JPWO2013125195A1 - 長尺延伸フィルムの製造方法 - Google Patents

長尺延伸フィルムの製造方法 Download PDF

Info

Publication number
JPWO2013125195A1
JPWO2013125195A1 JP2014500909A JP2014500909A JPWO2013125195A1 JP WO2013125195 A1 JPWO2013125195 A1 JP WO2013125195A1 JP 2014500909 A JP2014500909 A JP 2014500909A JP 2014500909 A JP2014500909 A JP 2014500909A JP WO2013125195 A1 JPWO2013125195 A1 JP WO2013125195A1
Authority
JP
Japan
Prior art keywords
film
group
stretched film
long
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014500909A
Other languages
English (en)
Other versions
JP5979216B2 (ja
Inventor
晋平 畠山
晋平 畠山
大介 北條
大介 北條
真治 稲垣
真治 稲垣
博 南部
博 南部
大輔 植野
大輔 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2014500909A priority Critical patent/JP5979216B2/ja
Publication of JPWO2013125195A1 publication Critical patent/JPWO2013125195A1/ja
Application granted granted Critical
Publication of JP5979216B2 publication Critical patent/JP5979216B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/045Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本発明は、熱可塑性樹脂を含有する長尺延伸フィルムの製造方法において、スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の配向を弱める処理を行うことを特徴とする長尺延伸フィルムの製造方法に関する。

Description

本発明は、長尺延伸フィルムの製造方法に関する。
樹脂を延伸してなる延伸フィルムは、その光学異方性を利用して、各種ディスプレイ装置において様々な光学的機能を果たす光学フィルムとして用いられている。例えば、液晶表示装置において、該延伸フィルムを着色防止、視野角拡大などの光学補償などのための光学補償フィルムとして用いたり、該延伸フィルムと偏光子とを貼り合わせることで、該延伸フィルムを、偏光板保護フィルムを兼ねた位相差フィルムとして用いたりすることが知られている。
一方、近年では新たなディスプレイ装置として、有機エレクトロルミネッセンス表示装置のような自発光型の表示装置が注目されている。自発光型表示装置は、バックライトが常に点灯している液晶表示装置に対して消費電力を抑制できる余地があり、更に、有機エレクトロルミネッセンス表示装置のような各色に対応した光源がそれぞれ点灯する自発光表示装置では、コントラスト低減の要因となるカラーフィルターを設置する必要がないため、コントラストを更に高めることが可能である。
しかしながら、有機エレクトロルミネッセンス表示装置においては、光取り出し効率を高めるためにディスプレイの背面側にアルミニウム板等の反射体が設けられ、ディスプレイに入射した外光がこの反射体で反射されることで画像のコントラストを低下させるといった問題が生じる。そのため、外光反射防止による明暗コントラスト向上のために該延伸フィルムと偏光子とを貼り合わせて円偏光板をディスプレイの表面側に用いる技術が知られている。
このような円偏光板は、偏光子の透過軸に対して、該延伸フィルムの面内遅相軸を所望の角度で傾斜するような配置で貼り合わされる必要がある。
しかしながら、一般的な偏光子(偏光フィルム)は、搬送方向に高倍率延伸することで得られるもので、その吸収軸が搬送方向と一致しており、従来の位相差フィルムは、縦延伸、又は横延伸で製造され、原理的に面内の遅相軸がフィルムの長尺方向に対し0°または90°方向になる。このため、上記のように偏光子の吸収軸と延伸フィルムの遅相軸との関係を傾斜した所望の角度にするには長尺の偏光フィルム及び/または延伸フィルムを特定の角度で切り出してフィルム片同士を1枚ずつ貼り合せるバッチ式で行わざるを得なくなり、遅相軸のばらつきによる生産性の悪化や切り屑等の付着による製品の歩留まりの低下が問題として挙げられていた。
そこで特許文献1では、所望の角度で斜め方向に延伸し、遅相軸がフィルムの長尺方向に対し、0°でも90°でもない方向に自在に制御可能な長尺の位相差フィルムの製造方法が提案されている。この方法により偏光フィルムと延伸フィルムをロール−トゥ−ロールで貼り合わせることができるため、歩留まりの低下がなくなり、安定した生産を行うことができた。
しかしながら、前記の斜め延伸製膜法で高速製造・薄膜品質のものを生産した場合において、出来上がったフィルムの外観品質を評価した際、延伸フィルムにキズや凹みが発生する問題が生じた。また、これを前述した表示装置に組み込んだ場合は、点状の色ヌケといったことを発生させ、製品品質上の問題が生じた。
国際公開第2007/111313号公報
本発明の一局面は、本発明に係る長尺延伸フィルムの製造方法は熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断するスリット工程、及びスリット工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の搬送方向への配向を弱める処理を行うことを特徴とする。
本発明によれば、斜め延伸製膜を用いた長尺延伸フィルムの製造方法において、フィルムの内周側を切断する前に切断箇所の搬送方向への配向を弱める処理によって、スリット工程時に付着するフィルム片やカスが低減され、表面へのキズの付着が防止された長尺延伸フィルムを得ることができ、十分な製品幅を確保することが可能な長尺延伸フィルムの製造方法を提供することができる。
図1は、横延伸製膜、又は斜め延伸製膜したフィルムを切断する場合のフィルム配向分布の概略図、及び配向消失処理を説明する概略図である。 図2は、本発明の実施形態に係る斜め延伸装置の構成を示す概略上面図である。 図3は、本発明の実施形態に係る斜め延伸装置の構成を示す概略側面図である。 図4は、本発明の実施形態に係る長尺延伸フィルムの製造方法に用いられる斜め延伸テンターのレールパターンの一例を示す概略図である。 図5は、本発明の実施形態に係るスリット工程の構成を示す概略図である。 図6は、本発明の一実施形態に係るインクジェットヘッド部、ノズルプレートの一例を示す概略図である。 図7は、本発明の一実施形態に係る有機EL画像表示装置の構成の一例を示す概略図である。 図8は、本発明の一実施形態に係る糖エステル化合物の合成を示す図である。
本発明の目的は、斜め延伸製膜による長尺延伸フィルム両端のスリット時にフィルムへ付着するフィルム片やカスの低減、フィルム表面へのキズの付着の防止、及び製造停止リスクの抑制を可能としながら、十分な製品幅を確保することが可能な長尺延伸フィルムの製造方法を提供することにある。
この課題について調査すると、前記キズや凹みの発生位置がフィルム端部を切断するスリット工程後にあることを見つけた。この対策として、スリットの切断幅を変えた施策を行った際、切断幅を広く取るとキズや凹みが改善し、逆に切断幅を狭くするとキズや凹みが悪化することを見出した。
一般的に、端部を把持して延伸するフィルムの製造方法においては、クリップ等により把持されたフィルムの端部は、クリップ把持によって変形してしまい、製品として用いることができなくなるため、スリッターと呼ばれる切断具で切断して除去する必要がある。しかしながらキズや凹みをなくすレベルまで切断幅を広く取ると、製品となる有効なフィルム幅が確保出来なくなってしまい、新たな問題となった。
そこで更に調査を行った結果、斜め延伸装置における内周側におけるフィルムの切断断面の方が粗くなっており、キズや凹みの発生も内周側が顕著であることを発見した。上記要因について検討を行ったところ、上記の問題が斜めに延伸されたフィルムをスリットする際に発生するものであることを見出した。
一方、特許文献1に記載されるような、フィルムの繰り出し方向と巻取り方向が異なる延伸装置により、斜めに延伸する方法においては、内周側(把持具により把持される長さが短い側)が延伸時に先行することで、フィルムが斜めに延伸されてフィルムを構成する樹脂が斜めに配向するとともに遅相軸が斜めに配向したフィルムを得ることができる。その際、内周側では樹脂(分子)の配向方向がフィルムの搬送方向の下流側に傾いている。
また、把持具により把持される端部付近では搬送方向に強く引っ張られるため、フィルム中央部と比較して更に搬送方向の下流側に傾斜した方向に樹脂が配向することとなる。フィルムの樹脂がフィルムの搬送方向の下流側に大きく傾斜している場合、樹脂フィルムは配向方向に裂けやすい特性を示すため、フィルムの進行方向から切断の力を加えた際、切断の力や切断時のフィルムの微小な振動が起きた場合に、端部で裂けや荒れが生じやすくなる。
一方、外周側(把持具により把持される長さが長い側)では、斜め延伸時にフィルムを搬送方向上流側に引っ張る力が発生するため、フィルム端部付近の樹脂はフィルムの搬送方向の上流側への傾斜が大きくなる。そのため、外周側では切断時の切断面の裂けや荒れが発生しにくい。したがって、スリッターにより端部から同じ幅ずつ切断した場合では内周側の方が裂け易くなり、端部から発生するフィルム片等によりキズや凹みといった課題が大きくなっていたのである。
一般的なフィルムを横に延伸するような延伸フィルムの製造方法においても、フィルム中央部がやや搬送方向の上流側に撓む、いわゆるボーイングという現象が発生し、若干端部がフィルムの搬送方向の下流側に傾斜する場合はあるが、わずかであり、上記のようなスリット時の課題は認識されていなかった。
本発明はかかる課題に鑑みてなされたものであって、その目的は、スリット工程時に付着するフィルム片やカスが低減され、表面へのキズの付着が防止された長尺延伸フィルムを得ることができる光学フィルムの製造方法を提供することである。
本発明者らは、上述したような斜め延伸製膜におけるトラブルの原因は、斜交する角度を変えて製膜した場合におけるフィルムの配向角方向にあることを見出し、検討を行った。
図1(a)は横延伸製膜したフィルムの切断を行った場合のフィルム配向分布の概略図である。なお、図中、符号は:1 斜め延伸装置、2 斜め延伸テンター、3 フィルム繰り出し装置、4 フィルム巻き取り装置、5,8 搬送ロール、6 内側のガイドレール、7 外側のガイドレール、10 外側のスリット刃、11,12 ガイドレール開始位置、13,14 ガイドレール終了位置、15 長尺フィルム(長尺延伸フィルム)、16 インクジェットヘッド、110 基板、260 ヒーター、270 ヒーター電源、280 電熱部材、310 液滴、320 ノズルを示す。
フィルム中央部は横延伸により横配向するが、フィルムの端部はボーイング(弓なり状になること)によってフィルム中央部より数度傾いてしまう。したがって、この場合の切断幅としては、図1(a)中の波線矢印のように、製品規格に満たす範囲から数十mm残す程度に搬送方向の反対側からスリット装置などを用いてフィルムをスリットするのが一般的である。
続いて、図1(b)に前述の斜め延伸製膜したフィルムの切断を行った場合のフィルム配向分布の概略図を示す。それぞれ、図1(b)中のフィルムの右側が斜め延伸時の内側であり、左側が外側を示す。この場合、フィルムの配向方向は傾斜しているため、フィルムは斜め方向に裂け易い特性を有しており、前記横延伸製膜したフィルムを切断する場合に比べてより裂け易くなる。特に、フィルム内側を切断する場合(スリット2)は、フィルム外側を切断する場合(スリット1)に比べて切断方向側から見てフィルム側へ裂け易い特性を有しているため、特にフィルムの生産性に影響し易くなる。
以上のように、斜め延伸製膜したフィルムの両端を切断する場合、スリット部にフィルムの切断不足に伴うフィルム片やカスが付着し、また切断中に前記カスが舞い上がることでフィルム片やカスがフィルムに付着したまま搬送してしまう。このことが原因となって搬送中のロールとフィルムが擦れてしまい、フィルム表面にキズ等をつけてしまうという問題が生じていた。更にスリット後のフィルム端部に裂け等が生じて、最終的にはフィルムが破断して製膜が中止されるといった問題も生じていた。
特に、フィルムの幅方向に対して延伸方向の傾斜角度が大きくなった場合、上記問題が発生する頻度が多くなっていた。更に、フィルム製造速度を高速化した場合、延伸応力が上昇しフィルム端部側の配向角度がより傾斜してくるため、上記問題がより発生し易くなっていた。また、フィルムを薄膜化した場合にも、そのフィルム物性が弱くなることから上記問題が発生し易くなっていた。
本発明はこのような問題を解消するため検討された結果、完成されたものである。
以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
以下に本実施形態に係る長尺延伸フィルムの製造方法について説明する。
<長尺延伸フィルムの製造方法>
本実施形態の長尺延伸フィルムの製造方法は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断するスリット工程、及びスリット工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の搬送方向への配向を弱める処理を行うことを特徴とする。
ここで内周側とは、把持具の走行距離が短い方を指し、外周側とは把持具の走行距離が長い方を指している。ここで図4は、斜め延伸テンターのレールパターンを示す概略図であり、左右の把持具Ci、Coが斜め延伸テンター入り口(図4中のAの位置)から延伸終了時の位置(図4のB)までを結ぶ非対称なレールRi、Ro上を走行する。図4のレールパターンは左に旋回した場合であるため、内周側はレールRi側であり、外周側はRo側である。また、レールパターンが右に旋回した場合においては前記Ri、Roは反対に変わることになる。
また長尺とは、フィルムの幅に対し、少なくとも5倍程度以上の長さを有するものをいい、好ましくは10倍もしくはそれ以上の長さを有し、具体的にはロール状に巻回されて保管または運搬される程度の長さを有するもの(フィルムロール)である。
また、前記スリット工程は、斜め延伸工程後にスリットをせずに巻取る工程を経た後、再度巻き替えを行う際にスリットを行う場合にも適用することができる。
また本実施形態の製造方法は、斜め延伸工程後にスリットをせずに巻取り工程を経た後、再度巻き替えを行う際にスリットを行う場合にも適用できる。
図2及び図3は本発明の一実施形態に係る長尺延伸フィルムの製造方法の各工程に用いる斜め延伸装置を模式的に示した図である。ただし、これは一例であって本発明はこれに限定されるものではない。
図2、3中、符号は以下の部材、装置等を表す。1 斜め延伸装置、2 斜め延伸テンター、3 フィルム繰り出し装置、4 フィルム巻き取り装置、5、8 搬送ロール、6 内側のガイドレール、7 外側のガイドレール、9 内側のスリット装置、10 外側のスリット装置、11、12 ガイドレール開始位置、13、14 ガイドレール終了位置、15 長尺フィルム(長尺延伸フィルム)、16 搬送方向への配向を弱める処理装置。
以下、本実施形態の製膜方法の各工程について説明する。
〔製膜工程〕
本実施形態の製造方法に係る製膜工程は、熱可塑性樹脂を含有する長尺フィルムを製膜する工程である。製膜工程は、熱可塑性樹脂の種類等によって種々の手段で行われるが、詳細は後述する。
〔斜め延伸工程〕
本実施形態の製造方法に係る斜め延伸工程は、前記製膜工程において製膜した長尺フィルムを、延伸後のフィルムの巻き取り方向とは異なる特定の方向からフィルム繰り出し装置から繰り出し、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、フィルムを斜め延伸することによって、フィルムの幅手方向に対して0°を超え90°未満の任意の角度に面内遅相軸を付与する工程である。
ここで、フィルムの幅手方向に対する角度とは、フィルム面内における角度である。遅相軸は、通常延伸方向又は延伸方向に直角な方向に発現するため、本実施形態に係る製造方法では、フィルムの搬送方向に直交する方向に対して0°を超え90°未満の角度で、所望の角度に任意に設定して延伸を行うことにより、かかる遅相軸を有する長尺延伸フィルムを製造することができる。
(繰り出し装置)
図2、図3に示すように、フィルム繰り出し装置3は、斜め延伸テンター入口に対して所定角度でフィルムを送り出せるように、スライドおよび旋回可能となっている。そして、フィルム繰り出し装置3は、スライド可能となっており、搬送方向変更装置により斜め延伸テンター入口に前記フィルムを送り出せるようになっていることが好ましい。前記フィルム繰り出し装置3、及び搬送方向変更装置をこのような構成とすることにより、より製造装置全体の幅を狭くすることが可能となるほか、フィルムの送り出し位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。また、前記フィルム繰り出し装置3、及び搬送方向変更装置を移動可能とすることにより、把持具のフィルムへの噛込み不良を有効に防止することができる。
なお、図2、3には斜め延伸前の長尺フィルムを一度巻いたものを使用した図面を記載したが、特に限定されず、斜め延伸前の長尺フィルムを途中で巻かずに、斜め延伸前フィルムを製造後、続けて斜め延伸を行う方法を行ってもよい。
(搬送ロール)
搬送ロール5は、前記繰り出し装置から繰り出されたフィルムを、ガイドレール開始位置11,12まで送るロールである。
前記搬送ロール5の数は特に特定されず、搬送ロールを配置した途中にフィルム端部を切断するためのスリッター工程を設けてもよい。また、搬送ロールの配置前後や、複数の搬送ロールの間に、フィルムの除電を行うための除電装置を設けてもよい。前記除電装置は、後述するスリット工程で用いられる除電装置と同様のものを使用することができる。
(斜め延伸テンター)
本実施形態に係る製造方法においては、長尺フィルムに斜め方向の配向を付与するために斜め延伸テンターを用いる。本実施形態で用いられる斜め延伸テンターは、レールパターンを多様に変化させることにより、フィルムの配向角を自在に設定できるフィルム延伸装置であることが好ましい。さらに、フィルムの配向軸をフィルム幅方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚みやリタデーションを制御できるフィルム延伸装置であることが好ましい。
図4は、本発明の実施形態に係る長尺延伸フィルムの製造方法に用いられる斜め延伸テンターのレールパターンの一例を示した概略図である。ただし、これは一例であって本発明はこれに限定されるものではない。
長尺フィルムの繰出方向D1は、延伸後の長尺延伸フィルムの巻取方向D2と異なっており、繰出角度θiを成している。繰出し角度θiは0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。
長尺フィルムは斜め延伸テンター入口(図4中Aの位置)においてその両端を左右の把持具によって把持され、把持具の走行に伴い走行される。左右の把持具は、斜め延伸テンター入口(図4中Aの位置)で、フィルムの進行方向(繰出方向D1)に対して略垂直な方向に相対している左右の把持具Ci、Coは、左右非対称なレールRi,Ro上を走行し、延伸終了時の位置(図4中Bの位置)で把持したフィルムを解放する。
このとき、斜め延伸テンター入口(図4中Aの位置)で相対していた左右の把持具は、左右非対称なレールRi,Ro上を走行するにつれて、Ri側を走行する把持具Ciは、Ro側を走行する把持具Coに対して進行する位置関係となる。
すなわち、斜め延伸テンター入口(フィルムの把持具による把持開始位置)Aでフィルムの繰出方向D1に対して略垂直な方向に相対していた把持具Ci、Coがフィルムの延伸終了時の位置Bにある状態で、該把持具Ci、Coを結んだ直線がフィルムの巻取方向D2に対して略垂直な方向に対して角度θLだけ傾斜している。
以上の所作をもって、長尺フィルム原反がθLの方向に斜め延伸されることとなる。ここで略垂直とは、90±1°の範囲にあることを示す。
前記斜め延伸テンターは、長尺フィルムを、延伸可能な任意の温度に加熱することができる。前記斜め延伸テンターは加熱ゾーンと、フィルムを搬送するための把持具が走行する左右で一対のレールと、該レール上を走行する多数の把持具とを備えている。テンターの入口部に順次供給されるフィルムの両端を、把持具で把持し、加熱ゾーン内にフィルムを導き、テンターの出口部で把持具からフィルムを開放する。把持具から開放されたフィルムは巻芯に巻き取られる。一対のレールは、それぞれ無端状の連続軌道を有し、テンターの出口部でフィルムの把持を開放した把持具は、外側を走行して順次入口部に戻されるようになっている。
なお、テンターのレールパターンは左右で非対称な形状となっており、製造すべき長尺延伸フィルムに与える配向角θ、延伸倍率等に応じて、そのレールパターンは手動で又は自動で調整できるようになっている。本実施形態に係る製造方法で用いられる斜め延伸テンターでは、各レール部及びレール連結部の位置を自由に設定し、レールパターンを任意に変更できることが好ましい。
本実施形態において、テンターの把持具は、前後の把持具と一定間隔を保って、一定速度で走行するようになっている。
前記把持具の走行速度は適宜選択できるが、通常、1〜150m/分である。高速生産条件下であると、内周側の配向角の傾きがより大きくなってしまうため、スリット時のキズや凹みの課題がより顕著になってくる。そこで走行速度が20〜150m/分である範囲で本発明を実施すると本発明の効果をより向上させることができる。また前記走行速度が30〜150m/分である範囲で実施すると本発明の効果をさらに向上させることができ、50〜150m/分である範囲で実施すると本発明の効果をさらに向上させることができる。
左右一対の把持具の走行速度の差は、走行速度の通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下である。これは、延伸工程出口でフィルムの左右に進行速度差があると、延伸工程出口におけるシワ、寄りが発生するため、左右の把持具の速度差は、実質的に同速度であることが求められるためである。一般的なテンター装置等では、チェーンを駆動するスプロケットの歯の周期、駆動モーターの周波数等に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数%のムラを生ずるが、これらは本発明の実施形態で述べる速度差には該当しない。
本実施形態に係る製造方法で用いられる斜め延伸テンターにおいて、特にフィルムの搬送が斜めになる箇所において、把持具の軌跡を規制するレールには、しばしば大きい屈曲率が求められる。急激な屈曲による把持具同士の干渉、あるいは局所的な応力集中を避ける目的から、屈曲部では把持具の軌跡が曲線を描くようにすることが望ましい。
本実施形態において、長尺フィルムは斜め延伸テンター入口(図4中Aの位置)において、その両端を左右の把持具によって順次把持されて、把持具の走行に伴い走行される。斜め延伸テンター入口(図4中Aの位置)で、フィルム進行方向D1に対して略垂直な方向に相対している左右の把持具は、左右非対称なレール上を走行し、予熱ゾーン、延伸ゾーン、熱固定ゾーンを有する加熱ゾーンを通過する。
予熱ゾーンとは、加熱ゾーン入口部において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。
また、延伸ゾーンとは、両端を把持した把持具の間隔が開きだし、所定の間隔になるまでの区間をさす。
このとき、上述のような斜め延伸が行われるが、必要に応じて斜め延伸前後において縦方向あるいは横方向に延伸してもよい。
熱固定ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、両端の把持具が互いに平行を保ったまま走行する区間をさす。
熱固定ゾーンを通過した後に、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間(冷却ゾーン)を通過してもよい。
このとき、冷却によるフィルムの縮みを考慮して、予め対向する把持具間隔を狭めるようなレールパターンとしてもよい。
各ゾーンの温度は、熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg〜Tg+30℃、延伸ゾーンの温度(延伸温度)はTg〜Tg+30℃、冷却ゾーンの温度はTg−30℃〜Tgに設定することが好ましい。
なお、幅方向の厚みムラの制御のために延伸ゾーンにおいて幅方向に温度差を付けてもよい。延伸ゾーンにおいて幅方向に温度差をつけるには、温風を恒温室内に送り込むノズルの開度を幅方向で差を付けるように調整する方法や、ヒーターを幅方向に並べて加熱制御するなどの公知の手法を用いることができる。予熱ゾーン、延伸ゾーン及び冷却ゾーンの長さは適宜選択でき、延伸ゾーンの長さに対して、予熱ゾーンの長さが通常100〜150%、固定ゾーンの長さが通常50〜100%である。
前記斜め延伸工程における延伸倍率(W/W0)は、好ましくは1.3〜3.0、より好ましくは1.5〜2.8である。延伸倍率がこの範囲にあると幅方向厚みムラが小さくなるので好ましい。斜め延伸テンターの延伸ゾーンにおいて、幅方向で延伸温度に差を付けると幅方向厚みムラをさらに良好なレベルにすることが可能になる。なお、W0は延伸前のフィルムの幅、Wは延伸後のフィルムの幅を表す。
〔スリット工程〕
本実施形態の製造方法に係るスリット工程は、後述する斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断する工程である。
長尺延伸フィルムの両端部は、前述の斜め延伸工程で把持具によって変形が生じているため、形状が不安定な両端部分を切除する必要がある。しかしながら、前述の図1(b)において説明したように、斜め延伸製膜したフィルムを切断する場合、内周側のフィルムは大きな傾斜の配向挙動を有していることから斜め方向に裂け易くなる。その結果、スリット部にフィルムの切断不足に伴うフィルム片やカスが付着し、搬送中のロールとフィルムが擦れてしまいフィルム表面にキズ等をつけてしまう。
特に、フィルムの幅方向に対して延伸方向の配向角度が大きい箇所を切断する場合、上記問題が発生する頻度が多くなる。そこで、本実施形態の斜め延伸製膜におけるスリット工程では、内周側のフィルムの配向角度が大きい箇所(例えば、図1(c)のSで示される箇所)の配向を、フィルムの切断を行う前に搬送方向への配向を弱める処理を行う。このように、搬送方向への配向を弱める処理を行うことによって製品となるフィルムに対してキズや凹み等の外観品質低下を防ぎ、かつ有効なフィルム幅を確保することができる。
搬送方向への配向を弱める処理とは、配向方向とフィルムの搬送方向の成す角度を大きくする方向へ変える処理のことや、分子の並びをランダムな方向へ変える処理のことをいう。フィルム片やカスの発生を抑制できることができるという観点では、配向性を弱め分子の並びをランダムな方向へ変える後者の処理が、より好ましい。
前記配向を弱める処理の態様としては、加熱処理、有機溶剤滴下処理、斜め延伸後に更なる追加延伸を行う処理等が挙げられる。これらの中でも配向を弱める領域が狭く、フィルムの製品幅への影響が少なく、また、配向を弱める処理として優れているという点において、加熱処理、有機溶剤滴下処理が好ましい。
また、前記搬送方向への配向を弱める処理を行うタイミングは、前記斜め延伸工程後からスリット装置がフィルムに接する前であればどの位置でもよいが、切断直前に前記搬送方向への配向を弱める処理を行うとフィルムが柔らかくなることによって、切断時にフィルムが変形してしまい、後の巻取工程で巻き不良を発生させる原因となるため、前記搬送方向への配向を弱める処理を行った後、ある一定の時間後に切断することが好ましい。前記一定時間としては、3秒〜300秒の範囲が好ましく、5秒〜60秒の範囲であることがより好ましい。
スリット装置が接するフィルム位置に対して前記加熱処理を行うことによって、加熱されたフィルム箇所の分子鎖構成が弱められ、非加熱箇所との分子鎖繋がりを低減することができる。その結果、スリット装置での裁断時にフィルム片やカスが発生しにくくなり、搬送中のロールとフィルムとの擦れによって生じるフィルム表面のキズ等を防ぐことができる。
前記加熱処理は熱発生装置によって行われることが好ましい。前記熱発生装置は搬送する長尺延伸フィルムを所定の温度まで加熱できるものであれば特に限定はなく、公知のものが使用でき、例えば、赤外線ヒーター、ヒートガン、レーザー式の加熱装置等が挙げられる。配向を弱める領域は狭いことが好ましいことから、加熱スポット径の小さいレーザー式の加熱装置が好ましく用いられる。
前記熱発生装置は、斜め延伸テンター2と前記スリット装置9,10との間に配置される。熱発生装置によってフィルムを加熱し、その加熱によって配向を弱めた位置を、前記スリッター装置を用いて切断していく。
前記加熱温度はTg〜600℃であることが好ましい。Tg以下に加熱してフィルムを切断すると、配向を弱める効果が十分に得られないため、フィルムカスの発生は抑制できない場合がある。また600℃以上に加熱すると、フィルムの加熱部分が柔らかくなり過ぎ、変形してしまうことで、切断部分のフィルム断面が乱れてしまい、後の巻取工程で巻き不良を発生させる原因となる。
ここで前記Tgとは長尺延伸フィルムに含有される熱可塑性樹脂のガラス転移温度である。
また、レーザー式の加熱装置は、レーザー光照射方向に垂直な方向の断面形状が円形となるレーザー光を照射することができるものであることが好ましい。また、レーザー光照射方向前方に焦点を設けて、この焦点に向けて前記円形の径を縮径させてレーザー光を照射し得るもの等も好ましく用いられる。このレーザー光の円形の径を縮径する手段としては、特に限定されるものではなく、例えば、レンズ、プリズム、ミラーなどによる一般に用いられている手段をあげることができる。
前記レーザー光としては特に限定はなく、公知のものが使用できる。例えば、CO2レーザー、YAGレーザー、UVレーザー等が挙げられる。前記レーザー光を照射する際には、レーザー光照射時間、照射強度、スポット径は特に制限されず、フィルム加熱時に照射部が溶けたり、変形したりしない範囲で適宜レーザー照射条件を選択でき、前記照射手段としては、一回の照射で加熱しても、複数の照射で加熱してもよい。前記レーザー照射の出力は、例えば、1W〜300Wであって、好ましくは5W〜50Wの範囲で照射することが好ましい。
また、レーザー光の照射を行うことによって、粉塵が発生した場合に、前記粉塵を前記レーザー光照射しながら吸引により回収することもできる。すなわち、レーザー光照射装置によりレーザー光を照射しながら、気体供給管等を設置して、レーザー光照射部への気体の吹き付け、および気体吸引管による粉塵や蒸発気体の回収を同時に行うこともできる。
続いて、前記有機溶剤滴下処理について説明する。
前記の加熱処理と同様に、スリット装置が当たるフィルム位置に対して有機溶剤を滴下することによって、スリット装置が当たるフィルム位置に溶剤を滴下した箇所とそれ以外の箇所との分子鎖繋がりを低減することができる。よって、スリット装置での裁断時にフィルム片やカスが発生しにくくなり、搬送中のロールとフィルムとの擦れによって生じるフィルム表面のキズ等を防ぐことができる。
前記有機溶剤の滴下処理は、インクジェット方式を用いたインクジェットヘッドを用いることが好ましい。前記インクジェット方式を用いることにより、有機溶剤の吐出液滴を小さくでき、かつ均一に散布することができる。
図2,3に、前記インクジェットヘッド16を、斜め延伸テンター2と前記スリット装置9,10との間に配置したものを図示しているが、これは一例であり、前記インクジェットヘッド16は斜め延伸テンター2と前記スリット装置9、10の間であれば、特に限定しない。
図6は、本実施形態で用いることのできるインクジェットヘッド部、ノズルプレートの一例を示す概略図である。
図6(a)はヘッド部の断面図、図6(b)はノズルプレートの平面図である。図中、16はインクジェットヘッド、110は基板、260はヒーター、270はヒーター電源、280は伝熱部材、310は液滴、320はノズルである。ノズル320より噴射した有機溶剤の液滴310は基材フィルム201方向に飛翔して付着する。長尺延伸フィルム上に着弾した有機溶剤の液滴は、周辺に濡れ広がる。そして有機溶剤の液滴が滴下され搬送方向への配向が弱められた位置を前記スリッター装置によって切断していく。
また、前記有機溶剤が長尺延伸フィルム上に滴下されてから切断されるまでの時間は、3〜300秒が好ましく、5〜60秒がより好ましい。前記時間より短い場合は、滴下した液が乾燥されず、スリット装置による切断時に樹脂が変形してしまい、後の巻取工程で巻き不良を発生させる原因となる。また上記時間より長い場合は、滴下処理を行ってからの時間が長いために、搬送中に滴下部が搬送ロールに接触する回数が増えるため、搬送ロールに汚れ等が付着し、上流側のフィルムがその箇所に接触する際、フィルム汚れとなってしまうため好ましくない。
本実施形態においては、図6(b)に記載されているように、インクジェットヘッド部のノズル320は、千鳥状に配置してもよく、また、長尺延伸フィルム15の搬送方向に並列に多段に設けてもよい。
インクジェットヘッドと長尺延伸フィルムとの距離は0.2〜100mmが好ましい。
有機溶剤の吐出速度は、液滴先端の速度V1をピエゾ式のインクジェット装置のピエゾ素子に印加する電圧を増減させることにより一般に0.1〜20m/sの範囲で制御できる。好ましくは1〜20m/sの範囲である。更に、液滴先端の速度V1の好ましい下限は5m/sである。
吐出時間は、ピエゾ素子に印加する電圧の制御条件に応じて3μs〜1msに設定される。ピエゾ素子に印加する電圧の制御条件は、安定的に液滴を吐出できるように、波形制御条件、液滴の表面張力や粘度等に応じて設定される。
またピエゾの変形量を制御させることで、液滴サイズを多様な大きさに制御させることができる。
本実施形態に用いられるインクジェットヘッドは、長尺延伸フィルムの幅手方向の少なくとも内周部に配置し、長尺延伸フィルムを搬送しながらその表面に有機溶剤を吐出する。インクジェットヘッドには、多数のノズルをライン状に配置し、インクジェットヘッドを固定して、有機溶剤を吐出するラインヘッド方式や、インクジェットヘッドが副走査方向に移動しながらその表面に有機溶剤を吐出するシリアルヘッド方式を用いることができるが、本実施形態においては、生産性の観点からラインヘッド方式が好ましい。
前記有機溶剤としては、溶質である熱可塑性樹脂に対して可溶であれば良く、特に限定されるものでない。例えばジクロロメタン、シクロヘキサンなどの溶質に対する良溶媒のみでも、良溶媒とメタノール、エタノール、ブタノール、イソブタノール、イソプロパノール、アセトン、トルエン等の貧溶媒との混合溶剤でも良い。前記貧溶媒の比率は、0〜90重量%の範囲が好ましい。
本実施形態のスリット装置は、長尺延伸フィルム15の両端部を搬送方向(図5中、矢印F方向)に沿う方向に切断する装置である。
前記スリット装置は、斜め延伸テンター2の内側のガイドレール6と外側のガイドレール7の延長線上にそれぞれ2つ配置される。また、内側のスリット装置は、長尺延伸フィルム15の外側における上側に配置される上刃9a、下側に配置される下刃9b、及び長尺延伸フィルム15を下側から支持するための円形支持部材(図示せず)を備えて構成されている。同様に、外側のスリット装置は、長尺延伸フィルム15の内側における上側に配置される上刃10a、下側に配置される下刃10b、及び長尺延伸フィルム15を下側から支持するための円形支持部材(図示せず)を備えて構成されている。
上刃9a(10a)及び下刃9b(10b)は、回転可能に軸支された円形刃である。ここでは、上刃9a(10a)は長尺延伸フィルム15の搬送に従って受動的に回転するように回転自在に軸支されており、下刃9b(10b)は不図示の駆動モーターによって長尺延伸フィルム15の搬送速度と一致するように、長尺延伸フィルム15の搬送に従って回転駆動される。ただし、これらは逆、すなわち、下刃9b(10b)を長尺延伸フィルム15の搬送に従って受動的に回転するように回転自在に軸支し、上刃9a(10a)を不図示の駆動モーターによって長尺延伸フィルム15の搬送速度と概略一致するように、長尺延伸フィルム15の搬送とは逆回転方向に回転駆動するようにしてもよい。
また、上刃9a(10a)及び下刃9b(10b)の両者を長尺延伸フィルム15の搬送速度と概略一致するように回転駆動するようにしてもよく、あるいは両者とも回転駆動することなく回転自在に軸支するようにしてもよい。また、上刃9a(10a)及び下刃9b(10b)の一方又は双方を逆回転駆動するようにしてもよい。
上刃9a(10a)及び下刃9b(10b)としては、いわゆる皿型刃や椀型刃、その他の形状の円形刃のいずれでもよいが、ここでは、上刃9a(10a)は皿形刃、下刃9b(10b)は椀型刃であるものとする。上刃9a(10a)及び下刃9b(10b)の素材としては、金属製でもセラミック製でもよいが、超硬合金やハイス鋼を用いることが好ましい。切りカスの発生量及び切断面の滑らかさの観点からは、超硬合金からなる超硬刃を用いることが好ましい。上刃9a(10a)の直径は90mm〜150mm程度、厚さは1mm〜5mm程度である。また、下刃9b(10b)の直径は90mm〜150mm程度、厚さは1mm〜10mm程度である。
前記スリット装置は、長尺延伸フィルム15を搬送方向に沿って複数に分割して幅狭の長尺延伸フィルムを形成するために、さらに単一又は複数箇所に設けてもよい。
ここで、前記スリット装置で切断する切断幅について説明する。
通常の横延伸や縦延伸での製膜におけるフィルムの端部は、クリップ把持によって変形してしまい、製品として用いることができなくなるため、廃棄する必要がある。その切断幅としては、把持部の変形がなく、かつ製品として有効に使える幅より少し広く取ることが一般的である。
前記切断幅は、フィルムの延伸条件で適宜変わるため、フィルムにキズや凹みがない範囲で適宜選択できる。延伸後のフィルム幅が500mm〜4000mmの範囲での切断幅としては、50mm〜300mmが好ましく、60mm〜200mmがより好ましい。
前記スリット装置は前記長尺延伸フィルムの延伸方向に応じて追随する機構を有していることが好ましい。後述する斜め延伸テンターでは、フィルムの幅方向に対して配向軸が必要に応じた傾斜を有する長尺延伸フィルムを得るために、延伸方向及び巻き取り方向を任意に設定することができる。したがって、本実施形態のスリット装置についても、前記延伸方向及び巻き取り方向への搬送に伴い追随して動作する機構を有することが求められる。
このように、スリット装置が前記追随機構を有することで、長尺延伸フィルム両端の切断を容易に行うことができる。特に、斜め延伸製造法では、延伸方向及び巻き取り方向の傾斜角度を変更する場合が生じるが、その際にスリット装置を取り外したり、再構築したりする必要がなくなることから生産性に優れることとなる。
前記追随機構の具体例としては、例えば、搬送ロール8、9〜10のスリッター装置、搬送方向への配向を弱める処理装置16を含む、13、14のガイドレール終端位置から4の巻取装置までを移動可能な板状の上に固定したり、移動可能なレール上の上に固定したりと、移動可能な1つのユニットとすることが挙げられる。つまり、13、14のガイドレールの終端位置から4の巻取装置までが一緒に移動できるようにすることなどの方法があるが、特に限定されない。
また、前記スリット装置は、前記長尺延伸フィルムの延伸方向とスリット刃の進行方向との角度の位置を確認できる機構を有することが好ましい。このような確認機構を有することで、より簡便にスリット装置が延伸方向への搬送に伴って動作することができる。
また、前記スリット装置は図2、3に図示されているように、搬送ロール8の間に設けてもよく、搬送ロール8の間のどこに設置してもよい。
前記搬送ロール8の数は特に規定されず、また、搬送ロールの配置途中において、長尺延伸フィルムを保護する保護シートを貼る工程を設けてよい。また、フィルムを巻取前までに、フィルム左右両端部に、エンボスリング及びバックロールによってナーリング加工を施して、フィルム端部にエンボス部(図示せず)を付与する工程を設けてよい。
なお、搬送ロール配置途中において、オンライン測定の可能な膜厚計や光学値測定機などを配置してもよい。
また、搬送ロールの配置前後や、複数の搬送ロールの間に、長尺延伸フィルムの除電を行うための除電装置を設けてもよい。前記除電装置は、元巻を再繰り出しした際の帯電電位が±2kV以下となるように、巻取時に除電装置あるいは強制帯電装置により逆電位を与える構成で行うことができるが、強制帯電電位が、1〜150Hzで正負交互に変換される除電器により除電する構成とすることもできる。
また、上記の除電器に代えて、イオン風を発生させるイオナイザーや除電バーを利用することができる。ここで、イオナイザー除電は、エンボス加工装置から搬送ロールを経て巻き取られていくフィルムに向けてイオン風を吹き付けることによって行われる。イオン風は、除電器により発生される。除電器としては、公知のものを制限なく用いることができる。
〔巻き取り工程〕
本実施形態の製造方法に係る巻き取り工程は、前記スリット工程後の長尺延伸フィルムを巻き取る工程である。以下に、巻き取り工程に用いられる巻き取り装置について説明する。
(巻き取り装置)
図2、図3に示すように、巻き取り装置4は、斜め延伸テンター出口に対して所定角度でフィルムを引き取れるように形成することにより、フィルムの引き取り位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。そのため、フィルムのシワの発生を有効に防止することができるとともに、フィルムの巻き取り性が向上するため、フィルムを長尺で巻き取ることが可能となる。
本実施形態において、延伸後のフィルムの引取り張力T(N/m)は、100N/m<T<300N/m、好ましくは150N/m<T<250N/mの間で調整することが好ましい。前記引取張力が100N/m以下ではフィルムのたるみや皺が発生しやすく、リタデーション、配向軸の幅方向のプロファイルも悪化する。逆に引取張力が300N/m以上となると幅方向の配向角のバラツキが悪化することから、幅収率(幅方向の取り効率)を悪化させてしまう。
また、本実施形態においては、上記引取張力Tの変動を±5%未満、好ましくは±3%未満の精度で制御することが好ましい。上記引取張力Tの変動が±5%以上であると、幅方向及び流れ方向の光学特性のバラツキが大きくなる。上記引取張力Tの変動を上記範囲内に制御する方法としては、テンター出口部の最初のロールにかかる荷重、すなわちフィルムの張力を測定し、その値を一定とするように、一般的なPID制御方式により引取ロールの回転速度を制御する方法が挙げられる。前記荷重を測定する方法としては、ロールの軸受部にロードセルを取り付け、ロールに加わる荷重、すなわちフィルムの張力を測定する方法が挙げられる。ロードセルとしては、引張型や圧縮型の公知のものを用いることができる。
延伸後のフィルムは、把持具による把持が開放され、テンター出口から排出され、フィルムの両端(両側)が切断された後に、順次巻芯(巻き取りロール)に巻き取られて、長尺延伸フィルムの巻回体にすることができる。また、本実施形態の巻取工程は、前記本実施形態のスリット工程を経ずに巻き取られた後に、再度巻き直しを行ってもよく、その際に本実施形態のスリット工程を実施することもできる。
また、巻き取る前に、フィルム同士のブロッキングを防止する目的で、マスキングフィルムを重ねて同時に巻き取ってもよいし、長尺延伸フィルムの少なくとも一方、好ましくは両方の端にテープ等を張り合わせながら巻き取ってもよい。マスキングフィルムとしては、上記フィルムを保護することができるものであれば特に制限されず、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどが挙げられる。
製膜巻取り時の除電は、スリット工程で記載した除電方法及び除電装置を用いることができる。
〔熱可塑性樹脂と製膜方法〕
本実施形態において使用することができる熱可塑性樹脂としては、ポリカーボネート系樹脂、ポリエーテルスルフォン系樹脂、ポリエチレンテレフタレート系樹脂、ポリイミド系樹脂、ポリメチルメタクリレート系樹脂、ポリスルフォン系樹脂、ポリアリレート系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂などが挙げられる。
これらの中でも、透明性や機械強度などの観点からポリカーボネート系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂が好ましい。その中でも光学フィルムとした場合の位相差を調整することが容易である、脂環構造を有するオレフィンポリマー系樹脂とセルロースエステル系樹脂が更に好ましい。
以下に脂環構造を有するオレフィンポリマー系樹脂とセルロースエステル系樹脂についての構成、及びこれらをそれぞれ含有する長尺フィルムの製膜方法を以下に示す。
(オレフィンポリマー系樹脂)
脂環式オレフィンポリマー系樹脂としては、特開平05−310845号公報に記載されている環状オレフィンランダム多元共重合体、特開平05−97978号公報に記載されている水素添加重合体、特開平11−124429号公報に記載されている熱可塑性ジシクロペンタジエン系開環重合体及びその水素添加物等を挙げることができる。
脂環構造を有するオレフィンポリマー系樹脂をより具体的に説明する。脂環式オレフィンポリマー系樹脂は、飽和脂環炭化水素(シクロアルカン)構造や不飽和脂環炭化水素(シクロアルケン)構造のごとき脂環式構造を有するポリマーである。脂環式構造を構成する炭素原子数には、格別な制限はないが、通常4〜30個、好ましくは5〜20個、より好ましくは5〜15個の範囲であるときに、機械強度、耐熱性、及びフィルムの成形性の特性が高度にバランスされ、好適である。
脂環式オレフィンポリマー中の脂環式構造を含有してなる繰り返し単位の割合は、適宜選択すればよいが、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式ポリオレフィン樹脂中の脂環式構造を有する繰り返し単位の割合がこの範囲にあると、本実施形態の延伸フィルムより得られる長尺延伸フィルム等の光学材料の透明性および耐熱性が向上するので好ましい。
脂環構造を有するオレフィンポリマー系樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体又はそれらの水素化物等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、及び軽量性などの観点から、特に好適に用いることができる。
ノルボルネン構造を有する単量体としては、ビシクロ〔2.2.1〕ヘプト−2−エン(慣用名:ノルボルネン)、トリシクロ〔4.3.0.12,5〕デカ−3,7−ジエン(慣用名:ジシクロペンタジエン)、7,8−ベンゾトリシクロ〔4.3.0.12,5〕デカ−3−エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ〔4.4.0.12,5.17,10〕ドデカ−3−エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、及び極性基などを挙げることができる。また、これらの置換基は、同一または相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。
極性基の種類としては、ヘテロ原子、またはヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、及びハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、及びスルホン基などが挙げられる。
ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、及びシクロオクテンなどのモノ環状オレフィン類やその誘導体;並びにシクロヘキサジエン、及びシクロヘプタジエンなどの環状共役ジエンやその誘導体;などが挙げられる。
ノルボルネン構造を有する単量体の開環重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。
ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、及び1−ブテンなどの炭素数2〜20のα−オレフィンやこれらの誘導体;シクロブテン、シクロペンテン、及びシクロヘキセンなどのシクロオレフィンやこれらの誘導体;並びに1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、及び5−メチル−1,4−ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α−オレフィンが好ましく、エチレンがより好ましい。
ノルボルネン構造を有する単量体の付加重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。
ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、およびノルボルネン構造を有する単量体とこれと共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素−炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。
ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ〔3.3.0〕オクタン−2,4−ジイル−エチレン構造と、Y:トリシクロ〔4.3.0.12,5〕デカン−7,9−ジイル−エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90重量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの重量比で100:0〜40:60であるものが好ましい。このような樹脂を用いることにより、本実施形態の延伸フィルムにより得られる光学材料を、長期的に寸法変化がなく、光学特性の安定性に優れるものにすることができる。
ノルボルネン系樹脂に用いる分子量は使用目的に応じて適宜選定されるが、溶媒としてシクロヘキサン(熱可塑性樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン換算(溶媒がトルエンのときは、ポリスチレン換算)の重量平均分子量(Mw)で、通常10,000〜100,000、好ましくは15,000〜80,000、より好ましくは20,000〜50,000である。重量平均分子量がこのような範囲にあるときに、本実施形態の延伸フィルムにより得られる光学材料の機械的強度および成型加工性が高度にバランスされ好適である。
ノルボルネン系樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよいが、好ましくは80℃以上、より好ましくは100〜250℃の範囲である。ガラス転移温度がこのような範囲にあると、本実施形態の延伸フィルムにより得られる光学材料を、高温下での使用における変形や応力が生じることがなく耐久性に優れるものにすることができる。
ノルボルネン系樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に制限されないが、通常1.0〜10.0、好ましくは1.1〜4.0、より好ましくは1.2〜3.5の範囲である。
ノルボルネン系樹脂の光弾性係数Cの絶対値は、10×10−12Pa−1以下であることが好ましく、7×10−12Pa−1以下であることがより好ましく、4×10−12Pa−1以下であることが特に好ましい。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、C=Δn/σで表される値である。熱可塑性樹脂の光弾性係数がこのような範囲にあると、後述する、面内方向のレターデーション(Re)のばらつきを小さくすることができる。
本実施形態に用いる熱可塑性樹脂は、顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、及び溶剤などの配合剤が適宜配合されたものであってもよい。
ノルボルネン系樹脂の延伸フィルム中の残留揮発性成分の含有量は特に制約されないが、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下である。揮発性成分の含有量をこのような範囲にすることにより、寸法安定性が向上し、前記Reや前記Rthの経時変化を小さくすることができ、さらには本実施形態の延伸フィルムから得られる光学フィルム、偏光板又は有機エレクトロルミネッセンス表示装置の劣化を抑制でき、長期的に表示装置のディスプレイの表示を安定で良好に保つことができる。残留揮発性成分は、フィルム中に微量含まれる分子量200以下の物質であり、例えば、残留単量体や溶媒などが挙げられる。残留揮発性成分の含有量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをガスクロマトグラフィーにより分析することにより定量することができる。
ノルボルネン系樹脂の延伸フィルムの飽和吸水率は好ましくは0.03重量%以下、さらに好ましくは0.02重量%以下、特に好ましくは0.01重量%以下である。飽和吸水率が上記範囲であると、ReやRthの経時変化を小さくすることができ、さらには本実施形態の延伸フィルムから得られる光学フィルム、偏光板又は有機エレクトロルミネッセンス表示装置の劣化を抑制でき、長期的に表示装置のディスプレイの表示を安定で良好に保つことができる。
飽和吸水率は、フィルムの試験片を一定温度の水中に一定時間、浸漬し、増加した質量の浸漬前の試験片質量に対する百分率で表される値である。通常は、23℃の水中に24時間、浸漬して測定される。本実施形態の延伸フィルムにおける飽和吸水率は、例えば、熱可塑性樹脂中の極性基の量を減少させることにより、前記値に調節することができるが、好ましくは、極性基を持たない樹脂であることが望まれる。
(オレフィンポリマー系樹脂のフィルム製膜方法)
前記で説明した好ましいノルボルネン系樹脂を用いたフィルムを成形する方法としては、溶液製膜法や溶融押出法の製造方法が好まれる。溶融押出法としては、ダイスを用いるインフレーション法等が挙げられるが、生産性や厚さ精度に優れる点でTダイを用いる方法が好ましい。
Tダイを用いた押出成形法は、特開2004−233604号公報に記載されているような、冷却ドラムに密着させる時の溶融状態の熱可塑性樹脂を安定な状態に保つ方法により、リタデーションや配向角といった光学特性のバラツキが良好なフィルムを製造出来る。
具体的には、1)溶融押出法で長尺フィルムを製造する際に、ダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;2)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から最初に密着する冷却ドラムまでを囲い部材で覆い、囲い部材からダイス開口部又は最初に密着する冷却ドラムまでの距離を100mm以下とする方法;3)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂より10mm以内の雰囲気の温度を特定の温度に加温する方法;4)関係を満たすようにダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;5)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂に、最初に密着する冷却ドラムの引取速度との速度差が0.2m/s以下の風を吹き付ける方法;等が挙げられる。
以上のオレフィンポリマー系樹脂を含む長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。
(セルロースエステル系樹脂)
好ましいセルロースエステル系樹脂フィルムとしては、下記式(i)及び(ii)を満たすセルロースアシレートを含有し、かつ、下記一般式(A)で表される化合物を含有することを特徴とするものが挙げられる。
式(i) 2.0≦Z1<3.0
式(ii) 0≦X<3.0
(式(i)及び(ii)において、Z1はセルロースアシレートの総アシル置換度を表し、Xはセルロースアシレートのプロピオニル置換度及びブチリル置換度の総和を表す。)
〈一般式(A)の化合物〉
以下、一般式(A)について詳細に説明する。
Figure 2013125195
一般式(A)において、L及びLは各々独立に単結合又は2価の連結基を表す。
及びLとしては、例えば、下記化学式で表される構造が挙げられる。(下記Rは水素原子又は置換基を表す。)
Figure 2013125195
及びLとして、好ましくは−O−、−COO−、−OCO−である。
、R及びRは各々独立に置換基を表す。R、R及びRで表わされる置換基の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p−トリル基、ナフチル基等)、ヘテロ環基(2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基等)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキルおよびアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n−ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基等)、スルファモイル基(N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N’フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基等)が挙げられる。
及びRとしては、好ましくは、置換もしくは無置換のフェニル基、置換もしくは無置換のシクロヘキシル基である。より好ましくは置換基を有するフェニル基、置換基を有するシクロヘキシル基であり、さらに好ましくは4位に置換基を有するフェニル基、4位に置換基を有するシクロヘキシル基である。
として、好ましくは、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、水素原子、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。
Wa及びWbは水素原子又は置換基を表すが、(I)Wa及びWbが互いに結合して環を形成してもよく、(II)Wa及びWbの少なくとも一つが環構造を有してもよく、又は(III)Wa及びWbの少なくとも一つがアルケニル基又はアルキニル基であってもよい。
Wa及びWbで表わされる置換基の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p−トリル基、ナフチル基等)、ヘテロ環基(2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基等)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキルおよびアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n−ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基等)、スルファモイル基(N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N’フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基等)が挙げられる。
上記の置換基は、更に上記の基で置換されていてもよい。
(1)Wa及びWbが互いに結合して環を形成する場合、以下のような構造が挙げられる。
Wa及びWbが互いに結合して環を形成する場合、好ましくは、含窒素5員環又は含硫黄5員環であり、特に好ましくは、下記一般式(1)又は一般式(2)で表される化合物である。
Figure 2013125195
一般式(1)において、A及びAは各々独立に、−O−、−S−、−NRx−(Rxは水素原子又は置換基を表す)又は−CO−を表す。Rxで表される置換基の例は、上記Wa及びWbで表わされる置換基の具体例と同義である。Rxとして、好ましくは水素原子、アルキル基、アリール基、ヘテロ環基である。
一般式(1)において、Xは第14〜16族の非金属原子を表す。
Xとしては、=O、=S、=NRc、=C(Rd)Reが好ましい。ここでRc、Rd、Reは置換基を表し、例としては上記Wa及びWbで表わされる置換基の具体例と同義である。
、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
Figure 2013125195
一般式(2)において、Qは−O−、−S−、−NRy−(Ryは水素原子又は置換基を表す)、−CRaRb−(Ra及びRbは水素原子又は置換基を表す)又は−CO−を表す。ここで、Ry、Ra、Rbは置換基を表し、例としては上記Wa及びWbで表わされる置換基の具体例と同義である。
Yは置換基を表す。
Yで表わされる置換基の例としては、上記Wa及びWbで表される置換基の具体例と同義である。
Yとして、好ましくは、アリール基、ヘテロ環基、アルケニル基、アルキニル基である。
Yで表わされるアリール基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。
ヘテロ環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも一つ含むヘテロ環基が挙げられ、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基が好ましい。
これらのアリール基又はヘテロ環基は、少なくとも一つの置換基を有していてもよく、置換基としては、ハロゲン原子、炭素数1〜6のアルキル基、シアノ基、ニトロ基、炭素数1〜6のアルキルスルフィニル基、炭素数1〜6のアルキルスルホニル基、カルボキシル基、炭素数1〜6のフルオロアルキル基、炭素数1〜6のアルコキシ基、炭素数1〜6のアルキルチオ基、炭素数1〜6のN−アルキルアミノ基、炭素数2〜12のN,N−ジアルキルアミノ基、炭素数1〜6のN−アルキルスルファモイル基、炭素数2〜12のN,N−ジアルキルスルファモイル基等が挙げられる。
、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
(2)一般式(A)において、Wa及びWbの少なくとも一つが環構造を有する場合の具体例としては、好ましくは、下記一般式(3)である。
Figure 2013125195
一般式(3)において、Qは=N−又は=CRz−(Rzは水素原子又は置換基)を表し、Qは第14〜16族の非金属原子を表す。ZはQ及びQと共に環を形成する非金属原子群を表す。
、Q及びZから形成される環は、更に別の環で縮環していてもよい。
、Q及びZから形成される環として、好ましくは、ベンゼン環で縮環した含窒素5員環又は6員環である。
、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
(3)Wa及びWbの少なくとも一つがアルケニル基又はアルキニル基である場合には、好ましくは、置換基を有するビニル基、エチニル基である。
上記一般式(1)、一般式(2)及び一般式(3)で表される化合物のうち、特に、一般式(3)で表される化合物が好ましい。
一般式(3)で表される化合物は、一般式(1)で表される化合物に比べて耐熱性及び耐光性に優れており、一般式(2)で表される化合物に比べ、有機溶媒に対する溶解性やポリマーとの相溶性が良好である。
本実施形態に係る一般式(A)で表される化合物は、所望の波長分散性、及び滲み防止性を付与するのに適宜量を調整して含有することができるが、添加量としてはセルロース誘導体に対して、1〜15質量%含むことが好ましく、特には、2〜10質量%含むことが好ましい。この範囲内であれば、本実施形態のセルロース誘導体に十分な波長分散性、及び滲み防止性を付与することができる。
なお、一般式(A)、一般式(1)、一般式(2)及び一般式(3)で表わされる化合物は、既知の方法を参照して行うことができる。具体的には、Journal of Chemical Crystallography(1997);27(9);512−526)、特開2010−31223号公報、特開2008−107767号公報等を参照に合成することができる。
〈セルロースアシレート〉
本実施形態の製造方法において用いられるセルロースアシレートフィルムは、セルロールアシレートを主成分として含有する。
前記セルロースアシレートフィルムは、フィルムの全質量100質量%に対して、セルロースアシレートを好ましくは60〜100質量%の範囲で含む。また、セルロースアシレートの総アシル基置換度は、2.0以上3.0未満であり、2.2〜2.7であることがより好ましい。
セルロースアシレートとしては、セルロースと、炭素数2〜22程度の脂肪族カルボン酸および/または芳香族カルボン酸とのエステルが挙げられ、特に、セルロースと炭素数が6以下の低級脂肪酸とのエステルであることが好ましい。
セルロースの水酸基に結合するアシル基は、直鎖であっても分岐していてもよく、また環を形成してもよい。さらに別の置換基が置換してもよい。同じ置換度である場合、上述した炭素数が多いと複屈折性が低下するため、炭素数としては炭素数2〜6のアシル基の中で選択することが好ましく、プロピオニル置換度及びブチリル置換度の総和は0以上3.0未満である。前記セルロースアシレートとしての炭素数が2〜4であることが好ましく、炭素数が2〜3であることがより好ましい。
具体的には、セルロースアシレートとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートまたはセルロースアセテートフタレートのようなアセチル基の他にプロピオネート基、ブチレート基またはフタリル基が結合したセルロースの混合脂肪酸エステルを用いることができる。なお、ブチレートを形成するブチリル基は、直鎖であっても分岐していてもよい。
本実施形態においては、セルロースアシレートとして、セルロースアセテート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートが特に好ましく用いられる。
また、本実施形態に係るセルロースアシレートは、下記の数式(iii)および数式(iv)を同時に満足するものが好ましい。
式(iii) 2.0≦X+Y<3.0
式(iv) 0.5≦X
(式(iii)及び(iv)において、Yはアセチル基の置換度を表し、Xはプロピオニル基もしくはブチリル基またはその混合物の置換度を表す。)
また、目的に叶う光学特性を得るために、置換度の異なる樹脂を混合して用いてもよい。その際の混合比としては、1:99〜99:1(質量比)が好ましい。
上述した中でも、特にセルロースアセテートプロピオネートが、セルロースアシレートとして好ましく用いられる。セルロースアセテートプロピオネートでは、0≦Y≦2.5であり、かつ、0.5≦X<3.0である(ただし、2.0≦X+Y<3.0である)ことが好ましく、0.5≦Y≦2.0であり、かつ、1.0≦X≦2.0である(ただし、2.0≦X+Y<3.0である)ことがより好ましい。なお、アシル基の置換度は、ASTM−D817−96に準じて測定されうる。
セルロースアシレートの数平均分子量は、60000〜300000の範囲であると、得られるフィルムの機械的強度が強くなるため、好ましい。より好ましくは、数平均分子量が70000〜200000のセルロースアシレートが用いられる。
セルロースアシレートの重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される。測定条件は以下の通りである。なお、本測定方法は、本実施形態における他の重合体の測定方法としても使用することができる。
溶媒:メチレンクロライド;
カラム:Shodex K806、K805、K803G(昭和電工株式会社製)を3本接続して使用する;
カラム温度:25℃;
試料濃度:0.1質量%;
検出器:RI Model 504(GLサイエンス社製);
ポンプ:L6000(日立製作所株式会社製);
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー株式会社製)Mw=1000000〜500の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
セルロースアシレート中の残留硫酸含有量は、硫黄元素換算で0.1〜45質量ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。残留硫酸含有量が45質量ppmを超えると、熱延伸時や熱延伸後でのスリッティングの際に破断しやすくなる傾向がある。なお、残留硫酸含有量は、1〜30質量ppmの範囲がより好ましい。残留硫酸含有量は、ASTM D817−96に規定の方法により測定することができる。
また、セルロースアシレート中の遊離酸含有量は、1〜500質量ppmであることが好ましい。上記の範囲であると、上記と同様に破断しにくいため、好ましい。なお、遊離酸含有量は、1〜100質量ppmの範囲であることが好ましく、さらに破断しにくくなる。特に1〜70質量ppmの範囲が好ましい。遊離酸含有量はASTM D817−96に規定の方法により測定することができる。
合成したセルロースアシレートの洗浄を、溶液流延法に用いられる場合に比べて、さらに十分に行うことによって、残留アルカリ土類金属含有量、残留硫酸含有量、および残留酸含有量を上記の範囲とすることができ好ましい。
また、セルロースアシレートは、フィルムにしたときの輝点異物が少ないものであることが好ましい。輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)を意味する。輝点異物は、直径0.01mm以上の輝点の個数が200個/cm以下であることが好ましく、100個/cm以下であることがより好ましく、50個/cm以下であることがさらに好ましく、30個/cm以下であることがいっそう好ましく、10個/cm以下であることが特に好ましく、皆無であることが最も好ましい。
また、直径0.005〜0.01mm以下の輝点についても、200個/cm以下であることが好ましく、100個/cm以下であることがより好ましく、50個/cm以下であることがさらに好ましく、30個/cm以下であることがいっそう好ましく、10個/cm以下であることが特に好ましく、皆無であることが最も好ましい。
セルロースアシレートの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどが挙げられる。また、それらから得られたセルロースアシレートは、それぞれ任意の割合で混合使用されうる。
セルロースアシレートは、公知の方法により製造することができる。具体的には、例えば、特開平10−45804号に記載の方法を参考にして合成することができる。
また、セルロースアシレートは、セルロースアシレート中の微量金属成分によっても影響を受ける。これらの微量金属成分は、製造工程で使われる水に関係していると考えられるが、不溶性の核となりうるような成分は少ない方が好ましく、特に、鉄、カルシウム、マグネシウム等の金属イオンは、有機の酸性基を含んでいる可能性のあるポリマー分解物等と塩形成することにより不溶物を形成する場合があり、少ないことが好ましい。また、カルシウム(Ca)成分は、カルボン酸やスルホン酸等の酸性成分と、また多くの配位子と配位化合物(すなわち、錯体)を形成しやすく、多くの不溶なカルシウムに由来するスカム(不溶性の澱、濁り)を形成するおそれがあるため、少ないことが好ましい。
具体的には、鉄(Fe)成分については、セルロースアシレート中の含有量が1質量ppm以下であることが好ましい。また、カルシウム(Ca)成分については、セルロースアシレート中の含有量が好ましくは60質量ppm以下であり、より好ましくは0〜30質量ppmである。さらに、マグネシウム(Mg)成分については、やはり多過ぎると不溶分を生ずるため、セルロースアシレート中の含有量が0〜70質量ppmであることが好ましく、特に0〜20質量ppmであることが好ましい。
なお、鉄(Fe)成分の含有量、カルシウム(Ca)成分の含有量、マグネシウム(Mg)成分の含有量などの金属成分の含有量は、絶乾したセルロースアシレートをマイクロダイジェスト湿式分解装置(硫硝酸分解)、アルカリ溶融で前処理を行った後、ICP−AES(誘導結合プラズマ発光分光分析装置)を用いて分析することができる。
〈添加剤〉
本実施形態に係る製造方法により得られた長尺延伸フィルムは後述するセルロースエステル以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロースエステルと相溶性に優れるものが好ましく、フィルムにした時の透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。
ドープ中に添加される添加剤としては、可塑剤、紫外線吸収剤、リタデーション調整剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等がある。本実施形態において、微粒子以外の添加剤についてはセルロースエステル溶液の調製の際に添加してもよいし、微粒子分散液の調製の際に添加してもよい。液晶画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。
これらの化合物は、セルロースエステルに対して1〜30質量%、好ましくは1〜20質量%となるように含まれていることが好ましい。また、延伸及び乾燥中のブリードアウト等を抑制させるため、200℃における蒸気圧が1400Pa以下の化合物であることが好ましい。
これらの化合物は、セルロースエステル溶液の調製の際に、セルロースエステルや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。
〈リタデーション調整剤〉
本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムのリタデーションを調整するために添加する化合物は、欧州特許911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することができる。
また、二種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。中でも1,3,5−トリアジン環が特に好ましい。
〈ポリマー又はオリゴマー〉
本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムは、セルロースエステルと、カルボキシル基、ヒドロキシル基、アミノ基、アミド基、及びスルホン酸基から選ばれる置換基を有しかつ重量平均分子量が500〜200,000の範囲内であるビニル系化合物のポリマー又はオリゴマーとを含有することが好ましい。当該セルロースエステルと、当該ポリマー又はオリゴマーとの含有量の質量比が、95:5〜50:50の範囲内であることが好ましい。
〈マット剤〉
本実施形態の製造方法に用いられるセルロースエステル系樹脂フィルムは、マット剤として微粒子を延伸フィルム中に含有させることができ、これによって、延伸フィルムが長尺フィルムの場合、搬送や巻き取りをしやすくすることができる。
マット剤の粒径は10nm〜0.1μmの1次粒子もしくは2次粒子であることが好ましい。1次粒子の針状比は1.1以下の略球状のマット剤が好ましく用いられる。
微粒子としては、ケイ素を含むものが好ましく、特に二酸化珪素が好ましい。本実施形態に好ましい二酸化珪素の微粒子としては、例えば、日本アエロジル(株)製のアエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。ポリマーの微粒子の例として、シリコーン樹脂、弗素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(東芝シリコーン(株)製)を挙げることができる。
二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/L以上であるものが好ましい。1次粒子の平均径が5〜16nmがより好ましく、5〜12nmが更に好ましい。1次粒子の平均径が小さい方がヘイズが低く好ましい。見かけ比重は90〜200g/L以上が好ましく、100〜200g/L以上がより好ましい。見かけ比重が大きい程、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、凝集物が発生せず好ましい。
本実施形態におけるマット剤の添加量は、長尺延伸フィルム1m当たり0.01〜1.0gが好ましく、0.03〜0.3gがより好ましく、0.08〜0.16gが更に好ましい。
〈その他の添加剤〉
その他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えてもよい。更に界面活性剤、剥離促進剤、帯電防止剤、難燃剤、滑剤、油剤等も加えてもよい。
(セルロースエステル系樹脂のフィルム製膜方法)
本実施形態の製造方法において用いられるセルロースエステル系樹脂フィルムは溶液流延法でも溶融流延法のどちらで製膜してもよい。
以下に溶液流延法及び溶融流延法について説明する。
〈溶液流延法〉
溶液流延法では、樹脂および添加剤を有機溶媒に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
溶液流延法は、フィルムの着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制、フィルムの平面性、透明度に優れるため好ましく用いられる。
ドープ中のセルロースアセテートの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースアセテートの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、更に好ましくは、15〜25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
流延工程の金属支持体の表面温度は−50℃〜溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化したりする場合がある。
好ましい支持体温度としては0〜100℃で適宜決定され、5〜30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。
温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。
特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
セルロースエステル系樹脂フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150質量%が好ましく、更に好ましくは20〜40質量%または60〜130質量%であり、特に好ましくは、20〜30質量%または70〜120質量%である。
残留溶媒量は下記式で定義される。
残留溶媒量(質量%)={(M−N)/N}×100
なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
また、セルロース系樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0〜0.01質量%以下である。
フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
本実施形態に係るセルロースエステル系樹脂フィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、セルロースアセテート、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。
ドープには、上記有機溶媒の他に、1〜40質量%の炭素原子数1〜4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのセルロースアセテートの溶解を促進する役割もある。
特に、メチレンクロライド、及び炭素数1〜4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15〜45質量%溶解させたドープ組成物であることが好ましい。
炭素原子数1〜4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノールを挙げることが出来る。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。
〈溶融流延法〉
溶融製膜法は、斜め延伸後の厚み方向のリタデーションRtを小さくすることが容易となり、残留揮発性成分量が少なくフィルムの寸法安定性にも優れる等の観点から好ましい製膜法である。溶融製膜法は、樹脂および可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースアセテートを含む溶融物を流延することをいう。溶融流延によって形成される方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる、溶融押出し法が好ましい。
溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。
ペレット化は、公知の方法でよく、例えば、乾燥セルロースアセテートや可塑剤、その他添加剤をフィーダーで押出し機に供給し1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。
添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。
粒子や酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。
上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200〜300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールでフィルムをニップされ、冷却ロール上で固化させる。
供給ホッパーから押出し機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。
押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。
可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。
冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。
弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。
冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
以上のセルロースエステル系樹脂を含む長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。
<長尺延伸フィルム>
本実施形態に係る長尺延伸フィルムは、前記製造方法によって製造されたものである。
以下、熱可塑性樹脂を含む長尺フィルムについて説明する。
前記長尺フィルムの斜め延伸前のフィルム厚さは、好ましくは30〜300μm、より好ましくは40〜150μmである。
本実施形態では、斜め延伸装置に供給される長尺フィルムの流れ方向の厚みムラσmは、後述する斜め延伸テンター入口でのフィルムの引取張力を一定に保ち、配向角やリタデーションといった光学特性を安定させる観点から、0.30μm未満、好ましくは0.25μm未満、さらに好ましくは0.20μm未満である必要がある。斜め延伸前の長尺フィルムの流れ方向の厚みムラσmが0.30μm以上となると長尺延伸フィルムのリタデーションや配向角といった光学特性のバラツキが顕著に悪化する。ここでσmとは、各幅手位置における、流れ方向の標準偏差σの平均値で表した値である。
また、斜め延伸前の長尺フィルムとして、幅方向の厚み勾配を有するフィルムが供給されてもよい。前記斜め延伸前の長尺フィルムの厚みの勾配は、後工程の延伸が完了した位置におけるフィルム厚みを最も均一なものとしうるよう、実験的に厚み勾配を様々に変化させたフィルムを延伸することにより、経験的に求めることができる。斜め延伸前の長尺フィルムの厚みの勾配は、例えば、厚みの厚い側の端部の厚みが、厚みの薄い側の端部よりも0.5〜3%程度厚くなるように調整することができる。
斜め延伸後の長尺フィルムの幅は、特に限定されないが、500〜4000mm、好ましくは1000〜2000mmとすることができる。
長尺フィルムの斜め延伸時の延伸温度での好ましい弾性率は、ヤング率で表して、0.01Mpa以上5000Mpa以下、更に好ましくは0.1Mpa以上500Mpa以下である。弾性率が低すぎると、延伸時・延伸後の収縮率が低くなり、シワが消えにくくなり、また高すぎると、延伸時にかかる張力が大きくなり、フィルムの両側縁部を保持する部分の強度を高くする必要が生じ、後工程のテンターに対する負荷が大きくなる。
斜め延伸前の長尺フィルムとしては、無配向なものを用いてもよいし、あらかじめ配向を有するフィルムが供給されてもよい。また、必要であれば斜め延伸前の長尺フィルムの配向の幅手分布が弓なり状、いわゆるボーイングを成していてもよい。要は、斜め延伸前の長尺フィルムの配向状態を、後工程の延伸が完了した位置におけるフィルムの配向を所望なものとしうるよう、調整することができる。
また、本実施形態の長尺延伸フィルムは、配向角θが巻き取り方向に対して、0°より大きく90°未満の範囲に傾斜しており、好ましくは30°以上、60°以下の範囲に傾斜している事が好ましく、更に好ましくは40°以上、50°以下の範囲に傾斜しているのがよい。また、本実施形態に係る長尺延伸フィルムの配向角θのバラツキは、0.6°未満が好ましく、0.4°未満であることがより好ましい。配向角θのバラツキが0.6°未満となる長尺延伸フィルムを偏光子と貼り合せて円偏光板を得て、これを有機エレクトロルミネッセンス表示装置などの画像表示装置に据え付けると、表示品質の均一性を良好なものにすることが可能になる。
また、本実施形態の長尺延伸フィルムの波長550nmで測定したリタデーション値Ro(550)が、120nm以上、160nm以下の範囲にある事が好ましく、更に好ましくは130nm以上、150nm以下の範囲である。また、本実施形態に係る長尺延伸フィルムの面内リタデーションRoのバラツキは、4nm以下、好ましくは3nm以下であることが好ましい。面内リタデーションRoのバラツキを、上記範囲にすることにより、有機エレクトロルミネッセンス表示装置用のフィルムとして用いた場合に表示品質の均一性を良好なものにすることが可能になる。
尚、本実施形態に係る長尺延伸フィルムの面内リタデーションRoは、用いられる表示装置の設計によって最適値が選択される。なお、前記Roは、面内遅相軸方向の屈折率nxと面内で前記遅相軸に直交する方向の屈折率nyとの差にフィルムの平均厚みdを乗算した値(Ro=(nx−ny)×d)である。
本実施形態に係る長尺延伸フィルムの平均厚みは、機械的強度などの観点から、好ましくは5〜100μm、更に好ましくは10〜80μmであるが、また内周側の配向角の傾き起因とするスリット時のキズや凹みの課題については、機械強度の観点より、薄い長尺延伸フィルムを製造する際に顕著になってくる。そのため長尺延伸フィルムの平均厚みが10〜35μmの範囲となるような薄膜のフィルムを製造する際に本実施形態の製造方法は特に好適に用いられる。
また、幅方向の厚みムラは、巻き取りの可否に影響を与えるため、3μm以下であることが好ましく、2μm以下であることがより好ましい。
<円偏光板>
本実施形態に係る長尺延伸フィルムを用いた場合の円偏光板について説明する。
前記円偏光板は、偏光板保護フィルム、偏光子、λ/4位相差フィルム、粘着層がこの順で積層されており、前記λ/4位相差フィルムの遅相軸と偏光子の吸収軸とのなす角度が45°である。
本実施形態に係る長尺延伸フィルムを用いた、長尺状偏光板保護フィルム、長尺状偏光子、長尺状λ/4位相差フィルム(延伸フィルム)がこの順で積層して形成されることが好ましい。
本実施形態に係る長尺延伸フィルムを用いた円偏光板は、偏光子としてヨウ素、又は二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、λ/4位相差フィルム/偏光子の構成で貼合して製造することができる。
円偏光板の膜厚は、5〜40μm、好ましくは5〜30μmであり、特に好ましくは5〜20μmである。
前記円偏光板は、一般的な方法で作製することができる。アルカリ鹸化処理したλ/4位相差フィルムは、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
前記円偏光板は、更に当該偏光板の偏光板保護フィルムの反対面に剥離フィルムを貼合して構成することができる。保護フィルム及び剥離フィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。
<表示装置>
本実施形態に係る長尺延伸フィルムを用いて作製した円偏光板を表示装置に組み込むことによって、種々の視認性に優れた表示装置を作成することができる。また、前記表示装置は、有機ELディスプレイであることが好ましい。
図7に、前記有機EL画像表示装置の構成の一例を示すが、本実施形態に係る長尺延伸フィルムを用いた場合における有機EL画像表示装置としては、これに限定されるものではない。
ガラスやポリイミド等を用いた基板101上に順に金属電極102、発光層103、透電極(ITO等)104、封止層105を有する有機エレクトロルミネッセンス素子上に、接着槽106を介して、偏光子108をλ/4位相差フィルム107と保護フィルム109によって挟持した円偏光板を設けて、有機エレクトロルミネッセンス画像表示装置を構成する。該保護フィルム108には硬化層が積層されていることが好ましい。硬化層は、有機エレクトロルミネッセンス画像表示装置の表面のキズを防止するだけではなく、円偏光板による反りを防止する効果を有する。更に、硬化層上には、反射防止層を有していてもよい。上記有機エレクトロルミネッセンス素子自体の厚さは1μm程度である。
一般に、有機エレクトロルミネッセンス画像表示装置は、透明基板上に金属電極と発光層と透明電極とを順に積層して発光体である素子(有機エレクトロルミネッセンス素子)を形成している。ここで、発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、及び電子注入層の積層体等、種々の組み合わせをもった構成が知られている。
有機エレクトロルミネッセンス画像表示装置は、透明電極と金属電極とに電圧を印加することによって、発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。
有機エレクトロルミネッセンス画像表示装置においては、発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg−Ag、Al−Liなどの金属電極を用いている。
このような構成の有機エレクトロルミネッセンス画像表示装置において、発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機エレクトロルミネッセンス画像表示装置の表示面が鏡面のように見える。
本実施形態に係る長尺延伸フィルムを用いた有機エレクトロルミネッセンス表示装置用円偏光板は、このような外光反射が特に問題となる有機エレクトロルミネッセンス用表示装置に適している。
本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
本発明に係る長尺延伸フィルムの製造方法は熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断するスリット工程、及びスリット工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の搬送方向への配向を弱める処理を行うことを特徴とする。
このような構成によれば、斜め延伸製膜による長尺延伸フィルム両端のスリット時にフィルムへ付着するフィルム片やカスの低減、フィルム表面へのキズの付着の防止、及び製造停止リスクの抑制が可能となる。
また、本発明の長尺延伸フィルムの製造方法において前記スリット工程において、前記搬送方向への配向を弱める処理は、長尺延伸フィルムの切断箇所を加熱する処理であることが好適である。このような構成によれば、切断時のフィルム切断面の裂けや荒れがより発生しにくい。
また、本発明の長尺延伸フィルムの製造方法において、前記スリット工程において、搬送方向への配向を弱める処理は、長尺延伸フィルムの切断箇所に有機溶剤を滴下する処理であることが好適である。
このような構成によれば、より簡便にスリット工程時を行うことができる。
また、本発明の長尺延伸フィルムの製造方法において、前記スリット装置が前記長尺延伸フィルムの旋回角度の変更に応じて追随する機構を有していることが好適である。
このような構成によれば、巻き取り方向の繰り出し方向に対する傾斜角度を変更する際に、スリット装置を取り外したり、再構築したりする必要がなくなり、その結果生産性に優れることとなる。
本発明によれば、斜め延伸製膜を用いた長尺延伸フィルムの製造方法において、フィルムの内周側を切断する前に切断箇所の搬送方向への配向を弱める処理によって、スリット工程時に付着するフィルム片やカスが低減され、表面へのキズの付着が防止された長尺延伸フィルムを得ることができ、十分な製品幅を確保することが可能な長尺延伸フィルムの製造方法を提供することができる。
以下に実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれらにより限定されるものではない。
〔長尺延伸フィルム1〕
(シクロオレフィンフィルムの製造)
窒素雰囲気下、脱水したシクロヘキサン500部に、1−ヘキセン1.2部、ジブチルエーテル0.15部、トリイソブチルアルミニウム0.30部を室温で反応器に入れ混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ−3,7−ジエン(ジシクロペンタジエン、以下、DCPと略記)20部、1,4−メタノ−1,4,4a,9a−テトラヒドロフルオレン(以下、MTFと略記)140部、及び8−メチル−テトラシクロ[4.4.0.12,5.17,10]−ドデカ−3−エン(以下、MTDと略記)40部からなるノルボルネン系モノマー混合物と、六塩化タングステン(0.7%トルエン溶液)40部とを、2時間かけて連続的に添加し重合した。重合溶液にブチルグリシジルエーテル1.06部とイソプロピルアルコール0.52部を加えて重合触媒を不活性化し重合反応を停止させた。
次いで、得られた開環重合体を含有する反応溶液100部に対して、シクロヘキサン270部を加え、さらに水素化触媒としてニッケル−アルミナ触媒(日揮化学社製)5部を加え、水素により5MPaに加圧して撹拌しながら温度200℃まで加温した後、4時間反応させ、DCP/MTF/MTD開環重合体水素化ポリマーを20%含有する反応溶液を得た。濾過により水素化触媒を除去した後、軟質重合体(クラレ社製;セプトン2002)、及び酸化防止剤(チバスペシャリティ・ケミカルズ社製;イルガノックス1010)を、得られた溶液にそれぞれ添加して溶解させた(いずれも重合体100部あたり0.1部)。
次いで、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を、円筒型濃縮乾燥器(日立製作所製)を用いて除去し、水素化ポリマーを溶融状態で押出機からストランド状に押出し、冷却後ペレット化して回収した。重合体中の各ノルボルネン系モノマーの共重合比率を、重合後の溶液中の残留ノルボルネン類組成(ガスクロマトグラフィー法による)から計算したところ、DCP/MTF/MTD=10/70/20でほぼ仕込み組成に等しかった。この開環重合体水素添加物の、重量平均分子量(Mw)は31,000、分子量分布(Mw/Mn)は2.5、水素添加率は99.9%、Tgは134℃であった。得られた開環重合体水素添加物のペレットを、空気を流通させた熱風乾燥器を用いて70℃で2時間乾燥して水分を除去した。
次いで、前記ペレットを、コートハンガータイプのTダイを有する短軸押出機(三菱重工業株式会社製:スクリュー径90mm、Tダイリップ部材質は炭化タングステン、溶融樹脂との剥離強度44N)を用いて溶融押出成形して厚み100μmのシクロオレフィンポリマーフィルムを製造した。押出成形は、クラス10,000以下のクリーンルーム内で、溶融樹脂温度240℃、Tダイ温度240℃の成形条件にて幅900mmの長尺フィルム原反Aを得た。長尺フィルム原反Aはロールに巻き取った。
(斜め延伸工程)
上記にて得られたノルボルネン系樹脂の長尺フィルム原反Aを、本発明に係る斜め延伸装置を用いて、以下に示す方法により延伸して、延伸フィルムを得た。
まず、フィルムの繰り出し方向と巻き取り方向とがなす角度(旋回角)を47°とした。そして、フィルム繰り出し装置から送られてくる長尺フィルムAの両端を、第1クリップ(レールの内周側)及び第2クリップ(レールの外周側)で把持した。
なお、長尺フィルムを把持する際には、第1、第2クリップのクリップレバーを、クリップクローザーにより動かすことにより長尺フィルムを把持する。また、クリップ把持時の際は、長尺フィルムの両端を同時に第1、第2クリップで同時に把持し、かつフィルムの横方向に平行な軸に対して、両端の把持位置を結ぶ線画並行となるように把持する。
次いで、把持した未延伸のフィルムを上記第1、第2クリップにより、加熱ゾーン内の予熱ゾーン、延伸ゾーンおよび熱固定ゾーンを通過させることにより加熱し、幅方向に延伸し、延伸フィルムを得た。
なお、加熱および延伸する際におけるフィルム搬送速度は、10m/分とし、延伸温度を141℃とした。
また、延伸前後におけるフィルムの延伸倍率を2倍とし、延伸後のフィルムの厚みが50μm、幅が1800mmとなるようにした。
以上の工程によって得られたシクロオレフィンの長尺延伸フィルムを延伸フィルム1とした。
〔長尺延伸フィルム2〜6〕
長尺延伸フィルム2〜6では、下記表1に示すようなフィルムの原反膜厚、原反膜幅、延伸後の配向角、延伸後の膜厚、搬送速度、延伸温度、旋回角を代えてフィルムを斜め延伸させた他は前記長尺延伸フィルム1と同様にして各シクロオレフィンの長尺延伸フィルムを調製した。
下記表1に各長尺延伸フィルムの延伸条件について記す。なお、各延伸条件については以下の通りである。
延伸後の配向角(°):フィルム幅手方向50mmピッチで測定した平均配向角。
延伸後の膜厚(μm):フィルム幅手方向20mmピッチで測定した平均膜厚。
搬送速度(m/分):斜め延伸テンターの左右非対称なレール上を走行する把持具の走行速度。
旋回角(°):フィルムの繰出方向とフィルムの巻取方向の成す角度。
延伸温度(℃):フィルムを延伸する時の温度。
延伸倍率:斜め延伸前のフィルムの入り幅をW0、斜め延伸後のフィルム幅をWとした時のW/W0で表される値。
Figure 2013125195
〔長尺延伸フィルム7〕
(セルロースエステルフィルムの製造)
《糖エステル化合物1の合成》
撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.6モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、図8に示すような化合物A−1、A−2、A−3、A−4及びA−5の混合物を得た。
得られた混合物をHPLC及びLC−MASSで解析したところ、A−1が1.3質量%、A−2が13.4質量%、A−3が13.1質量%、A−4が31.7質量%、A−5が40.5質量%であった。平均置換度は5.5であった。
また、前記HPLC−MASSの測定条件は、以下の通りである。
1)LC部
装置:日本分光(株)製カラムオーブン(JASCO CO−965)、ディテクター(JASCO UV−970−240nm)、ポンプ(JASCO PU−980)、デガッサ−(JASCO DG−980−50)
カラム:Inertsil ODS−3 粒子径5μm 4.6×250mm(ジーエルサイエンス(株)製)
カラム温度:40℃
流速:1ml/min
移動相:THF(1%酢酸):HO(50:50)
注入量:3μl
2)MS部
装置:LCQ DECA(Thermo Quest(株)製)
イオン化法:エレクトロスプレーイオン化(ESI)法
Spray Voltage:5kV
Capillary温度:180℃
Vaporizer温度:450℃
《エステル化合物1の合成》
1,2−プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2−プロピレングリコールを減圧留去することにより、エステル化合物1を得た。エステル化合物1は、1,2−プロピレングリコール、無水フタル酸及びアジピン酸が縮合して形成されたポリエステル鎖の末端に安息香酸のエステルを有する。エステル化合物1の酸価0.10、数平均分子量450であった。
《微粒子添加液1の調整》
微粒子(アエロジル R972V 日本アエロジル(株)製)11質量部、エタノール89質量部をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行い、微粒子分散液1を調整した。
続いて、メチレンクロライド99質量部を入れた溶解タンクを十分攪拌しながら、微粒子分散液1、1質量部をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
《主ドープの調整》
メチレンクロライド、エタノール、セルロースアセテートプロピオネート、下記の化学式6に示す化合物(C)、前述した糖エステル化合物1、エステル化合物1、微粒子添加液1を下記記載の組成となるようドープ液を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。
メチレンクロライド 340質量部
エタノール 64質量部
セルロースアセテートプロピオネート(アセチル基置換度1.39、プロピオニル基置換度0.50、総置換度1.89)
100質量部
化合物(C) 5.0質量部
糖エステル化合物1 5.0質量部
エステル化合物1 2.5質量部
微粒子添加液1 1質量部
Figure 2013125195
続いて、無端ベルト流延装置を用い、上記ドープ液をステンレススティールベルト支持体上に均一に流延した。ステンレススティールベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、ステンレススティールベルト支持体上から剥離した。
剥離したセルロースエステルフィルムを、横延伸テンターにて幅方向に1.1倍延伸した。その時の横延伸テンターオーブンの温度条件としては、予熱ゾーンは160℃、延伸ゾーンは165℃、保持ゾーンは172℃、冷却ゾーンは110℃に調整した。
次いで、フィルム両端部のテンタークリップ痕部をトリミングし、乾燥温度は130℃で、長尺フィルムを多数のロールを用いて乾燥ゾーン内を搬送させながら乾燥を終了させた後、長尺フィルム原反Bとして巻き取った。以上のようにして、厚み60μm、幅900mmの長尺フィルム原反Bを得た。
(長尺延伸フィルム7)
長尺延伸フィルム7では、表1に示すようなフィルムの延伸温度、フィルムの原反膜厚、原反膜幅、延伸後の配向角、延伸後の膜厚、搬送速度、延伸温度、旋回角を代えてフィルムを斜め延伸させた他は前記製造例1と同様にしてセルロースエステルの延伸フィルムを製造した。
[実施例1]
前記長尺延伸フィルム1の内周側を、フィルム端部から幅手方向に120mmの位置でCOレーザー光照射装置(波長10.6μm、レーザ光出力30W)を用いて加熱した後に、スリット刃を用いて前記加熱照射した部分と同じ位置で前記長尺延伸フィルムを切断した。
また、スリット装置として、円盤状の回転上刃と、ロール状の回転下刃とから構成されており、回転上刃の材質は超鋼鋼材を使用しており、回転上刃の直径が200mm、及び切断箇所の刃の厚みが0.5mmであった。方、ロール状の回転下刃の材質は超鋼鋼材であり、回転下刃のロール径が100mmであった。
[実施例2〜6]
実施例2〜6では、下記表2に示すような長尺延伸フィルムの種類を変えてスリット工程を行った他は実施例1と同様にして各長尺延伸フィルムを切断した。
[実施例7]
実施例7では、実施例6と同じ種類の長尺延伸フィルムを用い、配向を弱める手段を有機溶剤滴下に変更して実施した。
滴下液としてメチレンクロライドとメタノールの混合溶液を用い、有機溶剤滴下装置としてインクジェット方式を用いて、フィルム内周部に有機溶剤を滴下した。
インクジェット吐出装置は、ノズル径が3.5μmのノズルを所有するインクジェットヘッドとした。そして、インクジェットヘッドからの有機溶剤の滴下量を調整して、フィルムを切断する10秒前にフィルム表面の内周側の端部から120mmの箇所に前記有機溶剤を滴下した。また、スリット装置は、実施例1〜6と同様のものを用いて切断を実施した。
[実施例8]
実施例8では、下記表2に示すように実施例6,7と同じ種類の長尺延伸フィルムを用い、前記フィルムを切断する前にフィルム表面の幅手方向における内周側の端部から120mmの位置を、送風口がφ30mmのヒートガンで吹き出し風温度が300℃となる条件で加熱した。また、スリット装置は、実施例1〜7と同様のものを用いた。
[実施例9]
実施例9では、使用する長尺延伸フィルムをセルロースエステル系に変更し、前記実施例1〜6で行ったレーザー加熱装置による処理を行った後に、フィルム表面の幅手方向における内周側の端部から120mmの位置で、スリット装置による切断を行った。また、スリット装置は、実施例1〜8と同様のものを用いた。
[比較例1〜6]
比較例1〜6では、下記表2に示すような長尺延伸フィルムの種類を変更し、前記実施例1〜9で行ったような溶剤滴下や熱処理を行わずに、フィルム表面の幅手方向における内周側の端部から120mmの位置でスリット処理を行った。また、スリット装置は、実施例1〜9と同様のものを用いた。
(フィルムカス付着の評価)
前記スリット工程後のスリット刃に切りカスが付着しているかどうか目視することにより、以下の評価基準で判定を行った。
A:スリット刃に切りカスが見られない。
B:スリット刃に切りカスが僅かに付着している。
C:スリット刃に切りカスがたくさん付着している。
(フィルム端部のなめらかさの評価)
前記スリット工程後の各長尺延伸フィルムの端部の切断面を目視及び手で触ることにより、フィルム端部のなめらかさを以下の評価基準で判定を行った。
A:切断部のフィルム断面は滑らかである。
B:切断部のフィルム断面を指でなぞるとザラつく感触がある。
C:切断部のフィルム断面を目視で見ると、切断部の極一部に裂け等が発生している。
(外観の評価)
また、前記スリット工程後の各長尺延伸フィルムを巻きほぐして、前記延伸フィルムを目視及び暗室内での点光源投影法により、押され及びキズが発生しているかどうか以下の評価基準で判定を行った。
A:目視及び点光源投影法下で、フィルムを動かしてかざして見ても押され及びキズ共に見られない。
B:目視では押され及びキズ共に見られない。また、点光源投影下では、フィルムを動かして見ると、僅かに押され及びキズが見られる。
C:目視では押され及びキズ共に見られない。また、点光源投影下では、フィルムを静止させた状態において僅かに押され及びキズが見られる。
D:目視では押され及びキズ共に見られない。また、点光源投影下では、はっきりと押され及びキズが見られる。
E:目視及び点光源投影下で押され及びキズが見られる。
上記評価結果を下記表2に示す。
Figure 2013125195
表2の結果から明らかなように、切断前のフィルムをレーザー式の加熱装置により加熱し、スリット装置を用いて切断した実施例1〜6は、スリット刃に切りカスが見られず、切断部のフィルム断面は滑らかであり、かつキズのないフィルムを得ることができた。特に、実施例6においては、実施例1〜5に比べて高速条件下で製膜しているにも関わらず、目視では押されやキズが見つからないほど外観に優れたフィルムを得ることができた。また、切断前のフィルムに有機溶剤を滴下して切断した実施例7についても、高速条件下で製膜しているにも関わらず、スリット刃に切りカスが見られず、切断部のフィルム断面は滑らかであり、かつキズの少ないフィルムを得ることができた。また、切断前のフィルムをヒートガンを用いて加熱し、切断した実施例についても、高速条件下で製膜しても、製品として問題のないフィルムを得ることができた。さらに、セルロースエステルフィルムについても、実施例1と同様にレーザー式加熱装置を用いて加熱し、切断することで、スリット刃に切りカスが見られず、切断部のフィルム断面は滑らかであり、かつキズのないフィルムを得ることができた。
一方で、切断前に各実施例のような前処理を行わなかった比較例1〜6は、各評価に劣る結果となった。
この出願は、2012年2月21日に出願された日本国特許出願特願2012−35099を基礎とするものであり、その内容は、本願に含まれるものである。
本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明は、延伸フィルムおよびその製造方法の技術分野において、広範な産業上の利用可能性を有する。

Claims (7)

  1. 熱可塑性樹脂を含有する長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰り入れ、前記長尺フィルムの幅手方向の両端部を斜め延伸テンターの把持具によって把持して搬送しつつ、前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、前記斜め延伸工程後の長尺延伸フィルムの両端部をスリット装置にて切断するスリット工程、及びスリット工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、
    前記スリット工程において、切断前に長尺延伸フィルムの少なくとも内周側の切断箇所の搬送方向への配向を弱める処理を行うことを特徴とする、長尺延伸フィルムの製造方法。
  2. 前記スリット工程において、搬送方向への配向を弱める処理は、長尺延伸フィルムの切断箇所を加熱する処理であることを特徴とする請求項1に記載の長尺延伸フィルムの製造方法。
  3. 前記スリット工程において、搬送方向への配向を弱める処理は、長尺延伸フィルムの切断箇所に有機溶剤を滴下する処理であることを特徴とする請求項1に記載の長尺延伸フィルムの製造方法。
  4. 前記スリット工程において、前記スリット装置及び、前記配向を弱める処理を行う装置が、前記長尺延伸フィルムの旋回角度の変更に応じて追随する機構を有している、請求項1〜3のいずれかに記載の長尺延伸フィルムの製造方法。
  5. 前記スリット工程において、前記スリット装置が、前記長尺延伸フィルムの延伸方向とスリット刃の進行方向との角度を確認できる機構を有する、請求項1〜4のいずれかに記載の長尺延伸フィルムの製造方法。
  6. 前記斜め延伸工程において、前記斜め延伸テンターの左右非対称なレール上を走行する把持具の走行速度が20〜150m/分である、請求項1〜5のいずれかに記載の長尺延伸フィルムの製造方法。
  7. 前記長尺延伸フィルムの膜厚が10〜35μmである請求項1〜6のいずれかに記載の長尺延伸フィルムの製造方法。
JP2014500909A 2012-02-21 2013-02-15 長尺延伸フィルムの製造方法 Active JP5979216B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014500909A JP5979216B2 (ja) 2012-02-21 2013-02-15 長尺延伸フィルムの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012035099 2012-02-21
JP2012035099 2012-02-21
PCT/JP2013/000849 WO2013125195A1 (ja) 2012-02-21 2013-02-15 長尺延伸フィルムの製造方法
JP2014500909A JP5979216B2 (ja) 2012-02-21 2013-02-15 長尺延伸フィルムの製造方法

Publications (2)

Publication Number Publication Date
JPWO2013125195A1 true JPWO2013125195A1 (ja) 2015-07-30
JP5979216B2 JP5979216B2 (ja) 2016-08-24

Family

ID=49005392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014500909A Active JP5979216B2 (ja) 2012-02-21 2013-02-15 長尺延伸フィルムの製造方法

Country Status (2)

Country Link
JP (1) JP5979216B2 (ja)
WO (1) WO2013125195A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022107944A (ja) 2021-01-12 2022-07-25 コニカミノルタ株式会社 斜め延伸フィルムの製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232650A (ja) * 1989-11-10 1991-10-16 Mitsubishi Heavy Ind Ltd 自動通紙方法及び装置
JP2000009912A (ja) * 1998-06-25 2000-01-14 Nitto Denko Corp 延伸フィルムの製造方法及び位相差板
JP2005114972A (ja) * 2003-10-07 2005-04-28 Akiyoshi Umemura 偏光膜斜め延伸装置
WO2007052478A1 (ja) * 2005-11-04 2007-05-10 Konica Minolta Opto, Inc. セルロース系樹脂フィルム、セルロース系樹脂フィルムの製造方法、反射防止フィルム、偏光板及び液晶表示装置
WO2007061105A1 (ja) * 2005-11-28 2007-05-31 Zeon Corporation 長尺の斜め延伸フィルムの製造方法
JP2007203556A (ja) * 2006-01-31 2007-08-16 Nippon Zeon Co Ltd 延伸フィルムの製造方法、位相差補償フィルム及び液晶表示装置
WO2007111313A1 (ja) * 2006-03-24 2007-10-04 Zeon Corporation 長尺の延伸フィルムおよびその製造方法並びに用途
JP2008110573A (ja) * 2006-10-31 2008-05-15 Nippon Zeon Co Ltd 長尺の延伸フィルム、長尺の積層フィルム、偏光板、液晶表示装置及び長尺の延伸フィルムの製造方法
WO2010095316A1 (ja) * 2009-02-18 2010-08-26 コニカミノルタオプト株式会社 光学フィルムの製造方法
JP2011115985A (ja) * 2009-12-01 2011-06-16 Fujifilm Corp 光学フィルムの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232650A (ja) * 1989-11-10 1991-10-16 Mitsubishi Heavy Ind Ltd 自動通紙方法及び装置
JP2000009912A (ja) * 1998-06-25 2000-01-14 Nitto Denko Corp 延伸フィルムの製造方法及び位相差板
JP2005114972A (ja) * 2003-10-07 2005-04-28 Akiyoshi Umemura 偏光膜斜め延伸装置
WO2007052478A1 (ja) * 2005-11-04 2007-05-10 Konica Minolta Opto, Inc. セルロース系樹脂フィルム、セルロース系樹脂フィルムの製造方法、反射防止フィルム、偏光板及び液晶表示装置
WO2007061105A1 (ja) * 2005-11-28 2007-05-31 Zeon Corporation 長尺の斜め延伸フィルムの製造方法
JP2007203556A (ja) * 2006-01-31 2007-08-16 Nippon Zeon Co Ltd 延伸フィルムの製造方法、位相差補償フィルム及び液晶表示装置
WO2007111313A1 (ja) * 2006-03-24 2007-10-04 Zeon Corporation 長尺の延伸フィルムおよびその製造方法並びに用途
JP2008110573A (ja) * 2006-10-31 2008-05-15 Nippon Zeon Co Ltd 長尺の延伸フィルム、長尺の積層フィルム、偏光板、液晶表示装置及び長尺の延伸フィルムの製造方法
WO2010095316A1 (ja) * 2009-02-18 2010-08-26 コニカミノルタオプト株式会社 光学フィルムの製造方法
JP2011115985A (ja) * 2009-12-01 2011-06-16 Fujifilm Corp 光学フィルムの製造方法

Also Published As

Publication number Publication date
WO2013125195A1 (ja) 2013-08-29
JP5979216B2 (ja) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6623737B2 (ja) 光学フィルムの製造方法および製造装置
WO2014073021A1 (ja) 長尺延伸フィルムの製造方法
JP5177332B1 (ja) 長尺延伸フィルムの製造方法及び製造装置
WO2014073019A1 (ja) 長尺延伸フィルムの製造方法
JP5083483B1 (ja) 長尺延伸フィルムの製造方法
JP5088718B1 (ja) 延伸フィルムの製造方法、延伸フィルムの製造装置および延伸フィルムの製造システム
JP5126456B1 (ja) 長尺斜め延伸フィルムの製造方法および製造装置
JP5979224B2 (ja) 長尺延伸フィルムの製造方法及び製造装置
JP2013202979A (ja) 斜め延伸フィルムの製造方法および製造装置
JP5862687B2 (ja) 長尺延伸フィルムの製造方法
JP6003815B2 (ja) 長尺斜め延伸フィルムの製造方法
WO2014156416A1 (ja) 光学フィルムの製造方法
JP5105034B1 (ja) 延伸フィルムの製造方法、延伸フィルムの製造装置および延伸フィルムの製造システム
JP5979216B2 (ja) 長尺延伸フィルムの製造方法
JP5999004B2 (ja) 光学フィルムの製造方法
JP5862686B2 (ja) 長尺延伸フィルムの製造方法
JP5987896B2 (ja) 長尺延伸フィルムの製造方法、及び斜め延伸装置
JP5979217B2 (ja) 長尺延伸フィルムの製造方法および斜め延伸装置
JP6107368B2 (ja) 光学フィルムの製造方法
WO2014123132A1 (ja) 光学フィルムの製造方法
WO2014123133A1 (ja) 光学フィルムの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5979216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150