8-メチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン(以下、MTDと略記)40部からなるノルボルネン系モノマー混合物と、六塩化タングステン(0.7%トルエン溶液)40部とを、2時間かけて連続的に添加し重合した。重合溶液にブチルグリシジルエーテル1.06部とイソプロピルアルコール0.52部を加えて重合触媒を不活性化し重合反応を停止させた。
次いで、得られた開環重合体を含有する反応溶液100部に対して、シクロヘキサン270部を加え、さらに水素化触媒としてニッケル-アルミナ触媒(日揮化学社製)5部を加え、水素により5MPaに加圧して撹拌しながら温度200℃まで加温した後、4時間反応させ、DCP/MTF/MTD開環重合体水素化ポリマーを20%含有する反応溶液を得た。濾過により水素化触媒を除去した後、軟質重合体(クラレ社製;セプトン2002)、及び酸化防止剤(チバスペシャリティ・ケミカルズ社製;イルガノックス1010)を、得られた溶液にそれぞれ添加して溶解させた(いずれも重合体100部あたり0.1部)。
次いで、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を、円筒型濃縮乾燥器(日立製作所製)を用いて除去し、水素化ポリマーを溶融状態で押出機からストランド状に押出し、冷却後ペレット化して回収した。重合体中の各ノルボルネン系モノマーの共重合比率を、重合後の溶液中の残留ノルボルネン類組成(ガスクロマトグラフィー法による)から計算したところ、DCP/MTF/MTD=10/70/20でほぼ仕込み組成に等しかった。この開環重合体水素添加物の、重量平均分子量(Mw)は31,000、分子量分布(Mw/Mn)は2.5、水素添加率は99.9%、Tgは134℃であった。得られた開環重合体水素添加物のペレットを、空気を流通させた熱風乾燥器を用いて70℃で2時間乾燥して水分を除去した。
次いで、前記ペレットを、コートハンガータイプのTダイを有する短軸押出機(三菱重工業株式会社製:スクリュー径90mm、Tダイリップ部材質は炭化タングステン、溶融樹脂との剥離強度44N)を用いて溶融押出成形して厚み100μmのシクロオレフィンポリマーフィルムを製造した。押出成形は、クラス10,000以下のクリーンルーム内で、溶融樹脂温度240℃、Tダイ温度240℃の成形条件にて幅900mmの長尺フィルム原反Aを得た。長尺フィルム原反Aはロールに巻き取った。
(斜め延伸工程)
上記にて得られたノルボルネン系樹脂の長尺フィルム原反Aを、本発明に係る斜め延伸装置を用いて、以下に示す方法により延伸して、延伸フィルムを得た。
上記にて得られたノルボルネン系樹脂の長尺フィルム原反Aを、本発明に係る斜め延伸装置を用いて、以下に示す方法により延伸して、延伸フィルムを得た。
まず、フィルムの繰り出し方向と巻き取り方向とがなす角度(旋回角)を47°とした。そして、フィルム繰り出し装置から送られてくる長尺フィルムAの両端を、第1クリップ(レールの内周側)及び第2クリップ(レールの外周側)で把持した。
なお、長尺フィルムを把持する際には、第1、第2クリップのクリップレバーを、クリップクローザーにより動かすことにより長尺フィルムを把持する。また、クリップ把持時の際は、長尺フィルムの両端を同時に第1、第2クリップで同時に把持し、かつフィルムの横方向に平行な軸に対して、両端の把持位置を結ぶ線画並行となるように把持する。
次いで、把持した未延伸のフィルムを上記第1、第2クリップにより、加熱ゾーン内の予熱ゾーン、延伸ゾーンおよび熱固定ゾーンを通過させることにより加熱し、幅方向に延伸し、延伸フィルムを得た。
なお、加熱および延伸する際におけるフィルム搬送速度は、10m/分とし、延伸温度を141℃とした。
また、延伸前後におけるフィルムの延伸倍率を2倍とし、延伸後のフィルムの厚みが50μm、幅が1800mmとなるようにした。
以上の工程によって得られたシクロオレフィンの長尺延伸フィルムを延伸フィルム1とした。
〔長尺延伸フィルム2~6〕
長尺延伸フィルム2~6では、下記表1に示すようなフィルムの原反膜厚、原反膜幅、延伸後の配向角、延伸後の膜厚、搬送速度、延伸温度、旋回角を代えてフィルムを斜め延伸させた他は前記長尺延伸フィルム1と同様にして各シクロオレフィンの長尺延伸フィルムを調製した。
長尺延伸フィルム2~6では、下記表1に示すようなフィルムの原反膜厚、原反膜幅、延伸後の配向角、延伸後の膜厚、搬送速度、延伸温度、旋回角を代えてフィルムを斜め延伸させた他は前記長尺延伸フィルム1と同様にして各シクロオレフィンの長尺延伸フィルムを調製した。
下記表1に各長尺延伸フィルムの延伸条件について記す。なお、各延伸条件については以下の通りである。
延伸後の配向角(°):フィルム幅手方向50mmピッチで測定した平均配向角。
延伸後の膜厚(μm):フィルム幅手方向20mmピッチで測定した平均膜厚。
搬送速度(m/分):斜め延伸テンターの左右非対称なレール上を走行する把持具の走行速度。
旋回角(°):フィルムの繰出方向とフィルムの巻取方向の成す角度。
延伸温度(℃):フィルムを延伸する時の温度。
延伸倍率:斜め延伸前のフィルムの入り幅をW0、斜め延伸後のフィルム幅をWとした時のW/W0で表される値。
延伸後の配向角(°):フィルム幅手方向50mmピッチで測定した平均配向角。
延伸後の膜厚(μm):フィルム幅手方向20mmピッチで測定した平均膜厚。
搬送速度(m/分):斜め延伸テンターの左右非対称なレール上を走行する把持具の走行速度。
旋回角(°):フィルムの繰出方向とフィルムの巻取方向の成す角度。
延伸温度(℃):フィルムを延伸する時の温度。
延伸倍率:斜め延伸前のフィルムの入り幅をW0、斜め延伸後のフィルム幅をWとした時のW/W0で表される値。
〔長尺延伸フィルム7〕
(セルロースエステルフィルムの製造)
《糖エステル化合物1の合成》
撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.6モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×102Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×102Pa以下)、60℃でトルエンを留去させ、図8に示すような化合物A-1、A-2、A-3、A-4及びA-5の混合物を得た。
(セルロースエステルフィルムの製造)
《糖エステル化合物1の合成》
撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.6モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×102Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×102Pa以下)、60℃でトルエンを留去させ、図8に示すような化合物A-1、A-2、A-3、A-4及びA-5の混合物を得た。
得られた混合物をHPLC及びLC-MASSで解析したところ、A-1が1.3質量%、A-2が13.4質量%、A-3が13.1質量%、A-4が31.7質量%、A-5が40.5質量%であった。平均置換度は5.5であった。
また、前記HPLC-MASSの測定条件は、以下の通りである。
1)LC部
装置:日本分光(株)製カラムオーブン(JASCO CO-965)、ディテクター(JASCO UV-970-240nm)、ポンプ(JASCO PU-980)、デガッサ-(JASCO DG-980-50)
カラム:Inertsil ODS-3 粒子径5μm 4.6×250mm(ジーエルサイエンス(株)製)
カラム温度:40℃
流速:1ml/min
移動相:THF(1%酢酸):H2O(50:50)
注入量:3μl
装置:日本分光(株)製カラムオーブン(JASCO CO-965)、ディテクター(JASCO UV-970-240nm)、ポンプ(JASCO PU-980)、デガッサ-(JASCO DG-980-50)
カラム:Inertsil ODS-3 粒子径5μm 4.6×250mm(ジーエルサイエンス(株)製)
カラム温度:40℃
流速:1ml/min
移動相:THF(1%酢酸):H2O(50:50)
注入量:3μl
2)MS部
装置:LCQ DECA(Thermo Quest(株)製)
イオン化法:エレクトロスプレーイオン化(ESI)法
Spray Voltage:5kV
Capillary温度:180℃
Vaporizer温度:450℃
装置:LCQ DECA(Thermo Quest(株)製)
イオン化法:エレクトロスプレーイオン化(ESI)法
Spray Voltage:5kV
Capillary温度:180℃
Vaporizer温度:450℃
《エステル化合物1の合成》
1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物1を得た。エステル化合物1は、1,2-プロピレングリコール、無水フタル酸及びアジピン酸が縮合して形成されたポリエステル鎖の末端に安息香酸のエステルを有する。エステル化合物1の酸価0.10、数平均分子量450であった。
1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物1を得た。エステル化合物1は、1,2-プロピレングリコール、無水フタル酸及びアジピン酸が縮合して形成されたポリエステル鎖の末端に安息香酸のエステルを有する。エステル化合物1の酸価0.10、数平均分子量450であった。
《微粒子添加液1の調整》
微粒子(アエロジル R972V 日本アエロジル(株)製)11質量部、エタノール89質量部をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行い、微粒子分散液1を調整した。
微粒子(アエロジル R972V 日本アエロジル(株)製)11質量部、エタノール89質量部をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行い、微粒子分散液1を調整した。
続いて、メチレンクロライド99質量部を入れた溶解タンクを十分攪拌しながら、微粒子分散液1、1質量部をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
《主ドープの調整》
メチレンクロライド、エタノール、セルロースアセテートプロピオネート、下記の化学式6に示す化合物(C)、前述した糖エステル化合物1、エステル化合物1、微粒子添加液1を下記記載の組成となるようドープ液を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。
メチレンクロライド、エタノール、セルロースアセテートプロピオネート、下記の化学式6に示す化合物(C)、前述した糖エステル化合物1、エステル化合物1、微粒子添加液1を下記記載の組成となるようドープ液を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。
メチレンクロライド 340質量部
エタノール 64質量部
セルロースアセテートプロピオネート(アセチル基置換度1.39、プロピオニル基置換度0.50、総置換度1.89)
100質量部
化合物(C) 5.0質量部
糖エステル化合物1 5.0質量部
エステル化合物1 2.5質量部
微粒子添加液1 1質量部
エタノール 64質量部
セルロースアセテートプロピオネート(アセチル基置換度1.39、プロピオニル基置換度0.50、総置換度1.89)
100質量部
化合物(C) 5.0質量部
糖エステル化合物1 5.0質量部
エステル化合物1 2.5質量部
微粒子添加液1 1質量部
続いて、無端ベルト流延装置を用い、上記ドープ液をステンレススティールベルト支持体上に均一に流延した。ステンレススティールベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、ステンレススティールベルト支持体上から剥離した。
剥離したセルロースエステルフィルムを、横延伸テンターにて幅方向に1.1倍延伸した。その時の横延伸テンターオーブンの温度条件としては、予熱ゾーンは160℃、延伸ゾーンは165℃、保持ゾーンは172℃、冷却ゾーンは110℃に調整した。
次いで、フィルム両端部のテンタークリップ痕部をトリミングし、乾燥温度は130℃で、長尺フィルムを多数のロールを用いて乾燥ゾーン内を搬送させながら乾燥を終了させた後、長尺フィルム原反Bとして巻き取った。以上のようにして、厚み60μm、幅900mmの長尺フィルム原反Bを得た。
(長尺延伸フィルム7)
長尺延伸フィルム7では、表1に示すようなフィルムの延伸温度、フィルムの原反膜厚、原反膜幅、延伸後の配向角、延伸後の膜厚、搬送速度、延伸温度、旋回角を代えてフィルムを斜め延伸させた他は前記製造例1と同様にしてセルロースエステルの延伸フィルムを製造した。
長尺延伸フィルム7では、表1に示すようなフィルムの延伸温度、フィルムの原反膜厚、原反膜幅、延伸後の配向角、延伸後の膜厚、搬送速度、延伸温度、旋回角を代えてフィルムを斜め延伸させた他は前記製造例1と同様にしてセルロースエステルの延伸フィルムを製造した。
[実施例1]
前記長尺延伸フィルム1の内周側を、フィルム端部から幅手方向に120mmの位置でCO2レーザー光照射装置(波長10.6μm、レーザ光出力30W)を用いて加熱した後に、スリット刃を用いて前記加熱照射した部分と同じ位置で前記長尺延伸フィルムを切断した。
前記長尺延伸フィルム1の内周側を、フィルム端部から幅手方向に120mmの位置でCO2レーザー光照射装置(波長10.6μm、レーザ光出力30W)を用いて加熱した後に、スリット刃を用いて前記加熱照射した部分と同じ位置で前記長尺延伸フィルムを切断した。
また、スリット装置として、円盤状の回転上刃と、ロール状の回転下刃とから構成されており、回転上刃の材質は超鋼鋼材を使用しており、回転上刃の直径が200mm、及び切断箇所の刃の厚みが0.5mmであった。方、ロール状の回転下刃の材質は超鋼鋼材であり、回転下刃のロール径が100mmであった。
[実施例2~6]
実施例2~6では、下記表2に示すような長尺延伸フィルムの種類を変えてスリット工程を行った他は実施例1と同様にして各長尺延伸フィルムを切断した。
実施例2~6では、下記表2に示すような長尺延伸フィルムの種類を変えてスリット工程を行った他は実施例1と同様にして各長尺延伸フィルムを切断した。
[実施例7]
実施例7では、実施例6と同じ種類の長尺延伸フィルムを用い、配向を弱める手段を有機溶剤滴下に変更して実施した。
実施例7では、実施例6と同じ種類の長尺延伸フィルムを用い、配向を弱める手段を有機溶剤滴下に変更して実施した。
滴下液としてメチレンクロライドとメタノールの混合溶液を用い、有機溶剤滴下装置としてインクジェット方式を用いて、フィルム内周部に有機溶剤を滴下した。
インクジェット吐出装置は、ノズル径が3.5μmのノズルを所有するインクジェットヘッドとした。そして、インクジェットヘッドからの有機溶剤の滴下量を調整して、フィルムを切断する10秒前にフィルム表面の内周側の端部から120mmの箇所に前記有機溶剤を滴下した。また、スリット装置は、実施例1~6と同様のものを用いて切断を実施した。
[実施例8]
実施例8では、下記表2に示すように実施例6,7と同じ種類の長尺延伸フィルムを用い、前記フィルムを切断する前にフィルム表面の幅手方向における内周側の端部から120mmの位置を、送風口がφ30mmのヒートガンで吹き出し風温度が300℃となる条件で加熱した。また、スリット装置は、実施例1~7と同様のものを用いた。
実施例8では、下記表2に示すように実施例6,7と同じ種類の長尺延伸フィルムを用い、前記フィルムを切断する前にフィルム表面の幅手方向における内周側の端部から120mmの位置を、送風口がφ30mmのヒートガンで吹き出し風温度が300℃となる条件で加熱した。また、スリット装置は、実施例1~7と同様のものを用いた。
[実施例9]
実施例9では、使用する長尺延伸フィルムをセルロースエステル系に変更し、前記実施例1~6で行ったレーザー加熱装置による処理を行った後に、フィルム表面の幅手方向における内周側の端部から120mmの位置で、スリット装置による切断を行った。また、スリット装置は、実施例1~8と同様のものを用いた。
実施例9では、使用する長尺延伸フィルムをセルロースエステル系に変更し、前記実施例1~6で行ったレーザー加熱装置による処理を行った後に、フィルム表面の幅手方向における内周側の端部から120mmの位置で、スリット装置による切断を行った。また、スリット装置は、実施例1~8と同様のものを用いた。
[比較例1~6]
比較例1~6では、下記表2に示すような長尺延伸フィルムの種類を変更し、前記実施例1~9で行ったような溶剤滴下や熱処理を行わずに、フィルム表面の幅手方向における内周側の端部から120mmの位置でスリット処理を行った。また、スリット装置は、実施例1~9と同様のものを用いた。
比較例1~6では、下記表2に示すような長尺延伸フィルムの種類を変更し、前記実施例1~9で行ったような溶剤滴下や熱処理を行わずに、フィルム表面の幅手方向における内周側の端部から120mmの位置でスリット処理を行った。また、スリット装置は、実施例1~9と同様のものを用いた。
(フィルムカス付着の評価)
前記スリット工程後のスリット刃に切りカスが付着しているかどうか目視することにより、以下の評価基準で判定を行った。
前記スリット工程後のスリット刃に切りカスが付着しているかどうか目視することにより、以下の評価基準で判定を行った。
A:スリット刃に切りカスが見られない。
B:スリット刃に切りカスが僅かに付着している。
C:スリット刃に切りカスがたくさん付着している。
B:スリット刃に切りカスが僅かに付着している。
C:スリット刃に切りカスがたくさん付着している。
(フィルム端部のなめらかさの評価)
前記スリット工程後の各長尺延伸フィルムの端部の切断面を目視及び手で触ることにより、フィルム端部のなめらかさを以下の評価基準で判定を行った。
前記スリット工程後の各長尺延伸フィルムの端部の切断面を目視及び手で触ることにより、フィルム端部のなめらかさを以下の評価基準で判定を行った。
A:切断部のフィルム断面は滑らかである。
B:切断部のフィルム断面を指でなぞるとザラつく感触がある。
C:切断部のフィルム断面を目視で見ると、切断部の極一部に裂け等が発生している。
B:切断部のフィルム断面を指でなぞるとザラつく感触がある。
C:切断部のフィルム断面を目視で見ると、切断部の極一部に裂け等が発生している。
(外観の評価)
また、前記スリット工程後の各長尺延伸フィルムを巻きほぐして、前記延伸フィルムを目視及び暗室内での点光源投影法により、押され及びキズが発生しているかどうか以下の評価基準で判定を行った。
また、前記スリット工程後の各長尺延伸フィルムを巻きほぐして、前記延伸フィルムを目視及び暗室内での点光源投影法により、押され及びキズが発生しているかどうか以下の評価基準で判定を行った。
A:目視及び点光源投影法下で、フィルムを動かしてかざして見ても押され及びキズ共に見られない。
B:目視では押され及びキズ共に見られない。また、点光源投影下では、フィルムを動かして見ると、僅かに押され及びキズが見られる。
C:目視では押され及びキズ共に見られない。また、点光源投影下では、フィルムを静止させた状態において僅かに押され及びキズが見られる。
D:目視では押され及びキズ共に見られない。また、点光源投影下では、はっきりと押され及びキズが見られる。
E:目視及び点光源投影下で押され及びキズが見られる。
B:目視では押され及びキズ共に見られない。また、点光源投影下では、フィルムを動かして見ると、僅かに押され及びキズが見られる。
C:目視では押され及びキズ共に見られない。また、点光源投影下では、フィルムを静止させた状態において僅かに押され及びキズが見られる。
D:目視では押され及びキズ共に見られない。また、点光源投影下では、はっきりと押され及びキズが見られる。
E:目視及び点光源投影下で押され及びキズが見られる。
上記評価結果を下記表2に示す。
表2の結果から明らかなように、切断前のフィルムをレーザー式の加熱装置により加熱し、スリット装置を用いて切断した実施例1~6は、スリット刃に切りカスが見られず、切断部のフィルム断面は滑らかであり、かつキズのないフィルムを得ることができた。特に、実施例6においては、実施例1~5に比べて高速条件下で製膜しているにも関わらず、目視では押されやキズが見つからないほど外観に優れたフィルムを得ることができた。また、切断前のフィルムに有機溶剤を滴下して切断した実施例7についても、高速条件下で製膜しているにも関わらず、スリット刃に切りカスが見られず、切断部のフィルム断面は滑らかであり、かつキズの少ないフィルムを得ることができた。また、切断前のフィルムをヒートガンを用いて加熱し、切断した実施例についても、高速条件下で製膜しても、製品として問題のないフィルムを得ることができた。さらに、セルロースエステルフィルムについても、実施例1と同様にレーザー式加熱装置を用いて加熱し、切断することで、スリット刃に切りカスが見られず、切断部のフィルム断面は滑らかであり、かつキズのないフィルムを得ることができた。
一方で、切断前に各実施例のような前処理を行わなかった比較例1~6は、各評価に劣る結果となった。
この出願は、2012年2月21日に出願された日本国特許出願特願2012-35099を基礎とするものであり、その内容は、本願に含まれるものである。
本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明は、延伸フィルムおよびその製造方法の技術分野において、広範な産業上の利用可能性を有する。
Claims (7)
- 熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断するスリット工程、及びスリット工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、
前記スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の搬送方向への配向を弱める処理を行うことを特徴とする、長尺延伸フィルムの製造方法。 - 前記スリット工程において、搬送方向への配向を弱める処理は、長尺延伸フィルムの切断箇所を加熱する処理であることを特徴とする請求項1に記載の長尺延伸フィルムの製造方法。
- 前記スリット工程において、搬送方向への配向を弱める処理は、長尺延伸フィルムの切断箇所に有機溶剤を滴下する処理であることを特徴とする請求項1に記載の長尺延伸フィルムの製造方法。
- 前記スリット工程において、前記スリット装置及び、前記配向を弱める処理を行う装置が、前記長尺延伸フィルムの旋回角度の変更に応じて追随する機構を有している、請求項1~3のいずれかに記載の長尺延伸フィルムの製造方法。
- 前記スリット工程において、前記スリット装置が、前記長尺延伸フィルムの延伸方向とスリット刃の進行方向との角度を確認できる機構を有する、請求項1~4のいずれかに記載の長尺延伸フィルムの製造方法。
- 前記斜め延伸工程において、前記斜め延伸テンターの左右非対称なレール上を走行する把持具の走行速度が20~150m/分である、請求項1~5のいずれかに記載の長尺延伸フィルムの製造方法。
- 前記長尺延伸フィルムの膜厚が10~35μmである請求項1~6のいずれかに記載の長尺延伸フィルムの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014500909A JP5979216B2 (ja) | 2012-02-21 | 2013-02-15 | 長尺延伸フィルムの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-035099 | 2012-02-21 | ||
JP2012035099 | 2012-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125195A1 true WO2013125195A1 (ja) | 2013-08-29 |
Family
ID=49005392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/000849 WO2013125195A1 (ja) | 2012-02-21 | 2013-02-15 | 長尺延伸フィルムの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5979216B2 (ja) |
WO (1) | WO2013125195A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220102122A (ko) | 2021-01-12 | 2022-07-19 | 코니카 미놀타 가부시키가이샤 | 경사 연신 필름의 제조 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000009912A (ja) * | 1998-06-25 | 2000-01-14 | Nitto Denko Corp | 延伸フィルムの製造方法及び位相差板 |
WO2007061105A1 (ja) * | 2005-11-28 | 2007-05-31 | Zeon Corporation | 長尺の斜め延伸フィルムの製造方法 |
WO2007111313A1 (ja) * | 2006-03-24 | 2007-10-04 | Zeon Corporation | 長尺の延伸フィルムおよびその製造方法並びに用途 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2695687B2 (ja) * | 1989-11-10 | 1998-01-14 | 三菱重工業株式会社 | 自動通紙方法及び装置 |
JP2005114972A (ja) * | 2003-10-07 | 2005-04-28 | Akiyoshi Umemura | 偏光膜斜め延伸装置 |
CN101300121B (zh) * | 2005-11-04 | 2012-10-24 | 柯尼卡美能达精密光学株式会社 | 纤维素类树脂膜、纤维素类树脂膜的制造方法、防反射膜、偏振片及液晶显示装置 |
JP4830517B2 (ja) * | 2006-01-31 | 2011-12-07 | 日本ゼオン株式会社 | 延伸フィルムの製造方法 |
JP5098296B2 (ja) * | 2006-10-31 | 2012-12-12 | 日本ゼオン株式会社 | 長尺の延伸フィルムの製造方法 |
TWI485058B (zh) * | 2009-02-18 | 2015-05-21 | Konica Minolta Opto Inc | 光學薄膜的製造方法 |
JP5292265B2 (ja) * | 2009-12-01 | 2013-09-18 | 富士フイルム株式会社 | 光学フィルムの製造方法 |
-
2013
- 2013-02-15 JP JP2014500909A patent/JP5979216B2/ja active Active
- 2013-02-15 WO PCT/JP2013/000849 patent/WO2013125195A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000009912A (ja) * | 1998-06-25 | 2000-01-14 | Nitto Denko Corp | 延伸フィルムの製造方法及び位相差板 |
WO2007061105A1 (ja) * | 2005-11-28 | 2007-05-31 | Zeon Corporation | 長尺の斜め延伸フィルムの製造方法 |
WO2007111313A1 (ja) * | 2006-03-24 | 2007-10-04 | Zeon Corporation | 長尺の延伸フィルムおよびその製造方法並びに用途 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220102122A (ko) | 2021-01-12 | 2022-07-19 | 코니카 미놀타 가부시키가이샤 | 경사 연신 필름의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP5979216B2 (ja) | 2016-08-24 |
JPWO2013125195A1 (ja) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6623737B2 (ja) | 光学フィルムの製造方法および製造装置 | |
WO2014073021A1 (ja) | 長尺延伸フィルムの製造方法 | |
JP5177332B1 (ja) | 長尺延伸フィルムの製造方法及び製造装置 | |
JP5083483B1 (ja) | 長尺延伸フィルムの製造方法 | |
JP5088718B1 (ja) | 延伸フィルムの製造方法、延伸フィルムの製造装置および延伸フィルムの製造システム | |
JP2013202979A (ja) | 斜め延伸フィルムの製造方法および製造装置 | |
JP5126456B1 (ja) | 長尺斜め延伸フィルムの製造方法および製造装置 | |
JP5979224B2 (ja) | 長尺延伸フィルムの製造方法及び製造装置 | |
JP5862687B2 (ja) | 長尺延伸フィルムの製造方法 | |
JP5862686B2 (ja) | 長尺延伸フィルムの製造方法 | |
WO2013118171A1 (ja) | 長尺延伸フィルムの製造方法 | |
JP6003815B2 (ja) | 長尺斜め延伸フィルムの製造方法 | |
WO2014156416A1 (ja) | 光学フィルムの製造方法 | |
JP5105034B1 (ja) | 延伸フィルムの製造方法、延伸フィルムの製造装置および延伸フィルムの製造システム | |
JP5979216B2 (ja) | 長尺延伸フィルムの製造方法 | |
JP5999004B2 (ja) | 光学フィルムの製造方法 | |
JP5987896B2 (ja) | 長尺延伸フィルムの製造方法、及び斜め延伸装置 | |
JP6107368B2 (ja) | 光学フィルムの製造方法 | |
WO2016132893A1 (ja) | 長尺斜め延伸フィルムの製造方法 | |
WO2013125196A1 (ja) | 長尺延伸フィルムの製造方法 | |
WO2014123132A1 (ja) | 光学フィルムの製造方法 | |
WO2014123133A1 (ja) | 光学フィルムの製造方法 | |
WO2013136727A1 (ja) | 長尺延伸フィルムの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13751456 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014500909 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13751456 Country of ref document: EP Kind code of ref document: A1 |