WO2014073019A1 - 長尺延伸フィルムの製造方法 - Google Patents

長尺延伸フィルムの製造方法 Download PDF

Info

Publication number
WO2014073019A1
WO2014073019A1 PCT/JP2012/007112 JP2012007112W WO2014073019A1 WO 2014073019 A1 WO2014073019 A1 WO 2014073019A1 JP 2012007112 W JP2012007112 W JP 2012007112W WO 2014073019 A1 WO2014073019 A1 WO 2014073019A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
long
gripping
gripping tool
stretching
Prior art date
Application number
PCT/JP2012/007112
Other languages
English (en)
French (fr)
Inventor
晋平 畠山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2013516810A priority Critical patent/JP5333697B1/ja
Priority to CN201280076890.3A priority patent/CN104768729B/zh
Priority to PCT/JP2012/007112 priority patent/WO2014073019A1/ja
Priority to KR1020157007711A priority patent/KR101728618B1/ko
Publication of WO2014073019A1 publication Critical patent/WO2014073019A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/045Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique

Definitions

  • the present invention relates to a method for producing a long stretched film.
  • a stretched film obtained by stretching a resin film is used as an optical film that performs various optical functions in various display devices by utilizing its optical anisotropy.
  • a stretched film as an optical compensation film for optical compensation such as coloring prevention and viewing angle expansion.
  • the circularly-polarizing plate which used the stretched film as a retardation film which served as the polarizing plate protective film will be obtained by bonding a stretched film and a polarizer (polarizing film).
  • such a circularly polarizing plate is attached in such an arrangement that the optical axis such as the in-plane slow axis of the stretched film is inclined at a desired angle with respect to the absorption axis of the polarizer. You may need to match.
  • the polarizer is generally obtained by stretching at a high magnification in the longitudinal direction
  • the absorption axis formed by the stretching often coincides with the longitudinal direction.
  • an optical axis such as an in-plane slow axis is in principle the longitudinal direction (conveying direction) of the film. In contrast, it becomes 0 ° or 90 °.
  • the resin film is stretched in an oblique direction at a desired angle using an oblique stretching apparatus, and an optical axis such as a slow axis is 0 ° with respect to the width direction (width direction) of the film.
  • an optical axis such as a slow axis
  • a method of obliquely stretching by inclining a direction in which a long film is drawn out and a direction in which a long stretched film obtained by stretching the long film is wound that is, a bending-type oblique
  • a method using a stretching apparatus there is a method in which a travel support tool such as a rail on which the left and right gripping tools travel is bent to provide a difference in the movement trajectory length of the left and right gripping tools, and the resin film is stretched obliquely.
  • a straight traveling oblique stretching apparatus that does not bend the stretching direction for oblique stretching is used, and the direction in which the long film is fed and the length of the long film stretched.
  • the method which does not need to incline with the direction which winds a stretched film is mentioned.
  • the both ends of the resin film are gripped by a plurality of grippers, and while the resin film is conveyed, the traveling speed of the gripper gripping one end and the gripper gripping the other end is adjusted.
  • There is a simultaneous biaxial oblique stretching method in which a difference is provided and the resin film is obliquely stretched.
  • the method described in Patent Document 2 can be mentioned.
  • the simultaneous biaxial oblique stretching method refers to a method of stretching obliquely by using a stretching apparatus that can widen or shrink a film in the transport direction and in a direction orthogonal to the transport direction.
  • both right and left side edges of a sheet or film to be stretched are each gripped by a variable-pitch left and right clip whose longitudinal clip pitch changes with traveling movement.
  • the clip position in the vertical direction of the tool is given a difference with respect to the moving direction of the sheet and film between the left clip and the right clip, and the vertical direction of the clip as the clip moves Describes a method of obliquely stretching a sheet or film that is obliquely stretched by increasing the clip pitch. Further, it is disclosed that according to such a method, oblique stretching can be performed without giving a difference in the movement trajectory length of the left and right clips.
  • Patent Document 2 a straight-ahead oblique stretching device as described in Patent Document 2 is used for an organic electroluminescence (organic EL) display device having high contrast performance required from a liquid crystal display device.
  • organic EL organic electroluminescence
  • the present invention is a circularly polarizing plate that can sufficiently suppress variation in the orientation angle of the optical axis even when oblique stretching is performed using a simultaneous biaxial stretching apparatus capable of saving space, and is provided in an image display device It aims at providing the manufacturing method of the elongate stretched film which can fully suppress generation
  • a first method in which both ends of a thermoplastic long film are gripped by a plurality of gripping tools, the gripping tools gripping the both ends are transported at a constant speed, and then one end is gripped.
  • Diagonal stretching to incline the optical axis of the long film by accelerating the gripping tool more than the second gripping tool gripping the other end and causing the first gripping tool to precede the second gripping tool Including at least a step, and in the oblique stretching step, after the first gripping tool is advanced, a relaxation treatment is performed to relieve strain stress applied to the long film in a region between the adjacent first gripping tools. It is the manufacturing method of the elongate stretched film characterized.
  • FIG. 1 is a schematic view showing a state of a long film when obliquely stretched using a simultaneous biaxial stretching apparatus.
  • FIG. 2 is a schematic view showing a state of a long film when a normal simultaneous biaxial stretching is performed using a simultaneous biaxial stretching apparatus.
  • FIG. 3 is a schematic diagram for explaining a relaxation process in the manufacturing method according to the present embodiment.
  • FIG. 4 is a schematic view showing an oblique stretching apparatus used in the manufacturing method according to the present embodiment.
  • FIG. 5 is a schematic diagram illustrating an example of a layer structure of an image display unit of an organic electroluminescence display device to which a long stretched film obtained by the manufacturing method according to the present embodiment can be applied.
  • the method for producing a long stretched film after gripping both ends of a thermoplastic long film with a plurality of gripping tools and transporting the gripping tools gripping the both ends at a constant speed, The first gripping tool gripping one end is accelerated more than the second gripping tool gripping the other end so that the first gripping tool precedes the second gripping tool.
  • the oblique stretching step for example, while gripping and transporting both ends of a thermoplastic long film with a plurality of grippers, one end is gripped while stretching in the width direction of the long film. The process etc.
  • the long length here means that the length with respect to the width is 5 times or more, and preferably 10 times or more. That is, the long film refers to a film having a length of 5 times or more with respect to the width of the film.
  • the long film is specifically wound in a roll shape and has a length that can be stored or transported as a film roll.
  • the oblique stretching step is a step of stretching the long film in a direction oblique to the width direction.
  • a long stretched film having a desired length can be produced by continuously feeding the long film.
  • the film may be continuously supplied to the oblique stretching step without winding up the long film after film formation. It is preferable to perform the film forming step and the oblique stretching step continuously because the film thickness after the stretching and the result of the optical value are fed back to change the film forming conditions to obtain a desired long stretched film. .
  • a long stretched film having a slow axis (orientation axis) at an angle of more than 0 ° and less than 90 ° with respect to the width direction of the long film can be produced.
  • the angle with respect to the width direction of the long film is an angle in the film plane.
  • the slow axis is expressed only in the stretching direction or the direction perpendicular to the stretching direction when the stretching is performed only in the longitudinal stretching or the lateral stretching and the oblique stretching is not performed.
  • the angle formed by the stretching direction of the long stretched film and the slow axis can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
  • FIG. 1 is the schematic which shows the state of a elongate film at the time of carrying out diagonal stretch using a simultaneous biaxial stretching apparatus.
  • oblique stretching of a long film using a simultaneous biaxial oblique stretching apparatus is performed while holding both ends of the long film 11 with a plurality of gripping tools 12 and 13 and transporting them.
  • the film is stretched in the width direction of the long film by gradually increasing the distance between the first gripping tool 12 that grips the end and the second gripping tool 13 that grips the other end. That is, it stretches transversely.
  • the first gripping tool 12 is preceded by the second gripping tool 13 by gradually increasing the distance between the adjacent first gripping tools 12. In this state, since the long film near the end on the leading side gripped by the first gripping tool 12 is tensioned in the transport direction, as shown in FIG.
  • the tension 14 applied to the end portion on the preceding side being gripped becomes stronger than the tension 15 applied to the end portion on the delay side gripped by the second gripping tool 13. Therefore, strain stress is likely to be applied to the region between the adjacent first gripping tools 12, so-called neck-in portion 16, at the leading end. Thereafter, the distance between the adjacent first gripping tools 12 is gradually increased. Thereby, the slow axis (optical axis) 21 of the long film 11 is inclined. When the distance between the adjacent second gripping tools 13 is increased, the distance between the adjacent first gripping tools 12 is gradually increased and then gradually increased. After such oblique stretching, the long film 11 is subjected to a force 20 that contracts in a direction perpendicular to the transport direction.
  • the force which tries to return to the original shape is applied also to the neck-in parts 16 and 17.
  • the force 18 applied to the neck-in portion 16 formed between the adjacent first gripping tools 12 was strong, and the tension 14 applied to the leading end held by the first gripping tool 12 was strong. It becomes stronger than the force 19 applied to the neck-in portion 17 formed between the second gripping tools 13.
  • the optical axis 22 of the long film is pulled toward the neck-in portion 16 side on the leading side, and is displaced from the desired optical axis 21.
  • FIG. 2 is a schematic view showing a state of a long film when the film is stretched simultaneously biaxially and horizontally.
  • the tension 33 applied to the long film is perpendicular to the conveying direction of the long film, as shown in FIG. Further, after stretching, both the force 35 applied to the neck-in portion 34 and the contracting force 36 applied to the long film are perpendicular to the conveying direction of the long film. From this, the optical axis 38 of the long film does not generate a force deviating from the desired optical axis 37 and hardly deviates from the desired optical axis 37.
  • the manufacturing method of the elongate stretched film which concerns on this embodiment relieve
  • the above problem is solved by applying the relaxation process. That is, even when oblique stretching is performed using a simultaneous biaxial stretching apparatus capable of saving space, variation in the orientation angle of the optical axis can be sufficiently suppressed, and the circular polarizing plate provided in the image display apparatus can be used. In this case, it is possible to produce a long stretched film that can sufficiently suppress the occurrence of uneven color.
  • the oblique stretching process may be a process in which the first gripping tool precedes the second gripping tool to tilt the optical axis of the long film.
  • the distance between the adjacent first gripping tools is widened before the second gripping tool
  • the distance between the adjacent second gripping tools is widened and the first gripping is performed.
  • the step is such that the traveling speeds of the tool and the second gripping tool are the same.
  • the first gripping tool is preceded to incline the optical axis of the long film, and then the traveling speed of the second gripping tool is increased to increase the travel speed of the second gripping tool.
  • the traveling speeds of the first gripping tool and the second gripping tool are the same.
  • the optical axis of the long film can be inclined, and furthermore, since the speed when the holding tool is opened is constant, the occurrence of wrinkles or the like in the long stretched film can be suppressed.
  • the relaxation process may be performed after the first gripping tool is preceded. Specifically, it may be after increasing the traveling speed of the second gripping tool or after increasing the traveling speed of the second gripping tool as long as the first gripping tool is preceded. It is more preferable to increase the traveling speed of the second gripping tool from the viewpoint of correcting the shaft misalignment.
  • the relaxation process is not particularly limited as long as it is a process capable of relaxing the strain stress applied to the long film in the region between the adjacent first gripping tools.
  • the heat processing as mentioned later, the process which makes a solvent contact, etc. are mentioned.
  • the heat processing specifically includes a method of blowing hot air on the leading end of the long film. More specifically, there is a method as shown in FIG.
  • FIG. 3 is a schematic diagram for explaining the relaxation process in the manufacturing method according to the present embodiment.
  • the gripping tool and the like are omitted.
  • the heat treatment is not particularly limited as long as the end portion on the leading side of the long film can be heated and the end portion can be softened, but the region between the adjacent first gripping tools is heated. It is preferable. That is, it is preferable that the heat treatment is a process of heating the region between adjacent first gripping tools so as to be higher in temperature than the portion of the long film gripped by the first gripping tool. Specifically, the intermittent heating which hits only the area
  • the temperature difference is the heat processing.
  • the temperature is preferably 1 to 50 ° C, more preferably 2 to 40 ° C, and still more preferably 5 to 30 ° C. That is, the first temperature is preferably 2 to 40 ° C. higher than the second temperature. If there is such a temperature difference, the strain stress applied to the long film in the region between the adjacent first gripping tools is suitably relaxed without excessively softening the region between the adjacent first gripping tools. be able to. Accordingly, it is possible to easily produce a long stretched film that can further suppress variation in the orientation angle of the optical axis and can further suppress the occurrence of color unevenness when used in a circularly polarizing plate provided in an image display device.
  • the second temperature is the temperature of the long stretched film between the first gripping tool and the second gripping tool.
  • the temperature at the first gripping tool, the second gripping tool, and the center position can be used.
  • the relationship between the first temperature and the second temperature satisfies the above relationship, but the first temperature and the second temperature are more preferably the following temperatures.
  • the first temperature is preferably Tg + 1 to Tg + 80 ° C., more preferably Tg + 2 to Tg + 70 ° C., and more preferably Tg + 5 to Tg + 60 ° C.
  • the relaxation treatment includes a solvent contact treatment in which a solvent that swells or dissolves the long film is brought into contact with the end portion on the leading side of the long film.
  • a solvent contact treatment in which a solvent that swells or dissolves the long film is brought into contact with the end portion on the leading side of the long film.
  • the leading end of the long film is softened, and the strain stress applied to the long film in the region between the adjacent first gripping tools is reduced. Can do. Therefore, it is possible to easily produce a long stretched film that can sufficiently suppress variation in the orientation angle of the optical axis and can sufficiently suppress the occurrence of color unevenness when used in a circularly polarizing plate provided in an image display device. .
  • this solvent contact process will not be specifically limited if a solvent can be made to contact the edge part of the front side of a elongate film, Application
  • the solvent contact treatment includes a method using a spray device to spray the solvent when spraying the solvent on the leading end of the long film.
  • a spray device to spray the solvent when spraying the solvent on the leading end of the long film.
  • the spray device supplies a mist solvent, and the particle size of the mist solvent is preferably 10 to 10,000 nm, for example.
  • this spraying device is not particularly limited as long as it can spray a solvent, and a known spraying device can be used. Specific examples include an ultrasonic atomizer HM-303N manufactured by Hyundai Electronics Co., Ltd.
  • the solvent used in the solvent contact treatment is not particularly limited as long as it varies depending on the composition of the long film and can contact a solvent that swells or dissolves the long film. That is, the solvent is a solvent containing a good solvent for a long film, and may be a solvent made of a good solvent, or a good solvent mixed with a poor solvent. Moreover, if a good solvent is a cellulose ester film, a dichloroethane, a cyclohexane, etc. will be mentioned, for example. Moreover, if a poor solvent is a cellulose ester film, methanol, ethanol, butanol, isobutanol, isopropanol, acetone, toluene etc.
  • examples of good solvents include halogen solvents such as methylene chloride, methylene chloride, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 1,3-dioxolane, 1,4. -Cyclic ether solvents such as dioxane and tetrahydrofuran, and ketone solvents such as cyclohexanone.
  • the poor solvent include linear or branched aliphatic alcohols having 1 to 6 carbon atoms, such as methanol, ethanol, isopropanol, and tertiary-butanol.
  • the mixing ratio is not limited as long as the long film can be swollen or dissolved, but it is preferably, for example, 90% by mass or less. That is, the mixing ratio of the poor solvent is preferably 0 to 90% by mass.
  • the manufacturing method of the elongate stretched film which concerns on this embodiment should just give a relaxation process to the edge part of the front side of a long film, it also applies a relaxation process also to the edge part of the delay side of a long film. Is preferred. That is, it is preferable that after the distance between the adjacent second gripping tools is increased, a relaxation process for relaxing the strain stress applied to the long film in the region between the adjacent second gripping tools is performed. This is because, even at the end of the long film on the delay side, although smaller than the end on the preceding side, distortion stress is applied to the long film in the region between the adjacent second gripping tools.
  • the relaxation treatment applied to the end of the long film on the delay side is preferably, for example, the same treatment as the relaxation treatment applied to the leading end of the long film.
  • a straight type oblique stretching apparatus In order to impart an oblique orientation to the long film to be stretched in the present embodiment, a straight type oblique stretching apparatus is used. That is, the manufacturing method according to the present embodiment is performed using an oblique stretching apparatus capable of performing a simultaneous biaxial stretching oblique stretching method as described later.
  • the oblique stretching apparatus used in the present embodiment includes gripping tool travel support tools on which a plurality of gripping tools that grip both ends of the long film travel on both ends of the traveling long film. This oblique stretching apparatus grips both ends of a long film sequentially supplied to the inlet of the apparatus with a gripping tool, guides the long film into a heating zone, and at an arbitrary temperature at which the long film can be stretched.
  • Biaxial stretching can be carried out simultaneously in the vertical and horizontal directions by bringing the gripping tool gripping one end of the long film ahead of the gripping tool gripping the other end of the long film while heating.
  • the oblique stretching apparatus includes a heating device that heats the long film, a pair of gripping tool travel support tools on the left and right that the gripping tool for transporting the long film travels, and the gripping tool travel support tool. And a number of gripping tools that travel.
  • the simultaneous biaxially extending oblique stretching method here refers to holding both ends in the width direction of the supplied long film with each gripping tool and transporting the long film while moving each gripping tool.
  • a method of stretching a long film in an oblique direction with respect to the width direction by making the moving speed of one gripping tool different from the moving speed of the other gripping tool while keeping the conveying direction of the long film constant Say.
  • the specific method of simultaneous biaxial stretching and the mechanism of the oblique stretching apparatus will be described later.
  • the gripping tool travel support tool has an endless continuous track, and the gripping tool that has released the grip of the long stretched film at the exit of the stretching device is sequentially returned to the grip start point by the gripping tool travel support tool. It is configured.
  • the gripping tool travel support tool is, for example, a form in which an endless guide rail includes a gripping tool. That is, the gripping tool travels along the path of the gripping tool travel support tool itself.
  • the route pattern may be a rail pattern when the gripping tool travel support tool is a guide rail.
  • each gripping tool travel support tool is not particularly limited, but it is preferable that the same number of gripping tools on the left and right.
  • the traveling speed of the gripping tool that is, the transport speed of the long film
  • the traveling speed of the gripping tool can be selected as appropriate, and is preferably 1 to 150 m / min.
  • the traveling speed of the gripping tool can be selected as appropriate, and is preferably 1 to 150 m / min.
  • local stress applied to the end of the film can be suppressed, wrinkles and shifts that can occur at the end of the film are suppressed, and as a non-defective product out of the total width of the film obtained after completion of stretching.
  • the effective width obtained tends to be wide.
  • the conveying speed of the long film when the conveying speed of the long film is set to a relatively high speed of 7 to 150 m / min, and further 20 to 150 m / min, the production efficiency of the long stretched film is increased.
  • the transport speed of the long film when the transport speed of the long film is such a high speed, the optical axis tends to be misaligned normally.
  • the optical axis misalignment is likely to occur.
  • the conveying speed of the long film can be appropriately selected, but is preferably 7 to 150 m / min, more preferably 20 to 150 m / min.
  • the gripping tool that travels on one gripping tool travel support tool precedes the gripping tool that travels on the other gripping tool travel support tool only in some sections.
  • Travel speed is accelerated. Except for this accelerated section, at least the difference in travel speed between the gripper pair holding the long film is usually 1% or less, preferably 0.5% or less, more preferably 0.1% of the travel speed. And can be adjusted at substantially constant speed. This is because if there is a difference in running speed between the left and right sides of the long stretched film at the exit of the stretching process, wrinkles and shifts at the exit of the stretching process are likely to occur. For this reason, it is preferable that the speeds of the left and right gripping tools constituting the gripping tool pair are substantially constant.
  • the length (full length) of the gripping tool travel support tool is not particularly limited, and may be the same or different.
  • Examples of the oblique stretching apparatus include a linear motor system, a pantograph system, and a motor chain drive system.
  • a linear motor system a pantograph system
  • a motor chain drive system a motor chain drive system.
  • an endless link device composed of a plurality of equal-length link devices formed in a fold shape is provided, and the endless link device is driven by an inlet-side sprocket so that it is arranged in the traveling direction.
  • the guide rail is guided, and the distance between the gripping tools is gradually increased to travel.
  • the gripping tool is configured to be driven by the outlet side sprocket and return to the inlet side sprocket.
  • the gripper travels on an endless gripper travel support tool.
  • the gripper grips and stretches the long film supplied at the grip start point, and then releases the long stretched film at the grip release point.
  • the separation distance between the gripping tool pair at the gripping start point corresponds to the width of the supplied long film.
  • the long film sequentially passes through a heating zone having a preheating zone, a stretching zone, and a heat fixing zone of an oblique stretching apparatus.
  • the preheating zone refers to a section where the distance between the gripping tools gripping both ends is kept constant at the heating zone entrance.
  • the stretching zone refers to the interval until the gap between the gripping tools that grips both ends of the long film starts and reaches a predetermined interval. In the present embodiment, it can be stretched in an oblique direction in the stretching zone, but is not limited to stretching in the oblique direction, and may be stretched obliquely after lateral stretching in the stretching zone, or further after being obliquely stretched.
  • the film may be stretched in the width direction, may be stretched obliquely after being longitudinally stretched, or may be further stretched longitudinally after being obliquely stretched. That is, in the stretching zone, longitudinal stretching, stretching in the width direction, and stretching in the oblique direction may be appropriately combined.
  • the heat setting zone refers to the section in which the gripping tools at both ends run parallel to each other during the period when the spacing between the gripping tools after the stretching zone becomes constant again. You may pass through the area (cooling zone) by which the temperature in a zone is set to below the glass transition temperature Tg degreeC of the thermoplastic resin which comprises a elongate film, after passing through a heat setting zone. At this time, in consideration of the shrinkage of the long stretched film due to cooling, a rail pattern that narrows the gap between the opposing grippers in advance may be used.
  • transverse stretching and longitudinal stretching may be performed as necessary in the steps before and after introducing the long film into the oblique stretching apparatus.
  • the temperature in each zone is Tg to Tg + 30 ° C. in the preheating zone, Tg to Tg + 30 ° C. in the stretching zone, and Tg ⁇ Tg + 30 ° C. in the cooling zone, with respect to the glass transition temperature Tg of the thermoplastic resin constituting the long film. It is preferably set to 30 to Tg ° C.
  • a temperature difference in the width direction may be applied in the stretching zone in order to control thickness unevenness in the width direction.
  • a method of adjusting the opening degree of the nozzle for sending warm air into the temperature-controlled room so as to make a difference in the width direction, or controlling the heating by arranging the heaters in the width direction is known. Can be used.
  • the length of the preheating zone, the stretching zone and the cooling zone can be appropriately selected. The length of the preheating zone is usually 30 to 100% and the length of the fixed zone is usually 30 to 100% with respect to the length of the stretching zone. . Further, a cooling zone may be provided after the heat setting zone.
  • the stretching ratio in this oblique stretching step is preferably in the following range.
  • the stretching ratio is the ratio of the length after stretching to the length before stretching.
  • the stretching ratio in the machine direction is preferably 1.05 to 3 times, more preferably 1.1 to 2 times, and still more preferably 1.15 to 1.5 times. More preferred.
  • the orientation angle of the optical axis can be set in a wide range, and the film thickness can be set relatively freely.
  • the stretching ratio in the longitudinal direction is relatively high as described above, the optical axis tends to be misaligned normally.
  • the manufacturing method according to the present embodiment has sufficient misalignment of the optical axis. Can be suppressed.
  • the stretching ratio in the transverse direction is preferably 1.1 to 3 times, more preferably 1.5 to 2.8 times. If the draw ratio is in this range, thickness unevenness in the width direction is reduced, which is preferable. In the stretching zone of the oblique stretching tenter, if the stretching temperature is differentiated in the width direction, the thickness unevenness in the width direction can be further improved.
  • FIG. 4 is a schematic diagram showing an oblique stretching apparatus T used in the manufacturing method according to the present embodiment.
  • this is an example, and the present embodiment is not limited to this.
  • the long film F is the entrance of the oblique stretching apparatus T (the gripping tool is a grip start point at which the long film F is gripped, and a straight line connecting the grip start points is denoted by reference symbol A. 2), both ends thereof are gripped by the left and right gripping tools (a pair of gripping tools), and are conveyed as the gripping tool travels.
  • the gripping tool is a grip start point at which the long film F is gripped, and a straight line connecting the grip start points is denoted by reference symbol A. 2
  • both ends thereof are gripped by the left and right gripping tools (a pair of gripping tools), and are conveyed as the gripping tool travels.
  • the gripping tool pair is an entrance of the oblique stretching device T, and the left and right gripping tools C1 (first gripping tool) and gripping tool C2 (second gripping) that are opposed in a direction substantially perpendicular to the transport direction of the long film. Ingredients).
  • the left and right gripping tool C1 and gripping tool C2 travel along the gripping tool travel support tool R1 and gripping tool travel support tool R2 formed substantially in contrast, respectively, and the position at the end of stretching (the gripping tool releases gripping).
  • the long stretched film gripped by the grip release point and indicated by the reference sign B) is released.
  • the gripping tool C1 and the gripping tool C2 each grip both ends of the long film F at the grip start point A, and start conveying the long film F. .
  • the gripping tool C1 travels to the position indicated by the reference symbol P1
  • the gripping tool C1 is accelerated to precede the gripping tool C2.
  • a mechanism for accelerating the gripping tool C1 will be described later.
  • the acceleration of the gripper C1 is continued up to the position indicated by the reference symbol P2. While the gripping tool C1 is accelerating, the traveling speed of the gripping tool C2 is maintained.
  • the gripping tool C1 travels on the gripping tool travel support tool R1 prior to the gripping tool C2, and moves to the downstream side in the transport direction of the long film F.
  • Reference sign P3 indicates the position of the gripping tool C2 when the gripping tool C1 reaches P2.
  • the gripping tool C1 that has reached P2 travels to the grip release point B while maintaining the speed.
  • the gripping tool C2 that has reached P3 is accelerated in the same manner as the gripping tool C1.
  • a mechanism for accelerating the gripping tool C2 will be described later.
  • the acceleration of the gripping tool C2 is continued until P4.
  • the speed of the gripping tool C2 reaching P4 is the same as the speed of the preceding gripping tool C1.
  • the gripping tool C2 that has reached P4 travels to the grip release point B while maintaining the speed.
  • the gripping tool C1 and the gripping tool C2 that grip the long film F travel from P1 to P4, the long film F is stretched in the lateral direction (TD direction, width direction). Further, as described above, the gripping tool C1 is accelerated at P1 and precedes the gripping tool C2. The distance that the gripping tool C1 travels after acceleration (P1 to gripping release point B) is longer than the distance that the gripping tool C2 travels after acceleration (P3 to gripping release point B). Therefore, the gripping tool C1 reaches the grip release point B ahead of the gripping tool C2. Therefore, the long film F is stretched in the longitudinal direction (MD direction, longitudinal direction). As a result, the long film F is biaxially stretched simultaneously in the vertical and horizontal directions, and orientation is imparted in an oblique direction.
  • the gripping tool C1 and the gripping tool C2 move at a constant speed from the gripping start point A to P1, and only the gripping tool C1 is accelerated at P1.
  • the configuration is not limited to this. That is, the position where acceleration is started and the acceleration can be appropriately set so that a desired orientation angle can be obtained.
  • the gripping tool C1 may start to be accelerated at the gripping start point A, or the gripping tool C1 may be accelerated at a constant acceleration from the gripping start point A to the gripping release point B.
  • the traveling speed of the gripping tool C2 may not be adjusted in this way. That is, in order to give the long film F an oblique orientation, the gripping tool C1 may reach the grip release point B in advance. Therefore, it is not necessary to accelerate the gripping tool C2, and even when accelerating, it is not necessary to accelerate until the gripping tool C1 is at the same speed.
  • the method of accelerating the gripping tool C1 and the gripping tool C2 is not particularly limited, and is a method that can change the pitch of the continuous gripping tool C1 or the gripping tool C2 (the distance between the gripping tools in the transport direction of the long film F). I just need it.
  • a method of changing the pitch for example, a method using a pantograph mechanism or a linear guide mechanism can be employed.
  • the other process includes, for example, a film forming process for forming a long film, a winding process for winding the long stretched film after oblique stretching, and the like.
  • the film forming step is a step of forming a thermoplastic long film.
  • the long film formed in this embodiment is not particularly limited as long as it is thermoplastic.
  • the long film includes a thermoplastic resin and includes a long film that is thermoplastic.
  • the long film may be a film made of a thermoplastic resin.
  • a film made of a resin having a property transparent to a desired wavelength is preferable.
  • resins include polycarbonate resins, polyether sulfone resins, polyethylene terephthalate resins, polyimide resins, polymethyl methacrylate resins, polysulfone resins, polyarylate resins, polyethylene resins, polyvinyl chloride resins.
  • resins include resins, olefin polymer resins having an alicyclic structure, and cellulose ester resins.
  • polycarbonate resins olefin polymer resins having an alicyclic structure, and cellulose ester resins are preferable from the viewpoint of transparency and mechanical strength, and polycarbonate resins are more preferable. That is, it is preferable to use a polycarbonate film as the long film. By doing so, it is possible not only to suppress variation in the orientation angle of the optical axis, but also to produce a long stretched film excellent in transparency and mechanical strength.
  • Polycarbonate resin Various polycarbonate resins can be used without particular limitation, and aromatic polycarbonate resins are preferable from the viewpoint of chemical properties and physical properties, and polycarbonates having a fluorene skeleton and bisphenol A polycarbonate resins are particularly preferable. Among these, those using a bisphenol A derivative in which a benzene ring, a cyclohexane ring, an aliphatic hydrocarbon group and the like are introduced into bisphenol A are more preferable. Furthermore, a polycarbonate resin having a structure in which the anisotropy in the unit molecule is reduced, obtained by using a derivative in which the functional group is introduced asymmetrically with respect to the central carbon of bisphenol A, is particularly preferable.
  • a polycarbonate resin for example, two methyl groups in the center carbon of bisphenol A are replaced by benzene rings, and one hydrogen of each benzene ring of bisphenol A is centered by a methyl group or a phenyl group.
  • a polycarbonate resin obtained by using an asymmetrically substituted carbon is particularly preferable.
  • 4,4′-dihydroxydiphenylalkane or a halogen-substituted product thereof can be obtained by a phosgene method or a transesterification method.
  • 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl Examples include ethane and 4,4'-dihydroxydiphenylbutane.
  • polycarbonate resins include, for example, JP-A-2006-215465, JP-A-2006-91836, JP-A-2005-121813, JP-A-2003-167121. And polycarbonate resins described in JP-A No. 2009-126128, JP-A 2012-67300, and International Publication No. 2000/026705.
  • the polycarbonate resin may be used by mixing with a transparent resin such as polystyrene resin, methyl methacrylate resin, and cellulose acetate resin. Moreover, you may laminate
  • the polycarbonate resin preferably has a glass transition point (Tg) of 110 ° C. or higher and a water absorption rate (measured under conditions of 23 ° C. water and 24 hours) of 0.3% or less. Yes. Moreover, Tg is 120 degreeC or more, and a water absorption rate is 0.2% or less more preferable.
  • the polycarbonate-based resin film that can be used in the present embodiment can be formed by a known method, and among them, the solution casting method and the melt casting method are preferable.
  • alicyclic olefin polymer-based resin examples include cyclic olefin random multi-component copolymers described in JP-A No. 05-310845, hydrogenated polymers described in JP-A No. 05-97978, and JP-A No. 11
  • the thermoplastic dicyclopentadiene ring-opening polymer and hydrogenated product thereof described in JP-A-124429 can be employed.
  • the olefin polymer resin having an alicyclic structure will be described more specifically.
  • the alicyclic olefin polymer resin is a polymer having an alicyclic structure such as a saturated alicyclic hydrocarbon (cycloalkane) structure or an unsaturated alicyclic hydrocarbon (cycloalkene) structure.
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, but when it is usually in the range of 4 to 30, preferably 5 to 20, more preferably 5 to 15, the mechanical strength, The properties of heat resistance and formability of the long film are highly balanced and suitable.
  • the proportion of the repeating unit containing the alicyclic structure in the alicyclic olefin polymer may be appropriately selected, but is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight. That's it.
  • the ratio of the repeating unit having an alicyclic structure in the alicyclic polyolefin resin is within this range, the transparency and heat resistance of an optical material such as a retardation film obtained from the long stretched film of the present embodiment are improved. Therefore, it is preferable.
  • olefin polymer resin having an alicyclic structure examples include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof.
  • norbornene-based resins can be suitably used because of their good transparency and moldability.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure. And an addition copolymer of a monomer having a norbornene structure and an addition copolymer of another monomer or a hydride thereof.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability and lightness. Can be used.
  • melt extrusion method As a method for forming a long film using the above preferred norbornene-based resin, a solution casting method or a melt extrusion method is preferred.
  • melt extrusion method include an inflation method using a die, but a method using a T die is preferable in terms of excellent productivity and thickness accuracy.
  • the extrusion molding method using a T-die is a method for maintaining retardation and orientation by a method of keeping a molten thermoplastic resin in a stable state when closely contacting a cooling drum as described in JP-A-2004-233604.
  • a long film with small variations in optical properties such as corners can be manufactured.
  • a sheet-like thermoplastic resin extruded from a die is brought into close contact with a cooling drum under a pressure of 50 kPa or less; 2) melting When producing a long film by extrusion, the enclosure member covers from the die opening to the first cooling drum that is in close contact, and the distance from the enclosure member to the die opening or the first contact cooling drum is 100 mm or less.
  • Method 3 Method of heating the temperature of the atmosphere within 10 mm to a specific temperature from the sheet-like thermoplastic resin extruded from the die opening when producing a long film by the melt extrusion method; A sheet-like thermoplastic resin extruded from a die so as to satisfy the above condition is taken into close contact with a cooling drum under a pressure of 50 kPa or less; A method in which a wind having a speed difference of 0.2 m / s or less from the cooling speed of the cooling drum that is first brought into close contact with the sheet-like thermoplastic resin extruded from the die opening is produced. It is done.
  • This long film may be a single layer or a laminated film of two or more layers.
  • the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
  • cellulose ester-based resin examples include those characterized by containing cellulose acylate satisfying the following formulas (1) and (2) and containing a compound represented by the following general formula (A). It is done.
  • Formula (1) 2.0 ⁇ Z1 ⁇ 3.0
  • Formula (2) 0.5 ⁇ X (In Formula (1) and Formula (2), Z1 represents the total acyl substitution degree of cellulose acylate, and X represents the sum of the propionyl substitution degree and butyryl substitution degree of cellulose acylate.)
  • L 1 and L 2 each independently represent a single bond or a divalent linking group.
  • L 1 and L 2 include the following structures. (The following R represents a hydrogen atom or a substituent.)
  • L 1 and L 2 are preferably —O—, —COO—, and —OCO—.
  • R 1 , R 2 and R 3 each independently represent a substituent.
  • R 1 and R 2 are preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted cyclohexyl group. More preferred are a phenyl group having a substituent and a cyclohexyl group having a substituent, and further preferred are a phenyl group having a substituent at the 4-position and a cyclohexyl group having a substituent at the 4-position.
  • R 3 is preferably a hydrogen atom, halogen atom, alkyl group, alkenyl group, aryl group, heterocyclic group, hydroxyl group, carboxyl group, alkoxy group, aryloxy group, acyloxy group, cyano group, amino group, More preferably, they are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, and an alkoxy group.
  • Wa and Wb represent a hydrogen atom or a substituent, but (I) Wa and Wb may be bonded to each other to form a ring, and (II) at least one of Wa and Wb may have a ring structure Or (III) at least one of Wa and Wb may be an alkenyl group or an alkynyl group.
  • Wa and Wb are bonded to each other to form a ring, it is preferably a nitrogen-containing 5-membered ring or a sulfur-containing 5-membered ring, particularly preferably represented by the following general formula (1) or general formula (2). It is a compound.
  • a 1 and A 2 each independently represent —O—, —S—, —NRx— (Rx represents a hydrogen atom or a substituent) or CO—.
  • Rx represents a hydrogen atom or a substituent
  • the example of the substituent represented by Rx is synonymous with the specific example of the substituent represented by said Wa and Wb.
  • Rx is preferably a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • X represents a nonmetallic atom belonging to Groups 14-16.
  • Rc, Rd, and Re represent substituents, and examples thereof are synonymous with specific examples of the substituents represented by Wa and Wb.
  • L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
  • Q 1 is —O—, —S—, —NRy— (Ry represents a hydrogen atom or a substituent), —CRaRb— (Ra and Rb represent a hydrogen atom or a substituent) or Represents —CO—.
  • Ry, Ra, and Rb represent substituents, and examples thereof are synonymous with the specific examples of the substituents represented by Wa and Wb.
  • Y represents a substituent
  • Examples of the substituent represented by Y are the same as the specific examples of the substituent represented by Wa and Wb.
  • Y is preferably an aryl group, a heterocyclic group, an alkenyl group, or an alkynyl group.
  • Examples of the aryl group represented by Y include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
  • a phenyl group and a naphthyl group are preferable, and a phenyl group is more preferable.
  • L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
  • Q 3 represents ⁇ N— or ⁇ CRz— (Rz represents a hydrogen atom or a substituent), and Q 4 represents a nonmetallic atom belonging to Groups 14-16.
  • Z represents a nonmetallic atom group that forms a ring with Q 3 and Q 4 .
  • the ring formed from Q 3 , Q 4 and Z may be further condensed with another ring.
  • the ring formed from Q 3 , Q 4 and Z is preferably a nitrogen-containing 5-membered ring or 6-membered ring condensed with a benzene ring.
  • L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
  • Wa and Wb is an alkenyl group or an alkynyl group
  • a vinyl group having a substituent and an ethynyl group are preferable.
  • the compound represented by general formula (3) is particularly preferable.
  • the compound represented by the general formula (3) is superior in heat resistance and light resistance to the compound represented by the general formula (1), and is an organic solvent compared to the compound represented by the general formula (2).
  • the solubility with respect to and the compatibility with a polymer are favorable.
  • the compound represented by the general formula (A) can be contained by appropriately adjusting the amount for imparting desired wavelength dispersibility and anti-bleeding property.
  • the content is preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass. If it is in this range, sufficient wavelength dispersibility and bleeding prevention property can be imparted to the cellulose derivative.
  • general formula (A), general formula (1), general formula (2), and general formula (3) can be performed with reference to a known method.
  • the method described in Journal of Chemical Crystallography (1997); 27 (9); 512-526, JP 2010-31223 A, and JP 2008-107767 A is specifically exemplified. Etc.
  • the cellulose acylate film that can be used in the present embodiment contains cellulose acylate as a main component.
  • the cellulose acylate film that can be used in the present embodiment preferably contains cellulose acylate in the range of 60 to 100% by mass with respect to the total mass of the film.
  • the total acyl group substitution degree of cellulose acylate is 2 or more and less than 3, and more preferably 2.2 to 2.7.
  • cellulose acylate examples include esters of cellulose and aliphatic carboxylic acids and / or aromatic carboxylic acids having about 2 to 22 carbon atoms, particularly esters of cellulose and lower fatty acids having 6 or less carbon atoms. Preferably there is.
  • the acyl group bonded to the hydroxyl group of cellulose may be linear or branched, and may form a ring. Furthermore, another substituent may be substituted.
  • the degree of substitution is the same, birefringence decreases when the number of carbon atoms described above is large. Therefore, the number of carbon atoms is preferably selected from acyl groups having 2 to 6 carbon atoms.
  • the degree of propionyl substitution and the degree of butyryl substitution are preferred. Is a sum of 0.5 or more.
  • the cellulose acylate preferably has 2 to 4 carbon atoms, more preferably 2 to 3 carbon atoms.
  • cellulose acylate includes propionate group, butyrate group or phthalyl group in addition to acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate or cellulose acetate phthalate.
  • Bound cellulose mixed fatty acid esters can be used.
  • the butyryl group forming butyrate may be linear or branched.
  • cellulose acetate, cellulose acetate butyrate, or cellulose acetate propionate is particularly preferably used as the cellulose acylate.
  • the cellulose acylate according to the present embodiment preferably satisfies the following formula (i) and formula (ii) at the same time.
  • Formula (i) 2 ⁇ X + Y ⁇ 3 Formula (ii) 0 ⁇ X ⁇ 3
  • Y represents the degree of substitution of the acetyl group
  • X represents the degree of substitution of the propionyl group or butyryl group or a mixture thereof.
  • the mixing ratio is preferably 1:99 to 99: 1 (mass ratio).
  • cellulose acetate propionate is particularly preferably used as the cellulose acylate.
  • cellulose acetate propionate 0 ⁇ Y ⁇ 2.5 and 0.5 ⁇ X ⁇ 3 (where 2 ⁇ X + Y ⁇ 3) are preferable, and 0.5 ⁇ Y ⁇ 2 It is more preferable that 1 ⁇ X ⁇ 2 (where 2 ⁇ X + Y ⁇ 3).
  • the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • cellulose as a raw material for cellulose acylate, but examples include cotton linter, wood pulp, and kenaf. Moreover, the cellulose acylate obtained from them can be mixed and used at an arbitrary ratio.
  • Cellulose acylate can be produced by a known method. Specific examples of the synthesis method include the method described in JP-A No. 10-45804.
  • the long stretched film obtained according to the present embodiment may be obtained by appropriately mixing polymer components other than the cellulose ester described later.
  • the polymer component to be mixed is preferably one having excellent compatibility with the cellulose ester, and the transmittance when formed into a long stretched film is 80% or more, more preferably 90% or more, and further preferably 92% or more. preferable.
  • Additives that can be added include plasticizers, UV absorbers, retardation modifiers, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, and fine particles.
  • additives other than the fine particles may be added during the preparation of the cellulose ester solution, or may be added during the preparation of the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to a polarizing plate used in an image display device such as an organic EL display.
  • These compounds are preferably contained in an amount of 1 to 30% by mass, preferably 1 to 20% by mass, based on the cellulose ester.
  • a compound having a vapor pressure at 200 ° C. of 1400 Pa or less is preferable.
  • These compounds may be added together with the cellulose ester and the solvent during the preparation of the cellulose ester solution, or may be added during or after the solution preparation.
  • the compound to be added for adjusting the retardation examples include a retardation adjusting agent composed of an aromatic compound having two or more aromatic rings. Specific examples of the compounds include those described in the specification of European Patent 911,656A2. Two or more aromatic compounds may be used in combination.
  • the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. Particularly preferred is an aromatic heterocycle, and the aromatic heterocycle is generally an unsaturated heterocycle. Of these, a 1,3,5-triazine ring is particularly preferred.
  • the cellulose ester film in the present embodiment has a cellulose ester and a substituent selected from a carboxyl group, a hydroxyl group, an amino group, an amide group, and a sulfo group, and has a weight average molecular weight in the range of 500 to 200,000. It is preferable to contain a polymer or oligomer of a certain vinyl compound.
  • the mass ratio of the content of the cellulose ester and the polymer or oligomer is preferably in the range of 95: 5 to 50:50.
  • fine particles can be contained in the long stretched film as a matting agent, whereby when the stretched film is long, conveyance and winding can be facilitated.
  • the particle size of the matting agent is preferably primary particles or secondary particles of 10 nm to 0.1 ⁇ m.
  • a substantially spherical matting agent having a primary particle acicular ratio of 1.1 or less is preferably used.
  • silicon dioxide is particularly preferable.
  • silicon dioxide for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) manufactured by Nippon Aerosil Co., Ltd.
  • commercially available products such as Aerosil 200V, R972, R972V, R974, R202, and R812 can be preferably used.
  • polymer fine particles include silicone resin, fluorine resin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. Examples include Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.). Can do.
  • the fine silicon dioxide particles preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / L or more.
  • the average diameter of primary particles is more preferably 5 to 16 nm, further preferably 5 to 12 nm. A smaller primary particle average diameter is preferred because haze is low.
  • the apparent specific gravity is preferably 90 to 200 g / L or more, and more preferably 100 to 200 g / L or more. Higher apparent specific gravity makes it possible to produce a high-concentration fine particle dispersion, which is preferable because no haze or aggregates are generated.
  • the amount of the matting agent added in this embodiment is preferably 0.01 to 1.0 g, more preferably 0.03 to 0.3 g, and further preferably 0.08 to 0.16 g per 1 m 2 of the stretched film.
  • heat stabilizers such as inorganic fine particles such as kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, and alumina, and alkaline earth metal salts such as calcium and magnesium may be added.
  • a surfactant, a peeling accelerator, an antistatic agent, a flame retardant, a lubricant, an oil agent and the like may be added.
  • the long film used in the manufacturing method according to the present embodiment can be formed by a known method, and examples thereof include a solution casting method and a melt casting method. Good.
  • a dope is prepared by dissolving a resin and an additive in an organic solvent, the dope is cast on a belt-shaped or drum-shaped metal support, and the cast dope is dried as a web. It is carried out by a step, a step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
  • the solution casting method is preferably used because it is excellent in suppressing coloration of the film, suppressing foreign matter defects, suppressing optical defects such as die lines, and having excellent flatness and transparency of the film.
  • the concentration of the resin in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of the resin is too high, the load during filtration increases and the filtration accuracy is poor. Become.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the surface temperature of the metal support in the casting process is set to ⁇ 50 ° C. to a temperature at which the solvent boils and does not foam. Higher temperatures are preferable because the web can be dried faster, but if the temperature is too high, the web may foam or flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing warm air or cold air, and a method of bringing hot water into contact with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60%. ⁇ 130 mass%, particularly preferably 20 ⁇ 30 mass% or 70 ⁇ 120 mass%.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less.
  • the content is preferably 0 to 0.01% by mass or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the organic solvent useful for forming the dope when the long film (resin film) according to this embodiment is produced by the solution casting method is not limited as long as it dissolves the resin and other additives simultaneously. Can be used.
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a cellulose ester-based resin film particularly, a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, an acrylic resin, a cellulose ester resin, and acrylic particles.
  • a dope composition in which at least 15 to 45% by mass is dissolved.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • the melt film forming method is a preferable film forming method from the viewpoints that it is easy to reduce the retardation Rt in the thickness direction after oblique stretching, the amount of residual volatile components is small, and the dimensional stability of the film is excellent.
  • the melt film forming method refers to heating and melting a composition containing an additive such as a resin and a plasticizer to a temperature showing fluidity, and then casting the fluid melt containing the resin. Methods formed by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method is preferable, in which a film having excellent mechanical strength and surface accuracy can be obtained.
  • a plurality of raw materials used for melt extrusion are usually kneaded and pelletized in advance.
  • Pelletization may be performed by a known method. For example, dried resin, plasticizer, and other additives are fed to an extruder using a feeder and kneaded using a single-screw or twin-screw extruder, and then formed into a strand from a die. It can be done by extrusion, water cooling or air cooling and cutting.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
  • the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die.
  • the film is nipped by a cooling roll and an elastic touch roll, and solidified on the cooling roll.
  • the extrusion flow rate is preferably carried out stably by introducing a gear pump.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roll side when the film is nipped by the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film.
  • a well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
  • the elastic touch roll is also called a pinching rotator.
  • As the elastic touch roll a commercially available one can be used.
  • the long film formed by the above method may be a single layer or a laminated film of two or more layers.
  • the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
  • the step of winding the long stretched film after the oblique stretching is a step of winding the long stretched film after the oblique stretching step.
  • the film winding apparatus used for a winding process is demonstrated.
  • the winding device is provided at the outlet of the oblique stretching device.
  • the winding device is not particularly limited as long as the long stretched film stretched by the oblique stretching apparatus can be wound.
  • the take-up tension T (N / m) of the long stretched film after stretching is adjusted between 100 N / m ⁇ T ⁇ 300 N / m, preferably 150 N / m ⁇ T ⁇ 250 N / m. It is preferable.
  • the take-up tension is 100 N / m or less, sagging and wrinkles of the long stretched film tend to occur, and the retardation and the profile in the width direction of the orientation axis may deteriorate.
  • the take-up tension is 300 N / m or more, the variation in the orientation angle in the width direction tends to be deteriorated, so that the width yield (taken efficiency in the width direction) may be deteriorated.
  • the fluctuation of the take-up tension T it is preferable to control the fluctuation of the take-up tension T with an accuracy of less than ⁇ 5%, preferably less than ⁇ 3%.
  • the variation of the take-up tension T is ⁇ 5% or more, there is a tendency that variations in the optical characteristics in the width direction and the flow direction become large.
  • the load applied to the first roll at the outlet of the oblique stretching apparatus that is, the tension of the long stretched film is measured, and the value is made constant.
  • a method of controlling the rotation speed of the take-up roll by a general PID control method is mentioned.
  • Examples of the method for measuring the load include a method in which a load cell is attached to a bearing portion of a roll and a load applied to the roll, that is, a tension of a long stretched film is measured.
  • a load cell a known tensile type or compression type can be used.
  • the long film after the oblique stretching is released from the oblique stretching device outlet after being held by the gripper, and is wound up around the winding core (winding roll) to form a wound body of the long stretched film.
  • Winding core winding roll
  • both ends of the film held by the holding tool of the oblique stretching apparatus may be cut before winding on the winding roll.
  • the cutting may be performed at a time or may be performed in a plurality of times.
  • both ends of a long stretched film are cut
  • the masking film may be overlapped and wound up at the same time, or at least one of the long stretched films, preferably while winding tape or the like on both ends. You may take it.
  • the masking film is not particularly limited as long as it can protect the film, and examples thereof include a polyethylene terephthalate film, a polyethylene film, and a polypropylene film.
  • a film thickness meter or an optical value measuring device capable of online measurement may be arranged in the middle of the arrangement of the transport roll.
  • a neutralization device for neutralizing the long stretched film may be provided, or may be installed before the winding device.
  • a well-known thing can be used for the said static elimination apparatus without a restriction
  • the manufacturing apparatus of the elongate stretched film which concerns on other embodiment of this invention will not be specifically limited if it is a manufacturing apparatus which can implement
  • a manufacturing apparatus provided with the oblique stretching apparatus can be used.
  • a long stretched film that can sufficiently suppress variation in the orientation angle of the optical axis and can sufficiently suppress the occurrence of color unevenness when used in a circularly polarizing plate provided in an image display device.
  • a film in which the variation in the orientation angle in the width direction of the obtained long stretched film is sufficiently suppressed can be obtained.
  • the manufacturing method according to the present embodiment uses a long film, for example, a long film formed by the above method.
  • the film thickness of the long film before oblique stretching is preferably 20 to 400 ⁇ m, more preferably 30 to 200 ⁇ m.
  • the thickness unevenness ⁇ m in the flow direction of the long film supplied to the oblique stretching apparatus keeps the film take-up tension constant at the entrance of the oblique stretching apparatus described later, and stabilizes the optical characteristics such as the orientation angle and retardation. From the viewpoint of achieving the above, it is preferably less than 0.30 ⁇ m, more preferably less than 0.25 ⁇ m, and still more preferably less than 0.20 ⁇ m. If the thickness unevenness ⁇ m in the flow direction of the long film before oblique stretching is too large, variations in optical properties such as retardation and orientation angle of the long stretched film tend to be remarkably deteriorated.
  • ⁇ m is a value represented by an average value of the standard deviation ⁇ in the flow direction at each width position.
  • a film having a thickness gradient in the width direction may be supplied as the long film before oblique stretching.
  • the gradient of the thickness of the long film before the oblique stretching is to stretch a film with various thickness gradients experimentally changed so that the film thickness at the position where stretching in the subsequent process is completed can be made the most uniform. This can be determined empirically.
  • the gradient of the thickness of the long film before oblique stretching can be adjusted, for example, so that the end on the thick side is about 0.5 to 3% thicker than the end on the thin side. it can.
  • the width of the long film after oblique stretching is not particularly limited, but is preferably 500 to 4000 mm, more preferably 1000 to 2000 mm.
  • the preferable elastic modulus at the stretching temperature at the time of oblique stretching of the long film is represented by Young's modulus, and is preferably 0.01 Mpa or more and 5000 Mpa or less, more preferably 0.1 Mpa or more and 500 Mpa or less. If the elastic modulus is too low, the shrinkage rate during and after stretching tends to be low, and wrinkles tend not to disappear. On the other hand, if the elastic modulus is too high, the tension applied at the time of stretching increases, and it is necessary to increase the strength of the portion that holds both side edges of the film, which tends to increase the load on the subsequent tenter.
  • a non-oriented film may be used, or a film having an orientation in advance may be supplied. Further, if necessary, the width distribution of the orientation of the long film before oblique stretching may be bowed, so-called bowing. In short, the orientation state of the long film before oblique stretching can be adjusted so that the orientation of the film at the position where stretching in the subsequent step is completed can be made desirable.
  • the long stretched film obtained in the present embodiment is inclined in a range where the orientation angle is greater than 0 ° and less than 90 °, and is preferably inclined in a range of 30 ° or more and 60 ° or less. More preferably, it is inclined in the range of not less than 50 ° and not more than 50 °. That is, the optical axis is greater than 0 ° and less than 90 ° with respect to the width direction of the long film.
  • the variation of the orientation angle ⁇ of the long stretched film obtained in the present embodiment is preferably less than 0.6 °, and preferably less than 0.4 °. More preferred.
  • a long stretched film with a variation in orientation angle ⁇ of less than 0.6 ° is bonded to a polarizer to obtain a circularly polarizing plate, and when this is installed in an image display device such as an organic electroluminescence display device, the display quality is improved. It becomes possible to make the uniformity good.
  • the in-plane retardation value Re (550) measured at a wavelength of 550 nm of the long stretched film is preferably in the range of 120 nm to 160 nm, and more preferably in the range of 130 nm to 150 nm. Further, the variation of the in-plane retardation value Re of the long stretched film is preferably 3 nm or less, and more preferably 1 nm or less. By setting the variation of the in-plane retardation value Re within the above range, the uniformity of display quality can be improved when used as a film for an organic electroluminescence display device.
  • the in-plane retardation value Re of the long stretched film is selected as the optimum value depending on the design of the display device used.
  • the average thickness of the long stretched film is preferably 10 to 200 ⁇ m, more preferably 10 to 60 ⁇ m, and further preferably 15 to 35 ⁇ m from the viewpoint of mechanical strength.
  • the thickness unevenness in the width direction of the long stretched film affects whether or not it can be wound, and is preferably 3 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the circularly polarizing plate for example, a polarizing plate protective film, a polarizer, a ⁇ / 4 retardation film, and an adhesive layer are laminated in this order, and the slow axis of the ⁇ / 4 retardation film and the polarizer are laminated.
  • a laminate formed so that the angle formed with the absorption axis is 45 °. That is, the circularly polarizing plate is formed by laminating a long polarizing plate protective film, a long polarizer, and a long ⁇ / 4 retardation film (long stretched film obtained in this embodiment) in this order. It is preferable to be formed.
  • the circularly polarizing plate may be manufactured by using a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and laminating with a configuration of a ⁇ / 4 retardation film and a polarizer. it can.
  • the film thickness of the circularly polarizing plate is preferably 5 to 40 ⁇ m, more preferably 5 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the circularly polarizing plate can be produced by a general method.
  • the ⁇ / 4 retardation film subjected to the alkali saponification treatment is preferably bonded to one surface of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
  • the circularly polarizing plate can be configured by further bonding a release film on the opposite surface of the polarizing plate protective film of the polarizing plate.
  • the protective film and the release film are used for the purpose of protecting the polarizing plate at the time of shipment of the polarizing plate, product inspection, and the like.
  • Display device By incorporating a circularly polarizing plate produced using the long stretched film according to the present embodiment into a display device, various display devices with excellent visibility can be produced.
  • the display device is preferably an organic electroluminescence display device (organic EL display device).
  • FIG. 5 is a schematic view showing an example of a layer structure of an image display unit of an organic electroluminescence display device to which a long stretched film obtained by the manufacturing method according to the present embodiment can be applied. Further, the configuration example of the organic EL display device shown in FIG. 5 is an example, and the present invention is not limited to this.
  • the layer structure of the image display unit of the organic electroluminescence display device includes a substrate 201, a metal electrode 202, a light emitting layer 203, a transparent electrode (ITO, etc.) 204, a sealing layer 205, an adhesive layer 206, Examples include a layer in which a ⁇ / 4 retardation film 207, a polarizer 208, a protective film 209, and the like are sequentially laminated.
  • an adhesive layer 206 is formed on an organic electroluminescent element having a metal electrode 202, a light emitting layer 203, a transparent electrode (ITO, etc.) 204, and a sealing layer 205 in this order on a substrate 201 made of glass, polyimide, or the like. Accordingly, a circularly polarizing plate in which a polarizer 208 is sandwiched between a ⁇ / 4 retardation film 207 and a protective film 209 is provided to constitute an organic electroluminescence image display device.
  • the protective film 209 is preferably laminated with a cured layer.
  • the cured layer not only prevents scratches on the surface of the organic electroluminescence image display device but also has an effect of preventing warpage due to the circularly polarizing plate. Further, an antireflection layer may be provided on the cured layer.
  • the thickness of the organic electroluminescence element itself is about 1 ⁇ m.
  • the light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or Structures with various combinations, such as a laminate of such a light-emitting layer and an electron injection layer composed of a perylene derivative, and / or a laminate of these hole injection layer, light-emitting layer, and electron injection layer, are known. ing.
  • holes and electrons are injected into the light emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by the recombination of these holes and electrons is reduced by the fluorescent material. It emits light on the principle that it is excited and emits light when the excited fluorescent material returns to the ground state.
  • the mechanism of recombination on the way is the same as that of a general diode, and as can be expected from this, the current and the light emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • an organic electroluminescence image display device in order to extract light emitted from the light emitting layer, at least one of the electrodes must be transparent, and usually a transparent electrode formed of a transparent conductor such as indium tin oxide (ITO) is used. Used as the anode.
  • ITO indium tin oxide
  • metal electrodes such as Mg—Ag and Al—Li are used.
  • the light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the light emitting layer transmits light almost completely like the transparent electrode. As a result, the light that is incident from the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the light emitting layer, and is reflected by the metal electrode again exits to the surface side of the transparent substrate.
  • the display surface of the electroluminescence image display device looks like a mirror surface.
  • the circularly polarizing plate for an organic electroluminescence display device using the long stretched film according to this embodiment is suitable for a display device for organic electroluminescence in which such external light reflection is particularly problematic.
  • a first method in which both ends of a thermoplastic long film are gripped by a plurality of gripping tools, the gripping tools gripping the both ends are transported at a constant speed, and then one end is gripped.
  • Diagonal stretching to incline the optical axis of the long film by accelerating the gripping tool more than the second gripping tool gripping the other end and causing the first gripping tool to precede the second gripping tool Including at least a step, and in the oblique stretching step, after the first gripping tool is advanced, a relaxation treatment is performed to relieve strain stress applied to the long film in a region between the adjacent first gripping tools. It is the manufacturing method of the elongate stretched film characterized.
  • the relaxation treatment is a heat treatment for heating a leading end of the long film held by the first gripping tool.
  • the long film is thermoplastic, the end portion on the leading side of the long film is softened only by heating the long film, and in the region between the adjacent first gripping tools.
  • the strain stress applied to the long film can be relaxed. Therefore, it is possible to easily produce a long stretched film that can sufficiently suppress variation in the orientation angle of the optical axis and can sufficiently suppress the occurrence of color unevenness when used in a circularly polarizing plate provided in an image display device. .
  • the heat treatment is a treatment for heating a region between the adjacent first gripping tools.
  • the temperature in the region between the adjacent first grippers is 2 to 40 ° C. higher than the temperature in the central region of the long stretched film.
  • the strain stress applied to the long film in the region between the adjacent first gripping tools can be suitably reduced without excessively softening the region between the adjacent first gripping tools more than necessary.
  • the relaxation treatment is preferably a treatment in which a solvent that swells or dissolves the long film is brought into contact with a leading end of the long film.
  • the leading end of the long film is softened, and the strain stress applied to the long film in the region between the adjacent first gripping tools can be reduced. Therefore, it is possible to easily produce a long stretched film that can sufficiently suppress variation in the orientation angle of the optical axis and can sufficiently suppress the occurrence of color unevenness when used in a circularly polarizing plate provided in an image display device. .
  • the said diagonal stretch process expands the distance between the said adjacent 1st holding tools ahead of the said 2nd holding tools, it adjoins the said 2nd holding
  • the optical axis of the long film is tilted, and then, after increasing the traveling speed of the second gripping tool, after the oblique stretching step, The traveling speeds of the first gripping tool and the second gripping tool are the same.
  • the optical axis of the long film can be inclined, and furthermore, since the speed when the holding tool is opened is constant, the occurrence of wrinkles or the like in the long stretched film can be suppressed.
  • the relaxation which relieve
  • thermoplastic elastic film has a photoelastic coefficient of 1.0 ⁇ 10 ⁇ 11 (Pa ⁇ 1 ) or more and 1.0 ⁇ 10 ⁇ 10 (Pa ⁇ 1 ) or less.
  • the long film is preferably a polycarbonate film.
  • the transport speed of the long film is preferably 7 to 150 m / min.
  • the stretch ratio in the longitudinal direction is preferably 1.1 to 2 times.
  • the product is diluted with methylene chloride, washed with water, acidified with hydrochloric acid and washed with water.
  • the methylene chloride phase is concentrated and dehydrated.
  • a solution having a polycarbonate concentration of 20% was obtained.
  • the polycarbonate (copolymer A) obtained by removing the solvent from this solution had a molar ratio of biscresol fluorene to bisphenol A of 70:30 (polymer yield 97%). Further, this polymer had an intrinsic viscosity of 0.674 and a Tg of 226 ° C.
  • the dope was poured on a stainless steel belt having a dew point controlled to 12 ° C. or less by blowing dry air and peeled off.
  • the residual solvent concentration at that time was 35% by mass.
  • the width was kept and dried. Then, it was dried until the residual solvent concentration became 1% by mass or less. By doing so, the polycarbonate film (long film A) was obtained.
  • the film thickness was 90 ⁇ m.
  • the width was 1000 mm.
  • the photoelastic coefficient was 3.5 ⁇ 10 ⁇ 11 Pa ⁇ 1 .
  • a film having a film thickness of 50 ⁇ m was produced by the same method as described above.
  • Kolben was decompressed to 4 ⁇ 10 2 Pa or less, and excess pyridine was distilled off at 60 ° C. Thereafter, the inside of Kolben was depressurized to 1.3 ⁇ 10 Pa or less, and the temperature was raised to 120 ° C. to distill off most of benzoic anhydride and the produced benzoic acid.
  • A-1 was 1.3% by mass
  • A-2 was 13.4% by mass
  • A-3 was 13.1% by mass
  • A- 4 was 31.7% by mass
  • A-5 was 40.5% by mass.
  • the average degree of substitution was 5.5.
  • the measurement conditions for the HPLC-MASS are as follows.
  • the ester compound had an ester of benzoic acid at the end of the polyester chain formed by condensation of 1,2-propylene glycol, phthalic anhydride and adipic acid.
  • the ester compound 1 had an acid value of 0.10 and a number average molecular weight of 450.
  • the fine particle dispersion was slowly added while sufficiently stirring the dissolution tank containing 99 parts by mass of methylene chloride. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. By doing so, the fine particle addition liquid was obtained.
  • the dope solution was uniformly cast on a stainless steel belt support.
  • the solvent was evaporated until the residual solvent amount in the cast (cast) film was 75%, and the film was peeled off from the stainless steel belt support. Then, it was dried while being conveyed by many rolls. By doing so, a cellulose ester film (long film B) having a width of 1000 mm and a thickness of 90 ⁇ m was obtained.
  • the photoelastic coefficient was 2.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • DCP dicyclopentadiene
  • MTF 9a-tetrahydrofluorene
  • MTD 8-methyl-tetracyclo [4.4.0.12, 5.17,10] -dodec-3-ene
  • a norbornene-based monomer mixture composed of parts and 40 parts by mass of tungsten hexachloride (0.7% toluene solution) were continuously added over 2 hours for polymerization.
  • 1.06 parts by mass of butyl glycidyl ether and 0.52 parts by mass of isopropyl alcohol were added to deactivate the polymerization catalyst and stop the polymerization reaction.
  • a soft polymer manufactured by Kuraray Co., Ltd .; Septon 2002
  • an antioxidant manufactured by Ciba Specialty Chemicals Co., Ltd .; Irganox 1010
  • cyclohexane and other volatile components which are solvents, are removed from the solution using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.), and the hydrogenated polymer is extruded in a strand form from an extruder in a molten state. After cooling, it was pelletized and collected.
  • the obtained pellets of the ring-opened polymer hydrogenated product were dried at 70 ° C. for 2 hours using a hot air dryer in which air was circulated to remove moisture.
  • the pellets were melted by using a short-shaft extruder having a coat hanger type T die (manufactured by Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip member quality is tungsten carbide, peel strength 44N from molten resin).
  • Extrusion molding produced a cycloolefin polymer film having a thickness of 80 ⁇ m.
  • Extrusion molding provides an alicyclic olefin polymer film (long film C) having a width of 1000 mm and a thickness of 90 ⁇ m under molding conditions of a molten resin temperature of 240 ° C. and a T-die temperature of 240 ° C. in a clean room of class 10,000 or less. It was.
  • the photoelastic coefficient was 5.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the method for measuring the photoelastic coefficient of the long films A to C was carried out by the following procedure.
  • the obtained long films A to C were cut into a sample size of 30 mm ⁇ 50 mm, and the film thickness was measured using a cell gap inspection device (RETS-1200, measurement diameter: diameter 5 mm, light source: 589 nm) manufactured by Otsuka Electronics Co., Ltd.
  • a sample with a d (nm) was sandwiched between supports and a stress ⁇ (Pa) of 9.81 ⁇ 10 6 was applied in the longitudinal direction.
  • the phase difference R1 (nm) under this stress was measured.
  • the photoelastic coefficient C ⁇ (Pa ⁇ 1 ) was obtained by substituting the phase difference before applying stress as R0 (nm) into the following equation.
  • C ⁇ (Pa ⁇ 1 ) (R1 ⁇ R0) / ( ⁇ ⁇ d)
  • Example 1 The obtained polycarbonate film (long film A: film thickness 90 ⁇ m) was stretched obliquely under the conditions of the production method according to this embodiment. By doing so, the elongate stretched film which concerns on Example 1 was obtained. And the obtained elongate stretched film was wound up and made into roll shape.
  • the film was obliquely stretched under the following conditions.
  • a long film was obliquely stretched using an oblique stretching apparatus T shown in FIG.
  • the conveyance speed of the long film was 5 m / min.
  • the gripping tool C1 first gripping tool
  • the gripping tool C2 was accelerated from P3 to P4, and the gripping tool C1 and the gripping tool C2 were set to release the long stretched film at a constant speed. Then, it wound up in roll shape with the take-up tension
  • the long film A was obliquely stretched in an oblique direction by adjusting the acceleration of the gripping tool C1 and the gripping tool C2 so that the orientation angle ⁇ of the long stretched film was 45 °. .
  • the stretching ratio in the longitudinal direction (conveyance direction) was 1.08 times
  • the stretching ratio in the lateral direction (width direction) was 1.4 times.
  • the process preceding side heating process which heats the edge part of the front side of a long film was performed. More specifically, in the stretching zone, the leading end of the long film after the gripping tool C1 is advanced is 45 ° C. higher than the film center (the center position in the width direction of the film).
  • the heating conditions in the stretching zone such as the temperature and the amount of hot air blown in, were adjusted.
  • Example 2 In the stretching zone, the temperature of the hot air blown in the stretching zone, the air volume, etc., so that the leading end of the long film is 32 ° C. higher than the center of the film after the gripping tool C1 is advanced, The same as Example 1 except that the heating conditions in the stretching zone were adjusted.
  • Example 3 This is the same as in Example 1 except that the hot air applied to the end of the long film on the leading end side in the stretching zone was intermittently heated so as to hit only the region between adjacent first gripping tools.
  • Example 4 It is the same as that of Example 1 except performing the process (solvent contact process) which sprays a solvent on the edge part of the front side of a elongate film instead of the said preceding side heat processing.
  • a mixed solvent in which methylene chloride and methanol were mixed at a mass ratio of 70:30 was used. In addition, this mixed solvent can dissolve a long film.
  • Example 5 The same as Example 2 except that the conveying speed of the long film was set to 15 m / min.
  • Example 6 In the stretching zone, the same heat treatment as the preceding heat treatment is performed on the delay side end of the long film (the delay heat treatment is performed), and is the same as in Example 5.
  • Example 7 The same as Example 2 except that the stretching ratio in the longitudinal direction was 1.2 times and the stretching ratio in the transverse direction was 1.5 times.
  • Example 8 The conveyance speed of the long film was set to 15 m / min, and the same as Example 1 except that the long film B (cellulose ester film) was used as the long film.
  • Example 9 The conveyance speed of the long film was set to 15 m / min, and the same as Example 1 except that the long film C (cycloolefin polymer film) was used as the long film.
  • Example 10 Using a long film A with a thickness (film thickness) of 50 ⁇ m before stretching, the temperature of hot air blown in the stretching zone so that the leading end of the long film is 28 ° C. higher than the center of the film, Example 2 is the same as Example 2 except that the heating conditions in the stretching zone, such as the air volume, are adjusted.
  • Example 1 is the same as Example 1 except that the preceding heat treatment is not performed.
  • Example 2 The same as Example 5 except that the preceding heating treatment is not performed.
  • Example 7 is the same as Example 7 except that the preceding heat treatment is not performed.
  • Variation in orientation angle is less than 0.4 °
  • Variation in orientation angle is not less than 0.4 ° and less than 0.6 °
  • Variation in orientation angle is not less than 0.6 ° and 1. It is less than 0 °
  • the variation in orientation angle is 1.0 ° or more and less than 1.5 °
  • E The variation in orientation angle is 1.5 ° or more.
  • the organic EL display apparatus demonstrated above was created using the elongate stretched film which concerns on each Example and a comparative example. Black was displayed on the entire surface of the image display portion of the obtained organic EL display device. The display state was visually observed to evaluate uneven color. That is, color unevenness on the entire display surface when black was displayed was visually evaluated according to the following criteria.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の一局面は、熱可塑性の長尺フィルムの両端部を複数の把持具で把持し、前記両端部を把持した把持具を等速で搬送した後、一方の端部を把持した第1把持具を他方の端部を把持した第2把持具よりも加速させて、前記第1把持具を前記第2把持具よりも先行させることにより、前記長尺フィルムの光学軸を傾斜させる斜め延伸工程を少なくとも備え、前記斜め延伸工程において、前記第1把持具を先行させた後に、隣接した前記第1把持具間の領域における前記長尺フィルムにかかる歪み応力を緩和する緩和処理を施すことを特徴とする長尺延伸フィルムの製造方法である。

Description

長尺延伸フィルムの製造方法
 本発明は、長尺延伸フィルムの製造方法に関する。
 樹脂フィルムを延伸してなる延伸フィルムは、その光学異方性を利用して、各種ディスプレイ装置において様々な光学的機能を果たす光学フィルムとして用いられている。例えば、液晶表示装置等の画像表示装置において、延伸フィルムを、着色防止や視野角拡大等の光学補償等のための光学補償フィルムとして用いることが知られている。また、延伸フィルムと偏光子(偏光フィルム)とを貼り合せることで、延伸フィルムを、偏光板保護フィルムを兼ねた位相差フィルムとして用いた円偏光板が得られることが知られている。
 このような円偏光板は、適用される画像表示装置によっては、偏光子の吸収軸に対して、延伸フィルムの面内遅相軸等の光学軸を所望の角度で傾斜するような配置で貼り合わせる必要がある場合がある。
 しかしながら、偏光子は、一般的に、長手方向に高倍率で延伸することで得られるものであるので、その延伸により形成された吸収軸が長手方向と一致していることが多い。これに対して、従来の位相差フィルムは、縦延伸や縦延伸で製造されるので、原理的に面内遅相軸等の光学軸(配向軸)が、フィルムの長尺方向(搬送方向)に対して、0°や90°になる。このため、上記のように、偏光子の吸収軸と延伸フィルムの面内遅相軸とを傾斜させ、それらの関係が所望の角度にするためには、長尺の偏光子及び位相差フィルム(延伸フィルム)の少なくとも一方を特定の角度で切り出して、フィルム片同士を一枚ずつ貼り合わせるバッチ方式で行わざるを得なくなる。このため、フィルムに不要部分が生じ、利用効率の低下が生じ、生産コストが高まるという問題があった。また、長尺の偏光子及び位相差フィルム(延伸フィルム)の少なくとも一方を、フィルム片にして、貼り付けるので、貼り付けの際、それらの軸が所望の角度からずれ、軸むらが生じるという問題が発生する場合があった。
 このような問題に対して、斜め延伸装置を用いて樹脂フィルムを所望の角度で斜め方向に延伸し、遅相軸等の光学軸が、フィルムの幅方向(幅手方向)に対し、0°でも90°でもない方向に自在に制御可能な長尺延伸フィルムの製造方法が種々提案されている。
 このような製造方法としては、まず、長尺フィルムを繰り出す方向と、長尺フィルムを延伸した長尺延伸フィルムを巻き取る方向とを傾斜させることによって、斜め延伸する方法、すなわち、屈曲式の斜め延伸装置を用いた方法が挙げられる。具体的には、左右の把持具が走行するレール等の走行支持具を屈曲形状とすることにより、左右の把持具の移動軌跡長に差を設け、樹脂フィルムを斜め延伸する方法が挙げられる。
 しかしながら、このような屈曲式の斜め延伸装置は、好適な長尺延伸フィルムが得られる場合があるものの、把持具が走行するレール等の走行支持具が屈曲し、長尺フィルムを繰り出す方向と、長尺フィルムを延伸した長尺延伸フィルムを巻き取る方向とが傾斜しているため、長尺延伸フィルムの製造装置としては、長尺フィルムの幅方向に広がってしまい、装置全体として大型化してしまう傾向があった。例えば、特許文献1に記載の方法が挙げられる。
 そこで、省スペース化が可能な斜め延伸方法としては、斜め延伸のために延伸方向を曲げることがない直進式の斜め延伸装置を用い、長尺フィルムを繰り出す方向と、長尺フィルムを延伸した長尺延伸フィルムを巻き取る方向とを傾斜させる必要がない方法が挙げられる。具体的には、樹脂フィルムの両端部を複数の把持具で把持し、樹脂フィルムを搬送しながら、一方の端部を把持する把持具と他方の端部を把持する把持具との走行速度に差を設け、樹脂フィルムを斜めに延伸する同時二軸斜め延伸方法が挙げられる。例えば、特許文献2に記載の方法が挙げられる。
 前記同時二軸斜め延伸方法とは、搬送方向、及び、搬送方向に直交する方向にフィルムの拡幅、又は、収縮を行う事ができる延伸装置を用いて、斜めに延伸する方法の事を言う。
 特許文献2には、延伸対象のシート・フィルムの両左右側縁部を、各々、走行移動に伴って縦方向のクリップピッチが変化する可変ピッチ型の左右のクリップによって把持し、前記クリップ(把持具)の縦方向のクリップピッチが拡大を開始する位置を左側のクリップと右側のクリップとでシート・フィルムの進行方向に対して差を与え、前記クリップの走行移動に伴って当該クリップの縦方向のクリップピッチが拡大することにより斜め延伸を行うシート・フィルムの斜め延伸方法が記載されている。また、このような方法によれば、左右のクリップの移動軌跡長に差を与えることなく斜め延伸を行うことができることが開示されている。
 しかしながら、本発明者の検討によれば、液晶表示装置より求められるコントラスト性能が高い有機エレクトロルミネッセンス(有機EL)表示装置に、特許文献2に記載されているような直進式の斜め延伸装置を用いて製造された長尺延伸フィルムを用いると、色むらが発生する場合があった。
国際公開第2007/111313号 特開2008-23775号公報
 本発明は、省スペース化が可能な同時二軸延伸装置を用いた斜め延伸をした場合であっても、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムの製造方法を提供することを目的とする。
 本発明の一局面は、熱可塑性の長尺フィルムの両端部を複数の把持具で把持し、前記両端部を把持した把持具を等速で搬送した後、一方の端部を把持した第1把持具を他方の端部を把持した第2把持具よりも加速させて、前記第1把持具を前記第2把持具よりも先行させることにより、前記長尺フィルムの光学軸を傾斜させる斜め延伸工程を少なくとも備え、前記斜め延伸工程において、前記第1把持具を先行させた後に、隣接した前記第1把持具間の領域における前記長尺フィルムにかかる歪み応力を緩和する緩和処理を施すことを特徴とする長尺延伸フィルムの製造方法である。
 本発明の目的、特徴、局面、及び利点は、以下の詳細な記載と添付図面によって、より明白となる。
図1は、同時二軸延伸装置を用いて、斜め延伸させた場合の、長尺フィルムの状態を示す概略図である。 図2は、同時二軸延伸装置を用いて、通常の同時二軸延伸させた場合の、長尺フィルムの状態を示す概略図である。 図3は、本実施形態に係る製造方法における緩和処理を説明するための概略図である。 図4は、本実施形態に係る製造方法で用いる斜め延伸装置を示す概略図である。 図5は、本実施形態に係る製造方法により得られた長尺延伸フィルムを適用しうる有機エレクトロルミネッセンス表示装置の画像表示部の層構造の一例を示す概略図である。
 本発明者の検討によれば、特許文献2に記載の方法のような、同時二軸斜め延伸方法を用いて得られた長尺延伸フィルムを用いた場合に発生する色むらの発生要因を解析した結果、発生箇所がフィルムの長手方向に周期的に発生していることがわかった。そして、得られた長尺延伸フィルムの先行側の端部で、色むらの発生が確認された。さらに、詳細に検討した結果、その発生箇所は、先行側の端部において、把持具と把持具との間の領域、いわゆるネックイン部で顕著に発生していた。
 また、ネックイン部には、長尺フィルムを縦延伸する際に、歪み応力がかかることがわかった。そして、製膜速度が高くなれば、その応力が強くなり、ネックイン部が白濁する等、過剰な応力がかかっていることがわかった。
 このような応力は、延伸終了後の工程で収縮させる工程を通るが、その際かかった力に対して戻ろうとする力が働いてしまうため、延伸終了後においても、光学軸の軸ずれが生じてしまう。特に、長尺フィルムを斜め延伸させた場合には、軸が斜め方向に向いているため、前記収縮時の力の影響による光学軸の配向角のずれが顕著に発生してしまう。このことによって、軸ずれを発生させると考えられる。
 そして、この軸ずれが発生した長尺延伸フィルムを、有機EL表示装置等の画像表示装置に備えられる円偏光板に用いた場合、色むらが発生すると考えられる。
 本発明者は、これらの知見に基づいて、以下のような本発明に想到するに到った。
 以下、本発明の実施形態について説明するが、本発明は、これらに限定されるものではない。
 本発明の実施形態に係る長尺延伸フィルムの製造方法は、熱可塑性の長尺フィルムの両端部を複数の把持具で把持し、前記両端部を把持した把持具を等速で搬送した後、一方の端部を把持した第1把持具を他方の端部を把持した第2把持具よりも加速させて、前記第1把持具を前記第2把持具よりも先行させることにより、前記長尺フィルムの光学軸を傾斜させる斜め延伸工程を少なくとも備える方法である。前記斜め延伸工程としては、例えば、熱可塑性の長尺フィルムの両端部を複数の把持具で把持して搬送しながら、前記長尺フィルムの幅方向に延伸しつつ、一方の端部を把持した第1把持具を他方の端部を把持した第2把持具よりも先行させることにより、前記長尺フィルムの光学軸を傾斜させる工程等が挙げられる。そして、本実施形態に係る長尺延伸フィルムの製造方法は、前記斜め延伸工程において、前記第1把持具を先行させた後に、隣接した前記第1把持具間の領域における前記長尺フィルムにかかる歪み応力を緩和する緩和処理を施す方法である。
 このような製造方法によれば、上記のような、隣接した前記第1把持具間の領域における前記長尺フィルムにかかる歪み応力による軸ずれの発生を抑制することができる。よって、省スペース化が可能な同時二軸延伸装置を用いた斜め延伸をした場合であっても、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムを製造することができる。
 なお、ここで長尺とは、幅に対する長さが5倍以上のことを指し、10倍以上であることが好ましい。すなわち、長尺フィルムとは、フィルムの幅に対して、5倍以上の長さを有するフィルムを指す。また、長尺フィルムは、具体的には、ロール状に巻回されて、フィルムロールとして、保管又は運搬される程度の長さを有するものである。
 <長尺延伸フィルムの製造方法>
 以下、長尺延伸フィルムの製造方法について説明する。
 (斜め延伸工程)
 まず、長尺延伸フィルムの製造方法における斜め延伸工程について説明する。
 斜め延伸工程は、長尺フィルムを幅手方向に対して斜めの方向に延伸する工程である。長尺延伸フィルムの製造方法では、長尺フィルムを連続的に供給することにより、所望の長さの長尺延伸フィルムを製造しうる。なお、長尺延伸フィルムの製造方法は、長尺フィルムを製膜した後に一度巻芯に巻き取り、巻回体(原反ともいう)にしてから斜め延伸工程に供給するようにしてもよいし、製膜後の長尺フィルムを巻き取ることなく、製膜工程から連続して斜め延伸工程に供給してもよい。製膜工程と斜め延伸工程とを連続して行うことは、延伸後の膜厚や光学値の結果をフィードバックして製膜条件を変更し、所望の長尺延伸フィルムを得ることができるので好ましい。
 本実施形態の長尺延伸フィルムの製造方法では、長尺フィルムの幅手方向に対して0°を超え90°未満の角度に遅相軸(配向軸)を有する長尺延伸フィルムを製造し得る。ここで、長尺フィルムの幅手方向に対する角度とは、フィルム面内における角度である。遅相軸は、縦延伸や横延伸のみで、斜め延伸を施していない場合、延伸方向または延伸方向に直角な方向に発現する。これに対して、本実施形態の製造方法では、長尺フィルムの延伸方向に対して0°を超え90°未満の角度で延伸を行うことにより、このような斜め方向に遅相軸を有する長尺延伸フィルムを製造し得る。
 長尺延伸フィルムの延伸方向と遅相軸とがなす角度、すなわち配向角は、0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。
 また、同時二軸斜め延伸方法の場合、光学軸の配向角のばらつきを発生させ、そのことによって、軸ずれを発生させることは、以下のように考えられる。具体的には、図1に示すように、軸ずれが発生すると考えられる。なお、図1は、同時二軸延伸装置を用いて、斜め延伸させた場合の、長尺フィルムの状態を示す概略図である。
 同時二軸斜め延伸装置を用いた、長尺フィルムの斜め延伸は、図1に示すように、長尺フィルム11の両端部を複数の把持具12,13で把持して搬送しながら、一方の端部を把持する第1把持具12と他方の端部を把持する第2把持具13との距離を徐々に広げることによって、長尺フィルムの幅方向に延伸する。すなわち、横延伸する。その横延伸の際に、隣接する第1把持具12間の距離を徐々に広げることにより、第1把持具12を、第2把持具13よりも先行させる。この状態のときは、第1把持具12で把持している先行側の端部付近の長尺フィルムには、搬送方向に張力がかかるので、図1に示すように、第1把持具12で把持している先行側の端部にかかる張力14が、第2把持具13で把持されている遅延側の端部にかかる張力15より強くなる。よって、先行側の端部において、隣接する第1把持具12間の領域、いわゆるネックイン部16に、歪み応力がかかりやすい。その後、隣接する第1把持具12間の距離を徐々に広げる。このことにより、長尺フィルム11の遅相軸(光学軸)21が傾斜する。なお、隣接する第2把持具13間の距離を広げる場合は、隣接する第1把持具12間の距離を徐々に広げた後に徐々に広げる。このような斜め延伸後、長尺フィルム11には、搬送方向に垂直な方向に収縮する力20がかかる。そして、ネックイン部16,17にも、元の形状に戻ろうとする力がかかる。その際、隣接する第1把持具12間に形成されるネックイン部16にかかる力18が、第1把持具12で把持している先行側の端部にかかる張力14が強かったので、隣接する第2把持具13間に形成されるネックイン部17にかかる力19より強くなる。このことにより、長尺フィルムの光学軸22は、先行側で、ネックイン部16側に引っ張られ、所望の光学軸21よりもずれることになる。
 また、これに対して、同時二軸縦・ 横延伸した場合、図2に示すようになる。なお、図2は、同時二軸縦・ 横延伸させた場合の、長尺フィルムの状態を示す概略図である。
 隣接する把持具32間の距離を広げた際に、長尺フィルムにかかる張力33は、図2に示すように、長尺フィルムの搬送方向に垂直である。また、延伸後に、ネックイン部34にかかる力35も、長尺フィルムにかかる収縮する力36も、長尺フィルムの搬送方向に垂直である。このことから、長尺フィルムの光学軸38は、所望の光学軸37からずれる力が発生せず、所望の光学軸37からほとんどずれることがない。
 以上のことから、上記軸ずれは、同時二軸延伸装置を用いた場合に必ず発生するものではなく、同時二軸延伸装置を用いた斜め延伸した場合に発生する問題であることは、本発明者が検討した結果、新たに見出したものである。
 そして、本実施形態に係る長尺延伸フィルムの製造方法は、上記のように、第1把持具を先行させた後に、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を緩和する緩和処理を施すことにより、上記問題の解消を図ったものである。すなわち、省スペース化が可能な同時二軸延伸装置を用いた斜め延伸をした場合であっても、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムを製造することができる。
 また、斜め延伸工程は、第1把持具が第2把持具よりも先行することにより、長尺フィルムの光学軸を傾斜させる工程であればよい。具体的には、上述したように、隣接した第1把持具間の距離を、第2把持具よりも先行して広げた後に、隣接した第2把持具間の距離を広げて、第1把持具と第2把持具との走行速度が同一になるような工程であることが好ましい。このようにすることによって、第1把持具を先行させることにより、長尺フィルムの光学軸を傾斜させ、さらに、その後、第2把持具の走行速度を高めることにより、斜め延伸工程後の、第1把持具と第2把持具との走行速度が同一になる。このことにより、長尺フィルムの光学軸を傾斜させることができ、さらに、把持具の開放時の速度が等速であるので、長尺延伸フィルムにしわ等の発生が抑制できる。
 また、緩和処理は、第1把持具を先行させた後に行えばよい。具体的には、第1把持具を先行させた後であれば、第2把持具の走行速度を高める前であっても、第2把持具の走行速度を高めた後であってもよいが、第2把持具の走行速度を高めた後であるほうが、軸ずれの修正の観点から好ましい。
 また、緩和処理は、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を緩和することができる処理であれば、特に限定されない。例えば、後述するような加熱処理や溶媒を接触させる処理等が挙げられる。
 まず、長尺フィルムの、第1把持具で把持している先行側の端部を加熱する加熱処理が挙げられる。そうすることによって、長尺フィルムが熱可塑性であるので、長尺フィルムを加熱するだけで、長尺フィルムの先行側の端部が軟化し、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を緩和することができる。よって、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムを容易に製造することができる。また、この加熱処理は、具体的には、長尺フィルムの先行側の端部に、熱風を吹きつける方法等が挙げられる。より具体的には、図3に示すような方法が挙げられる。流路41を流れる熱風を、流路41に設けられた吐出口42から吹き出して、長尺フィルムの先端側の端部43に熱風をあてる方法等が挙げられる。なお、図3は、本実施形態に係る製造方法における緩和処理を説明するための概略図である。また、図3において、把持具等は、省略する。
 また、加熱処理は、長尺フィルムの先行側の端部を加熱して、その端部を軟化することができれば、特に限定されないが、隣接した第1把持具間の領域を加熱する処理であることが好ましい。すなわち、加熱処理は、隣接した第1把持具間の領域を、長尺フィルムの第1把持具で把持している部分よりも高温になるように加熱する処理であることが好ましい。具体的には、長尺フィルムの先端側の端部43にあてる熱風を、隣接した第1把持具間の領域のみにあたるような間欠加熱が挙げられる。そうすることによって、歪み応力を緩和する必要がない箇所の加熱を抑制することができるので、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を効率的に緩和することができる。よって、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを容易に製造することができる。
 また、加熱処理は、隣接した第1把持具間の領域の温度(第1温度)が、長尺延伸フィルムの中央の領域の温度(第2温度)より高くなればよいが、その温度差が、1~50℃であることが好ましく、2~40℃であることがより好ましく、5~30℃であることがさらに好ましい。すなわち、第1温度が、第2温度より、2~40℃高いことが好ましい。このような温度差があれば、隣接した第1把持具間の領域を必要以上に軟化しすぎることなく、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を好適に緩和することができる。よって、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを容易に製造することができる。
 なお、前記第2温度とは、第1把持具と第2把持具との間の、長尺延伸フィルムの温度である。例えば、第1把持具と第2把持具と中心位置(幅方向の中心位置)での温度等が挙げられる。
 また、第1温度は、第2温度との関係が上記関係を満たしていることが好ましいが、第1温度及び第2温度が、以下の温度であることがより好ましい。第1温度は、Tg+1~Tg+80℃であることが好ましく、Tg+2~Tg+70℃であることがより好ましく、Tg+5~Tg+60℃であることがより好ましい。
 また、緩和処理は、上述したような加熱処理以外に、長尺フィルムの先行側の端部に、長尺フィルムを膨潤又は溶解させる溶媒を接触させる溶媒接触処理が挙げられる。このような溶媒接触処理によれば、前記加熱処理と同様、長尺フィルムの先行側の端部が軟化し、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を緩和することができる。よって、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムを容易に製造することができる。また、この溶媒接触処理は、長尺フィルムの先行側の端部に溶媒を接触させることができれば、特に限定されず、塗布であっても、刷毛塗りやローラ塗りであってもよい。具体的には、長尺フィルムの先行側の端部に、溶媒を吹きつける方法等が挙げられる。
 また、溶媒接触処理は、長尺フィルムの先行側の端部に、溶媒を吹きつける際、この溶媒を噴霧するために噴霧装置を用いた方法等が挙げられる。具体的には、図3に示すような方法が挙げられる。流路41を流れる溶媒を、流路41に設けられた吐出口42から、霧状に吹き出して、長尺フィルムの先端側の端部43に溶媒をあてる方法等が挙げられる。また、噴霧装置は、ミスト状態の溶媒を供給するものであり、このミスト状態の溶媒の粒径は、例えば、10~10000nmであることが好ましい。
 また、この噴霧装置は、溶媒を噴霧することができれば、特に限定されず、公知の噴霧装置を用いることができる。具体的には、例えば、本多電子(株)製の超音波霧化器HM-303N等が挙げられる。
 また、溶媒接触処理に用いる溶媒は、長尺フィルムの組成によって異なり、長尺フィルムを膨潤又は溶解させる溶媒を接触させることができる溶媒であれば、特に限定されない。すなわち、溶媒は、長尺フィルムの良溶媒を含む溶媒であり、良溶媒からなる溶媒であってもよいし、良溶媒に、貧溶媒を混合したものであってもよい。また、良溶媒は、セルロースエステルフィルムで言えば、例えば、ジクロロエタン、及びシクロヘキサン等が挙げられる。また、貧溶媒は、セルロースエステルフィルムで言えば、例えば、メタノール、エタノール、ブタノール、イソブタノール、イソプロパノール、アセトン、及びトルエン等が挙げられる。また、ポリカーボネートフィルムで言えば、良溶媒として、メチレンクロライド、塩化メチレン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン等のハロゲン系溶媒、1,3-ジオキソラン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル系の溶媒、シクロヘキサノン等のケトン系の溶媒が挙げられる。また、貧溶媒としては、炭素数1~6の直鎖または分岐鎖状の脂肪族アルコール、具体的にはメタノール、エタノール、イソプロパノール、ターシャリ-ブタノール等が挙げられる。
 また、貧溶媒を混合させる場合、その混合割合は、長尺フィルムを膨潤又は溶解させることができればよいが、例えば、90質量%以下であることが好ましい。すなわち、貧溶媒の混合割合は、0~90質量%であることが好ましい。
 また、本実施形態に係る長尺延伸フィルムの製造方法は、長尺フィルムの先行側の端部に緩和処理を施せばよいが、長尺フィルムの遅延側の端部にも緩和処理を施すことが好ましい。すなわち、隣接した第2把持具間の距離を広げた後に、隣接した第2把持具間の領域における長尺フィルムにかかる歪み応力を緩和する緩和処理を施すことが好ましい。このことは、長尺フィルムの遅延側の端部にも、先行側の端部よりは小さいものの、隣接した第2把持具間の領域における長尺フィルムにかかる歪み応力が発生しており、この応力を緩和することで、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを製造することができる。また、長尺フィルムの遅延側の端部に施す緩和処理は、例えば、長尺フィルムの先行側の端部に施す緩和処理と同様の処理が好ましい。
 (斜め延伸装置)
 本実施形態における延伸に供される長尺フィルムに斜め方向の配向を付与するために、直進式の斜め延伸装置を用いる。すなわち、本実施形態に係る製造方法は、後述するような、同時2軸延斜め延伸方法を行うことができる斜め延伸装置を用いて行う。本実施形態で用いられる斜め延伸装置は、走行する長尺フィルムの両端に、長尺フィルムの両端部を把持する複数の把持具が走行する把持具走行支持具を備える。この斜め延伸装置は、装置の入口部に順次供給される長尺フィルムの両端を、把持具で把持し、加熱ゾーン内に長尺フィルムを導いて、長尺フィルムを延伸し得る任意の温度に加熱しつつ、長尺フィルムの一方の端部を把持した把持具を長尺フィルムの他方の端部を把持した把持具よりも先行させることにより、縦横同時に二軸延伸し得る。また、斜め延伸装置は、長尺フィルムを加熱する加熱装置と、長尺フィルムを搬送するための把持具が走行する左右で一対の把持具走行支持具と、前記把持具走行支持具に沿って走行する多数の把持具とを備える。
 なお、ここでの同時2軸延斜め延伸方法とは、供給される長尺フィルムの幅手方向の両端部を各把持具によって把持し、各把持具を移動させながら長尺フィルムを搬送するとともに、長尺フィルムの搬送方向を一定としたまま、一方の把持具の移動速度を他方の把持具の移動速度と異ならせることにより、長尺フィルムを幅手方向に対して斜め方向に延伸する方法をいう。同時二軸延伸の具体的な方法および斜め延伸装置の機構については後述する。
 把持具走行支持具は、無端状の連続軌道を有し、延伸装置の出口部で長尺延伸フィルムの把持を解放した把持具は、把持具走行支持具によって順次把持開始点に戻されるように構成されている。
 把持具走行支持具は、例えば、無端状のガイドレールが把持具を備える形態である。すなわち、把持具は、把持具走行支持具そのものの経路を走行する。
 また、経路パターンは、前記把持具走行支持具が、ガイドレールである場合、レールパターン等が挙げられる。
 また、それぞれの把持具走行支持具に設けられた把持具の数は、特に限定されないが、左右で同数個であることが好ましい。
 本実施形態において、把持具の走行速度、すなわち、長尺フィルムの搬送速度は、適宜選択できるが、なかでも1~150m/分が好ましい。このような速度にすると、フィルムの端部にかかる局所的な応力を抑制でき、フィルムの端部に発生しうる、しわや寄りを抑制し、延伸終了後に得られるフィルムの全幅のうち、良品として得られる有効幅が広くなる傾向がある。
 そして、この長尺フィルムの搬送速度を、7~150m/分、さらには、20~150m/分と比較的高い速度にすると、長尺延伸フィルムの生産効率が高まる。しかしながら、長尺フィルムの搬送速度が、このような高速であると、通常、光学軸の軸ずれが発生しやすい傾向があるが、本実施形態に係る製造方法であれば、光学軸の軸ずれを充分に抑制することができる。よって、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを、効率的に製造することができる。よって、長尺フィルムの搬送速度は、適宜選択できるが、7~150m/分が好ましく、20~150m/分がより好ましい。
 本実施形態では、後述するように、一部の区間においてのみ、一方の把持具走行支持具を走行する把持具が、他方の把持具走行支持具を走行する把持具よりも先行するように、走行速度が加速される。この加速される区間を除き、少なくとも長尺フィルムを把持している把持具対の走行速度の差は、走行速度の通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下であり、実質的に等速に調整され得る。これは、延伸工程出口で長尺延伸フィルムの左右に走行速度差があると、延伸工程出口におけるしわや寄りが発生しやすくなるためである。このため、把持具対を構成する左右の把持具の各速度は、実質的に等速であることが好ましい。
 把持具走行支持具の長さ(全長)としては、特に限定されず、同じであってもよく、異なっていてもよい。
 斜め延伸装置の方式としては、リニアモーター方式、パンタグラフ方式、及びモーターチェーン駆動方式等が挙げられる。例えば、パンタグラフ方式の場合、折尺状に形成された複数個の等長リンク装置により構成された無端リンク装置を設け、該無端リンク装置を入口側スプロケットで駆動することにより、進行方向に配置されたガイドレールに案内させて、上記把持具の間隔を徐々に拡大させて、走行する。さらに前記把持具は、出口側スプロケットにより駆動して上記入口側スプロケットに戻るように構成されている。
 把持具は、無端状の把持具走行支持具上を走行する。把持具は、把持開始点において供給された長尺フィルムを把持し、延伸した後に、把持解放点にて長尺延伸フィルムを解放する。把持開始点における把持具対の離間距離は、供給された長尺フィルムの幅に相当する。
 本実施形態において、長尺フィルムは、斜め延伸装置の予熱ゾーン、延伸ゾーン、熱固定ゾーンを有する加熱ゾーンを順に通過する。
 予熱ゾーンとは、加熱ゾーン入口部において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。
 延伸ゾーンとは、長尺フィルムの両端を把持した把持具の間隔が開きだし、所定の間隔になるまでの区間をさす。本実施形態においては、延伸ゾーン内で斜め方向に延伸することができるが、斜め方向の延伸だけに限らず、延伸ゾーン内で横延伸した後に斜め延伸してもよいし、斜め延伸した後にさらに幅手方向に延伸してもよいし、縦延伸した後に斜め延伸してもよいし、斜め延伸下後に更に縦延伸してもよい。つまり、延伸ゾーン内では、縦延伸・幅手方向への延伸・斜め方向への延伸を適宜組み合わせて実施してよい。
 熱固定ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、両端の把持具が互いに平行を保ったまま走行する区間をさす。熱固定ゾーンを通過した後に、ゾーン内の温度が長尺フィルムを構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間(冷却ゾーン)を通過してもよい。このとき、冷却による長尺延伸フィルムの縮みを考慮して、予め対向する把持具間隔を狭めるようなレールパターンとしてもよい。
 本実施形態においては、長尺フィルムの機械物性や光学特性を調整する目的で斜め延伸装置に長尺フィルムを導入する前後の工程において必要に応じて横延伸および縦延伸を実施してもよい。
 各ゾーンの温度は、長尺フィルムを構成する熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg~Tg+30℃、延伸ゾーンの温度はTg~Tg+30℃、冷却ゾーンの温度はTg-30~Tg℃に設定することが好ましい。
 なお、幅方向の厚みムラの制御のために延伸ゾーンにおいて幅方向に温度差を付けてもよい。延伸ゾーンにおいて幅方向に温度差をつけるには、温風を恒温室内に送り込むノズルの開度を幅方向で差を付けるように調整する方法や、ヒーターを幅方向に並べて加熱制御するなどの公知の手法を用いることができる。予熱ゾーン、延伸ゾーンおよび冷却ゾーンの長さは適宜選択でき、延伸ゾーンの長さに対して、予熱ゾーンの長さが通常30~100%、固定ゾーンの長さが通常30~100%である。また、熱固定ゾーンの後に冷却ゾーンを設けてもよい。
 この斜め延伸工程における延伸倍率は、以下のような範囲が好ましい。なお、延伸倍率とは、延伸前の長さに対する、延伸後の長さの倍率である。
 まず、縦方向(搬送方向)の延伸倍率が、1.05~3倍であることが好ましく、1.1~2倍であることがより好ましく、更に好ましくは1.15~1.5倍がより好ましい。が。このように縦方向の延伸倍率を比較的高倍率まで延伸すると、光学軸の配向角を広い範囲で設定できたり、膜厚を比較的自由に設定できる。しかしながら、このように縦方向の延伸倍率が比較的高いと、通常、光学軸の軸ずれが発生しやすい傾向があるが、本実施形態に係る製造方法であれば、光学軸の軸ずれを充分に抑制することができる。よって、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを、様々な配向角及び膜厚で製造することができる。
 また、横方向(幅方向)の延伸倍率は、好ましくは1.1~3倍、より好ましくは1.5~2.8倍である。延伸倍率がこの範囲にあると幅方向厚みムラが小さくなるので好ましい。斜め延伸テンターの延伸ゾーンにおいて、幅方向で延伸温度に差を付けると幅方向厚みムラをさらに良好なレベルにすることが可能になる。
 次に、長尺フィルムを斜め延伸する具体的な機構について詳述する。なお、図4は、本実施形態に係る製造方法で用いる斜め延伸装置Tを示す概略図である。ただし、これは一例であって本実施形態はこれに限定されるものではない。
 図4に示されるように、長尺フィルムFは、斜め延伸装置Tの入口(把持具が長尺フィルムFを把持する把持開始点であり、当該把持開始点を結んだ直線を参照符号Aで示す)においてその両端を左右の把持具(一対の把持具対)によって把持され、把持具の走行に伴い搬送される。
 把持具対は、斜め延伸装置Tの入口で、長尺フィルムの搬送方向に対して略垂直な方向に相対している左右の把持具C1(第1把持具)、把持具C2(第2把持具)からなる。左右の把持具C1および把持具C2は、それぞれ略対照に形成された把持具走行支持具R1および把持具走行支持具R2に沿って走行し、延伸終了時の位置(把持具が把持を解放する把持解放点であり、当該把持解放点を結んだ直線を参照符号Bで示す)で把持した長尺延伸フィルムを解放する。
 具体的には、本実施形態の斜め延伸装置Tでは、把持具C1および把持具C2は、把持開始点Aにおいて長尺フィルムFの両端部をそれぞれ把持し、長尺フィルムFの搬送を開始する。把持具C1は、参照符号P1で示された位置まで走行すると、把持具C2よりも先行するよう加速される。把持具C1を加速する機構については後述する。把持具C1の加速は、参照符号P2で示された位置まで継続される。把持具C1が加速している間、把持具C2の走行速度は維持される。そのため、把持具C1は、把持具C2よりも先行して把持具走行支持具R1を走行し、長尺フィルムFの搬送方向下流側へ移動する。参照符号P3は、把持具C1がP2に到達したときの把持具C2の位置を示している。
 P2に到達した把持具C1は、速度を維持しながら把持解放点Bまで走行する。一方、P3に到達した把持具C2は、把持具C1と同様に加速する。把持具C2を加速する機構については後述する。把持具C2の加速は、P4まで継続される。その結果、P4に到達した把持具C2の速度と、先行する把持具C1の速度とは同じになる。P4に到達した把持具C2は、速度を維持しながら把持解放点Bまで走行する。
 図4に示されるように、P1からP4までは、把持具走行支持具R1と把持具走行支持具R2との離間距離が大きくなるよう形成されている。そのため、長尺フィルムFを把持した把持具C1および把持具C2がP1からP4を走行することにより、長尺フィルムFは横方向(TD方向、幅方向)に延伸される。また、上記のとおり、把持具C1は、P1において加速され、把持具C2よりも先行する。把持具C1は、加速後に走行する距離(P1~把持解放点B)が、把持具C2が加速後に走行する距離(P3~把持解放点B)よりも長い。そのため、把持具C1は、把持具C2よりも先行して把持解放点Bに到達する。そのため、長尺フィルムFは縦方向(MD方向、長手方向)に延伸される。その結果、長尺フィルムFは、縦横同時に二軸延伸され、斜め方向に配向が付与される。
 なお、本実施形態では、把持具C1および把持具C2が、把持開始点AからP1まで等速で移動し、P1において把持具C1のみが加速される場合を例示したが、斜め延伸装置Tの構成はこれに限定されない。すなわち、所望の配向角が得られるように、加速が開始される位置や加速度を適宜設定することができる。たとえば把持開始点Aにおいて把持具C1が加速され始めてもよく、把持開始点Aから把持解放点Bまで等加速度で把持具C1を加速させてもよい。
 また、本実施形態では、把持具C2をP3からP4において、把持具C1と等速となるよう加速させる場合を例示したが、把持具C2の走行速度はこのように調整されなくてもよい。すなわち、長尺フィルムFに斜め方向の配向を付与するためには、把持具C1が先行して把持解放点Bに到達すればよい。そのため、把持具C2を加速させなくてもよく、加速させる場合であっても、把持具C1と等速になるまで加速させる必要は無い。なお、把持解放点Bにおいて把持具C1および把持具C2が等速で走行するように調整することにより、把持解放時に長尺延伸フィルムに加わる応力(幅手中心方向への収縮力)が打ち消されるため、得られる長尺延伸フィルムに軸ズレが生じにくい。
 把持具C1および把持具C2を加速する方法としては特に限定されず、連続する把持具C1または把持具C2のピッチ(長尺フィルムFの搬送方向における把持具同士の間隔)を変化させ得る方法であればよい。たとえば、ピッチを変化させ得る方法としては、たとえば、パンタグラフ機構やリニアガイド機構を利用する方法を採用することができる。
 (斜め延伸工程以外の工程)
 次に、本実施形態が採用し得るその他の工程について説明する。なお、本実施形態は、上記した斜め延伸工程を有していればよく、その他の工程については特に限定されない。そのため、以下に説明するその他の工程は、例示であり、適宜設計変更を行うことができる。また、その他の工程は、例えば、長尺フィルムを製膜する製膜工程や、斜め延伸後の長尺延伸フィルムを巻き取る巻取工程等が挙げられる。
 (製膜工程)
 製膜工程は、熱可塑性の長尺フィルムを製膜する工程である。
 本実施形態で製膜する長尺フィルムは、熱可塑性であれば、特に限定されない。具体的には、長尺フィルムは、熱可塑性樹脂を含み、熱可塑性である長尺フィルムが挙げられる。また、長尺フィルムは、熱可塑性樹脂からなるフィルムであってもよい。
 例えば、延伸後の長尺延伸フィルムを光学用途に使用する場合には、所望の波長に対して透明な性質を有する樹脂からなるフィルムが好ましい。このような樹脂としては、ポリカーボネート系樹脂、ポリエーテルスルフォン系樹脂、ポリエチレンテレフタレート系樹脂、ポリイミド系樹脂、ポリメチルメタクリレート系樹脂、ポリスルフォン系樹脂、ポリアリレート系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂などが挙げられる。これらの中でも、透明性や機械強度などの観点からポリカーボネート系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂が好ましく、ポリカーボネート系樹脂がより好ましい。すなわち、長尺フィルムとして、ポリカーボネートフィルムを用いることが好ましい。そうすることによって、光学軸の配向角のばらつきが抑制されるだけではなく、透明性や機械強度にも優れた長尺延伸フィルムを製造することができる。
 <ポリカーボネート系樹脂>
 ポリカーボネート系樹脂としては、特に限定なく種々のものが使用でき、化学的性質及び物性の点から芳香族ポリカーボネート樹脂が好ましく、特に、フルオレン骨格を有するポリカーボネートや、ビスフェノールA系ポリカーボネート樹脂が好ましい。その中でも、ビスフェノールAにベンゼン環、シクロヘキサン環、および脂肪族炭化水素基等を導入したビスフェノールA誘導体を用いたものがより好ましい。さらに、ビスフェノールAの中央の炭素に対して、非対称に上記官能基が導入された誘導体を用いて得られた、単位分子内の異方性を減少させた構造のポリカーボネート樹脂が特に好ましい。このようなポリカーボネート樹脂としては、例えば、ビスフェノールAの中央の炭素の2個のメチル基をベンゼン環に置き換えたもの、ビスフェノールAのそれぞれのベンゼン環の一の水素をメチル基やフェニル基などで中央炭素に対し非対称に置換したものを用いて得られるポリカーボネート樹脂が特に好ましい。具体的には、4,4′-ジヒドロキシジフェニルアルカンまたはこれらのハロゲン置換体からホスゲン法またはエステル交換法によって得られるものであり、例えば、4,4′-ジヒドロキシジフェニルメタン、4,4′-ジヒドロキシジフェニルエタン、4,4′-ジヒドロキシジフェニルブタン等が挙げられる。また、この他にも、具体的なポリカーボネート系樹脂をあえて例示すれば、例えば、特開2006-215465号公報、特開2006-91836号公報、特開2005-121813号公報、特開2003-167121号公報、特開2009-126128号公報、特開2012-67300号公報、国際公開第2000/026705号等に記載されているポリカーボネート系樹脂が挙げられる。
 前記ポリカーボネート樹脂は、ポリスチレン系樹脂、メチルメタクリレート系樹脂、およびセルロースアセテート系樹脂等の透明性樹脂と混合して使用してもよい。また、セルロースアセテート系樹脂を用いて形成した樹脂フィルムの少なくとも一方の面にポリカーボネート系樹脂を含有する樹脂層を積層してもよい。
 前記ポリカーボネート系樹脂は、ガラス転移点(Tg)が110℃以上であって、吸水率(23℃水中、24時間の条件で測定した値)が0.3%以下のものであることがこのましい。また、Tgが120℃以上であって、吸水率が0.2%以下のものがより好ましい。
 本実施形態で用いることができるポリカーボネート系樹脂フィルムは公知の方法で製膜することができ、その中でも溶液流延法や溶融流延法が好ましい。
 <脂環式オレフィンポリマー系樹脂>
 脂環式オレフィンポリマー系樹脂としては、特開平05-310845号公報に記載されている環状オレフィンランダム多元共重合体、特開平05-97978号公報に記載されている水素添加重合体、特開平11-124429号公報に記載されている熱可塑性ジシクロペンタジエン系開環重合体およびその水素添加物等を採用することができる。
 脂環構造を有するオレフィンポリマー系樹脂をより具体的に説明する。脂環式オレフィンポリマー系樹脂は、飽和脂環炭化水素(シクロアルカン)構造や不飽和脂環炭化水素(シクロアルケン)構造のごとき脂環式構造を有するポリマーである。脂環式構造を構成する炭素原子数には、格別な制限はないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個の範囲であるときに、機械強度、耐熱性および長尺フィルムの成形性の特性が高度にバランスされ、好適である。
 脂環式オレフィンポリマー中の脂環式構造を含有してなる繰り返し単位の割合は、適宜選択すればよいが、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式ポリオレフィン樹脂中の脂環式構造を有する繰り返し単位の割合がこの範囲にあると、本実施形態の長尺延伸フィルムより得られる位相差フィルム等の光学材料の透明性および耐熱性が向上するので好ましい。
 脂環構造を有するオレフィンポリマー系樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂およびこれらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
 ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体またはそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体またはそれらの水素化物等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性および軽量性などの観点から、特に好適に用いることができる。
 上記した好ましいノルボルネン系樹脂を用いた長尺フィルムを成形する方法としては、溶液製膜法や溶融押出法の製造方法が好まれる。溶融押出法としては、ダイスを用いるインフレーション法等が挙げられるが、生産性や厚さ精度に優れる点でTダイを用いる方法が好ましい。
 Tダイを用いた押出成形法は、特開2004-233604号公報に記載されているような、冷却ドラムに密着させる時の溶融状態の熱可塑性樹脂を安定な状態に保つ方法により、リタデーションや配向角といった光学特性のばらつきが小さい長尺フィルムを製造できる。
 具体的には、1)溶融押出法で長尺フィルムを製造する際に、ダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;2)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から最初に密着する冷却ドラムまでを囲い部材で覆い、囲い部材からダイス開口部または最初に密着する冷却ドラムまでの距離を100mm以下とする方法;3)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂より10mm以内の雰囲気の温度を特定の温度に加温する方法;4)関係を満たすようにダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;5)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂に、最初に密着する冷却ドラムの引取速度との速度差が0.2m/s以下の風を吹き付ける方法;が挙げられる。
 この長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。
<セルロースエステル系樹脂>
 セルロースエステル系樹脂としては、下記式(1)および(2)を満たすセルロースアシレートを含有し、かつ、下記一般式(A)で表される化合物を含有することを特徴とするものが好ましく挙げられる。
 式(1) 2.0≦Z1<3.0
 式(2) 0.5≦X
 (式(1)および式(2)において、Z1はセルロースアシレートの総アシル置換度を表し、Xはセルロースアシレートのプロピオニル置換度およびブチリル置換度の総和を表す。)
 (一般式(A)の化合物)
 以下、一般式(A)について詳細に説明する。
Figure JPOXMLDOC01-appb-C000001
 一般式(A)において、LおよびLは各々独立に単結合または2価の連結基を表す。
 LおよびLとしては、例えば、下記構造が挙げられる。(下記Rは水素原子または置換基を表す。)
Figure JPOXMLDOC01-appb-C000002
 LおよびLとして、好ましくは-O-、-COO-、-OCO-である。R、RおよびRは各々独立に置換基を表す。
 RおよびRとしては、好ましくは、置換もしくは無置換のフェニル基、置換もしくは無置換のシクロヘキシル基である。より好ましくは置換基を有するフェニル基、置換基を有するシクロヘキシル基であり、さらに好ましくは4位に置換基を有するフェニル基、4位に置換基を有するシクロヘキシル基である。
 Rとして、好ましくは、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、水素原子、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。
 WaおよびWbは水素原子または置換基を表すが、(I)WaおよびWbが互いに結合して環を形成してもよく、(II)WaおよびWbの少なくとも一つが環構造を有してもよく、又は(III)WaおよびWbの少なくとも一つがアルケニル基またはアルキニル基であってもよい。
 上記の置換基は、さらに上記の基で置換されていてもよい。
 (1)WaおよびWbが互いに結合して環を形成する場合、以下のような構造が挙げられる。
 WaおよびWbが互いに結合して環を形成する場合、好ましくは、含窒素5員環または含硫黄5員環であり、特に好ましくは、下記一般式(1)または一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、AおよびAは各々独立に、-O-、-S-、-NRx-(Rxは水素原子または置換基を表す)又はCO-を表す。Rxで表される置換基の例は、上記WaおよびWbで表わされる置換基の具体例と同義である。Rxとして、好ましくは水素原子、アルキル基、アリール基、ヘテロ環基である。
 一般式(1)において、Xは第14~16族の非金属原子を表す。
 Xとしては、=O、=S、=NRc、=C(Rd)Reが好ましい。ここでRc、Rd、Reは置換基を表し、例としては上記WaおよびWbで表わされる置換基の具体例と同義である。
 L、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)において、Qは-O-、-S-、-NRy-(Ryは水素原子または置換基を表す)、-CRaRb-(RaおよびRbは水素原子または置換基を表す)又は-CO-を表す。ここで、Ry、Ra、Rbは置換基を表し、例としては上記WaおよびWbで表わされる置換基の具体例と同義である。
 Yは置換基を表す。
 Yで表わされる置換基の例としては、上記WaおよびWbで表される置換基の具体例と同義である。
 Yとして、好ましくは、アリール基、ヘテロ環基、アルケニル基、アルキニル基である。
 Yで表わされるアリール基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。
 L、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
 (2)一般式(A)において、WaおよびWbの少なくとも一つが環構造を有する場合の具体例としては、好ましくは、下記一般式(3)である。
Figure JPOXMLDOC01-appb-C000005
 一般式(3)において、Qは、=N-または=CRz-(Rzは水素原子または置換基)を表し、Qは、第14~16族の非金属原子を表す。Zは、Q及びQと共に環を形成する非金属原子群を表す。
 Q、Q及びZから形成される環は、さらに別の環で縮環していてもよい。
 Q、Q及びZから形成される環として、好ましくは、ベンゼン環で縮環した含窒素5員環または6員環である。
 L、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
 (3)WaおよびWbの少なくとも一つが、アルケニル基またはアルキニル基である場合には、好ましくは、置換基を有するビニル基、エチニル基である。
 上記一般式(1)、一般式(2)および一般式(3)で表される化合物のうち、特に、一般式(3)で表される化合物が好ましい。
 一般式(3)で表される化合物は、一般式(1)で表される化合物に比べて耐熱性および耐光性に優れており、一般式(2)で表される化合物に比べ、有機溶媒に対する溶解性やポリマーとの相溶性が良好である。
 一般式(A)で表される化合物は、所望の波長分散性、及び滲み防止性を付与するのに適宜量を調整して含有することができるが、添加量としては、セルロース誘導体に対して、1~15質量%であることが好ましく、特には、2~10質量%であることが好ましい。この範囲内であれば、セルロース誘導体に十分な波長分散性、及び滲み防止性を付与することができる。
 なお、一般式(A)、一般式(1)、一般式(2)および一般式(3)で表わされる化合物は、既知の方法を参照して行うことができる。具体的な合成方法をあえて例示すれば、例えば、Journal of Chemical Crystallography(1997);27(9);512-526、特開2010-31223号公報、及び特開2008-107767号公報に記載の方法等が挙げられる。
 <セルロースアシレート>
 本実施形態で用いることができるセルロースアシレートフィルムは、セルロールアシレートを主成分として含有する。
 本実施形態で用いることができるセルロースアシレートフィルムは、フィルムの全質量に対して、セルロースアシレートを好ましくは60~100質量%の範囲で含む。また、セルロースアシレートの総アシル基置換度は、2以上3未満であり、2.2~2.7であることがより好ましい。
 セルロースアシレートとしては、セルロースと、炭素数2~22程度の脂肪族カルボン酸及び/又は芳香族カルボン酸とのエステルが挙げられ、特に、セルロースと炭素数が6以下の低級脂肪酸とのエステルであることが好ましい。
 セルロースの水酸基に結合するアシル基は、直鎖であっても分岐していてもよく、また環を形成してもよい。さらに別の置換基が置換してもよい。同じ置換度である場合、上述した炭素数が多いと複屈折性が低下するため、炭素数としては炭素数2~6のアシル基の中で選択することが好ましく、プロピオニル置換度およびブチリル置換度の総和は0.5以上である。前記セルロースアシレートとしての炭素数が2~4であることが好ましく、炭素数が2~3であることがより好ましい。
 具体的には、セルロースアシレートとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートまたはセルロースアセテートフタレートのようなアセチル基の他にプロピオネート基、ブチレート基またはフタリル基が結合したセルロースの混合脂肪酸エステルを用いることができる。なお、ブチレートを形成するブチリル基は、直鎖であっても分岐していてもよい。
 本実施形態においては、セルロースアシレートとして、セルロースアセテート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートが特に好ましく用いられる。
 また、本実施形態に係るセルロースアシレートは、下記の数式(i)及び数式(ii)を同時に満足するものが好ましい。
 式(i)   2≦X+Y<3
 式(ii)  0≦X<3
 式中、Yは、アセチル基の置換度を表し、Xは、プロピオニル基もしくはブチリル基又はその混合物の置換度を表す。
 また、目的に叶う光学特性を得るために、置換度の異なる樹脂を混合して用いてもよい。その際の混合比としては、1:99~99:1(質量比)が好ましい。
 上述した中でも、特にセルロースアセテートプロピオネートが、セルロースアシレートとして好ましく用いられる。セルロースアセテートプロピオネートでは、0≦Y≦2.5であり、かつ、0.5≦X≦3である(ただし、2≦X+Y<3である)ことが好ましく、0.5≦Y≦2であり、かつ、1≦X≦2である(ただし、2≦X+Y<3である)ことがより好ましい。なお、アシル基の置換度は、ASTM-D817-96に準じて測定されうる。
 セルロースアシレートの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、及びケナフ等が挙げられる。また、それらから得られたセルロースアシレートは、それぞれ任意の割合で混合使用されうる。
 セルロースアシレートは、公知の方法により製造することができる。具体的な合成方法をあえて例示すれば、例えば、特開平10-45804号公報に記載の方法等が挙げられる。
 <添加剤>
 本実施形態により得られた長尺延伸フィルムは後述するセルロースエステル以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロースエステルと相溶性に優れるものが好ましく、長尺延伸フィルムにした時の透過率が80%以上、さらに好ましくは90%以上、さらに好ましくは92%以上であることが好ましい。
 添加される添加剤としては、可塑剤、紫外線吸収剤、リタデーション調整剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等がある。本実施形態において、微粒子以外の添加剤についてはセルロースエステル溶液の調製の際に添加してもよいし、微粒子分散液の調製の際に添加してもよい。有機ELディスプレイ等の画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。
 これらの化合物は、セルロースエステルに対して1~30質量%、好ましくは1~20質量%となるように含まれていることが好ましい。また、延伸および乾燥中のブリードアウト等を抑制させるため、200℃における蒸気圧が1400Pa以下の化合物であることが好ましい。
 これらの化合物は、セルロースエステル溶液の調製の際に、セルロースエステルや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。
 <リタデーション調整剤>
 リタデーションを調整するために添加する化合物は、例えば、二つ以上の芳香族環を有する芳香族化合物からなるリタデーション調整剤等が挙げられる。具体的な化合物をあえて例示すれば、例えば、欧州特許911,656A2号明細書に記載の化合物等が挙げられる。また、二種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。中でも1,3,5-トリアジン環が特に好ましい。
 <ポリマーまたはオリゴマー>
 本実施形態におけるセルロースエステルフィルムは、セルロースエステルと、カルボキシル基、ヒドロキシル基、アミノ基、アミド基、およびスルホ基から選ばれる置換基を有しかつ重量平均分子量が500~200,000の範囲内であるビニル系化合物のポリマーまたはオリゴマーとを含有することが好ましい。当該セルロースエステルと、当該ポリマーまたはオリゴマーとの含有量の質量比が、95:5~50:50の範囲内であることが好ましい。
 <マット剤>
 本実施形態では、マット剤として微粒子を長尺延伸フィルム中に含有させることができ、これによって、延伸フィルムが長尺の場合、搬送や巻き取りをしやすくすることができる。
 マット剤の粒径は10nm~0.1μmの1次粒子もしくは2次粒子であることが好ましい。1次粒子の針状比は1.1以下の略球状のマット剤が好ましく用いられる。
 微粒子としては、ケイ素を含むものが好ましく、特に二酸化珪素が好ましい。本実施形態に好ましい二酸化珪素の微粒子としては、例えば、日本アエロジル(株)製のアエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。ポリマーの微粒子の例として、シリコーン樹脂、弗素樹脂およびアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120および同240(東芝シリコーン(株)製)を挙げることができる。
 二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/L以上であるものが好ましい。1次粒子の平均径が5~16nmがより好ましく、5~12nmがさらに好ましい。1次粒子の平均径が小さい方がヘイズが低く好ましい。見かけ比重は90~200g/L以上が好ましく、100~200g/L以上がより好ましい。見かけ比重が大きい程、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、凝集物が発生せず好ましい。
 本実施形態におけるマット剤の添加量は、長尺延伸フィルム1m当たり0.01~1.0gが好ましく、0.03~0.3gがより好ましく、0.08~0.16gがさらに好ましい。
 <その他の添加剤>
 その他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えてもよい。さらに界面活性剤、剥離促進剤、帯電防止剤、難燃剤、滑剤、油剤等も加えてもよい。
 (長尺フィルムの製膜方法)
 本実施形態に係る製造方法において用いられる長尺フィルムは、公知の方法で製膜することができ、例えば、溶液流延法や溶融流延法等が挙げられ、そのどちらで製膜してもよい。
 以下に溶液流延法及び溶融流延法について説明する。
 <溶液流延法>
 溶液流延法では、樹脂および添加剤を有機溶媒に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、さらに乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
 溶液流延法は、フィルムの着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制、フィルムの平面性、透明度に優れるため好ましく用いられる。
 ドープ中の樹脂の濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、樹脂の濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、さらに好ましくは、15~25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
 流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化したりする場合がある。
 好ましい支持体温度としては、0~100℃で適宜決定され、5~30℃がさらに好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は、特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。
 温風を用いる場合は、溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。
 特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 長尺フィルム(樹脂フィルム)が良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、さらに好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。
 残留溶媒量は下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mは、ウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、Nは、Mを115℃で1時間の加熱後の質量である。
 また、樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、さらに乾燥し、残留溶媒量を1質量%以下にすることが好ましく、さらに好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 本実施形態に係る長尺フィルム(樹脂フィルム)を溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、樹脂、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系での樹脂の溶解を促進する役割もある。
 セルロースエステル系樹脂フィルムの場合、特に、メチレンクロライド、及び炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。
 炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。
 <溶融流延法>
 溶融製膜法は、斜め延伸後の厚み方向のリタデーションRtを小さくすることが容易となり、残留揮発性成分量が少なくフィルムの寸法安定性にも優れる等の観点から好ましい製膜法である。溶融製膜法は、樹脂および可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、樹脂を含む流動性の溶融物を流延することをいう。溶融流延によって形成される方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる、溶融押出し法が好ましい。
 溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。
 ペレット化は、公知の方法でよく、例えば、乾燥した樹脂や可塑剤、その他添加剤をフィーダーで押出し機に供給し1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。
 粒子や酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。
 上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールでフィルムをニップされ、冷却ロール上で固化させる。
 供給ホッパーから押出し機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。
 可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。
 冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。
 弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
 上記方法により製膜された長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち、共押出成形法、共流延成形法が好ましい。
 [巻き取り工程]
 斜め延伸後の長尺延伸フィルムを巻き取る工程(巻き取り工程)は、前記斜め延伸工程後の長尺延伸フィルムを巻き取る工程である。以下に、巻き取り工程に用いられるフィルム巻取装置について説明する。
 巻き取り装置は、斜め延伸装置の出口に設けられている。巻取り装置は、斜め延伸装置で延伸された長尺延伸フィルムを巻き取ることができれば、特に限定されない。本実施形態において、延伸後の長尺延伸フィルムの引取り張力T(N/m)は、100N/m<T<300N/m、好ましくは150N/m<T<250N/mの間で調整することが好ましい。前記引取張力が、100N/m以下では、長尺延伸フィルムのたるみや皺が発生しやすい傾向があり、リタデーション、配向軸の幅方向のプロファイルが悪化する場合がある。逆に、引取張力が300N/m以上となると、幅方向の配向角のばらつきが悪化する傾向があることから、幅収率(幅方向の取り効率)を悪化させてしまう場合がある。
 また、本実施形態においては、上記引取張力Tの変動を±5%未満、好ましくは±3%未満の精度で制御することが好ましい。上記引取張力Tの変動が±5%以上であると、幅方向及び流れ方向の光学特性のばらつきが大きくなる傾向がある。上記引取張力Tの変動を上記範囲内に制御する方法としては、斜め延伸装置出口部の最初のロールにかかる荷重、すなわち長尺延伸フィルムの張力を測定し、その値を一定とするように、一般的なPID制御方式により引取ロールの回転速度を制御する方法が挙げられる。前記荷重を測定する方法としては、ロールの軸受部にロードセルを取り付け、ロールに加わる荷重、すなわち長尺延伸フィルムの張力を測定する方法が挙げられる。ロードセルとしては、引張型や圧縮型の公知のものを用いることができる。
 斜め延伸後の長尺フィルムは、把持具による把持が開放され、斜め延伸装置出口から排出され、順次巻芯(巻き取りロール)に巻き取られて、長尺延伸フィルムの巻回体にすることができる。
 また、必要に応じて、巻取ロールに巻き取る前に、斜め延伸装置の把持具で把持されていたフィルムの両端を切断してもよい。上記切断は、一度に行ってもよいし、複数回に分けて実施してもよい。また、長尺延伸フィルムを一旦巻き取った後に、必要に応じて再度長尺延伸フィルムを繰り出して、長尺延伸フィルムの両端を、切断(トリミング)し、再度巻き取って長尺延伸フィルムの巻回体としてもよい。また、巻き取る前に、フィルム同士のブロッキングを防止する目的で、マスキングフィルムを重ねて同時に巻き取ってもよいし、長尺延伸フィルムの少なくとも一方、好ましくは両方の端にテープ等を張り合わせながら巻き取ってもよい。マスキングフィルムとしては、上記フィルムを保護することができるものであれば特に制限されず、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどが挙げられる。
 また、搬送ロール配置途中において、オンライン測定の可能な膜厚計や光学値測定機などを配置してもよい。
 また、搬送ロールの配置前後や、複数の搬送ロールの間に、長尺延伸フィルムの除電を行うための除電装置を設けてもよく、巻取装置の前に設置してもよい。前記除電装置は、公知のものを制限なく用いることができる。
 [製造装置]
 本発明の他の実施形態に係る長尺延伸フィルムの製造装置は、上述したような、本実施形態に係る製造方法を実現できる製造装置であれば、特に限定されない。具体的には、例えば、前記斜め延伸装置を備えた製造装置等が挙げられる。
 このような製造装置を用いると、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムを製造することができる。すなわち、得られた長尺延伸フィルムの幅手方向における配向角のばらつきが充分に抑制されたものが得られる。
 また、この長尺延伸フィルムを、有機エレクトロルミネッセンス表示装置等の非常にコントラストの高い画像表示装置に備えられる円偏光板に用いると、色むらの発生が充分に抑制された画像形成装置が得られる。
 [長尺延伸フィルム]
 本実施形態に係る製造方法は、長尺フィルム、例えば、上記の方法により製膜された長尺フィルム等を用いる。
 以下、本実施形態に係る製造方法に用いられる長尺フィルムについて説明する。
 前記長尺フィルムの斜め延伸前のフィルム厚さは、好ましくは20~400μm、より好ましくは30~200μmである。
 本実施形態では、斜め延伸装置に供給される長尺フィルムの流れ方向の厚みむらσmは、後述する斜め延伸装置入口でのフィルムの引取張力を一定に保ち、配向角やリタデーションといった光学特性を安定させる観点から、好ましくは0.30μm未満、より好ましくは0.25μm未満、さらに好ましくは0.20μm未満である。斜め延伸前の長尺フィルムの流れ方向の厚みむらσmが大きすぎると、長尺延伸フィルムのリタデーションや配向角といった光学特性のバラツキが顕著に悪化する傾向がある。ここでσmとは、各幅手位置における、流れ方向の標準偏差σの平均値で表した値である。
 また、斜め延伸前の長尺フィルムとして、幅方向の厚み勾配を有するフィルムが供給されてもよい。前記斜め延伸前の長尺フィルムの厚みの勾配は、後工程の延伸が完了した位置におけるフィルム厚みを最も均一なものとしうるよう、実験的に厚み勾配を様々に変化させたフィルムを延伸することにより、経験的に求めることができる。斜め延伸前の長尺フィルムの厚みの勾配は、例えば、厚みの厚い側の端部の厚みが、厚みの薄い側の端部よりも0.5~3%程度厚くなるように調整することができる。
 斜め延伸後の長尺フィルムの幅は、特に限定されないが、好ましくは500~4000mm、より好ましくは1000~2000mmとすることができる。
 長尺フィルムの斜め延伸時の延伸温度での好ましい弾性率は、ヤング率で表して、好ましくは0.01Mpa以上5000Mpa以下、さらに好ましくは0.1Mpa以上500Mpa以下である。弾性率が低すぎると、延伸時・延伸後の収縮率が低くなり、しわが消えにくくなる傾向がある。また、弾性率が高すぎると、延伸時にかかる張力が大きくなり、フィルムの両側縁部を保持する部分の強度を高くする必要が生じ、後工程のテンターに対する負荷が大きくなる傾向がある。
 斜め延伸前の長尺フィルムとしては、無配向なものを用いてもよいし、あらかじめ配向を有するフィルムが供給されてもよい。また、必要であれば、斜め延伸前の長尺フィルムの配向の幅手分布が弓なり状、いわゆるボーイングを成していてもよい。要は、斜め延伸前の長尺フィルムの配向状態を、後工程の延伸が完了した位置におけるフィルムの配向を所望なものとしうるよう、調整することができる。
 また、本実施形態で得られる長尺延伸フィルムは、配向角が0°より大きく90°未満の範囲に傾斜しており、30°以上60°以下の範囲に傾斜していることが好ましく、40°以上50°以下の範囲に傾斜していることがさらに好ましい。すなわち、光学軸が、長尺フィルムの幅方向に対して、0°より大きく90°未満である。
 また、本実施形態で得られる長尺延伸フィルムの配向角θのばらつき(配向角の最大値と最小値との差分)は、0.6°未満が好ましく、0.4°未満であることがより好ましい。配向角θのばらつきが0.6°未満となる長尺延伸フィルムを偏光子と貼り合せて円偏光板を得て、これを有機エレクトロルミネッセンス表示装置などの画像表示装置に据え付けると、表示品質の均一性を良好なものにすることが可能になる。
 また、前記長尺延伸フィルムの、波長550nmで測定した面内リタデーション値Re(550)が、120nm以上160nm以下の範囲にあることが好ましく、130nm以上150nm以下の範囲であることがさらに好ましい。また、前記長尺延伸フィルムの面内リタデーション値Reのばらつきは、3nm以下であることが好ましく、1nm以下であることがより好ましい。面内リタデーション値Reのばらつきを、上記範囲にすることにより、有機エレクトロルミネッセンス表示装置用のフィルムとして用いた場合に表示品質の均一性をより良好なものにすることが可能になる。
 なお、前記長尺延伸フィルムの面内リタデーション値Reは、用いられる表示装置の設計によって最適値が選択される。なお、前記Reは、面内遅相軸方向の屈折率nxと面内で前記遅相軸に直交する方向の屈折率nyとの差にフィルムの平均厚みdを乗算した値(Re=(nx-ny)×d)である。
 前記長尺延伸フィルムの平均厚みは、機械的強度などの観点から、好ましくは10~200μm、より好ましくは10~60μmであり、さらに好ましくは、15~35μmである。
 また、前記長尺延伸フィルムの幅方向の厚みむらは、巻き取りの可否に影響を与えるため、3μm以下であることが好ましく、2μm以下であることがより好ましい。
 [円偏光板]
 本実施形態に係る長尺延伸フィルムを用いた場合の円偏光板について説明する。
 前記円偏光板は、例えば、偏光板保護フィルム、偏光子、λ/4位相差フィルム、及び粘着層がこの順で積層されており、前記λ/4位相差フィルムの遅相軸と偏光子の吸収軸とのなす角が、45°となるように積層したものが挙げられる。すなわち、前記円偏光板は、長尺状偏光板保護フィルム、長尺状偏光子、長尺状λ/4位相差フィルム(本実施形態で得られた長尺延伸フィルム)がこの順で積層して形成されることが好ましい。
 前記円偏光板は、偏光子として、ヨウ素、又は二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、λ/4位相差フィルム及び偏光子の構成で貼合して製造することができる。
 前記円偏光板の膜厚は、好ましくは5~40μm、より好ましくは5~30μmであり、特に好ましくは5~20μmである。
 前記円偏光板は、一般的な方法で作製することができる。アルカリ鹸化処理したλ/4位相差フィルムは、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
 前記円偏光板は、さらに当該偏光板の偏光板保護フィルムの反対面に剥離フィルムを貼合して構成することができる。保護フィルム及び剥離フィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。
 [表示装置]
 本実施形態に係る長尺延伸フィルムを用いて作製した円偏光板を表示装置に組み込むことによって、種々の視認性に優れた表示装置を作成することができる。また、前記表示装置は、有機エレクトロルミネッセンス表示装置(有機ELディスプレイ装置)であることが好ましい。
 図5は、本実施形態に係る製造方法により得られた長尺延伸フィルムを適用しうる有機エレクトロルミネッセンス表示装置の画像表示部の層構造の一例を示す概略図である。また、図5に示す有機ELディスプレイ装置の構成例は、一例であり、これに限定されるものではない。
 前記有機エレクトロルミネッセンス表示装置の画像表示部の層構造は、図5に示すように、基板201、金属電極202、発光層203、透明電極(ITO等)204、封止層205、接着層206、λ/4位相差フィルム207、偏光子208、及び保護フィルム209等を順次積層したものが挙げられる。具体的には、ガラスやポリイミド等を用いた基板201上に順に金属電極202、発光層203、透明電極(ITO等)204、封止層205を有する有機エレクトロルミネッセンス素子上に、接着層206を介して、偏光子208をλ/4位相差フィルム207と保護フィルム209によって挟持した円偏光板を設けて、有機エレクトロルミネッセンス画像表示装置を構成する。該保護フィルム209には硬化層が積層されていることが好ましい。硬化層は、有機エレクトロルミネッセンス画像表示装置の表面のキズを防止するだけではなく、円偏光板による反りを防止する効果を有する。更に、硬化層上には、反射防止層を有していてもよい。上記有機エレクトロルミネッセンス素子自体の厚さは1μm程度である。
 一般に、有機エレクトロルミネッセンス画像表示装置は、透明基板上に金属電極と発光層と透明電極とを順に積層して発光体である素子(有機エレクトロルミネッセンス素子)を形成している。ここで、発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、及び電子注入層の積層体等、種々の組み合わせをもった構成が知られている。
 有機エレクトロルミネッセンス画像表示装置は、透明電極と金属電極とに電圧を印加することによって、発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。
 有機エレクトロルミネッセンス画像表示装置においては、発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、Al-Liなどの金属電極を用いている。
 このような構成の有機エレクトロルミネッセンス画像表示装置において、発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機エレクトロルミネッセンス画像表示装置の表示面が鏡面のように見える。
 本実施形態に係る長尺延伸フィルムを用いた有機エレクトロルミネッセンス表示装置用円偏光板は、このような外光反射が特に問題となる有機エレクトロルミネッセンス用表示装置に適している。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一局面は、熱可塑性の長尺フィルムの両端部を複数の把持具で把持し、前記両端部を把持した把持具を等速で搬送した後、一方の端部を把持した第1把持具を他方の端部を把持した第2把持具よりも加速させて、前記第1把持具を前記第2把持具よりも先行させることにより、前記長尺フィルムの光学軸を傾斜させる斜め延伸工程を少なくとも備え、前記斜め延伸工程において、前記第1把持具を先行させた後に、隣接した前記第1把持具間の領域における前記長尺フィルムにかかる歪み応力を緩和する緩和処理を施すことを特徴とする長尺延伸フィルムの製造方法である。
 このような構成によれば、隣接した前記第1把持具間の領域における前記長尺フィルムにかかる歪み応力による軸ずれの発生を抑制することができる。よって、省スペース化が可能な同時二軸延伸装置を用いた斜め延伸をした場合であっても、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムを製造することができる。
 また、前記長尺延伸フィルムの製造方法において、前記緩和処理が、前記長尺フィルムの、前記第1把持具で把持している先行側の端部を加熱する加熱処理であることが好ましい。
 このような構成によれば、長尺フィルムが熱可塑性であるので、長尺フィルムを加熱するだけで、長尺フィルムの先行側の端部が軟化し、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を緩和することができる。よって、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムを容易に製造することができる。
 また、前記長尺延伸フィルムの製造方法において、前記加熱処理が、隣接した前記第1把持具間の領域を加熱する処理であることが好ましい。
 このような構成によれば、歪み応力を緩和する必要がない箇所の加熱を抑制することができるので、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を効率的に緩和することができる。よって、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを容易に製造することができる。
 また、前記長尺延伸フィルムの製造方法において、隣接した前記第1把持具間の領域の温度が、前記長尺延伸フィルムの中央の領域の温度より、2~40℃高いことが好ましい。
 このような構成によれば、隣接した第1把持具間の領域を必要以上に軟化しすぎることなく、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を好適に緩和することができる。よって、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを容易に製造することができる。
 また、前記長尺延伸フィルムの製造方法において、前記緩和処理が、前記長尺フィルムの先行側の端部に、前記長尺フィルムを膨潤又は溶解させる溶媒を接触させる処理であることが好ましい。
 このような構成によれば、長尺フィルムの先行側の端部が軟化し、隣接した第1把持具間の領域における長尺フィルムにかかる歪み応力を緩和することができる。よって、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムを容易に製造することができる。
 また、前記長尺延伸フィルムの製造方法において、前記斜め延伸工程が、隣接した前記第1把持具間の距離を、前記第2把持具よりも先行して広げた後に、隣接した前記第2把持具間の距離を広げて、前記第1把持具と前記第2把持具との走行速度が同一になるような工程であることが好ましい。
 このような構成によれば、第1把持具を先行させることにより、長尺フィルムの光学軸を傾斜させ、さらに、その後、第2把持具の走行速度を高めることにより、斜め延伸工程後の、第1把持具と第2把持具との走行速度が同一になる。このことにより、長尺フィルムの光学軸を傾斜させることができ、さらに、把持具の開放時の速度が等速であるので、長尺延伸フィルムにしわ等の発生が抑制できる。
 また、前記長尺延伸フィルムの製造方法において、隣接した前記第2把持具間の距離を広げた後に、隣接した前記第2把持具間の領域における前記長尺フィルムにかかる歪み応力を緩和する緩和処理を施すことが好ましい。
 このような構成によれば、長尺フィルムの遅延側の端部にも、先行側の端部よりは小さいものの、隣接した第2把持具間の領域における長尺フィルムにかかる歪み応力が発生しているので、この応力を緩和することで、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを製造することができる。
 上記製造方法において、前記熱可塑性の長尺フィルムの光弾性係数が、1.0×10-11(Pa-1)以上1.0×10-10(Pa-1)以下であることが好ましい。
 従来、上記のような比較的大きい範囲の光弾性率を有する長尺フィルムを直進速度差方式の斜め延伸装置を用いて斜め延伸した際には、冷却時の収縮によって生じる歪み応力により、特に光学軸の発現性にむらを発生しやすい傾向にあった。しかし、本実施形態に係る製造方法によれば、緩和処理することで収縮の応力を低減することができるため、前記長尺フィルムの光弾性率が1.0×10-11(Pa-1)以上1.0×10-10(Pa-1)以下の場合においても、特に光学軸のずれを抑制する効果が顕著に得られる。
 また、前記長尺延伸フィルムの製造方法において、前記長尺フィルムが、ポリカーボネートフィルムであることが好ましい。
 このような構成によれば、光学軸の配向角のばらつきが抑制されるだけではなく、透明性や機械強度にも優れた長尺延伸フィルムを製造することができる。
 また、前記長尺延伸フィルムの製造方法において、前記長尺フィルムの搬送速度が、7~150m/分であることが好ましい。
 このような構成によれば、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを、効率的に製造することができる。
 また、前記長尺延伸フィルムの製造方法において、縦方向の延伸倍率が、1.1~2倍であることが好ましい。
 このような構成によれば、光学軸の配向角のばらつきをより抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生をより抑制できる長尺延伸フィルムを、様々な配向角及び膜厚で製造することができる。
 以下に、実施例により本発明をさらに具体的に説明する。なお、本発明は実施例により何ら限定されるものではない。
 [長尺フィルムの製造]
 まず、本実施例で用いる長尺フィルムの製造方法について説明する。本実施例では、長尺フィルムとして、ポリカーボネートフィルムとセルロースエステルフィルムとシクロオレフィンポリマーフィルムを用いた。
 (ポリカーボネートフィルムの製造)
 温度計、撹拌機、還流冷却器付き反応器に、まず、イオン交換水152400質量部、25質量%水酸化ナトリウム水溶液84320質量部を入れた。その後、前記容器に、HPLC分析で純度99.8質量%の9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(ビスクレゾールフルオレン)34848質量部、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)9008質量部、及びハイドロサルファイト88質量部を入れ、これらを前記容器内の液体に溶解させた。その後、前記容器に、塩化メチレン178400質量部をさらに加えた後、撹拌下15~25℃でホスゲン18248質量部を、60分間かけて吹き込んだ。ホスゲンの吹き込みが終了した後、前記容器内に、p-tert-ブチルフェノール177.8質量部を塩化メチレン2640質量部に溶解した溶液、及び25質量%水酸化ナトリウム水溶液10560質量部を加え、乳化させた。その後、トリエチルアミン32質量部を前記容器に加えて、28~33℃で1時間撹拌した。そうすることにより、容器内の内容物が反応した。反応終了後、生成物を塩化メチレンで希釈して水洗した後、塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで、塩化メチレン相を濃縮、脱水してポリカーボネート濃度が20%の溶液を得た。この溶液から溶媒を除去して得たポリカーボネート(共重合体A)は、ビスクレゾールフルオレンとビスフェノールAとの構成単位の比がモル比で70:30であった(ポリマー収率97%)。また、このポリマーの極限粘度は、0.674、Tgは、226℃であった。
 エタノールを4質量部含む、メチレンクロライドとエタノールとの混合溶媒75質量部に対して、前記ポリカーボネート25質量部を25℃で攪拌しながら溶解して、透明で粘ちょうなドープを得た。
 このドープを乾燥空気を送風して露点を12℃以下に制御したステンレスベルト上に流涎し、剥離した。その時の残留溶媒濃度は、35質量%だった。その後、残留溶媒濃度が2質量%のとき、幅保持をして乾燥させた。その後、残留溶媒濃度が1質量%以下になるまで乾燥させた。そうすることによって、ポリカーボネートフィルム(長尺フィルムA)を得た。膜厚は90μmであった。また、幅は1000mmであった。光弾性係数が3.5×10-11Pa-1であった。
 また、上記と同様の方法で、膜厚が50μmのものも作製した。
 (セルロースエステルフィルムの製造)
 次に、セルロースエステルフィルムの製造方法について説明する。
 《糖エステル化合物の合成》
 まず、セルロースエステルフィルムの原料の1つである、糖エステル化合物の合成方法について説明する。以下の工程により、糖エステル化合物を合成した。
Figure JPOXMLDOC01-appb-C000006
 より具体的には、以下のように合成した。
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.6モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスを通気(バブリング)させながら昇温し、70℃で5時間エステル化反応を行った。
 次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した。その後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、及び生成した安息香酸の大部分を留去した。
 最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、上記に示すような化合物A-1、A-2、A-3、A-4及びA-5の混合物を得た。なお、上記式は、実施例で用いる糖エステル化合物の合成方法を示す化学式である。
 得られた混合物をHPLC及びLC-MASSで解析したところ、A-1が、1.3質量%、A-2が、13.4質量%、A-3が、13.1質量%、A-4が、31.7質量%、A-5が、40.5質量%であった。平均置換度は5.5であった。
 また、前記HPLC-MASSの測定条件は、以下の通りである。
 1)LC部
 装置:日本分光株式会社製のカラムオーブン(JASCO CO-965)、ディテクター(JASCO UV-970-240nm)、ポンプ(JASCO PU-980)、デガッサ-(JASCO DG-980-50)
 カラム:Inertsil ODS-3 粒子径5μm 4.6×250mm(ジーエルサイエンス株式会社製)
 カラム温度:40℃
 流速:1ml/分
 移動相:THF(1質量%酢酸):HO(50:50(質量比))
 注入量:3μl
 2)MS部
 装置:LCQ DECA(サーモクエスト株式会社製)
 イオン化法:エレクトロスプレーイオン化(ESI)法
 スプレー電圧(Spray Voltage):5kV
 キャピラリー(Capillary)温度:180℃
 ベポライザー(Vaporizer)温度:450℃
 《エステル化合物の合成》
 次に、セルロースエステルフィルムの原料の1つである、エステル化合物の合成方法について説明する。
 1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温した。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去した。そうすることにより、エステル化合物を得た。
 エステル化合物は、1,2-プロピレングリコール、無水フタル酸及びアジピン酸が縮合して形成されたポリエステル鎖の末端に安息香酸のエステルを有するものであった。エステル化合物1の酸価0.10、数平均分子量450であった。
 《微粒子添加液の調製》
 次に、セルロースエステルフィルムの原料の1つである、微粒子添加液の調製方法について説明する。
 微粒子(アエロジル R972V 日本アエロジル株式会社製)11質量部、エタノール89質量部を、ディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。そうすることによって、微粒子分散液が得られた。
 続いて、メチレンクロライド99質量部を入れた溶解タンクを充分攪拌しながら、微粒子分散液5質量部をゆっくりと添加した。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを、日本精線株式会社製のファインメットNFで濾過した。そうすることによって、微粒子添加液が得られた。
 《ドープ液の調製》
 次に、セルロースエステルフィルムを製造する際に用いる、ドープ液の調製方法について説明する。
 まず、メチレンクロライド、エタノール、セルロースアセテートプロピオネート、下記式に示す化合物(B)、前述した糖エステル化合物、エステル化合物、微粒子添加液を下記記載の組成となるように、加圧溶解タンクに投入した。そして、この加圧溶解タンク内を加熱し、溶解可能な成分が完全に溶解するまで攪拌した。これを、安積濾紙株式会社製の安積濾紙No.244を使用して濾過した。そうすることによって、ドープ液が得られた。
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースアセテートプロピオネート(アセチル基置換度1.39、プロ
ピオニル基置換度0.50、総置換度1.89)      100質量部
 化合物(B)                     5.0質量部
 糖エステル化合物                   5.0質量部
 エステル化合物                    2.5質量部
 微粒子添加液                       1質量部
Figure JPOXMLDOC01-appb-C000007
 (製膜)
 次に、得られた主ドープ液を用いて、製膜する方法について説明する。
 無端ベルト流延装置を用い、上記ドープ液をステンレススティールベルト支持体上に均一に流延した。ステンレススティールベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、ステンレススティールベルト支持体上から剥離した。その後、多数のロールで搬送させながら、乾燥した。そうすることによって、幅1000mm、厚み90μmのセルロースエステルフィルム(長尺フィルムB)を得た。光弾性係数は2.0×10-12Pa-1であった。
 (シクロオレフィンポリマーフィルムの製造)
 窒素雰囲気下、脱水したシクロヘキサン500質量部に、1-ヘキセン1.2質量部、ジブチルエーテル0.15質量部、トリイソブチルアルミニウム0.30質量部を室温で反応器に入れ混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(ジシクロペンタジエン、以下、DCPと略記)20質量部、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(以下、MTFと略記)140質量部および8-メチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン(以下、MTDと略記)40質量部からなるノルボルネン系モノマー混合物と、六塩化タングステン(0.7%トルエン溶液)40質量部とを、2時間かけて連続的に添加し重合した。重合溶液にブチルグリシジルエーテル1.06質量部とイソプロピルアルコール0.52質量部を加えて重合触媒を不活性化し重合反応を停止させた。
 次いで、得られた開環重合体を含有する反応溶液100質量部に対して、シクロヘキサン270質量部を加え、さらに水素化触媒としてニッケル-アルミナ触媒(日揮触媒化成(株)製)5質量部を加え、水素により5MPaに加圧して攪拌しながら温度200℃まで加温した後、4時間反応させ、DCP/MTF/MTD開環重合体水素化ポリマーを20%含有する反応溶液を得た。
 濾過により水素化触媒を除去した後、軟質重合体((株)クラレ製;セプトン2002)および酸化防止剤(チバスペシャリティ・ケミカルズ(株)製;イルガノックス1010)を、得られた溶液にそれぞれ添加して溶解させた(いずれも重合体100質量部あたり0.1質量部)。次いで、溶液から、溶媒であるシクロヘキサンおよびその他の揮発成分を、円筒型濃縮乾燥器((株)日立製作所製)を用いて除去し、水素化ポリマーを溶融状態で押出機からストランド状に押出し、冷却後ペレット化して回収した。重合体中の各ノルボルネン系モノマーの共重合比率を、重合後の溶液中の残留ノルボルネン類組成(ガスクロマトグラフィー法による)から計算したところ、DCP/MTF/MTD=10/70/20でほぼ仕込組成に等しかった。この開環重合体水素添加物の、重量平均分子量(Mw)は31,000、分子量分布(Mw/Mn)は2.5、水素添加率は99.9%、Tgは134℃であった。
 得られた開環重合体水素添加物のペレットを、空気を流通させた熱風乾燥器を用いて70℃で2時間乾燥して水分を除去した。次いで、前記ペレットを、コートハンガータイプのTダイを有する短軸押出機(三菱重工業(株)製:スクリュー径90mm、Tダイリップ部材質は炭化タングステン、溶融樹脂との剥離強度44N)を用いて溶融押出成形して厚み80μmのシクロオレフィンポリマーフィルムを製造した。押出成形は、クラス10,000以下のクリーンルーム内で、溶融樹脂温度240℃、Tダイ温度240℃の成形条件にて幅1000mm、厚み90μmの脂環式オレフィンポリマーフィルム(長尺フィルムC)を得た。光弾性係数5.0×10-12Pa-1であった。
 上記長尺フィルムA~Cの光弾性係数の測定方法としては、以下のような手順で実施した。
 得られた長尺フィルムA~Cを30mm×50mmのサンプルサイズに切り出し、大塚電子(株)製のセルギャップ検査装置(RETS-1200、測定径:直径5mm、光源:589nm)を用い、フィルム厚みがd(nm)であるサンプルを支持具に挟み長手方向に9.81×10の応力σ(Pa)をかけた。この応力下での位相差R1(nm)を測定した。応力をかける前の位相差をR0(nm)とし下記式に代入して光弾性係数Cσ(Pa-1)を求めた。
   Cσ(Pa-1)=(R1-R0)/(σ×d)
 [実施例1]
 得られたポリカーボネートフィルム(長尺フィルムA:膜厚90μm)を、本実施形態に係る製造方法の条件で、斜め延伸した。そうすることによって、実施例1に係る長尺延伸フィルムが得られた。そして、得られた長尺延伸フィルムを巻き取って、ロール状にした。
 具体的には、以下のような条件で、斜め延伸した。
 まず、図4に示す斜め延伸装置Tを用いて、長尺フィルムを斜め延伸した。長尺フィルムの搬送速度は、5m/分とした。P1からP2において把持具C1(第1把持具)を加速させることにより、把持具C1を把持具C2(第2把持具)よりも先行させた。また、P3からP4において把持具C2を加速させ、把持具C1と把持具C2とが等速で長尺延伸フィルムを解放するように設定した。その後、出口に設けられた巻取り装置により、引取り張力200(N/m)でロール状に巻き取った。
 上記斜め延伸装置Tを使用して、長尺延伸フィルムの配向角θが45°となるように、把持具C1および把持具C2の加速度を調整して斜め方向に長尺フィルムAを斜め延伸した。この際、縦方向(搬送方向)の延伸倍率を、1.08倍とし、横方向(幅方向)の延伸倍率を、1.4倍とした。そして、延伸ゾーンでは、把持具C1を先行させた後における、長尺フィルムの先行側の端部を加熱する処理(先行側加熱処理)を行った。より具体的には、把持具C1を先行させた後における、長尺フィルムの先行側の端部が、フィルム中央部(フィルムの幅方向の中心位置)より45℃高くなるように、延伸ゾーン内で吹き付けられる熱風の温度や風量等の、延伸ゾーン内の加熱条件を調整した。
 そして、得られた長尺延伸フィルムの幅は、1400mmであり、厚みは、54μmであった。
 上記の製造時の各条件は、下記表1に示す。
 [実施例2]
 延伸ゾーンでは、把持具C1を先行させた後における、長尺フィルムの先行側の端部が、フィルム中央部より32℃高くなるように、延伸ゾーン内で吹き付けられる熱風の温度や風量等の、延伸ゾーン内の加熱条件を調整したこと以外、実施例1と同様である。
 [実施例3]
 延伸ゾーンで、長尺フィルムの先端側の端部にあてる熱風を、隣接した第1把持具間の領域のみにあたるような間欠加熱にしたこと以外、実施例1と同様である。
 [実施例4]
 上記先行側加熱処理の代わりに、長尺フィルムの先行側の端部に、溶媒を吹き付ける処理(溶媒接触処理)を行う以外、実施例1と同様である。この溶媒は、メチレンクロライドとメタノールとを、質量比で70:30で混合した混合溶媒を用いた。なお、この混合溶媒は、長尺フィルムを溶解させることができる。
 [実施例5]
 長尺フィルムの搬送速度を、15m/分にしたこと以外、実施例2と同様である。
 [実施例6]
 延伸ゾーンにおいて、上記先行側加熱処理と同様の加熱処理を、長尺フィルムの遅延側の端部にも施す(遅延側加熱処理を施す)こと以外、実施例5と同様である。
[実施例7]
 縦方向の延伸倍率を、1.2倍、横方向の延伸倍率を、1.5倍にしたこと以外、実施例2と同様である。
 [実施例8]
 長尺フィルムの搬送速度を、15m/分にし、長尺フィルムとして、長尺フィルムB(セルロースエステルフィルム)を用いたこと以外、実施例1と同様である。
 [実施例9]
 長尺フィルムの搬送速度を、15m/分にし、長尺フィルムとして、長尺フィルムC(シクロオレフィンポリマーフィルム)を用いたこと以外、実施例1と同様である。
 [実施例10]
 延伸前の厚み(膜厚)が50μmの長尺フィルムAを用い、長尺フィルムの先行側の端部が、フィルム中央部より28℃高くなるように、延伸ゾーン内で吹き付けられる熱風の温度や風量等の、延伸ゾーン内の加熱条件を調整したこと以外、実施例2と同様である。
 [比較例1]
 上記先行側加熱処理を行わないこと以外、実施例1と同様である。
 [比較例2]
 上記先行側加熱処理を行わないこと以外、実施例5と同様である。
 [比較例3]
 上記先行側加熱処理を行わないこと以外、実施例7と同様である。
 [評価]
 上記各実施例及び比較例に係る長尺延伸フィルムを、下記の評価基準で評価した。
 (配向むらの評価)
 上記各実施例及び比較例に係る長尺延伸フィルムを、幅手方向に等間隔で20個のサンプルを切り出した。そのサンプルの(配向軸)遅相軸の角度(配向角)θを、自動複屈折率測定装置(王子計測機器株式会社製のKOBRA-21ADH)を用いて測定した。上記の測定(幅手方向の複数個所にわたる測定)を搬送方向(走行方向)に3回実施した。得られた配向角の値から、その最大値と最小値との差を算出し、その差を、配向角のばらつきとして、下記基準で評価した。すなわち、配向角のばらつきが大きいほど、配向むらが大きく、配向角のばらつきが小さいほど、配向むらが小さい。
 A:配向角のばらつきが、0.4°未満である
 B:配向角のばらつきが、0.4°以上0.6°未満である
 C: 配向角のばらつきが、0.6°以上1.0°未満である
 D:配向角のばらつきが、1.0°以上1.5°未満である
 E:配向角のばらつきが、1.5°以上である。
 (色味むらの評価)
 まず、各実施例及び比較例に係る長尺延伸フィルムを用いて、上記で説明した有機ELディスプレイ装置を作成した。得られた有機ELディスプレイ装置の画像表示部の全面に黒色を表示した。その表示状態を目視で観察し、色味むらを評価した。すなわち、黒表示した際のディスプレイ全面における色味むらを、以下の基準で目視評価した。
 A:ディスプレイ全面における箇所ごとに色味の違い(色味むら)が確認できない
 B:ディスプレイ全面において、画面端の部分で、色味の違い(色味むら)がわずかに確認できるが、その色味の違いは、特に問題のないレベル
 C:ディスプレイ全面において、画面端の部分で、色味の違い(色味むら)が確認でき、得られた有機ELディスプレイ装置を製品として使用できないレベル
 D:貼り付けたサンプル片の箇所ごとに色味の違い(色味むら)が大きく、得られた有機ELディスプレイ装置を製品として使用できないレベル。
 上記評価結果を、長尺延伸フィルムの製造時の条件とともに、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、先行側加熱処理や溶媒接触処理を施した場合(実施例1~10)は、このような処理を施さない場合(比較例1~3)と比べて、配向むらの小さい長尺延伸フィルムが得られる。また、実施例1~10に係る長尺延伸フィルムは、有機ELディスプレイ装置に適用した場合、比較例1~3より、色味むらの少ないものが得られることがわかった。
 また、実施例8、9等から、長尺フィルムとして、ポリカーボネートフィルムであっても、セルロースエステルフィルムであっても、シクロオレフィンポリマーフィルムであっても、配向むらや色味むらの発生を抑制できることがわかった。このことから、長尺フィルムの材質にかかわらず、本実施形態に係る製造方法を適用すれば、配向むらを充分の抑制した長尺延伸フィルムが得られることがわかった。
 本発明によれば、省スペース化が可能な同時二軸延伸装置を用いた斜め延伸をした場合であっても、光学軸の配向角のばらつきを充分に抑制でき、画像表示装置に備えられる円偏光板に用いた場合における色むらの発生を充分に抑制できる長尺延伸フィルムの製造方法が提供される。

Claims (11)

  1.  熱可塑性の長尺フィルムの両端部を複数の把持具で把持し、前記両端部を把持した把持具を等速で搬送した後、一方の端部を把持した第1把持具を他方の端部を把持した第2把持具よりも加速させて、前記第1把持具を前記第2把持具よりも先行させることにより、前記長尺フィルムの光学軸を傾斜させる斜め延伸工程を少なくとも備え、
     前記斜め延伸工程において、前記第1把持具を先行させた後に、隣接した前記第1把持具間の領域における前記長尺フィルムにかかる歪み応力を緩和する緩和処理を施すことを特徴とする長尺延伸フィルムの製造方法。
  2.  前記緩和処理が、前記長尺フィルムの、前記第1把持具で把持している先行側の端部を加熱する加熱処理である請求項1に記載の長尺延伸フィルムの製造方法。
  3.  前記加熱処理が、隣接した前記第1把持具間の領域を加熱する処理である請求項2に記載の長尺延伸フィルムの製造方法。
  4.  隣接した前記第1把持具間の領域の温度が、前記長尺延伸フィルムの中央の領域の温度より、2~40℃高い請求項2又は請求項3に記載の長尺延伸フィルムの製造方法。
  5.  前記緩和処理が、前記長尺フィルムの先行側の端部に、前記長尺フィルムを膨潤又は溶解させる溶媒を接触させる処理である請求項1に記載の長尺延伸フィルムの製造方法。
  6.  前記斜め延伸工程が、隣接した前記第1把持具間の距離を、前記第2把持具よりも先行して広げた後に、隣接した前記第2把持具間の距離を広げて、前記第1把持具と前記第2把持具との走行速度が同一になるような工程である請求項1に記載の長尺延伸フィルムの製造方法。
  7.  隣接した前記第2把持具間の距離を広げた後に、隣接した前記第2把持具間の領域における前記長尺フィルムにかかる歪み応力を緩和する緩和処理を施す請求項6に記載の長尺延伸フィルムの製造方法。
  8.  前記長尺フィルムの光弾性係数が、1.0×10-11Pa-1以上1.0×10-10Pa-1以下である、請求項1~7のいずれか1項に記載の長尺延伸フィルムの製造方法。
  9.  前記長尺フィルムが、ポリカーボネートフィルムである請求項1~8のいずれか1項に記載の長尺延伸フィルムの製造方法。
  10.  前記長尺フィルムの搬送速度が、7~150m/分である請求項1~9のいずれか1項に記載の長尺延伸フィルムの製造方法。
  11.  縦方向の延伸倍率が、1.1~2倍である請求項1~10のいずれか1項に記載の長尺延伸フィルムの製造方法。
PCT/JP2012/007112 2012-11-06 2012-11-06 長尺延伸フィルムの製造方法 WO2014073019A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013516810A JP5333697B1 (ja) 2012-11-06 2012-11-06 長尺延伸フィルムの製造方法
CN201280076890.3A CN104768729B (zh) 2012-11-06 2012-11-06 长条拉伸膜的制造方法
PCT/JP2012/007112 WO2014073019A1 (ja) 2012-11-06 2012-11-06 長尺延伸フィルムの製造方法
KR1020157007711A KR101728618B1 (ko) 2012-11-06 2012-11-06 긴 연신 필름의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/007112 WO2014073019A1 (ja) 2012-11-06 2012-11-06 長尺延伸フィルムの製造方法

Publications (1)

Publication Number Publication Date
WO2014073019A1 true WO2014073019A1 (ja) 2014-05-15

Family

ID=49679043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007112 WO2014073019A1 (ja) 2012-11-06 2012-11-06 長尺延伸フィルムの製造方法

Country Status (4)

Country Link
JP (1) JP5333697B1 (ja)
KR (1) KR101728618B1 (ja)
CN (1) CN104768729B (ja)
WO (1) WO2014073019A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126272A (ja) * 2015-01-08 2016-07-11 日東電工株式会社 位相差フィルムの製造方法および円偏光板の製造方法
WO2016147840A1 (ja) * 2015-03-17 2016-09-22 コニカミノルタ株式会社 斜め延伸フィルムの製造方法
WO2021039934A1 (ja) * 2019-08-30 2021-03-04 日本ゼオン株式会社 位相差フィルム及びその製造方法
JP7048813B1 (ja) 2021-03-30 2022-04-05 日東電工株式会社 延伸フィルムの製造方法
CN115871210A (zh) * 2021-09-28 2023-03-31 日东电工株式会社 拉伸膜的制造方法、光学层叠体的制造方法及膜拉伸装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031316B2 (ja) * 2018-01-12 2022-03-08 コニカミノルタ株式会社 斜め延伸フィルムの製造方法
CN109501220B (zh) * 2018-10-31 2021-04-16 广东明星机械实业有限公司 一种斜拉膜生产设备
JP2022107944A (ja) * 2021-01-12 2022-07-25 コニカミノルタ株式会社 斜め延伸フィルムの製造方法
CN113478795B (zh) * 2021-07-14 2023-05-23 沈勇 相位差补偿光学薄膜的制备方法
JP7059429B1 (ja) * 2021-09-10 2022-04-25 日東電工株式会社 延伸フィルムの製造方法および光学積層体の製造方法
JP7079364B1 (ja) * 2021-09-24 2022-06-01 日東電工株式会社 延伸フィルムの製造方法および光学積層体の製造方法
JP7096943B1 (ja) * 2021-10-29 2022-07-06 日東電工株式会社 延伸フィルムの製造方法および光学積層体の製造方法
CN114434767B (zh) * 2021-12-29 2023-09-12 西南科技大学 Oled柔性显示用偏光片补偿膜的制备方法
CN114311622B (zh) * 2021-12-29 2023-09-12 西南科技大学 Oled柔性显示用偏光片补偿膜的同步光学斜向拉伸方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224618A (ja) * 2005-02-21 2006-08-31 Jsr Corp フィルム加工方法
JP2006255892A (ja) * 2005-02-21 2006-09-28 Jsr Corp フィルム加工方法
JP2008023775A (ja) * 2006-07-19 2008-02-07 Toshiba Mach Co Ltd シート・フィルムの斜め延伸方法およびクリップ式シート・フィルム延伸装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003493B2 (ja) * 2005-12-08 2012-08-15 コニカミノルタアドバンストレイヤー株式会社 位相差フィルム、位相差フィルムの製造方法、偏光板及び液晶表示装置
CN101501538B (zh) * 2006-12-28 2011-07-20 日东电工株式会社 起偏器的制造方法、起偏器、偏振片、光学薄膜、复合偏振片的制造方法、复合偏振片及图像显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224618A (ja) * 2005-02-21 2006-08-31 Jsr Corp フィルム加工方法
JP2006255892A (ja) * 2005-02-21 2006-09-28 Jsr Corp フィルム加工方法
JP2008023775A (ja) * 2006-07-19 2008-02-07 Toshiba Mach Co Ltd シート・フィルムの斜め延伸方法およびクリップ式シート・フィルム延伸装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126272A (ja) * 2015-01-08 2016-07-11 日東電工株式会社 位相差フィルムの製造方法および円偏光板の製造方法
WO2016147840A1 (ja) * 2015-03-17 2016-09-22 コニカミノルタ株式会社 斜め延伸フィルムの製造方法
WO2021039934A1 (ja) * 2019-08-30 2021-03-04 日本ゼオン株式会社 位相差フィルム及びその製造方法
JP7048813B1 (ja) 2021-03-30 2022-04-05 日東電工株式会社 延伸フィルムの製造方法
JP2022155459A (ja) * 2021-03-30 2022-10-13 日東電工株式会社 延伸フィルムの製造方法
CN115871210A (zh) * 2021-09-28 2023-03-31 日东电工株式会社 拉伸膜的制造方法、光学层叠体的制造方法及膜拉伸装置
CN115871210B (zh) * 2021-09-28 2024-01-02 日东电工株式会社 拉伸膜的制造方法、光学层叠体的制造方法及膜拉伸装置

Also Published As

Publication number Publication date
CN104768729A (zh) 2015-07-08
KR20150047595A (ko) 2015-05-04
JPWO2014073019A1 (ja) 2016-09-08
JP5333697B1 (ja) 2013-11-06
CN104768729B (zh) 2016-08-31
KR101728618B1 (ko) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5339017B1 (ja) 長尺延伸フィルムの製造方法
JP5333697B1 (ja) 長尺延伸フィルムの製造方法
KR101852691B1 (ko) 광학 필름의 제조 방법 및 제조 장치
JP5333698B1 (ja) 長尺斜め延伸フィルム、該長尺斜め延伸フィルムを用いた円偏光板および有機elディスプレイ
JP5333699B1 (ja) 長尺延伸フィルムの製造方法
KR101963067B1 (ko) 경사 연신 필름의 제조 방법
JP5177332B1 (ja) 長尺延伸フィルムの製造方法及び製造装置
JP5083483B1 (ja) 長尺延伸フィルムの製造方法
JP6699655B2 (ja) 斜め延伸フィルムの製造方法
JP2013202979A (ja) 斜め延伸フィルムの製造方法および製造装置
WO2013128599A1 (ja) 長尺斜め延伸フィルムの製造方法および製造装置
JP5979224B2 (ja) 長尺延伸フィルムの製造方法及び製造装置
JP5862687B2 (ja) 長尺延伸フィルムの製造方法
JP5105034B1 (ja) 延伸フィルムの製造方法、延伸フィルムの製造装置および延伸フィルムの製造システム
JP5862686B2 (ja) 長尺延伸フィルムの製造方法
KR20150122702A (ko) 광학 필름의 제조 방법
JP5979216B2 (ja) 長尺延伸フィルムの製造方法
JP5987896B2 (ja) 長尺延伸フィルムの製造方法、及び斜め延伸装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013516810

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157007711

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887926

Country of ref document: EP

Kind code of ref document: A1