WO2013145340A1 - ホイールローダ及びホイールローダの制御方法 - Google Patents

ホイールローダ及びホイールローダの制御方法 Download PDF

Info

Publication number
WO2013145340A1
WO2013145340A1 PCT/JP2012/062349 JP2012062349W WO2013145340A1 WO 2013145340 A1 WO2013145340 A1 WO 2013145340A1 JP 2012062349 W JP2012062349 W JP 2012062349W WO 2013145340 A1 WO2013145340 A1 WO 2013145340A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction force
force control
maximum
level
wheel loader
Prior art date
Application number
PCT/JP2012/062349
Other languages
English (en)
French (fr)
Inventor
敦 白尾
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to JP2012524796A priority Critical patent/JP5092069B1/ja
Priority to EP12832792.1A priority patent/EP2664824B1/en
Priority to US13/808,732 priority patent/US8706364B2/en
Priority to CN201280001289.8A priority patent/CN103429935B/zh
Publication of WO2013145340A1 publication Critical patent/WO2013145340A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/283Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a single arm pivoted directly on the chassis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/472Automatic regulation in accordance with output requirements for achieving a target output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • F16H59/06Ratio selector apparatus the ratio being infinitely variable
    • F16H2059/065Inching pedals for setting the ratio of an hydrostatic transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/10Inching

Definitions

  • the present invention relates to a wheel loader and a method for controlling the wheel loader.
  • Some wheel loaders are equipped with a so-called HST (Hydro Static Transmission).
  • HST Hydro Static Transmission
  • the HST type wheel loader drives a hydraulic pump by an engine, and drives a traveling hydraulic motor by hydraulic fluid discharged from the hydraulic pump. Thereby, the wheel loader travels.
  • the vehicle speed and traction force can be controlled by controlling the engine speed, the capacity of the hydraulic pump, the capacity of the traveling hydraulic motor, and the like (see Patent Document 1).
  • the operator can select execution of traction force control.
  • the capacity of the traveling hydraulic motor is limited to an upper limit capacity smaller than the maximum capacity. Thereby, the maximum traction force is reduced.
  • the operator selects execution of traction force control when a phenomenon such as slip or stall occurs due to excessive traction force. Thereby, the maximum traction force is reduced, and the occurrence of a phenomenon such as slip or stall is suppressed.
  • Certain wheel loaders are configured so that the operator can select the maximum traction level for traction control.
  • the operator preselects the maximum traction force level in the traction force control.
  • the maximum traction force is limited to the selected level.
  • the operator can select an appropriate level of traction force, for example, according to the road surface condition.
  • the traction force required during excavation work is not constant, and the traction force required varies depending on the work situation. For this reason, it is not easy for the operator to select in advance what level of maximum traction force is optimal in order to prevent a phenomenon such as stall or slip from occurring. Therefore, in the wheel loader as described above, the operator must reselect the maximum traction force level every time the work situation changes during excavation work. For this reason, operation becomes complicated and the operativity of a wheel loader falls.
  • An object of the present invention is to provide a wheel loader and a wheel loader control method capable of obtaining a sufficient traction force during excavation work and suppressing a decrease in operability.
  • a wheel loader includes a work machine, an engine, a hydraulic pump, a traveling hydraulic motor, an accelerator operation member, an inching operation member, a traction force control operation member, a vehicle speed detection unit, A work phase determination unit, a vehicle speed determination unit, an accelerator operation determination unit, an inching operation determination unit, and a traction force control unit.
  • the work machine has a boom and a bucket.
  • the hydraulic pump is driven by the engine.
  • the traveling hydraulic motor is driven by hydraulic oil discharged from the hydraulic pump.
  • the accelerator operation member is operated to set a target engine speed.
  • the inching operation member is operated to reduce the vehicle speed.
  • the tractive force control operating member is operated to switch on / off tractive force control that reduces the maximum tractive force.
  • the vehicle speed detection unit detects the vehicle speed.
  • the work situation determination unit determines whether or not the work situation is excavation.
  • the vehicle speed determination unit determines whether the vehicle speed is equal to or lower than a predetermined speed threshold value.
  • the accelerator operation determination unit determines whether or not the operation amount of the accelerator operation member is equal to or greater than a predetermined accelerator threshold value.
  • the inching operation determination unit determines whether or not the operation amount of the inching operation member is equal to or less than a predetermined inching operation threshold value.
  • the determination conditions are that the work phase is excavation, the vehicle speed is less than or equal to a predetermined speed threshold, the operation amount of the accelerator operation member is greater than or equal to the predetermined accelerator threshold, and the operation amount of the inching operation member is predetermined. Of the inching operation threshold value or less.
  • the wheel loader according to the second aspect of the present invention is the wheel loader according to the first aspect, and further includes a boom angle determination unit.
  • the boom angle determination unit determines whether or not the boom angle is smaller than a predetermined angle threshold.
  • the boom angle is an angle with respect to the horizontal direction of the boom.
  • the determination condition further includes that the boom angle is smaller than a predetermined angle threshold.
  • the wheel loader according to the third aspect of the present invention is the wheel loader according to the first aspect, wherein the determination condition is that the duration of the state in which the other conditions are satisfied is equal to or greater than a predetermined time threshold.
  • the determination condition is that the duration of the state in which the other conditions are satisfied is equal to or greater than a predetermined time threshold.
  • the wheel loader according to the fourth aspect of the present invention is the wheel loader according to any one of the first to third aspects, and the traction force control unit sets the control level of the traction force to the first level.
  • the maximum traction force of the first level is smaller than the maximum traction force when the traction force control is in the off state.
  • the traction force control unit changes the control level of the maximum traction force to the second level when the determination condition is satisfied during the traction force control.
  • the second level maximum traction force is greater than the first level maximum traction force.
  • the wheel loader according to the fifth aspect of the present invention is the wheel loader according to the fourth aspect, wherein the second level maximum traction force is smaller than the maximum traction force when the traction force control is off.
  • the wheel loader according to the sixth aspect of the present invention is the wheel loader according to the fourth aspect, and further includes a tractive force level changing unit for changing the magnitude of the maximum tractive force of the first level.
  • a wheel loader is the wheel loader according to the fourth aspect, wherein the traction force control unit sets the traction force control level to the first when the determination condition is not satisfied during the traction force control. Return to level.
  • a wheel loader is the wheel loader according to the seventh aspect, wherein the tractive force control unit sets the tractive force control level to the first level when the tractive force control level is changed to the second level. Change the traction force more slowly than when returning to.
  • a wheel loader is the wheel loader according to the first aspect, wherein the work situation determination unit is configured to excavate the work situation based on the traveling state of the vehicle and the operating state of the work implement. It is determined whether or not there is.
  • a wheel loader is the wheel loader according to the first aspect, wherein the traction force control unit controls the displacement of the traveling hydraulic motor by controlling the tilt angle of the traveling hydraulic motor. To do.
  • the tractive force control unit controls the maximum tractive force by controlling the upper limit capacity of the traveling hydraulic motor.
  • the wheel loader according to the eleventh aspect of the present invention is the wheel loader according to the first aspect, and the traction force control unit does not increase the maximum traction force when the work phase is not excavation.
  • the wheel loader according to the twelfth aspect of the present invention is the wheel loader according to the first aspect, and the traction force control unit does not increase the maximum traction force when the vehicle speed is not less than or equal to a predetermined speed threshold value.
  • a wheel loader is the wheel loader according to the first aspect, wherein the traction force control unit increases the maximum traction force when the operation amount of the accelerator operation member is not equal to or greater than a predetermined operation threshold. Not performed.
  • a wheel loader is the wheel loader according to the first aspect, wherein the traction force control unit increases the maximum traction force when the operation amount of the inching operation member is not less than a predetermined inching operation threshold. Do not do.
  • the wheel loader according to the fifteenth aspect of the present invention is the wheel loader according to the second aspect, and the traction force control unit does not increase the maximum traction force when the boom angle is not smaller than a predetermined angle threshold.
  • the wheel loader according to the sixteenth aspect of the present invention is the wheel loader according to the third aspect, and the tractive force control unit does not increase the maximum tractive force when the duration is not equal to or greater than a predetermined time threshold.
  • the control method is a wheel loader control method.
  • the wheel loader has a working machine having a boom and a bucket, an engine, a hydraulic pump driven by the engine, a traveling hydraulic motor driven by hydraulic oil discharged from the hydraulic pump, and a target rotational speed of the engine.
  • a control method includes a work machine, an engine, a hydraulic pump, a traveling hydraulic motor, an accelerator operation member, an inching operation member, and a traction force control operation member.
  • the work machine has a boom and a bucket.
  • the hydraulic pump is driven by the engine.
  • the traveling hydraulic motor is driven by hydraulic oil discharged from the hydraulic pump.
  • the accelerator operation member is operated to set a target engine speed.
  • the inching operation member is operated to reduce the vehicle speed.
  • the tractive force control operating member is operated to switch on / off tractive force control that reduces the maximum tractive force.
  • the control method of this aspect includes the following steps. In the first step, the vehicle speed is detected. In the second step, it is determined whether or not the work phase is excavation. In the third step, it is determined whether or not the vehicle speed is equal to or less than a predetermined speed threshold. In the fourth step, it is determined whether or not the operation amount of the accelerator operation member is equal to or greater than a predetermined accelerator threshold value.
  • the fifth step it is determined whether or not the operation amount of the inching operation member is equal to or less than a predetermined inching operation threshold value.
  • the sixth step when the traction force control is on, the maximum traction force is reduced more than the maximum traction force when the traction force control is off.
  • the seventh step the maximum traction force is increased when the determination condition is satisfied during the traction force control.
  • the determination conditions are that the work phase is excavation, the vehicle speed is less than or equal to a predetermined speed threshold, the operation amount of the accelerator operation member is greater than or equal to the predetermined accelerator threshold, and the operation amount of the inching operation member is predetermined. Of the inching operation threshold value or less.
  • the maximum traction force is automatically increased when the determination condition is satisfied during the traction force control.
  • the determination conditions are that the work phase is excavation, the vehicle speed is less than or equal to a predetermined speed threshold, the operation amount of the accelerator operation member is greater than or equal to the predetermined accelerator threshold, and the operation amount of the inching operation member is predetermined.
  • the inching operation threshold value or less. That the vehicle speed is less than or equal to a predetermined speed threshold and that the operation amount of the accelerator operation member is greater than or equal to the predetermined accelerator threshold means that the vehicle speed is not sufficiently high with respect to the operation amount of the accelerator operation member. .
  • the above condition is satisfied when the vehicle is almost stopped despite the fact that the accelerator pedal is largely depressed.
  • the inching operation member is operated when the operator wants to decrease the vehicle speed without decreasing the engine rotation speed.
  • an operation amount of the inching operation member being equal to or less than a predetermined inching operation threshold means that the operator does not intend to reduce the vehicle speed. Therefore, when the determination condition is satisfied, the wheel loader is almost stopped even though the operator is operating the accelerator operation member during the excavation work in order to produce a larger traction force. ing.
  • the maximum traction force is automatically increased in such a state, so that a sufficient traction force can be obtained during excavation work.
  • it is not necessary for the operator to perform an operation for changing the maximum traction force level it is possible to suppress a decrease in operability.
  • the state in which the boom is lowered is detected by determining whether or not the boom angle is smaller than a predetermined angle threshold.
  • the tractive force control part can determine whether it is in the state where a bigger tractive force is required.
  • the wheel loader according to the third aspect of the present invention it is possible to prevent the increase in traction force from being repeated frequently in a short time by considering the duration time. Thereby, the fall of the operativity of a wheel loader is suppressed.
  • the maximum traction force is reduced to the first level maximum traction force by the traction force control.
  • the maximum traction force is automatically increased from the first level maximum traction force to the second level maximum traction force.
  • the maximum traction force at the second level is smaller than the maximum traction force when the traction force control is off. Accordingly, it is possible to prevent the maximum traction force from being excessively increased when the determination condition is satisfied.
  • the traction force level changing unit can change the magnitude of the maximum traction force of the first level.
  • the maximum traction force is automatically increased to a value larger than the first level maximum traction force. Thereby, the operator can set the required maximum traction force more finely according to the work situation.
  • the maximum traction force returns to the first level maximum traction force when the determination condition is not satisfied during the traction force control. Thereby, an appropriate maximum traction force according to the work situation can be obtained.
  • the wheel loader when the maximum traction force is increased, an abrupt increase in traction force can be suppressed. Thereby, generation
  • the maximum traction force can be controlled by controlling the upper limit capacity of the traveling hydraulic motor.
  • the operation amount of the accelerator operation member is not equal to or greater than the predetermined operation threshold, the above-described maximum traction force is not increased. Thereby, when it is not necessary to increase the tractive force, the maximum tractive force during normal tractive force control is maintained.
  • the maximum traction force when the operation amount of the inching operation member is not less than or equal to the predetermined inching operation threshold value, the maximum traction force is not increased. Thereby, when it is not necessary to increase the tractive force, the maximum tractive force during normal tractive force control is maintained.
  • the maximum traction force described above is not increased. Therefore, when it is not necessary to increase the tractive force, the maximum tractive force during normal tractive force control is maintained.
  • the above-described maximum traction force is not increased. Thereby, it is possible to prevent the increase in traction force from being repeated frequently in a short time.
  • the maximum traction force is automatically increased when the determination condition is satisfied during traction force control.
  • the determination conditions are that the work phase is excavation, the vehicle speed is less than or equal to a predetermined speed threshold, the operation amount of the accelerator operation member is greater than or equal to the predetermined accelerator threshold, and the operation amount of the inching operation member is predetermined.
  • the inching operation threshold value or less. That the vehicle speed is less than or equal to a predetermined speed threshold and that the operation amount of the accelerator operation member is greater than or equal to the predetermined accelerator threshold means that the vehicle speed is not sufficiently high with respect to the operation amount of the accelerator operation member. .
  • the above condition is satisfied when the vehicle is almost stopped despite the fact that the accelerator pedal is largely depressed.
  • the inching operation member is operated when the operator wants to decrease the vehicle speed without decreasing the engine rotation speed.
  • an operation amount of the inching operation member being equal to or less than a predetermined inching operation threshold means that the operator does not intend to reduce the vehicle speed. Therefore, when the determination condition is satisfied, the wheel loader is almost stopped even though the operator is operating the accelerator operation member during the excavation work in order to produce a larger traction force. ing.
  • the maximum traction force is automatically increased in such a state, whereby a sufficient traction force can be obtained during excavation work.
  • it is not necessary for the operator to perform an operation for changing the maximum traction force level it is possible to suppress a decrease in operability.
  • the side view of the wheel loader concerning one embodiment of the present invention.
  • the block diagram which shows the structure of the hydraulic drive mechanism mounted in the wheel loader.
  • the figure which shows the output torque line of an engine.
  • the figure which shows an example of a pump displacement-driving circuit pressure characteristic.
  • the figure which shows an example of a motor capacity-driving circuit pressure characteristic.
  • the figure which shows an example of the vehicle speed-traction force diagram of a wheel loader.
  • the block diagram which shows the structure of a vehicle body controller. 6 is a flowchart showing a determination process for automatically increasing the maximum traction force during traction force control.
  • the side view of the working machine for showing the definition of a boom angle.
  • FIG. 1 is a side view of the wheel loader 50.
  • the wheel loader 50 includes a vehicle body 51, a work machine 52, a plurality of tires 55, and a cab 56.
  • the work machine 52 is attached to the front portion of the vehicle body 51.
  • the work machine 52 includes a boom 53, a bucket 54, a lift cylinder 19, and a bucket cylinder 26.
  • the boom 53 is a member for lifting the bucket 54.
  • the boom 53 is driven by the lift cylinder 19.
  • the bucket 54 is attached to the tip of the boom 53.
  • the bucket 54 is dumped and tilted by the bucket cylinder 26.
  • the cab 56 is placed on the vehicle body 51.
  • FIG. 2 is a block diagram showing a configuration of the hydraulic drive mechanism 30 mounted on the wheel loader 50.
  • the hydraulic drive mechanism 30 mainly includes an engine 1, a first hydraulic pump 4, a second hydraulic pump 2, a charge pump 3, a traveling hydraulic motor 10, an engine controller 12 a, a vehicle body controller 12, and a drive hydraulic circuit 20.
  • the first hydraulic pump 4 is driven by the engine 1 to discharge hydraulic oil.
  • the traveling hydraulic motor 10 is driven by the hydraulic oil discharged from the first hydraulic pump 4.
  • the wheel loader 50 travels when the traveling hydraulic motor 10 rotationally drives the tire 55 described above. That is, the hydraulic drive mechanism 30 employs a so-called 1-pump 1-motor HST system.
  • the engine 1 is a diesel engine, and output torque generated by the engine 1 is transmitted to the second hydraulic pump 2, the charge pump 3, the first hydraulic pump 4, and the like.
  • the hydraulic drive mechanism 30 is provided with an engine rotation speed sensor 1 a that detects the actual rotation speed of the engine 1.
  • the engine 1 is connected to a fuel injection device 1b.
  • the engine controller 12a described later controls the output torque of the engine 1 (hereinafter referred to as “engine torque”) and the rotation speed by controlling the fuel injection device 1b.
  • the first hydraulic pump 4 is driven by the engine 1 to discharge hydraulic oil.
  • the first hydraulic pump 4 is a variable displacement hydraulic pump.
  • the hydraulic oil discharged from the first hydraulic pump 4 is sent to the traveling hydraulic motor 10 through the drive hydraulic circuit 20.
  • the drive hydraulic circuit 20 includes a first drive circuit 20a and a second drive circuit 20b.
  • the traveling hydraulic motor 10 is driven in one direction (for example, forward direction).
  • the traveling hydraulic motor 10 is driven in the other direction (for example, the reverse direction).
  • the drive hydraulic circuit 20 is provided with a drive circuit pressure detector 17.
  • the drive circuit pressure detector 17 detects the pressure of hydraulic oil (hereinafter referred to as “drive circuit pressure”) supplied to the traveling hydraulic motor 10 via the first drive circuit 20a or the second drive circuit 20b.
  • the drive circuit pressure detection unit 17 includes a first drive circuit pressure sensor 17a and a second drive circuit pressure sensor 17b.
  • the first drive circuit pressure sensor 17a detects the hydraulic pressure of the first drive circuit 20a.
  • the second drive circuit pressure sensor 17b detects the hydraulic pressure of the second drive circuit 20b.
  • the first drive circuit pressure sensor 17 a and the second drive circuit pressure sensor 17 b send detection signals to the vehicle body controller 12.
  • the first hydraulic pump 4 is connected to an FR switching unit 5 and a pump capacity control cylinder 6 for controlling the discharge direction of the first hydraulic pump 4.
  • the FR switching unit 5 is an electromagnetic control valve that switches the supply direction of hydraulic oil to the pump displacement control cylinder 6 based on a control signal from the vehicle body controller 12.
  • the FR switching unit 5 switches the discharge direction of the first hydraulic pump 4 by switching the supply direction of the hydraulic oil to the pump displacement control cylinder 6.
  • the FR switching unit 5 switches the discharge direction of the first hydraulic pump 4 between discharge to the first drive circuit 20a and discharge to the second drive circuit 20b.
  • the pump displacement control cylinder 6 is driven by being supplied with hydraulic oil via the pump pilot circuit 32, and changes the tilt angle of the first hydraulic pump 4.
  • the pump capacity control unit 7 is disposed in the pump pilot circuit 32.
  • the pump displacement control unit 7 connects the pump displacement control cylinder 6 to either the pump pilot circuit 32 or the hydraulic oil tank.
  • the pump displacement control unit 7 is an electromagnetic control valve that is controlled based on a control signal from the vehicle body controller 12.
  • the pump displacement control unit 7 adjusts the tilt angle of the first hydraulic pump 4 by controlling the pressure of the hydraulic oil in the pump displacement control cylinder 6.
  • the pump pilot circuit 32 is connected to the charge circuit 33 and the hydraulic oil tank via a cut-off valve 47.
  • the pilot port of the cutoff valve 47 is connected to the first drive circuit 20a and the second drive circuit 20b via the shuttle valve 46.
  • the shuttle valve 46 introduces the larger one of the hydraulic pressure of the first drive circuit 20 a and the hydraulic pressure of the second drive circuit 20 b to the pilot port of the cutoff valve 47. That is, the drive circuit pressure is applied to the pilot port of the cutoff valve 47.
  • the cut-off valve 47 causes the charge circuit 33 and the pump pilot circuit 32 to communicate with each other when the drive circuit pressure is lower than a predetermined cut-off pressure. As a result, hydraulic oil is supplied from the charge circuit 33 to the pump pilot circuit 32.
  • the cut-off valve 47 causes the pump pilot circuit 32 to communicate with the hydraulic oil tank and allows the hydraulic oil in the pump pilot circuit 32 to escape to the hydraulic oil tank. Thereby, when the hydraulic pressure of the pump pilot circuit 32 decreases, the capacity of the first hydraulic pump 4 is reduced, and an increase in the drive circuit pressure is suppressed.
  • the charge pump 3 is a pump that is driven by the engine 1 and supplies hydraulic oil to the drive hydraulic circuit 20.
  • the charge pump 3 is connected to the charge circuit 33.
  • the charge pump 3 supplies hydraulic oil to the pump pilot circuit 32 via the charge circuit 33.
  • the charge circuit 33 is connected to the first drive circuit 20a via the first check valve 41.
  • the first check valve 41 allows the flow of hydraulic oil from the charge circuit 33 to the first drive circuit 20a, but restricts the flow of hydraulic oil from the first drive circuit 20a to the charge circuit 33.
  • the charge circuit 33 is connected to the second drive circuit 20b via the second check valve 42.
  • the second check valve 42 allows the flow of hydraulic oil from the charge circuit 33 to the second drive circuit 20b, but restricts the flow of hydraulic oil from the second drive circuit 20b to the charge circuit 33.
  • the charge circuit 33 is connected to the first drive circuit 20a via the first relief valve 43.
  • the first relief valve 43 is opened when the hydraulic pressure of the first drive circuit 20a becomes greater than a predetermined pressure.
  • the charge circuit 33 is connected to the second drive circuit 20b via the second relief valve 44.
  • the second relief valve 44 is opened when the hydraulic pressure of the second drive circuit 20b becomes greater than a predetermined pressure.
  • the charge circuit 33 is connected to the hydraulic oil tank via the low pressure relief valve 45.
  • the low pressure relief valve 45 is opened when the hydraulic pressure of the charge circuit 33 becomes higher than a predetermined relief pressure. Thereby, the drive circuit pressure is adjusted so as not to exceed a predetermined relief pressure.
  • the predetermined relief pressure of the low pressure relief valve 45 is considerably lower than the relief pressure of the first relief valve 43 and the relief pressure of the second relief valve 44. Therefore, when the drive circuit pressure becomes lower than the hydraulic pressure of the charge circuit 33, hydraulic oil is supplied from the charge circuit 33 to the drive hydraulic circuit 20 via the first check valve 41 or the second check valve 42.
  • the second hydraulic pump 2 is driven by the engine 1.
  • the hydraulic oil discharged from the second hydraulic pump 2 is supplied to the lift cylinder 19 via the working machine hydraulic circuit 31.
  • the discharge pressure of the second hydraulic pump 2 is detected by a discharge pressure sensor 39.
  • the discharge pressure sensor 39 sends a detection signal to the vehicle body controller 12.
  • the work machine hydraulic circuit 31 is provided with a work machine control valve 18.
  • the work implement control valve 18 is driven according to the operation amount of the work implement operation member 23.
  • the work machine control valve 18 controls the flow rate of the hydraulic oil supplied to the lift cylinder 19 according to the pilot pressure applied to the pilot port.
  • the pilot pressure applied to the pilot port of the work implement control valve 18 is controlled by the pilot valve 23 a of the work implement operating member 23.
  • the pilot valve 23 a applies a pilot pressure corresponding to the operation amount of the work implement operating member 23 to the pilot port of the work implement control valve 18.
  • the pilot pressure applied to the pilot port of the work implement control valve 18 is detected by the PPC pressure sensor 21.
  • the pressure of the hydraulic oil supplied to the lift cylinder 19 is detected by the boom pressure sensor 22.
  • the PPC pressure sensor 21 and the boom pressure sensor 22 send detection signals to the vehicle body controller 12.
  • the lift cylinder 19 is provided with a boom angle detector 38.
  • the boom angle detection unit 38 detects a boom angle described later.
  • the boom angle detection unit 38 is a sensor that detects the rotation angle of the boom 53.
  • the boom angle detection unit 38 may detect the stroke amount of the lift cylinder 19 and calculate the rotation angle of the boom 53 from the stroke amount.
  • the boom angle detection unit 38 sends a detection signal to the vehicle body controller 12.
  • the bucket cylinder 26 is also controlled by a control valve in the same manner as the lift cylinder 19, but is not shown in FIG.
  • the traveling hydraulic motor 10 is a variable displacement hydraulic motor.
  • the traveling hydraulic motor 10 is driven by the hydraulic oil discharged from the first hydraulic pump 4 to generate a driving force for traveling.
  • the traveling hydraulic motor 10 is provided with a motor cylinder 11a and a motor capacity controller 11b.
  • the motor cylinder 11 a changes the tilt angle of the traveling hydraulic motor 10.
  • the motor capacity control unit 11 b is an electromagnetic control valve that is controlled based on a control signal from the vehicle body controller 12.
  • the motor capacity control unit 11 b controls the motor cylinder 11 a based on a control signal from the vehicle body controller 12.
  • the motor cylinder 11 a and the motor capacity control unit 11 b are connected to a motor pilot circuit 34.
  • the motor pilot circuit 34 is connected to the first drive circuit 20a via a check valve 48.
  • the check valve 48 allows the flow of hydraulic oil from the first drive circuit 20a to the motor pilot circuit 34, but restricts the flow of hydraulic oil from the motor pilot circuit 34 to the first drive circuit 20a.
  • the motor pilot circuit 34 is connected to the second drive circuit 20b via the check valve 49.
  • the check valve 49 allows the flow of hydraulic oil from the second drive circuit 20b to the motor pilot circuit 34, but restricts the flow of hydraulic oil from the motor pilot circuit 34 to the second drive circuit 20b.
  • the check valves 48 and 49 supply the larger hydraulic pressure of the first drive circuit 20 a and the second drive circuit 20 b, that is, hydraulic fluid having a drive circuit pressure, to the motor pilot circuit 34.
  • the motor capacity control unit 11b switches the supply direction and supply flow rate of the hydraulic oil from the motor pilot circuit 34 to the motor cylinder 11a based on the control signal from the vehicle body controller 12.
  • the vehicle body controller 12 can arbitrarily change the capacity of the traveling hydraulic motor 10.
  • the upper limit capacity and the lower limit capacity of the traveling hydraulic motor 10 can be arbitrarily set.
  • the hydraulic drive mechanism 30 is provided with a vehicle speed sensor 16.
  • the vehicle speed sensor 16 detects the vehicle speed.
  • the vehicle speed sensor 16 sends a detection signal to the vehicle body controller 12.
  • the vehicle speed sensor 16 detects the vehicle speed, for example, by detecting the rotational speed of the tire drive shaft.
  • the vehicle speed sensor 16 corresponds to a vehicle speed detection unit of the present invention.
  • the wheel loader 50 includes an accelerator operation member 13a, a forward / reverse switching operation member 14, a traction force control operation member 15, an inching operation unit 27, and a setting operation device 24.
  • the accelerator operation member 13a is a member for the operator to set the target rotation speed of the engine 1.
  • the accelerator operation member 13a is an accelerator pedal, for example, and is operated by an operator.
  • the accelerator operation member 13 a is connected to the accelerator operation amount sensor 13.
  • the accelerator operation amount sensor 13 is composed of a potentiometer or the like.
  • the accelerator operation amount sensor 13 sends a detection signal indicating the operation amount of the accelerator operation member 13a (hereinafter referred to as “accelerator operation amount”) to the engine controller 12a.
  • the operator can control the rotational speed of the engine 1 by adjusting the accelerator operation amount.
  • the forward / reverse switching operation member 14 is operated by an operator to be switched between a forward position, a reverse position, and a neutral position.
  • the forward / reverse switching operation member 14 sends a detection signal indicating the position of the forward / reverse switching operation member 14 to the vehicle body controller 12.
  • the operator can switch between forward and backward movement of the wheel loader 50 by operating the forward / reverse switching operation member 14.
  • the tractive force control operation member 15 is, for example, a switch.
  • the traction force control operation member 15 is operated by an operator and is operated to switch traction force control on and off.
  • the traction force control is control for reducing the maximum traction force of the wheel loader 50.
  • the maximum traction force is a peak value of traction force (see FIG. 6) that changes according to the vehicle speed.
  • the tractive force control being in the off state means a state where the tractive force control is not being executed.
  • the traction force control being in the on state means a state in which the traction force control is being executed.
  • the tractive force control will be described in detail later.
  • the tractive force control operation member 15 sends a detection signal indicating the selected position of the tractive force control operation member 15 to the vehicle body controller 12.
  • the inching operation unit 27 includes an inching operation member 27a and an inching operation sensor 27b.
  • the inching operation member 27a is operated by an operator.
  • the inching operation member 27a is a pedal, for example.
  • the inching operation member 27a has both an inching operation function and a brake operation function.
  • the inching operation sensor 27 b detects an operation amount of the inching operation member 27 a (hereinafter referred to as “inching operation amount”) and transmits a detection signal to the vehicle body controller 12.
  • inching operation amount an operation amount of the inching operation member 27 a
  • the vehicle body controller 12 reduces the hydraulic pressure of the pump pilot circuit 32 according to the operation amount of the inching operation member 27a. As a result, the drive circuit pressure decreases, and the rotational speed of the traveling hydraulic motor 10 decreases.
  • the inching operation unit 27 is used, for example, when it is desired to increase the rotational speed of the engine 1 but suppress increase in traveling speed. That is, when the rotational speed of the engine 1 is increased by operating the accelerator operation member 13a, the hydraulic pressure of the pump pilot circuit 32 also increases. At this time, the increase in the hydraulic pressure of the pump pilot circuit 32 can be controlled by operating the inching operation member 27a.
  • the inching operation member 27a is operated to reduce the vehicle speed and traction force without reducing the engine rotation speed.
  • a brake valve 28 is connected to the inching operation member 27a.
  • the brake valve 28 controls the supply of hydraulic oil to the hydraulic brake device 29.
  • the inching operation member 27 a also serves as an operation member for the hydraulic brake device 29. Until the operation amount of the inching operation member 27a reaches a predetermined amount, only the inching operation described above is performed based on the detection signal from the inching operation sensor 27b. Then, when the operation amount of the inching operation member 27a reaches a predetermined amount, the operation of the brake valve 28 is started, whereby a braking force is generated in the hydraulic brake device 29.
  • the braking force of the hydraulic brake device 29 is controlled according to the operation amount of the inching operation member 27a.
  • the setting operation device 24 is a device for performing various settings of the wheel loader 50.
  • the setting operation device 24 is a display device with a touch panel function, for example.
  • the control level of the traction force is set to the first level.
  • the maximum traction force of the first level is smaller than the maximum traction force when the traction force control is in the off state.
  • the operator can select and set the magnitude of the maximum traction force of the first level in traction force control from a plurality of levels by operating the setting operation device 24.
  • the setting operation device 24 corresponds to a tractive force level changing unit for changing the magnitude of the maximum tractive force of the first level.
  • the engine controller 12a is an electronic control unit having an arithmetic device such as a CPU and various memories.
  • the engine controller 12a controls the engine 1 so that the set target rotational speed can be obtained.
  • FIG. 3 shows an output torque line of the engine 1.
  • the output torque line of the engine 1 shows the relationship between the rotational speed of the engine 1 and the maximum engine torque that can be output by the engine 1 at each rotational speed.
  • a solid line L100 indicates an engine output torque line when the accelerator operation amount is 100%. This engine output torque line corresponds to, for example, the rating of the engine 1 or the maximum power output.
  • the accelerator operation amount of 100% means that the accelerator operation member 13a is operated to the maximum.
  • a broken line L75 indicates an engine output torque line when the accelerator operation amount is 75%.
  • the engine controller 12a controls the output of the engine 1 so that the engine torque is equal to or less than the engine output torque line.
  • the control of the output of the engine 1 is performed, for example, by controlling the upper limit value of the fuel injection amount
  • the vehicle body controller 12 is an electronic control unit having an arithmetic device such as a CPU and various memories.
  • the vehicle body controller 12 controls the capacity of the first hydraulic pump 4 and the capacity of the traveling hydraulic motor 10 by electronically controlling the control valves based on detection signals from the detection units.
  • the vehicle body controller 12 outputs a command signal to the pump displacement control unit 7 based on the engine speed detected by the engine speed sensor 1a.
  • FIG. 4 shows an example of pump capacity-drive circuit pressure characteristics.
  • the pump capacity-drive circuit pressure characteristic indicates the relationship between the pump capacity and the drive circuit pressure.
  • L11 to L16 in the figure are lines showing the pump displacement-drive circuit pressure characteristics that are changed according to the engine speed.
  • the body displacement controller 12 controls the flow rate of the pump displacement control unit 7 based on the engine rotation speed, whereby the pump displacement / drive circuit pressure characteristic is changed to L11 to L16. Thereby, the pump capacity is controlled to a magnitude corresponding to the engine rotation speed and the drive circuit pressure.
  • the vehicle body controller 12 processes detection signals from the engine rotation speed sensor 1a and the drive circuit pressure detection unit 17, and outputs a motor capacity command signal to the motor capacity control unit 11b.
  • the vehicle body controller 12 sets the motor capacity from the value of the engine speed and the value of the drive circuit pressure with reference to the motor capacity-drive circuit pressure characteristics stored in the vehicle body controller 12.
  • the vehicle body controller 12 outputs a tilt angle change command corresponding to the set motor capacity to the motor capacity controller 11b.
  • FIG. 5 shows an example of motor capacity-drive circuit pressure characteristics.
  • a solid line L21 in the figure is a line that defines the motor capacity with respect to the drive circuit pressure in a state where the engine speed is a certain value.
  • the motor capacity here corresponds to the tilt angle of the traveling hydraulic motor 10.
  • the tilt angle is minimum (Min). Thereafter, as the drive circuit pressure increases, the tilt angle gradually increases (inclined portion L22 indicated by a solid line). After the tilt angle reaches the maximum (Max), the tilt angle maintains the maximum tilt angle Max even if the drive circuit pressure increases.
  • the inclined portion L22 defines the target pressure of the drive circuit pressure. That is, the vehicle body controller 12 increases the capacity of the traveling hydraulic motor when the drive circuit pressure becomes larger than the target pressure. Further, when the drive circuit pressure becomes smaller than the target pressure, the capacity of the traveling hydraulic motor is reduced.
  • the target pressure is determined according to the engine speed. That is, the inclined portion L22 shown in FIG.
  • the inclined portion L22 is controlled so that the tilt angle increases from a state where the drive circuit pressure is lower, and reaches the maximum tilt angle when the drive circuit pressure is lower. (Refer to the inclined portion L23 of the lower broken line in FIG. 5).
  • the minimum tilt angle (Min) is maintained until the drive circuit pressure becomes higher, and the maximum tilt angle (Max) is reached with the drive circuit pressure being higher.
  • the wheel loader 50 can change the traction force and the vehicle speed steplessly, and can automatically shift the vehicle speed from zero to the maximum speed without shifting operation.
  • FIG. 6 the wheel loader 50 can change the traction force and the vehicle speed steplessly, and can automatically shift the vehicle speed from zero to the maximum speed without shifting operation.
  • the inclined portion L22 is shown with the inclination emphasized for easy understanding, but is actually substantially horizontal. Therefore, when the drive circuit pressure reaches the target pressure, the motor capacity is switched between the minimum value (or minimum limit value) and the maximum value (or maximum limit value). However, when the drive circuit pressure reaches the target pressure, the command value is not changed immediately, but a time delay occurs. This time delay is the reason why the inclined portion L22 exists.
  • the vehicle body controller 12 executes traction force control when the traction force control operation member 15 is operated.
  • the vehicle body controller 12 changes the maximum traction force of the vehicle by changing the upper limit capacity of the traveling hydraulic motor 10. For example, as shown in FIG. 5, the vehicle body controller 12 outputs a command signal to the motor capacity control unit 11b so that the upper limit capacity is changed from Max to any one of Ma, Mb, and Mc.
  • the vehicle speed-traction force characteristic changes as shown by a line La in FIG.
  • the maximum traction force is reduced as compared with the line L1 indicating the vehicle speed-traction force characteristic in a state where the traction force control is not performed.
  • the maximum traction force of the vehicle is reduced to a preset maximum traction force of the first level.
  • the setting operation device 24 described above can select and set the magnitude of the first level maximum traction force in the traction force control from a plurality of levels. Specifically, the setting operation device 24 can select a level to be set as the first level from three levels of level A, level B, and level C.
  • Level A is a level of traction force corresponding to the above-described upper limit capacity Ma.
  • Level B is a level of traction force corresponding to the above-described upper limit capacity Mb.
  • Level C is a level of traction force corresponding to the above-described upper limit capacity Mc.
  • FIG. 7 shows traction force ratio information that defines the relationship between the traction force ratio and the accelerator operation amount.
  • the tractive force ratio indicates the ratio of the maximum tractive force in the tractive force control when the maximum tractive force is 100% when the tractive force control is in the off state.
  • Lv1 is first level tractive force ratio information (hereinafter referred to as “first tractive force ratio information”).
  • first tractive force ratio information when the accelerator operation amount is equal to or less than a predetermined threshold A2, the tractive force ratio is constant at R1.
  • the tractive force ratio increases according to the accelerator operation amount.
  • the vehicle body controller 12 increases the upper limit capacity of the traveling hydraulic motor 10 so that the maximum traction force as indicated by the first traction force ratio information Lv1 is obtained. Control.
  • Lv2 is second level tractive force ratio information (hereinafter referred to as “second tractive force ratio information”).
  • the tractive force ratio of the second level Lv2 is larger than the tractive force ratio of the first level Lv1.
  • the tractive force ratio of the second level Lv2 is larger than the tractive force ratio of the first level Lv1 by a predetermined change amount dR.
  • the change amount dR is preferably 5% or more and 15% or less.
  • the change amount dR is, for example, 10%.
  • the vehicle body controller 12 controls the upper limit capacity of the traveling hydraulic motor 10 so that the maximum traction force as indicated by the second traction force ratio information Lv2 is obtained when the determination condition is satisfied during the traction force control. As a result, the maximum traction force is automatically increased.
  • a determination process for automatically increasing the maximum traction force in the traction force control will be described in detail.
  • the vehicle body controller 12 includes a traction force control unit 61, a work situation determination unit 62, a vehicle speed determination unit 63, an accelerator operation determination unit 64, a boom angle determination unit 65, and an inching operation determination unit 66. And a duration determination unit 67 and a change flag determination unit 68.
  • FIG. 9 is a flowchart showing a determination process for changing the control level of the traction force from the first level to the second level during the traction force control. When the traction force control is set to the on state by operating the traction force control operation member 15, the vehicle body controller 12 executes the process shown in FIG.
  • step S101 the tractive force control unit 61 sets the tractive force control level to the first level.
  • step S102 the tractive force control unit 61 sets the change flag to OFF.
  • the change flag is set to ON when the tractive force control level is raised from the first level to the second level.
  • the change flag is set to OFF when the tractive force control level is not increased from the first level to the second level. That is, when the change flag is off, the tractive force control unit 61 maintains the tractive force control level at the first level.
  • Step S103 tractive force control part 61 starts timer measurement.
  • the timer measures a duration time in which a determination condition described later is satisfied.
  • the determination condition is a condition for increasing the control level of the traction force from the first level to the second level.
  • step S104 the work situation determination section 62 determines whether or not the excavation flag is on.
  • the work situation determination unit 62 determines whether the work situation is excavation based on the traveling state of the vehicle and the operating state of the work implement 52.
  • the work situation determination unit 62 sets the excavation flag to ON when it is determined that the work situation is excavation.
  • the work situation determination unit 62 sets the excavation flag to OFF. Specific work situation determination processing will be described later.
  • step S105 the vehicle speed determination unit 63 determines whether the vehicle speed is equal to or less than a predetermined speed threshold value V1.
  • the vehicle speed determination unit 63 performs the above determination based on the detection signal from the vehicle speed sensor 16.
  • the speed threshold value V1 is a value that is small enough to be considered that the vehicle is stopped.
  • the speed threshold value V1 is 2 km / h or less.
  • the speed threshold value V1 is 1 km / h or less.
  • the accelerator operation determination unit 64 determines whether the accelerator operation amount is equal to or greater than a predetermined accelerator threshold A1.
  • the accelerator operation determination unit 64 performs the above determination based on the detection signal from the accelerator operation amount sensor 13.
  • the accelerator threshold value A1 is a value large enough that the accelerator operation member 13a can be regarded as being operated to the maximum extent.
  • the accelerator threshold A1 is larger than the above-described threshold A2 (see FIG. 7).
  • the accelerator threshold A1 is preferably 80% or more. More preferably, the accelerator threshold A1 is 90% or more.
  • the boom angle determination unit 65 determines whether or not the boom angle is smaller than a predetermined angle threshold value B1.
  • the boom angle determination unit 65 performs the above determination based on the detection signal from the boom angle detection unit 38.
  • the boom angle is an angle ⁇ formed between a line connecting the boom pin 57 and the bucket pin 58 and the horizontal direction with the horizontal direction set to 0 degree in a side view.
  • the angle below the horizontal direction is a negative value
  • the angle above the horizontal direction is a positive value.
  • the boom angle is defined to increase upward.
  • the angle threshold B1 corresponds to a boom angle that can be taken during excavation work.
  • the angle threshold value B1 is 0 degree or less.
  • the angle threshold B1 is ⁇ 10 degrees or less. This is because when the boom angle is larger than 0 degrees, the boom is lifted to a position higher than the horizontal, and in such a state, a large traction force is not required as compared with the case where the boom is pushed into the earth and sand.
  • the inching operation determination unit 66 determines whether or not the inching operation amount is equal to or less than a predetermined inching operation threshold C1.
  • the inching operation threshold C1 is a value that is small enough to be considered that the inching operation member 27a is not operated. For example, when the maximum value of the inching operation amount is 100%, the inching operation threshold C1 is preferably 20% or less. More preferably, the inching operation threshold C1 is 15% or less.
  • step S109 the traction force control unit 61 sets the traction force control level to the first level. That is, when at least one of the conditions from step S104 to step S108 is not satisfied in a state where the control level of the tractive force is the first level, the control level of the tractive force is maintained at the first level.
  • the tractive force control level is returned from the second level to the first level. Accordingly, the tractive force control unit 61 does not increase the maximum tractive force when the work phase is not excavation.
  • the tractive force control unit 61 does not increase the maximum tractive force when the vehicle speed is not less than or equal to the predetermined speed threshold V1.
  • the traction force control unit 61 does not increase the maximum traction force when the operation amount of the accelerator operation member is not equal to or greater than the predetermined operation threshold A1.
  • the tractive force control unit 61 does not increase the maximum tractive force when the boom angle is not smaller than the predetermined angle threshold B1.
  • the tractive force control unit 61 does not increase the maximum tractive force when the operation amount of the inching operation member 27a is not less than or equal to a predetermined inching operation threshold C1.
  • the timer is reset.
  • step S111 the duration determination unit 67 determines whether the time measured by the timer is equal to or greater than a predetermined time threshold value D1. That is, the duration determination unit 67 determines whether or not the duration of the state in which the conditions from step S104 to step S108 are satisfied is equal to or greater than the predetermined time threshold value D1.
  • the time threshold D1 is set to a time that can be considered that each condition is not temporarily satisfied.
  • the time threshold value D1 is a value of 1 second or less.
  • the time threshold value D1 is a value of 0.5 seconds or less.
  • step S104 determines whether the tractive force control unit 61 has increased the maximum tractive force until the duration time reaches the predetermined time threshold value D1.
  • step S112 the change flag determination unit 68 determines whether or not the change flag is off. That is, the change flag determination unit 68 determines whether or not the traction force control level is the first level. If the change flag is OFF, that is, if the control level of the traction force is the first level, the process proceeds to step S113.
  • step S113 the tractive force control unit 61 sets the change flag to ON.
  • step S114 the tractive force control unit 61 changes the tractive force control level from the first level to the second level.
  • the tractive force control part 61 controls the maximum tractive force based on the 2nd tractive force ratio information Lv2 shown in FIG.
  • the maximum traction force of the second level is smaller than the maximum traction force when the traction force control is off.
  • the tractive force control unit 61 changes the maximum tractive force more slowly when raising the tractive force control level from the first level to the second level than when returning from the second level to the first level. That is, the traction force control unit 61 changes the traction force more slowly when increasing the maximum traction force in the traction force control than when reducing the maximum traction force.
  • FIG. 11A shows the change speed of the command value of the motor capacity when the motor capacity is increased. That is, FIG. 11A shows the change speed of the command value of the motor capacity when the maximum traction force is increased.
  • FIG. 11B shows the change speed of the command value of the motor capacity when the motor capacity is decreased. That is, FIG. 11B shows the change speed of the command value of the motor capacity when the maximum traction force is reduced.
  • time T1 is greater than time T2. Therefore, the traction force control unit 61 changes the command value of the motor capacity more slowly when increasing the maximum traction force than when decreasing the maximum traction force.
  • step S112 shown in FIG. 9 when the change flag is not OFF, the control level of the traction force is maintained at the second level, and the determination from step S104 to step S112 is repeated. When any of the conditions from step S104 to step S108 is not satisfied, the control level of the traction force is returned from the second level to the first level in step S109.
  • FIG. 12 is a flowchart showing processing for determining whether or not the excavation flag is on. That is, FIG. 12 is a flowchart showing a process for determining whether or not the work phase is excavation.
  • the work situation determination section 62 sets the excavation flag to off.
  • the work situation determination section 62 determines whether or not the boom pressure reduction flag is on.
  • the boom pressure reduction flag being on means that the bucket is in an empty state. The boom pressure reduction flag determination process will be described later.
  • step S203 it is determined whether or not the boom angle is smaller than a predetermined angle threshold B2.
  • the angle threshold B2 corresponds to a boom angle when the bucket is placed on the ground.
  • the angle threshold B2 is smaller than the angle threshold B1 described above.
  • the work situation determination section 62 determines whether or not the boom pressure is equal to or higher than the first boom pressure determination value.
  • the boom pressure is a hydraulic pressure supplied to the lift cylinder 19 when the lift cylinder 19 is extended.
  • the boom pressure is detected by the boom pressure sensor 22 described above.
  • the first boom pressure determination value is a boom pressure value that can be taken during excavation.
  • the first boom pressure determination value is obtained and set in advance by experiment or simulation.
  • the first boom pressure determination value is a value corresponding to the boom angle.
  • the vehicle body controller 12 stores boom pressure determination value information (hereinafter referred to as “first boom pressure determination value information”) indicating the relationship between the first boom pressure determination value and the boom angle.
  • the first boom pressure determination value information is, for example, a table or map showing the relationship between the first boom pressure determination value and the boom angle.
  • the work situation determination section 62 determines the first boom pressure determination value according to the boom angle by referring to the first boom pressure determination value information.
  • step S205 the work situation determination section 62 sets the excavation flag to ON. That is, the work situation determination unit 62 determines that the work situation is excavation when all the conditions from step S202 to step S204 are satisfied. This is because when all the conditions from step S202 to step S204 are satisfied, it can be considered that the wheel loader 50 has entered the preparatory stage for excavation. When at least one of the conditions of steps S202, S204, and S204 is not satisfied, the determinations from step S202 to step S204 are repeated.
  • step S206 the work situation determination section 62 sets the boom pressure reduction flag to OFF.
  • step S207 the work situation determination section 62 determines whether or not the FNR recognition value is F.
  • the FNR recognition value is information indicating whether the vehicle is in a forward drive state, a reverse drive state, or a neutral state.
  • An FNR recognition value of F means that the vehicle is in a forward traveling state.
  • An FNR recognition value of R means that the vehicle is in a reverse drive state.
  • An FNR recognition value of N means that the vehicle is in a neutral state.
  • the work situation determination unit 62 determines whether or not the FNR recognition value is F based on the detection signal from the forward / reverse switching operation member 14. When the FNR recognition value is not F, the process proceeds to step S209.
  • step S209 the work situation determination section 62 sets the excavation flag to OFF. That is, the excavation flag is set to OFF when the vehicle is in a reverse state or a neutral state.
  • step S207 when the FNR recognition value is F, the process proceeds to step S208.
  • step S208 the work situation determination section 62 determines whether or not the boom pressure reduction flag is on.
  • the process proceeds to step S209.
  • the boom pressure reduction flag is not on, the process returns to step S207. Therefore, once it is determined that the work phase is excavation, the forward / reverse switching operation member 14 is thereafter switched from the forward movement position to the reverse movement position, or the forward / backward switching operation member 14 is changed from the forward movement position to the neutral position. Until switching, the excavation flag is kept on even if the conditions from step S202 to step S204 are not satisfied. Even if the forward / reverse switching operation member 14 is maintained at the forward position, the excavation flag is changed to off when the boom pressure reduction flag is set to on.
  • FIG. 13 is a flowchart showing a process for determining whether or not the boom pressure reduction flag is ON. As shown in FIG. 13, in step S301, the work situation determination section 62 sets the boom pressure reduction flag to OFF.
  • step S302 the work situation determination section 62 starts measuring the first timer.
  • the first timer measures the duration for which the condition for setting the boom pressure reduction flag to ON is satisfied.
  • the work situation determination section 62 determines whether or not the boom pressure is smaller than the second boom pressure determination value.
  • the second boom pressure determination value is a boom pressure value that can be taken when the bucket is in an empty state.
  • the vehicle body controller 12 stores boom pressure determination value information (hereinafter referred to as “second boom pressure determination value information”) indicating the relationship between the second boom pressure determination value and the boom angle.
  • the second boom pressure determination value information is, for example, a table or map showing the relationship between the second boom pressure determination value and the boom angle.
  • the work situation determination unit 62 determines the second boom pressure determination value according to the boom angle by referring to the second boom pressure determination value information.
  • the second boom pressure determination value information when the boom angle is greater than 0 degrees, the second boom pressure determination value is constant at a value when the boom angle is 0 degrees.
  • the second boom pressure determination value when the boom pressure increase rate when the boom angle is greater than 0 degrees is smaller than the boom pressure increase rate when the boom angle is less than 0 degrees and the boom angle is greater than 0 degrees. This is because the second boom pressure determination value when the boom angle is 0 degrees can be approximated.
  • step S304 the work situation determination section 62 determines whether or not the time measured by the first timer is equal to or greater than a predetermined time threshold D2. That is, the duration determination unit 67 determines whether or not the duration of the state in which the condition of step S303 is satisfied is equal to or greater than the predetermined time threshold D2.
  • the time threshold D2 is set to such a time that it can be considered that the condition of step S303 is not temporarily satisfied.
  • the time threshold value D2 is larger than the time threshold value D1 described above.
  • step S305 the work situation determination section 62 sets the boom pressure reduction flag to ON.
  • step S306 the work situation determination section 62 ends the measurement of the first timer.
  • step S303 when the boom pressure is not smaller than the second boom pressure determination value, the process proceeds to step S307.
  • step S307 the work situation determination section 62 resets the first timer.
  • step S308 the work situation determination section 62 starts measuring the second timer.
  • step S309 the work situation determination section 62 determines whether or not the excavation flag is on. When the excavation flag is on, the process proceeds to step S310.
  • step S310 the work situation determination section 62 ends the measurement of the second timer. And it returns to step S301 and the work situation determination part 62 sets a boom pressure fall flag to OFF.
  • step S309 when the excavation flag is not on, the process proceeds to step S311.
  • step S311 the work situation determination section 62 determines whether or not the boom pressure is smaller than the second boom pressure determination value. When the boom pressure is smaller than the second boom pressure determination value, the process proceeds to step S312.
  • step S312 the work situation determination section 62 determines whether the time measured by the second timer is equal to or greater than a predetermined time threshold D3. When the measurement time by the second timer is equal to or greater than the predetermined time threshold D3, the process proceeds to step S310. Similarly to the above, in step S310, the work situation determination section 62 ends the measurement of the second timer, and in step S301, sets the boom pressure reduction flag to OFF. In step S312, when the time measured by the second timer is not equal to or greater than the predetermined time threshold D3, the process returns to step S309.
  • step S311 when the boom pressure is not smaller than the second boom pressure determination value, the process proceeds to step S313.
  • step S313 the work situation determination section 62 resets the second timer and returns to step S309.
  • the wheel loader 50 increases the control level of the traction force from the first level to the second level when the above-described determination condition is satisfied during the traction force control. This increases the maximum traction force.
  • the determination condition is satisfied when the wheel loader 50 is almost stopped even though the operator operates the accelerator operation member 13a in an attempt to produce a larger traction force during excavation work. It is. Accordingly, when the wheel loader 50 falls into such a state, the maximum traction force is automatically increased without the operator releasing the traction force control. For this reason, in the wheel loader 50 according to the present embodiment, it is possible to obtain a sufficient traction force during excavation work and to suppress a decrease in operability.
  • the duration time in which the determination condition is satisfied is considered. For this reason, it is possible to prevent the control level change from being repeated frequently in a short time. Thereby, the fall of operativity of wheel loader 50 is controlled.
  • the tractive force control unit 61 increases the tractive force control level from the first level to the second level.
  • the maximum tractive force at the second level is higher than the maximum tractive force when the tractive force control is in the off state. Is also small. Accordingly, it is possible to prevent the maximum traction force from being excessively increased when the determination condition is satisfied.
  • the operator can change the magnitude of the maximum traction force of the first level by operating the setting operation device 24.
  • the tractive force control unit 61 increases the maximum tractive force to a value larger than the maximum tractive force of the first level. Thereby, the operator can set the required maximum traction force more finely according to the work situation.
  • the traction force control unit 61 When the determination condition is not satisfied during the traction force control, the traction force control unit 61 returns the control level of the traction force to the first level. Thereby, an appropriate maximum traction force according to the work situation can be obtained.
  • the tractive force control unit 61 changes the pump capacity more slowly when raising the tractive force control level from the first level to the second level than when returning from the second level to the first level. For this reason, the rapid increase of tractive force can be suppressed. Thereby, generation
  • the traction force control unit 61 changes the pump capacity more quickly when returning the traction force control level from the second level to the first level than when increasing the traction force control level from the first level to the second level. Thereby, in the wheel loader 50 according to the present embodiment, for example, even if the boom does not rise due to excessive traction during excavation, it is possible to quickly exit from such a state.
  • the wheel loader 50 equipped with an HST system of one pump and one motor including one hydraulic pump and the traveling hydraulic motor 10 has been described as an example.
  • the present invention is not limited to this.
  • the present invention may be applied to a wheel loader equipped with a 1-pump 2-motor HST system including one first hydraulic pump and two traveling hydraulic motors.
  • the inching operation member 27a also serves as a brake pedal.
  • an inching operation member may be provided as a member different from the brake pedal.
  • the setting operation device 24 can change the magnitude of the maximum traction force of the first level in three stages.
  • the setting operation device 24 may be capable of changing the magnitude of the maximum traction force of the first level to a plurality of stages other than the three stages.
  • the setting operation device 24 may be capable of continuously changing the magnitude of the maximum traction force of the first level to an arbitrary magnitude.
  • the setting operation device 24 may be omitted. That is, the magnitude of the maximum traction force of the first level may not be changeable.
  • the determination condition is not limited to the above condition, and other conditions may be added. Alternatively, some of the determination conditions described above may be changed.
  • the tractive force control unit 61 reduces the maximum tractive force by changing the upper limit capacity of the motor capacity, but may reduce the maximum tractive force by other methods.
  • the traction force control unit 61 may reduce the maximum traction force by controlling the drive circuit pressure.
  • the drive circuit pressure is controlled, for example, by controlling the capacity of the first hydraulic pump 4.
  • the traction force ratio information is set so that the traction force ratio increases as the accelerator operation amount increases, but the traction force ratio information is set so that the traction force ratio is constant regardless of the accelerator operation amount. It may be set.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 ホイールローダの牽引力制御部は、判定条件が牽引力制御中に満たされたときに、最大牽引力を増大させる。判定条件は、作業局面が掘削であることと、車速が所定の速度閾値以下であることと、アクセル操作量が所定のアクセル閾値以上であることと、インチング操作量が所定のインチング操作閾値以下であることとを含む。

Description

ホイールローダ及びホイールローダの制御方法
 本発明は、ホイールローダ及びホイールローダの制御方法に関する。
 ホイールローダには、いわゆるHST(Hydro Static Transmission)を搭載しているものがある。HST式のホイールローダは、エンジンによって油圧ポンプを駆動し、油圧ポンプから吐出された作動油によって走行用油圧モータを駆動する。これにより、ホイールローダが走行する。このようなHST式のホイールローダでは、エンジン回転速度、油圧ポンプの容量、走行用油圧モータの容量などを制御することによって、車速および牽引力を制御することができる(特許文献1参照)。
 上記のホイールローダでは、オペレータは、牽引力制御の実行を選択することができる。牽引力制御では、例えば、走行用油圧モータの容量を最大容量よりも小さい上限容量に制限する。これにより、最大牽引力が低減される。オペレータは、牽引力が大き過ぎることによってスリップ或いはストールなどの現象が生じるときに、牽引力制御の実行を選択する。これにより、最大牽引力が低減され、スリップ或いはストールなどの現象の発生が抑えられる。
特開2008-144942号公報
 ある種のホイールローダは、オペレータが、牽引力制御での最大牽引力のレベルを選択できるように構成されている。オペレータは、牽引力制御での最大牽引力のレベルを予め選択しておく。オペレータが、牽引力制御の実行スイッチを操作すると、最大牽引力が、選択されたレベルに制限される。これにより、オペレータは、例えば路面の状態に応じて、適切な牽引力のレベルを選択することができる。
 しかし、掘削作業時に必要な牽引力は一定ではなく、作業の状況に応じて必要な牽引力が異なる。このため、ストールやスリップなどの現象を発生させないために、どのようなレベルの最大牽引力が最適であるのかを、オペレータが予め選択することは容易ではない。従って、上記のようなホイールローダでは、掘削作業時に作業状況が変化するごとに、オペレータが最大牽引力のレベルを選択しなおさなければならない。このため操作が煩雑となり、ホイールローダの操作性が低下する。
 本発明の課題は、掘削作業時に十分な牽引力を得ることができると共に操作性の低下を抑えることができるホイールローダ及びホイールローダの制御方法を提供することにある。
 本発明の第1の態様に係るホイールローダは、作業機と、エンジンと、油圧ポンプと、走行用油圧モータと、アクセル操作部材と、インチング操作部材と、牽引力制御操作部材と、車速検出部と、作業局面判定部と、車速判定部と、アクセル操作判定部と、インチング操作判定部と、牽引力制御部と、を備える。作業機は、ブームとバケットとを有する。油圧ポンプは、エンジンによって駆動される。走行用油圧モータは、油圧ポンプから吐出された作動油によって駆動される。アクセル操作部材は、エンジンの目標回転速度を設定するために操作される。インチング操作部材は、車速を低減させるために操作される。牽引力制御操作部材は、最大牽引力を低減させる牽引力制御のオンオフを切り換えるために操作される。車速検出部は、車速を検出する。作業局面判定部は、作業局面が掘削であるか否かを判定する。車速判定部は、車速が所定の速度閾値以下であるか否かを判定する。アクセル操作判定部は、アクセル操作部材の操作量が所定のアクセル閾値以上であるか否かを判定する。インチング操作判定部は、インチング操作部材の操作量が所定のインチング操作閾値以下であるか否かを判定する。牽引力制御部は、牽引力制御がオン状態であるときには、牽引力制御がオフ状態での最大牽引力よりも最大牽引力を低減させる。牽引力制御部は、判定条件が牽引力制御中に満たされたときに、最大牽引力を増大させる。判定条件は、作業局面が掘削であることと、車速が所定の速度閾値以下であることと、アクセル操作部材の操作量が所定のアクセル閾値以上であることと、インチング操作部材の操作量が所定のインチング操作閾値以下であることとを含む。
 本発明の第2の態様に係るホイールローダは、第1の態様のホイールローダであって、ブーム角度判定部をさらに備える。ブーム角度判定部は、ブーム角度が所定の角度閾値より小さいか否かを判定する。ブーム角度は、ブームの水平方向に対する角度である。判定条件は、ブーム角度が所定の角度閾値より小さいことをさらに含む。
 本発明の第3の態様に係るホイールローダは、第1の態様のホイールローダであって、判定条件は、他の条件が満たされている状態の継続時間が所定の時間閾値以上であることをさらに含む。
 本発明の第4の態様に係るホイールローダは、第1から第3の態様のいずれかのホイールローダであって、牽引力制御部は、牽引力の制御レベルを第1レベルに設定する。第1レベルの最大牽引力は、牽引力制御がオフ状態での最大牽引力よりも小さい。牽引力制御部は、判定条件が牽引力制御中に満たされたときには、最大牽引力の制御レベルを第2レベルに変更する。第2レベルの最大牽引力は、第1レベルの最大牽引力よりも大きい。
 本発明の第5の態様に係るホイールローダは、第4の態様のホイールローダであって、第2レベルの最大牽引力は、牽引力制御がオフ状態での最大牽引力よりも小さい。
 本発明の第6の態様に係るホイールローダは、第4の態様のホイールローダであって、第1レベルの最大牽引力の大きさを変更するための牽引力レベル変更部をさらに備える。
 本発明の第7の態様に係るホイールローダは、第4の態様のホイールローダであって、牽引力制御部は、牽引力制御中に判定条件が満たされなくなったときは、牽引力の制御レベルを第1レベルに戻す。
 本発明の第8の態様に係るホイールローダは、第7の態様のホイールローダであって、牽引力制御部は、牽引力の制御レベルを第2レベルに変更するときには、牽引力の制御レベルを第1レベルに戻すときよりも、牽引力をゆっくりと変化させる。
 本発明の第9の態様に係るホイールローダは、第1の態様のホイールローダであって、作業局面判定部は、車両の走行状態と作業機の作動状態とに基づいて、作業局面が掘削であるか否かを判定する。
 本発明の第10の態様に係るホイールローダは、第1の態様のホイールローダであって、牽引力制御部は、走行用油圧モータの傾転角を制御することで走行用油圧モータの容量を制御する。牽引力制御部は、走行用油圧モータの容量の上限容量を制御することにより、最大牽引力の制御を行う。
 本発明の第11の態様に係るホイールローダは、第1の態様のホイールローダであって、牽引力制御部は、作業局面が掘削ではないときには、最大牽引力の増大を行わない。
 本発明の第12の態様に係るホイールローダは、第1の態様のホイールローダであって、牽引力制御部は、車速が所定の速度閾値以下ではないときには、最大牽引力の増大を行わない。
 本発明の第13の態様に係るホイールローダは、第1の態様のホイールローダであって、牽引力制御部は、アクセル操作部材の操作量が所定の操作閾値以上ではないときには、最大牽引力の増大を行わない。
 本発明の第14の態様に係るホイールローダは、第1の態様のホイールローダであって、牽引力制御部は、インチング操作部材の操作量が所定のインチング操作閾値以下ではないときには、最大牽引力の増大を行わない。
 本発明の第15の態様に係るホイールローダは、第2の態様のホイールローダであって、牽引力制御部は、ブーム角度が所定の角度閾値より小さくないときには、最大牽引力の増大を行わない。
 本発明の第16の態様に係るホイールローダは、第3の態様のホイールローダであって、牽引力制御部は、継続時間が所定の時間閾値以上ではないときには、最大牽引力の増大を行わない。
 本発明の第17の態様に係る制御方法は、ホイールローダの制御方法である。ホイールローダは、ブームとバケットとを有する作業機と、エンジンと、エンジンによって駆動される油圧ポンプと、油圧ポンプから吐出された作動油によって駆動される走行用油圧モータと、エンジンの目標回転速度を設定するために操作されるアクセル操作部材と、車速を低減させるためのインチング操作部材と、最大牽引力を低減させる牽引力制御のオンオフを切り換えるために操作される牽引力制御操作部材と、を備えるホイールローダの制御方法であって、作業機と、エンジンと、油圧ポンプと、走行用油圧モータと、アクセル操作部材と、インチング操作部材と、牽引力制御操作部材とを備える。作業機は、ブームとバケットとを有する。油圧ポンプは、エンジンによって駆動される。走行用油圧モータは、油圧ポンプから吐出された作動油によって駆動される。アクセル操作部材は、エンジンの目標回転速度を設定するために操作される。インチング操作部材は、車速を低減させるために操作される。牽引力制御操作部材は、最大牽引力を低減させる牽引力制御のオンオフを切り換えるために操作される。本態様の制御方法は、次のステップを備える。第1ステップでは車速を検出する。第2ステップでは、作業局面が掘削であるか否かを判定する。第3ステップでは、車速が所定の速度閾値以下であるか否かを判定する。第4ステップでは、アクセル操作部材の操作量が所定のアクセル閾値以上であるか否かを判定する。第5ステップでは、インチング操作部材の操作量が所定のインチング操作閾値以下であるか否かを判定する。第6ステップでは、牽引力制御がオン状態であるときには、牽引力制御がオフ状態での最大牽引力よりも最大牽引力を低減させる。第7ステップでは、判定条件が牽引力制御中に満たされたときに、最大牽引力を増大させる。判定条件は、作業局面が掘削であることと、車速が所定の速度閾値以下であることと、アクセル操作部材の操作量が所定のアクセル閾値以上であることと、インチング操作部材の操作量が所定のインチング操作閾値以下であることとを含む。
 本発明の第1の態様に係るホイールローダでは、牽引力制御中に判定条件が満たされたときに、最大牽引力が自動的に増大される。判定条件は、作業局面が掘削であることと、車速が所定の速度閾値以下であることと、アクセル操作部材の操作量が所定のアクセル閾値以上であることと、インチング操作部材の操作量が所定のインチング操作閾値以下であることとを含む。車速が所定の速度閾値以下であることと、アクセル操作部材の操作量が所定のアクセル閾値以上であることは、アクセル操作部材の操作量に対して、車速が十分に出ていないことを意味する。例えば、アクセルペダルを大きく踏み込んでいるにもかかわらず、車両が、ほぼ停止している状態であるときに、上記の条件が満たされる。インチング操作部材は、オペレータが、エンジン回転速度を低下させずに車速を低下させたいときに操作される。このため、インチング操作部材の操作量が所定のインチング操作閾値以下であることは、オペレータが、車速を低減させることを意図していないことを意味する。従って、判定条件が満たされているときには、掘削作業中にオペレータが、より大きな牽引力を出そうとしてアクセル操作部材を操作しているにも関わらず、ホイールローダが、ほぼ停止している状態となっている。本態様に係るホイールローダでは、このような状態で最大牽引力が自動的に増大されることにより、掘削作業時に十分な牽引力を得ることができる。また、オペレータが最大牽引力のレベルを変更するための操作を行う必要がないので、操作性の低下を抑えることができる。
 本発明の第2の態様に係るホイールローダでは、ブーム角度が所定の角度閾値より小さいか否かを判定することにより、ブームを下ろした状態を検出する。これにより、牽引力制御部は、より大きな牽引力が必要な状態であるか否かを判定することができる。
 本発明の第3の態様に係るホイールローダでは、継続時間を考慮することにより、牽引力の増大が短時間に頻繁に繰り返されることを防止することができる。これにより、ホイールローダの操作性の低下が抑えられる。
 本発明の第4の態様に係るホイールローダでは、牽引力制御によって、最大牽引力が第1レベルの最大牽引力に低減される。そして、判定条件が満たされたときには、最大牽引力が、第1レベルの最大牽引力から第2レベルの最大牽引力に自動的に増大される。これにより、掘削作業時に十分な牽引力を得ることができると共に操作性の低下を抑えることができる。
 本発明の第5の態様に係るホイールローダでは、第2レベルの最大牽引力は、牽引力制御がオフ状態での最大牽引力よりも小さい。従って、判定条件が満たされたときに、最大牽引力が過剰に増大されることを防止することができる。
 本発明の第6の態様に係るホイールローダでは、牽引力レベル変更部によって、第1レベルの最大牽引力の大きさを変更することができる。そして、判定条件が満たされたときには、最大牽引力が、第1レベルの最大牽引力よりも大きな値に自動的に増大される。これにより、オペレータは、作業状況に応じて、必要な最大牽引力を、より細かく設定することができる。
 本発明の第7の態様に係るホイールローダでは、牽引力制御中に判定条件が満たされなくなったときに、最大牽引力が第1レベルの最大牽引力に戻る。これにより、作業状況に応じた適切な最大牽引力を得ることができる。
 本発明の第8の態様に係るホイールローダでは、最大牽引力を増大させるときに、急激な牽引力の増大を抑えることができる。これにより、スリップの発生、或いは、操作性の低下を抑えることができる。また、最大牽引力を低減させるときには、迅速に牽引力が低減される。これにより、例えば、ホイールローダが掘削中に牽引力の出過ぎによってブームが上がらない状態に陥ったときに、このような状態から迅速に抜け出すことができる。
 本発明の第9の態様に係るホイールローダでは、車両の走行状態と作業機の作動状態とに基づいて、作業局面が掘削であるか否かを精度よく判定することができる。
 本発明の第10の態様に係るホイールローダでは、走行用油圧モータの上限容量を制御することによって最大牽引力を制御することができる。
 本発明の第11の態様に係るホイールローダでは、作業局面が掘削ではないときには、牽引力の増大が必要ではないので、通常の牽引力制御時の最大牽引力が維持される。
 本発明の第12の態様に係るホイールローダでは、車速が所定の速度閾値以下ではないときには、牽引力の増大が必要ではないので、通常の牽引力制御時の最大牽引力が維持される。
 本発明の第13の態様に係るホイールローダでは、アクセル操作部材の操作量が所定の操作閾値以上ではないときには、上述した最大牽引力の増大を行わない。これにより、牽引力の増大が必要ではないときには、通常の牽引力制御時の最大牽引力が維持される。
 本発明の第14の態様に係るホイールローダでは、インチング操作部材の操作量が所定のインチング操作閾値以下ではないときには、上述した最大牽引力の増大を行わない。これにより、牽引力の増大が必要ではないときには、通常の牽引力制御時の最大牽引力が維持される。
 本発明の第15の態様に係るホイールローダでは、ブーム角度が所定の角度閾値より小さくないときには、上述した最大牽引力の増大を行わない。これにより、牽引力の増大が必要ではないときには、通常の牽引力制御時の最大牽引力が維持される。
 本発明の第16の態様に係るホイールローダでは、継続時間が所定の時間閾値以上ではないときには、上述した最大牽引力の増大を行わない。これにより、牽引力の増大が短時間に頻繁に繰り返されることを防止することができる。
 本発明の第17の態様に係るホイールローダの制御方法では、牽引力制御中に判定条件が満たされたときに、最大牽引力が自動的に増大される。判定条件は、作業局面が掘削であることと、車速が所定の速度閾値以下であることと、アクセル操作部材の操作量が所定のアクセル閾値以上であることと、インチング操作部材の操作量が所定のインチング操作閾値以下であることとを含む。車速が所定の速度閾値以下であることと、アクセル操作部材の操作量が所定のアクセル閾値以上であることは、アクセル操作部材の操作量に対して、車速が十分に出ていないことを意味する。例えば、アクセルペダルを大きく踏み込んでいるにもかかわらず、車両が、ほぼ停止している状態であるときに、上記の条件が満たされる。インチング操作部材は、オペレータが、エンジン回転速度を低下させずに車速を低下させたいときに操作される。このため、インチング操作部材の操作量が所定のインチング操作閾値以下であることは、オペレータが、車速を低減させることを意図していないことを意味する。従って、判定条件が満たされているときには、掘削作業中にオペレータが、より大きな牽引力を出そうとしてアクセル操作部材を操作しているにも関わらず、ホイールローダが、ほぼ停止している状態となっている。本態様に係るホイールローダの制御方法では、このような状態で最大牽引力が自動的に増大されることにより、掘削作業時に十分な牽引力を得ることができる。また、オペレータが最大牽引力のレベルを変更するための操作を行う必要がないので、操作性の低下を抑えることができる。
本発明の一実施形態に係るホイールローダの側面図。 ホイールローダに搭載された油圧駆動機構の構成を示すブロック図。 エンジンの出力トルク線を示す図。 ポンプ容量-駆動回路圧特性の一例を示す図。 モータ容量-駆動回路圧特性の一例を示す図。 ホイールローダの車速-牽引力線図の一例を示す図。 牽引力比率情報の一例を示す図。 車体コントローラの構成を示すブロック図。 牽引力制御中に最大牽引力を自動的に増大させるための判定処理を示すフローチャート。 ブーム角度の定義を示すための作業機の側面図。 モータ容量を変化させるときのモータ容量の指令値の変更速度を示す図。 作業局面が掘削であるか否かを判定するための処理を示すフローチャート。 ブーム圧低下フラグがオンであるか否かを判定するための処理を示すフローチャート。
 以下、本発明の一実施形態に係るホイールローダ50について、図面を用いて説明する。図1は、ホイールローダ50の側面図である。ホイールローダ50は、車体51と、作業機52と、複数のタイヤ55と、キャブ56と、を備えている。作業機52は、車体51の前部に装着されている。作業機52は、ブーム53とバケット54とリフトシリンダ19とバケットシリンダ26とを有する。ブーム53は、バケット54を持ち上げるための部材である。ブーム53は、リフトシリンダ19によって駆動される。バケット54は、ブーム53の先端に取り付けられている。バケット54は、バケットシリンダ26によってダンプおよびチルトされる。キャブ56は、車体51上に載置されている。
 図2は、ホイールローダ50に搭載された油圧駆動機構30の構成を示すブロック図である。油圧駆動機構30は、主として、エンジン1、第1油圧ポンプ4、第2油圧ポンプ2、チャージポンプ3、走行用油圧モータ10、エンジンコントローラ12a、車体コントローラ12、駆動油圧回路20を有している。油圧駆動機構30では、第1油圧ポンプ4がエンジン1によって駆動されることにより作動油を吐出する。走行用油圧モータ10が、第1油圧ポンプ4から吐出された作動油によって駆動される。そして、走行用油圧モータ10が上述したタイヤ55を回転駆動することにより、ホイールローダ50が走行する。すなわち、油圧駆動機構30では、いわゆる1ポンプ1モータのHSTシステムが採用されている。
 エンジン1は、ディーゼル式のエンジンであり、エンジン1で発生した出力トルクが、第2油圧ポンプ2、チャージポンプ3、第1油圧ポンプ4等に伝達される。油圧駆動機構30には、エンジン1の実回転速度を検出するエンジン回転速度センサ1aが設けられている。また、エンジン1には、燃料噴射装置1bが接続されている。後述するエンジンコントローラ12aは、燃料噴射装置1bを制御することにより、エンジン1の出力トルク(以下、「エンジントルク」と呼ぶ)と回転速度とを制御する。
 第1油圧ポンプ4は、エンジン1によって駆動されることにより作動油を吐出する。第1油圧ポンプ4は、可変容量型の油圧ポンプである。第1油圧ポンプ4から吐出された作動油は、駆動油圧回路20を通って走行用油圧モータ10へと送られる。具体的には、駆動油圧回路20は、第1駆動回路20aと第2駆動回路20bとを有する。作動油が、第1油圧ポンプ4から第1駆動回路20aを介して走行用油圧モータ10に供給されることにより、走行用油圧モータ10が一方向(例えば、前進方向)に駆動される。作動油が、第1油圧ポンプ4から第2駆動回路20bを介して走行用油圧モータ10に供給されることにより、走行用油圧モータ10が他方向(例えば、後進方向)に駆動される。
 駆動油圧回路20には、駆動回路圧検出部17が設けられている。駆動回路圧検出部17は、第1駆動回路20a又は第2駆動回路20bを介して走行用油圧モータ10に供給される作動油の圧力(以下、「駆動回路圧」)を検出する。具体的には、駆動回路圧検出部17は、第1駆動回路圧センサ17aと第2駆動回路圧センサ17bとを有する。第1駆動回路圧センサ17aは、第1駆動回路20aの油圧を検出する。第2駆動回路圧センサ17bは、第2駆動回路20bの油圧を検出する。第1駆動回路圧センサ17aと第2駆動回路圧センサ17bとは、検出信号を車体コントローラ12に送る。また、第1油圧ポンプ4には、第1油圧ポンプ4の吐出方向を制御するためのFR切換部5とポンプ容量制御シリンダ6とが接続されている。
 FR切換部5は、車体コントローラ12からの制御信号に基づいてポンプ容量制御シリンダ6への作動油の供給方向を切り換える電磁制御弁である。FR切換部5は、ポンプ容量制御シリンダ6への作動油の供給方向を切り換えることにより、第1油圧ポンプ4の吐出方向を切り換える。具体的には、FR切換部5は、第1油圧ポンプ4の吐出方向を第1駆動回路20aへの吐出と第2駆動回路20bへの吐出とに切り換える。これにより、走行用油圧モータ10の駆動方向が変更される。ポンプ容量制御シリンダ6は、ポンプパイロット回路32を介して作動油を供給されることにより駆動され、第1油圧ポンプ4の傾転角を変更する。
 ポンプパイロット回路32には、ポンプ容量制御部7が配置されている。ポンプ容量制御部7は、ポンプ容量制御シリンダ6をポンプパイロット回路32と作動油タンクとのいずれかに接続する。ポンプ容量制御部7は、車体コントローラ12からの制御信号に基づいて制御される電磁制御弁である。ポンプ容量制御部7は、ポンプ容量制御シリンダ6内の作動油の圧力を制御することにより、第1油圧ポンプ4の傾転角を調整する。
 ポンプパイロット回路32は、カットオフ弁47を介してチャージ回路33と作動油タンクとに接続されている。カットオフ弁47のパイロットポートは、シャトル弁46を介して第1駆動回路20aと第2駆動回路20bとに接続されている。シャトル弁46は、第1駆動回路20aの油圧と第2駆動回路20bの油圧とのうち大きい方をカットオフ弁47のパイロットポートに導入する。すなわち、カットオフ弁47のパイロットポートには駆動回路圧が印加される。カットオフ弁47は、駆動回路圧が所定のカットオフ圧より低いときには、チャージ回路33とポンプパイロット回路32とを連通させる。これにより、作動油がチャージ回路33からポンプパイロット回路32に供給される。カットオフ弁47は、駆動回路圧が所定のカットオフ圧以上になると、ポンプパイロット回路32を作動油タンクに連通させて、ポンプパイロット回路32の作動油を作動油タンクに逃がす。これにより、ポンプパイロット回路32の油圧が低下することにより、第1油圧ポンプ4の容量が低減され、駆動回路圧の上昇が抑えられる。
 チャージポンプ3は、エンジン1によって駆動され、駆動油圧回路20へと作動油を供給するためのポンプである。チャージポンプ3は、チャージ回路33に接続されている。チャージポンプ3は、チャージ回路33を介してポンプパイロット回路32に作動油を供給する。チャージ回路33は、第1チェック弁41を介して第1駆動回路20aに接続されている。第1チェック弁41は、チャージ回路33から第1駆動回路20aへの作動油の流れを許容するが、第1駆動回路20aからチャージ回路33への作動油の流れを規制する。また、チャージ回路33は、第2チェック弁42を介して第2駆動回路20bに接続されている。第2チェック弁42は、チャージ回路33から第2駆動回路20bへの作動油の流れを許容するが、第2駆動回路20bからチャージ回路33への作動油の流れを規制する。また、チャージ回路33は、第1リリーフ弁43を介して第1駆動回路20aに接続されている。第1リリーフ弁43は、第1駆動回路20aの油圧が所定の圧力より大きくなったときに開かれる。チャージ回路33は、第2リリーフ弁44を介して第2駆動回路20bに接続されている。第2リリーフ弁44は、第2駆動回路20bの油圧が所定の圧力より大きくなったときに開かれる。また、チャージ回路33は、低圧リリーフ弁45を介して作動油タンクに接続されている。低圧リリーフ弁45は、チャージ回路33の油圧が所定のリリーフ圧より大きくなったときに開かれる。これにより、駆動回路圧が所定のリリーフ圧を越えないように調整される。また、低圧リリーフ弁45の所定のリリーフ圧は、第1リリーフ弁43のリリーフ圧、及び、第2リリーフ弁44のリリーフ圧と比べて、かなり低い。従って、駆動回路圧がチャージ回路33の油圧より低くなったときには、第1チェック弁41又は第2チェック弁42を介して、作動油がチャージ回路33から駆動油圧回路20へ供給される。
 第2油圧ポンプ2は、エンジン1によって駆動される。第2油圧ポンプ2から吐出された作動油は、作業機用油圧回路31を介してリフトシリンダ19に供給される。これにより、作業機52が駆動される。第2油圧ポンプ2の吐出圧は、吐出圧センサ39によって検出される。吐出圧センサ39は、検出信号を車体コントローラ12に送る。作業機用油圧回路31には、作業機制御弁18が設けられている。作業機制御弁18は、作業機操作部材23の操作量に応じて駆動される。作業機制御弁18は、パイロットポートに印加されるパイロット圧に応じて、リフトシリンダ19に供給される作動油の流量を制御する。作業機制御弁18のパイロットポートに印加されるパイロット圧は、作業機操作部材23のパイロット弁23aによって制御される。パイロット弁23aは、作業機操作部材23の操作量に応じたパイロット圧を作業機制御弁18のパイロットポートに印加する。これにより、作業機操作部材23の操作量に応じてリフトシリンダ19が制御される。作業機制御弁18のパイロットポートに印加されるパイロット圧は、PPC圧センサ21によって検出される。また、リフトシリンダ19に供給される作動油の圧力は、ブーム圧センサ22によって検出される。PPC圧センサ21及びブーム圧センサ22は、検出信号を車体コントローラ12に送る。また、リフトシリンダ19には、ブーム角度検出部38が設けられている。ブーム角度検出部38は、後述するブーム角度を検出する。ブーム角度検出部38は、ブーム53の回転角度を検出するセンサである。或いは、ブーム角度検出部38は、リフトシリンダ19のストローク量を検出し、ストローク量からブーム53の回転角度が演算されてもよい。ブーム角度検出部38は、検出信号を車体コントローラ12に送る。なお、バケットシリンダ26も、リフトシリンダ19と同様に、制御弁によって制御されるが、図2においては図示を省略している。
 走行用油圧モータ10は、可変容量型の油圧モータである。走行用油圧モータ10は、第1油圧ポンプ4から吐出された作動油によって駆動され、走行のための駆動力を生じさせる。走行用油圧モータ10には、モータシリンダ11aと、モータ容量制御部11bとが設けられている。モータシリンダ11aは、走行用油圧モータ10の傾転角を変更する。モータ容量制御部11bは、車体コントローラ12からの制御信号に基づいて制御される電磁制御弁である。モータ容量制御部11bは、車体コントローラ12からの制御信号に基づいてモータシリンダ11aを制御する。モータシリンダ11aとモータ容量制御部11bとは、モータパイロット回路34に接続されている。モータパイロット回路34は、チェック弁48を介して第1駆動回路20aに接続されている。チェック弁48は、第1駆動回路20aからモータパイロット回路34への作動油の流れを許容するが、モータパイロット回路34から第1駆動回路20aへの作動油の流れを規制する。モータパイロット回路34は、チェック弁49を介して第2駆動回路20bに接続されている。チェック弁49は、第2駆動回路20bからモータパイロット回路34への作動油の流れを許容するが、モータパイロット回路34から第2駆動回路20bへの作動油の流れを規制する。チェック弁48,49により、第1駆動回路20aと第2駆動回路20bとのうち大きい方の油圧、すなわち駆動回路圧の作動油が、モータパイロット回路34に供給される。モータ容量制御部11bは、車体コントローラ12からの制御信号に基づいて、モータパイロット回路34からモータシリンダ11aへの作動油の供給方向および供給流量を切り換える。これにより、車体コントローラ12は、走行用油圧モータ10の容量を任意に変えることができる。また、走行用油圧モータ10の上限容量及び下限容量を任意に設定することができる。
 油圧駆動機構30には、車速センサ16が設けられている。車速センサ16は、車速を検出する。車速センサ16は、検出信号を車体コントローラ12に送る。車速センサ16は、例えば、タイヤ駆動軸の回転速度を検出することにより、車速を検出する。車速センサ16は、本発明の車速検出部に相当する。
 ホイールローダ50は、アクセル操作部材13aと、前後進切換操作部材14と、牽引力制御操作部材15と、インチング操作部27と、設定操作装置24とを備えている。
 アクセル操作部材13aは、オペレータがエンジン1の目標回転速度を設定するための部材である。アクセル操作部材13aは、例えばアクセルペダルであり、オペレータによって操作される。アクセル操作部材13aは、アクセル操作量センサ13と接続されている。アクセル操作量センサ13は、ポテンショメータなどで構成されている。アクセル操作量センサ13は、アクセル操作部材13aの操作量(以下、「アクセル操作量」と呼ぶ)を示す検出信号をエンジンコントローラ12aへと送る。オペレータは、アクセル操作量を調整することによって、エンジン1の回転速度を制御することができる。
 前後進切換操作部材14は、オペレータによって操作され、前進位置と後進位置と中立位置とに切り換えられる。前後進切換操作部材14は、前後進切換操作部材14の位置を示す検出信号を車体コントローラ12に送る。オペレータは、前後進切換操作部材14を操作することによって、ホイールローダ50の前進と後進とを切り換えることができる。
 牽引力制御操作部材15は、例えばスイッチである。牽引力制御操作部材15は、オペレータによって操作され、牽引力制御のオンオフを切り換えるために操作される。牽引力制御は、ホイールローダ50の最大牽引力を低下させる制御である。最大牽引力とは、車速に応じて変化する牽引力(図6参照)のピークとなる値である。なお、以下の説明において、牽引力制御がオフ状態であるとは、牽引力制御が実行されていない状態を意味する。また、牽引力制御がオン状態であるとは、牽引力制御が実行されている状態を意味する。牽引力制御については後に詳細に説明する。牽引力制御操作部材15は、牽引力制御操作部材15の選択位置を示す検出信号を車体コントローラ12へ送る。
 インチング操作部27は、インチング操作部材27aとインチング操作センサ27bとを有する。インチング操作部材27aは、オペレータによって操作される。インチング操作部材27aは例えばペダルである。インチング操作部材27aは、後述するようにインチング操作の機能と、プレーキ操作の機能とを兼ねる。インチング操作センサ27bは、インチング操作部材27aの操作量(以下、「インチング操作量」と呼ぶ)を検出して、検出信号を車体コントローラ12に送信する。インチング操作部材27aが操作されと、車体コントローラ12は、インチング操作センサ27bからの検出信号に基づいてポンプ容量制御部7を制御する。車体コントローラ12は、インチング操作部材27aの操作量に応じてポンプパイロット回路32の油圧を低下させる。これにより、駆動回路圧が低下して、走行用油圧モータ10の回転速度が低下する。インチング操作部27は、例えば、エンジン1の回転速度を上昇させたいが走行速度の上昇は抑えたいときなどにおいて使用される。すなわち、アクセル操作部材13aの操作によってエンジン1の回転速度を上昇させると、ポンプパイロット回路32の油圧も上昇する。このとき、インチング操作部材27aを操作することにより、ポンプパイロット回路32の油圧の上昇を制御することができる。これにより、第1油圧ポンプ4の容量の増大を抑え、走行用油圧モータ10の回転速度の上昇を抑えることができる。言い換えれば、インチング操作部材27aは、エンジン回転速度を低下させずに、車速や牽引力を低減させるために操作される。
 また、インチング操作部材27aには、ブレーキ弁28が連結されている。ブレーキ弁28は、油圧ブレーキ装置29への作動油の供給を制御する。インチング操作部材27aは油圧ブレーキ装置29の操作部材を兼ねている。インチング操作部材27aの操作量が所定量に達するまではインチング操作センサ27bからの検出信号に基づいて上述したインチング操作のみが行われる。そして、インチング操作部材27aの操作量が所定量に達すると、ブレーキ弁28の操作が開始され、これにより油圧ブレーキ装置29において制動力が発生する。インチング操作部材27aの操作量が所定量以上では、インチング操作部材27aの操作量に応じて油圧ブレーキ装置29の制動力が制御される。
 設定操作装置24は、ホイールローダ50の各種の設定を行うための装置である。設定操作装置24は、例えばタッチパネル機能付のディスプレイ装置である。後述するように、牽引力制御では、牽引力の制御レベルが、第1レベルに設定される。第1レベルの最大牽引力は、牽引力制御がオフ状態での最大牽引力よりも小さい。オペレータは、設定操作装置24を操作することにより、牽引力制御における第1レベルの最大牽引力の大きさを複数段階のレベルから選択して設定することができる。設定操作装置24は、第1レベルの最大牽引力の大きさを変更するための牽引力レベル変更部に相当する。
 エンジンコントローラ12aは、CPUなどの演算装置や各種のメモリなどを有する電子制御部である。エンジンコントローラ12aは、設定された目標回転速度が得られるように、エンジン1を制御する。図3にエンジン1の出力トルク線を示す。エンジン1の出力トルク線は、エンジン1の回転速度と、各回転速度においてエンジン1が出力できる最大のエンジントルクの大きさとの関係を示す。図3において、実線L100は、アクセル操作量が100%であるときのエンジン出力トルク線を示している。このエンジン出力トルク線は、例えばエンジン1の定格又は最大のパワー出力に相当する。なお、アクセル操作量が100%とは、アクセル操作部材13aが最大に操作されている状態を意味する。また、破線L75は、アクセル操作量が75%であるときのエンジン出力トルク線を示している。エンジンコントローラ12aは、エンジントルクがエンジン出力トルク線以下となるようにエンジン1の出力を制御する。このエンジン1の出力の制御は、例えば、エンジン1への燃料噴射量の上限値を制御することにより行われる。
 車体コントローラ12は、CPUなどの演算装置や各種のメモリなどを有する電子制御部である。車体コントローラ12は、各検出部からの検出信号に基づいて各制御弁を電子制御することにより、第1油圧ポンプ4の容量と走行用油圧モータ10の容量とを制御する。
 具体的には、車体コントローラ12は、エンジン回転速度センサ1aが検出したエンジン回転速度に基づいて指令信号をポンプ容量制御部7に出力する。これにより、ポンプ容量と駆動回路圧との関係が規定される。図4に、ポンプ容量-駆動回路圧特性の一例を示す。ポンプ容量-駆動回路圧特性は、ポンプ容量と駆動回路圧との関係を示す。図中のL11~L16は、エンジン回転速度に応じて変更されるポンプ容量-駆動回路圧特性を示すラインである。具体的には、車体コントローラ12が、エンジン回転速度に基づいてポンプ容量制御部7の流量を制御することにより、ポンプ容量-駆動回路圧特性がL11~L16に変更される。これにより、ポンプ容量がエンジン回転速度及び駆動回路圧に対応した大きさに制御される。
 車体コントローラ12は、エンジン回転速度センサ1aおよび駆動回路圧検出部17からの検出信号を処理して、モータ容量の指令信号をモータ容量制御部11bに出力する。ここでは、車体コントローラ12は、車体コントローラ12に記憶されているモータ容量-駆動回路圧特性を参照して、エンジン回転速度の値と駆動回路圧の値とからモータ容量を設定する。車体コントローラ12は、この設定したモータ容量に対応する傾転角の変更指令をモータ容量制御部11bに出力する。図5に、モータ容量-駆動回路圧特性の一例を示す。図中の実線L21は、エンジン回転速度がある値の状態における、駆動回路圧に対するモータ容量を定めたラインである。ここでのモータ容量は、走行用油圧モータ10の傾転角に対応している。駆動回路圧がある一定の値以下の場合までは傾転角は最小(Min)である。その後、駆動回路圧の上昇に伴って傾転角も次第に大きくなる(実線の傾斜部分L22)。そして、傾転角が最大(Max)となった後は、駆動回路圧が上昇しても傾転角は最大傾転角Maxを維持する。傾斜部分L22は、駆動回路圧の目標圧力を規定している。すなわち、車体コントローラ12は、駆動回路圧が目標圧力よりも大きくなると走行用油圧モータの容量を増大させる。また、駆動回路圧が、目標圧力よりも小さくなると走行用油圧モータの容量を低減させる。目標圧力は、エンジン回転速度に応じて定められる。すなわち、図5に示す傾斜部分L22は、エンジン回転速度の増減に応じて上下するように設定される。具体的には、傾斜部分L22は、エンジン回転速度が低ければ、駆動回路圧がより低い状態から傾転角が大きくなり、駆動回路圧がより低い状態で最大傾転角に達するように制御される(図5における下側の破線の傾斜部分L23参照)。反対にエンジン回転速度が高ければ、駆動回路圧がより高くなるまで最小傾転角(Min)を維持し、駆動回路圧がより高い状態で最大傾転角(Max)に達するように制御される(図5における上側の破線の傾斜部分L24参照)。これにより、図6に示すように、ホイールローダ50は、牽引力と車速とが無段階に変化して、車速ゼロから最高速度まで変速操作なく自動的に変速することができる。なお、図5において傾斜部分L22は、理解の容易のために、傾斜を強調して示しているが、実際には略水平である。従って、駆動回路圧が、目標圧力に達すると、モータ容量は、最小値(或いは最小制限値)と、最大値(或いは最大制限値)との間で切り換わる。ただし、駆動回路圧が目標圧力に達したときに即時に指令値が変更されるのではなく、時間遅れが生じる。この時間遅れが、傾斜部L22が存在する理由である。
 車体コントローラ12は、牽引力制御操作部材15が操作されることにより、牽引力制御を実行する。車体コントローラ12は、走行用油圧モータ10の上限容量を変更することによって、車両の最大牽引力を変更する。例えば、図5に示すように、上限容量をMaxからMa,Mb,Mcのいずれかに変更するように、車体コントローラ12は、モータ容量制御部11bに指令信号を出力する。上限容量がMaに変更されると、車速-牽引力特性は図6のラインLaのように変化する。このように、牽引力制御が行われていない状態の車速-牽引力特性を示すラインL1と比べて最大牽引力が低下する。上限容量がMbに変更されると、車速-牽引力特性はラインLbのように変化して、最大牽引力がさらに低下する。また、上限容量がMcに変更されると、車速-牽引力特性はラインLcのように変化して、さらに最大牽引力が低下する。
 牽引力制御では、車両の最大牽引力が、予め設定された第1レベルの最大牽引力に低減される。上述した設定操作装置24は、牽引力制御における第1レベルの最大牽引力の大きさを複数のレベルから選択して設定することができる。具体的には、設定操作装置24は、レベルA、レベルB、レベルCの3段階のレベルから第1レベルとして設定するレベルを選択することができる。レベルAは、上述した上限容量Maに対応する牽引力のレベルである。レベルBは、上述した上限容量Mbに対応する牽引力のレベルである。レベルCは、上述した上限容量Mcに対応する牽引力のレベルである。
 図7は、牽引力比率とアクセル操作量との関係を規定する牽引力比率情報を示している。牽引力比率とは、牽引力制御がオフ状態であるときの最大牽引力を100%としたときの牽引力制御での最大牽引力の割合を示している。図7において、Lv1は、第1レベルの牽引力比率情報(以下、「第1牽引力比率情報」と呼ぶ)である。第1牽引力比率情報Lv1において、アクセル操作量が所定の閾値A2以下であるときには、牽引力比率はR1で一定である。アクセル操作量が所定の閾値A2より大きいときには、アクセル操作量に応じて牽引力比率が増大する。車体コントローラ12は、牽引力制御において牽引力の制御レベルが第1レベルに設定されると、第1牽引力比率情報Lv1で示されるような最大牽引力が得られるように、走行用油圧モータ10の上限容量を制御する。
 車体コントローラ12は、牽引力制御中に所定の判定条件が満たされたときには、牽引力の制御レベルを、第1レベルから第2レベルに変更する。図7において、Lv2は、第2レベルの牽引力比率情報(以下、「第2牽引力比率情報」と呼ぶ)である。第2レベルLv2の牽引力比率は、第1レベルLv1の牽引力比率よりも大きい。第2レベルLv2の牽引力比率は、第1レベルLv1の牽引力比率よりも所定の変化量dR分、大きい。変化量dRは、5%以上、15%以下が好ましい。変化量dRは例えば10%である。車体コントローラ12は、牽引力制御中に判定条件が満たされたときには、第2牽引力比率情報Lv2で示されるような最大牽引力が得られるように、走行用油圧モータ10の上限容量を制御する。これにより、最大牽引力が自動的に増大される。以下、牽引力制御において最大牽引力を自動的に増大させるための判定処理について詳細に説明する。
 図8に示すように、車体コントローラ12は、牽引力制御部61と、作業局面判定部62と、車速判定部63と、アクセル操作判定部64と、ブーム角度判定部65と、インチング操作判定部66と、継続時間判定部67と、変更フラグ判定部68とを有する。図9は、牽引力制御中に牽引力の制御レベルを第1レベルから第2レベルに変更するための判定処理を示すフローチャートである。車体コントローラ12は、牽引力制御操作部材15を操作することにより、牽引力制御がオン状態に設定されると、図9に示す処理を実行する。
 ステップS101において、牽引力制御部61は、牽引力の制御レベルを第1レベルに設定する。また、ステップS102において、牽引力制御部61は、変更フラグをオフに設定する。変更フラグは、牽引力の制御レベルを第1レベルから第2レベルに上げる場合にオンに設定される。変更フラグは、牽引力の制御レベルを第1レベルから第2レベルに上げない場合にオフに設定される。すなわち、変更フラグがオフの場合には、牽引力制御部61は、牽引力の制御レベルを第1レベルに維持する。また、ステップS103において、牽引力制御部61は、タイマー計測を開始する。タイマーは、後述する判定条件が満たされている継続時間を計測する。判定条件は、牽引力の制御レベルを第1レベルから第2レベルに上げるための条件である。
 次に、ステップS104において、作業局面判定部62が、掘削フラグがオンであるか否かを判定する。掘削フラグがオンであることは、作業局面が掘削であることを意味する。作業局面判定部62は、車両の走行状態と作業機52の作動状態とに基づいて、作業局面が掘削であるか否かを判定する。作業局面判定部62は、作業局面が掘削であると判定したときに、掘削フラグをオンに設定する。作業局面判定部62は、作業局面が掘削以外の作業であると判定したときに、掘削フラグをオフに設定する。具体的な作業局面の判定処理については後述する。
 ステップS105において、車速判定部63が、車速が所定の速度閾値V1以下であるか否かを判定する。車速判定部63は、車速センサ16からの検出信号に基づいて、上記の判定を行う。速度閾値V1は、車両が停止していると見なすことができる程度に小さい値である。例えば、速度閾値V1は2km/h以下である。好ましくは、速度閾値V1は、1km/h以下である。
 ステップS106において、アクセル操作判定部64が、アクセル操作量が所定のアクセル閾値A1以上であるか否かを判定する。アクセル操作判定部64は、アクセル操作量センサ13からの検出信号に基づいて、上記の判定を行う。アクセル閾値A1は、アクセル操作部材13aが最大限に操作されていると見なすことができる程度に大きな値である。アクセル閾値A1は、上述した閾値A2(図7参照)よりも大きな値である。例えば、アクセル操作量の最大値を100%としたときに、アクセル閾値A1は、80%以上であることが好ましい。さらに好ましくは、アクセル閾値A1は、90%以上である。
 ステップS107において、ブーム角度判定部65が、ブーム角度が所定の角度閾値B1より小さいか否かを判定する。ブーム角度判定部65は、ブーム角度検出部38からの検出信号に基づいて、上記の判定を行う。ブーム角度は、図10に示すように、側面視において、水平方向を0度として、ブームピン57とバケットピン58とを結ぶ線と、水平方向との間のなす角θである。水平方向よりも下方の角度は、マイナスの値であり、水平方向よりも上方の角度は、プラスの値であるものとする。ブーム角度は、上方に向かって増大するように定義される。角度閾値B1は、掘削作業中にとりうるブーム角度に相当する。例えば、角度閾値B1は、0度以下である。好ましくは、角度閾値B1は、-10度以下である。ブーム角度が0度より大きいときには、ブームが水平よりも高い位置に持ち上げられており、そのような状態では、ブームを土砂に押し込む場合と比べて、大きな牽引力が不要であるからである。
 ステップS108において、インチング操作判定部66が、インチング操作量が所定のインチング操作閾値C1以下であるか否かを判定する。インチング操作閾値C1は、インチング操作部材27aが操作されていないと見なすことができる程度に小さな値である。例えば、インチング操作量の最大値を100%としたときに、インチング操作閾値C1は、20%以下であることが好ましい。より好ましくは、インチング操作閾値C1は、15%以下である。
 ステップS104からステップS108の条件のうち少なくとも1つの条件が満たされないときには、ステップS109に進む。ステップS109では、牽引力制御部61は、牽引力の制御レベルを第1レベルに設定する。すなわち、牽引力の制御レベルが第1レベルである状態でステップS104からステップS108の条件のうち少なくとも1つの条件が満たされないときには、牽引力の制御レベルが第1レベルに維持される。牽引力の制御レベルが第2レベルである状態でステップS104からステップS108の条件のうち少なくとも1つの条件が満たされなくなったときには、牽引力の制御レベルが第2レベルから第1レベルに戻される。従って、牽引力制御部61は、作業局面が掘削ではないときには、最大牽引力の増大を行わない。牽引力制御部61は、車速が所定の速度閾値V1以下ではないときには、最大牽引力の増大を行わない。牽引力制御部61は、アクセル操作部材の操作量が所定の操作閾値A1以上ではないときには、最大牽引力の増大を行わない。牽引力制御部61は、ブーム角度が所定の角度閾値B1より小さくないときには、最大牽引力の増大を行わない。牽引力制御部61は、インチング操作部材27aの操作量が所定のインチング操作閾値C1以下ではないときには、最大牽引力の増大を行わない。なお、ステップS110において、タイマーがリセットされる。
 ステップS104からステップS108の条件の全てが満たされているときには、ステップS111へ進む。ステップS111では、継続時間判定部67が、タイマーによる計測時間が、所定の時間閾値D1以上であるか否かを判定する。すなわち、継続時間判定部67は、ステップS104からステップS108の各条件が満たされている状態の継続時間が、所定の時間閾値D1以上であるか否かを判定する。時間閾値D1は、各条件が一時的に満たされているのではないと見なすことができる程度の時間が設定される。例えば、時間閾値D1は、1秒以下の値である。好ましくは、時間閾値D1は、0.5秒以下の値である。タイマーによる計測時間が、所定の時間閾値D1以上ではないときには、ステップS104からステップS112の判定が繰り返される。すなわち、牽引力制御部61は、継続時間が所定の時間閾値D1に達するまでは、最大牽引力の増大を行わない。
 また、ステップS112において、変更フラグ判定部68は、変更フラグがオフであるか否かを判定する。すなわち、変更フラグ判定部68は、牽引力の制御レベルが第1レベルであるか否かを判定する。変更フラグがオフである場合、すなわち、牽引力の制御レベルが第1レベルである場合には、ステップS113に進む。
 ステップS113では、牽引力制御部61は、変更フラグをオンに設定する。また、ステップS114において、牽引力制御部61は、牽引力の制御レベルを、第1レベルから第2レベルに変更する。これにより、牽引力制御部61は、図7に示す第2牽引力比率情報Lv2に基づいて最大牽引力を制御する。ただし、図7に示すように、第2レベルの最大牽引力は、牽引力制御がオフ状態での最大牽引力よりも小さい。
 牽引力制御部61は、牽引力の制御レベルを、第1レベルから第2レベルに上げるときには、第2レベルから第1レベルに戻すときよりも、最大牽引力をゆっくりと変化させる。すなわち、牽引力制御部61は、牽引力制御において最大牽引力を増大させるときには、最大牽引力を低減させるときよりも、牽引力をゆっくりと変化させる。図11(a)は、モータ容量を増大させるときのモータ容量の指令値の変更速度を示している。すなわち、図11(a)は、最大牽引力を増大させるときのモータ容量の指令値の変更速度を示している。図11(b)は、モータ容量を減少させるときのモータ容量の指令値の変更速度を示している。すなわち、図11(b)は、最大牽引力を減少させるときのモータ容量の指令値の変更速度を示している。図11に示すように、時間T1は時間T2よりも大きい。従って、牽引力制御部61は、最大牽引力を増大させるときには、最大牽引力を減少させるときよりも、モータ容量の指令値をゆっくりと変化させる。
 なお、図9に示すステップS112において、変更フラグがオフではない場合には、牽引力の制御レベルが第2レベルに維持されると共に、ステップS104からステップS112の判定が繰り返される。そして、ステップS104からステップS108の条件のいずれかが満たされなくなったときに、ステップS109において、牽引力の制御レベルが第2レベルから第1レベルに戻される。
 図12は、掘削フラグがオンであるか否かを判定するための処理を示すフローチャートである。すなわち、図12は、作業局面が掘削であるか否かを判定するための処理を示すフローチャートである。図12に示すように、ステップS201において、作業局面判定部62は、掘削フラグをオフに設定する。ステップS202において、作業局面判定部62は、ブーム圧低下フラグがオンであるか否かを判定する。ブーム圧低下フラグがオンであることは、バケットが空荷状態であることを意味する。ブーム圧低下フラグの判定処理については後述する。
 ステップS203において、ブーム角度が所定の角度閾値B2より小さいか否かが判定される。角度閾値B2は、バケットが地面上に置かれているときのブーム角度に相当する。角度閾値B2は、上述した角度閾値B1より小さい。
 S204において、作業局面判定部62は、ブーム圧が、第1ブーム圧判定値以上であるか否かを判定する。ブーム圧は、リフトシリンダ19を伸長させるときにリフトシリンダ19に供給される油圧である。ブーム圧は、上述したブーム圧センサ22によって検出される。第1ブーム圧判定値は、掘削中にとりうるブーム圧の値である。第1ブーム圧判定値は、実験或いはシミュレーションによって予め求められて設定される。第1ブーム圧判定値は、ブーム角度に応じた値である。車体コントローラ12は、第1ブーム圧判定値とブーム角度との関係を示すブーム圧判定値情報(以下、「第1ブーム圧判定値情報」と呼ぶ)を記憶している。第1ブーム圧判定値情報は、例えば、第1ブーム圧判定値とブーム角度との関係を示すテーブル或いはマップである。作業局面判定部62は、第1ブーム圧判定値情報を参照することにより、ブーム角度に応じた第1ブーム圧判定値を決定する。
 ステップS202からステップS204の全ての条件が満たされたときには、ステップS205に進む。ステップS205では、作業局面判定部62は、掘削フラグをオンに設定する。すなわち、作業局面判定部62は、ステップS202からステップS204の全ての条件が満たされたときに作業局面が掘削であると判定する。ステップS202からステップS204の全ての条件が満たされたときには、ホイールローダ50が掘削の準備段階に入ったと見なすことができるからである。ステップS202,S204,S204の条件のうち少なくとも1つが満たされていないときには、ステップS202からステップS204の判定が繰り返される。
 また、ステップS206において、作業局面判定部62は、ブーム圧低下フラグをオフに設定する。次に、ステップS207において、作業局面判定部62は、FNR認識値がFであるか否かを判定する。FNR認識値は、車両が前進状態と後進状態と中立状態とのいずれであるのかを示す情報である。FNR認識値がFであることは、車両が前進状態であることを意味する。FNR認識値がRであることは、車両が後進状態であることを意味する。FNR認識値がNであることは、車両が中立状態であることを意味する。作業局面判定部62は、前後進切換操作部材14からの検出信号に基づいて、FNR認識値がFであるか否かを判定する。FNR認識値がFではないときには、ステップS209に進む。ステップS209では、作業局面判定部62は、掘削フラグをオフに設定する。すなわち、車両が後進状態又は中立状態であるときには、掘削フラグがオフに設定される。ステップS207において、FNR認識値がFであるときには、ステップS208に進む。
 ステップS208では、作業局面判定部62は、ブーム圧低下フラグがオンであるか否かを判定する。ブーム圧低下フラグがオンであるときには、ステップS209に進む。ブーム圧低下フラグがオンではないときには、ステップS207に戻る。従って、一旦、作業局面が掘削であると判定されると、その後、前後進切換操作部材14が前進位置から後進位置に切り換えられるまで、又は、前後進切換操作部材14が前進位置から中立位置に切り換えられるまでは、ステップS202からステップS204の条件が満たされなくなっても、掘削フラグがオンに維持される。なお、前後進切換操作部材14が前進位置に維持されていても、ブーム圧低下フラグがオンに設定されたときには、掘削フラグはオフに変更される。
 図13は、ブーム圧低下フラグがオンであるか否かを判定するための処理を示すフローチャートである。図13に示すように、ステップS301において、作業局面判定部62は、ブーム圧低下フラグをオフに設定する。
 ステップS302において、作業局面判定部62は、第1タイマーの計測を開始する。ここでは、第1タイマーは、ブーム圧低下フラグをオンに設定するための条件が満たされている継続時間を計測する。
 ステップS303において、作業局面判定部62は、ブーム圧が、第2ブーム圧判定値より小さいか否かを判定する。第2ブーム圧判定値は、バケットが空荷状態であるときに、とりうるブーム圧の値である。車体コントローラ12は、第2ブーム圧判定値とブーム角度との関係を示すブーム圧判定値情報(以下、「第2ブーム圧判定値情報」と呼ぶ)を記憶している。第2ブーム圧判定値情報は、例えば、第2ブーム圧判定値とブーム角度との関係を示すテーブル或いはマップである。作業局面判定部62は、第2ブーム圧判定値情報を参照することにより、ブーム角度に応じた第2ブーム圧判定値を決定する。第2ブーム圧判定値情報では、ブーム角度が0度より大きいときには、第2ブーム圧判定値は、ブーム角度が0度であるときの値で一定である。ブーム角度が0度以上であるときのブーム圧の増加率は、ブーム角度が0度より小さいときのブーム圧の増加率よりも小さく、ブーム角度が0度より大きいときの第2ブーム圧判定値は、ブーム角度が0度であるときの第2ブーム圧判定値で近似できるからである。
 ステップS304において、作業局面判定部62は、第1タイマーによる計測時間が、所定の時間閾値D2以上であるか否かを判定する。すなわち、継続時間判定部67は、ステップS303の条件が満たされている状態の継続時間が、所定の時間閾値D2以上であるか否かを判定する。時間閾値D2は、ステップS303の条件が一時的に満たされているのではないと見なすことができる程度の時間が設定される。時間閾値D2は、上述した時間閾値D1よりも大きい。第1タイマーによる計測時間が、所定の時間閾値D2以上ではないときには、ステップS303の判定が繰り返される。ステップS304において、第1タイマーによる計測時間が、所定の時間閾値D2以上であるときには、ステップS305に進む。
 ステップS305では、作業局面判定部62は、ブーム圧低下フラグをオンに設定する。そして、ステップS306において、作業局面判定部62は、第1タイマーの計測を終了する。なお、ステップS303において、ブーム圧が、第2ブーム圧判定値より小さくないときには、ステップS307に進む。ステップS307において、作業局面判定部62は、第1タイマーをリセットする。
 ステップS308において、作業局面判定部62は、第2タイマーの計測を開始する。そして、ステップS309において、作業局面判定部62は、掘削フラグがオンであるか否かを判定する。掘削フラグがオンであるときには、ステップS310に進む。
 ステップS310では、作業局面判定部62は、第2タイマーの計測を終了する。そして、ステップS301に戻り、作業局面判定部62は、ブーム圧低下フラグをオフに設定する。
 ステップS309において、掘削フラグがオンではないときには、ステップS311に進む。ステップS311では、作業局面判定部62は、ブーム圧が、第2ブーム圧判定値より小さいか否かを判定する。ブーム圧が、第2ブーム圧判定値より小さいときには、ステップS312に進む。
 ステップS312において、作業局面判定部62は、第2タイマーによる計測時間が、所定の時間閾値D3以上であるか否かを判定する。第2タイマーによる計測時間が、所定の時間閾値D3以上であるときには、ステップS310に進む。上記と同様に、ステップS310において、作業局面判定部62は、第2タイマーの計測を終了し、ステップS301において、ブーム圧低下フラグをオフに設定する。ステップS312において、第2タイマーによる計測時間が、所定の時間閾値D3以上ではないときには、ステップS309に戻る。
 なお、ステップS311において、ブーム圧が、第2ブーム圧判定値より小さくないときには、ステップS313に進む。ステップS313において、作業局面判定部62は、第2タイマーをリセットして、ステップS309に戻る。
 本実施形態に係るホイールローダ50では、牽引力制御中に上述した判定条件が満たされたときに、牽引力の制御レベルを第1レベルから第2レベルに上げる。これにより、最大牽引力が増大される。判定条件は、掘削作業中にオペレータが、より大きな牽引力を出そうとしてアクセル操作部材13aを操作しているにも関わらず、ホイールローダ50が、ほぼ停止している状態となっているときに満たされる。従って、ホイールローダ50がこのような状態に陥ったときには、オペレータが牽引力制御を解除しなくても、最大牽引力が自動的に増大される。このため、本実施形態に係るホイールローダ50では、掘削作業時に十分な牽引力を得ることができると共に操作性の低下を抑えることができる。
 上述した判定処理では、判定条件が満たされている状態の継続時間が考慮される。このため、制御レベルの変更が短時間に頻繁に繰り返されることを防止することができる。これにより、ホイールローダ50の操作性の低下が抑えられる。
 判定条件が満たされたときに、牽引力制御部61は、牽引力の制御レベルを、第1レベルから第2レベルに上げるが、第2レベルの最大牽引力は、牽引力制御がオフ状態での最大牽引力よりも小さい。従って、判定条件が満たされたときに、最大牽引力が過剰に増大されることを防止することができる。
 オペレータは、設定操作装置24を操作することによって、第1レベルの最大牽引力の大きさを変更することができる。そして、判定条件が満たされたときには、牽引力制御部61は、最大牽引力を、第1レベルの最大牽引力よりも大きな値に増大する。これにより、オペレータは、作業状況に応じて、必要な最大牽引力を、より細かく設定することができる。
 牽引力制御中に判定条件が満たされなくなったときには、牽引力制御部61は、牽引力の制御レベルを第1レベルに戻す。これにより、作業状況に応じた適切な最大牽引力を得ることができる。
 牽引力制御部61は、牽引力の制御レベルを第1レベルから第2レベルに上げるときには、第2レベルから第1レベルに戻すときよりも、ゆっくりとポンプ容量を変化させる。このため、牽引力の急激な増大を抑えることができる。これにより、スリップの発生、或いは、操作性の低下を抑えることができる。また、牽引力制御部61は、牽引力の制御レベルを第2レベルから第1レベルに戻すときには、第1レベルから第2レベルに上げるときよりもポンプ容量を迅速に変化させる。これにより、本実施形態に係るホイールローダ50では、例えば、掘削中に牽引力の出過ぎによってブームが上がらない状態に陥ったとしても、このような状態から迅速に抜け出すことができる。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 上記の実施形態では、1つの油圧ポンプと走行用油圧モータ10を含む1ポンプ1モータのHSTシステムを搭載したホイールローダ50を例として挙げて説明した。しかし、本発明はこれに限定されるものではない。例えば、1つの第1油圧ポンプと2つの走行用油圧モータを含む、1ポンプ2モータのHSTシステムを搭載したホイールローダに対して、本発明を適用してもよい。
 上記の実施形態では、インチング操作部材27aは、ブレーキペダルを兼ねている。しかし、ブレーキペダルとは別の部材としてインチング操作部材が設けられてもよい。
 上記の実施形態では、設定操作装置24は、第1レベルの最大牽引力の大きさを3段階に変更することができる。しかし、設定操作装置24は、第1レベルの最大牽引力の大きさを3段階以外の複数段階に変更可能であってもよい。或いは、設定操作装置24は、第1レベルの最大牽引力の大きさを連続的に任意の大きさに変更可能であってもよい。或いは、設定操作装置24が省略されてもよい。すなわち、第1レベルの最大牽引力の大きさは、変更不能であってもよい。
 判定条件は、上記の条件のみに限らず、他の条件が追加されてもよい。或いは、上述した判定条件の一部が変更されてもよい。
 上記の実施形態では、牽引力制御部61は、モータ容量の上限容量を変更することによって最大牽引力を低減しているが、他の方法によって最大牽引力を低減してもよい。例えば、牽引力制御部61は、駆動回路圧を制御することに、最大牽引力を低減してもよい。駆動回路圧は、例えば、第1油圧ポンプ4の容量を制御することによって制御される。
 上記の実施形態では、アクセル操作量の増大に応じて牽引力比率が増大するように牽引力比率情報が設定されているが、アクセル操作量に関わらず牽引力比率が一定となるように、牽引力比率情報が設定されてもよい。
 本発明によれば、掘削作業時に十分な牽引力を得ることができると共に操作性の低下を抑えることができるホイールローダ及びホイールローダの制御方法を提供することができる。
1  エンジン
4  第1油圧ポンプ
10 走行用油圧モータ
13a アクセル操作部材
15 牽引力制御操作部材
16 車速センサ
24 設定操作装置
27a インチング操作部材
50 ホイールローダ
52 作業機
61 牽引力制御部
62 作業局面判定部
63 車速判定部
64 アクセル操作判定部
65 ブーム角度判定部
66 インチング操作判定部
 

Claims (17)

  1.  ブームとバケットとを有する作業機と、
     エンジンと、
     前記エンジンによって駆動される油圧ポンプと、
     前記油圧ポンプから吐出された作動油によって駆動される走行用油圧モータと、
     前記エンジンの目標回転速度を設定するために操作されるアクセル操作部材と、
     車速を低減させるために操作されるインチング操作部材と、
     最大牽引力を低減させる牽引力制御のオンオフを切り換えるために操作される牽引力制御操作部材と、
     車速を検出する車速検出部と、
     作業局面が掘削であるか否かを判定する作業局面判定部と、
     前記車速が所定の速度閾値以下であるか否かを判定する車速判定部と、
     前記アクセル操作部材の操作量が所定のアクセル閾値以上であるか否かを判定するアクセル操作判定部と、
     前記インチング操作部材の操作量が所定のインチング操作閾値以下であるか否かを判定するインチング操作判定部と、
     前記牽引力制御がオン状態であるときには、前記牽引力制御がオフ状態での最大牽引力よりも最大牽引力を低減させる牽引力制御部と、
    を備え、
     前記牽引力制御部は、前記作業局面が掘削であることと、前記車速が前記所定の速度閾値以下であることと、前記アクセル操作部材の操作量が前記所定のアクセル閾値以上であることと、前記インチング操作部材の操作量が前記所定のインチング操作閾値以下であることとを含む判定条件が前記牽引力制御中に満たされたときに、最大牽引力を増大させる、
    ホイールローダ。
  2.  前記ブームの水平方向に対する角度であるブーム角度が所定の角度閾値より小さいか否かを判定するブーム角度判定部をさらに備え、
     前記判定条件は、前記ブーム角度が所定の角度閾値より小さいことをさらに含む、
    請求項1に記載のホイールローダ。
  3.  前記判定条件は、他の条件が満たされている状態の継続時間が所定の時間閾値以上であることをさらに含む、
    請求項1に記載のホイールローダ。
  4.  前記牽引力制御部は、前記牽引力制御において、牽引力の制御レベルを、前記牽引力制御がオフ状態での最大牽引力よりも最大牽引力が小さくなる第1レベルに設定し、
     前記牽引力制御部は、前記判定条件が前記牽引力制御中に満たされたときには、最大牽引力の制御レベルを、前記第1レベルよりも最大牽引力が大きくなる第2レベルに変更する、
    請求項1から3のいずれかに記載のホイールローダ。
  5.  前記第2レベルの最大牽引力は、前記牽引力制御がオフ状態での最大牽引力よりも小さい、
    請求項4に記載のホイールローダ。
  6.  前記第1レベルの最大牽引力の大きさを変更するための牽引力レベル変更部をさらに備える、
    請求項4に記載のホイールローダ。
  7.  前記牽引力制御部は、前記牽引力制御中に前記判定条件が満たされなくなったときは、牽引力の制御レベルを前記第1レベルに戻す、
    請求項4に記載のホイールローダ。
  8.  前記牽引力制御部は、牽引力の制御レベルを前記第2レベルに変更するときには、牽引力の制御レベルを前記第1レベルに戻すときよりも、牽引力をゆっくりと変化させる、
    請求項7に記載のホイールローダ。
  9.  前記作業局面判定部は、車両の走行状態と前記作業機の作動状態とに基づいて、前記作業局面が掘削であるか否かを判定する、
    請求項1に記載のホイールローダ。
  10.  牽引力制御部は、前記走行用油圧モータの傾転角を制御することで前記走行用油圧モータの容量を制御し、前記走行用油圧モータの容量の上限容量を制御することにより、前記最大牽引力の制御を行う、
    請求項1に記載のホイールローダ。
  11.  前記牽引力制御部は、前記作業局面が掘削ではないときには、前記最大牽引力の増大を行わない、
    請求項1に記載のホイールローダ。
  12.  前記牽引力制御部は、前記車速が前記所定の速度閾値以下ではないときには、前記最大牽引力の増大を行わない、
    請求項1に記載のホイールローダ。
  13.  前記牽引力制御部は、前記アクセル操作部材の操作量が前記所定の操作閾値以上ではないときには、前記最大牽引力の増大を行わない、
    請求項1に記載のホイールローダ。
  14.  前記牽引力制御部は、前記インチング操作部材の操作量が前記所定のインチング操作閾値以下ではないときには、前記最大牽引力の増大を行わない、
    請求項1に記載のホイールローダ。
  15.  前記牽引力制御部は、前記ブーム角度が前記所定の角度閾値より小さくないときには、前記最大牽引力の増大を行わない、
    請求項2に記載のホイールローダ。
  16.  前記牽引力制御部は、前記継続時間が前記所定の時間閾値以上ではないときには、前記最大牽引力の増大を行わない、
    請求項3に記載のホイールローダ。
  17.  ブームとバケットとを有する作業機と、エンジンと、前記エンジンによって駆動される油圧ポンプと、前記油圧ポンプから吐出された作動油によって駆動される走行用油圧モータと、前記エンジンの目標回転速度を設定するために操作されるアクセル操作部材と、車速を低減させるためのインチング操作部材と、最大牽引力を低減させる牽引力制御のオンオフを切り換えるために操作される牽引力制御操作部材と、を備えるホイールローダの制御方法であって、
     車速を検出するステップと、
     作業局面が掘削であるか否かを判定するステップと
     前記車速が所定の速度閾値以下であるか否かを判定するステップと
     前記アクセル操作部材の操作量が所定のアクセル閾値以上であるか否かを判定するステップと
     前記インチング操作部材の操作量が所定のインチング操作閾値以下であるか否かを判定するステップと
     前記牽引力制御がオン状態であるときには、前記牽引力制御がオフ状態での最大牽引力よりも最大牽引力を低減させるステップと
     前記作業局面が掘削であることと、前記車速が前記所定の速度閾値以下であることと、前記アクセル操作部材の操作量が前記所定のアクセル閾値以上であることと、前記インチング操作部材の操作量が前記所定のインチング操作閾値以下であることとを含む判定条件が前記牽引力制御中に満たされたときに、最大牽引力を増大させるステップと、
    を備えるホイールローダの制御方法。
     
PCT/JP2012/062349 2012-03-30 2012-05-15 ホイールローダ及びホイールローダの制御方法 WO2013145340A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012524796A JP5092069B1 (ja) 2012-03-30 2012-05-15 ホイールローダ及びホイールローダの制御方法
EP12832792.1A EP2664824B1 (en) 2012-03-30 2012-05-15 Wheel loader and method for controlling wheel loader
US13/808,732 US8706364B2 (en) 2012-03-30 2012-05-15 Wheel loader and method for controlling wheel loader
CN201280001289.8A CN103429935B (zh) 2012-03-30 2012-05-15 轮式装载机及轮式装载机的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012078941 2012-03-30
JP2012-078941 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145340A1 true WO2013145340A1 (ja) 2013-10-03

Family

ID=48749701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062349 WO2013145340A1 (ja) 2012-03-30 2012-05-15 ホイールローダ及びホイールローダの制御方法

Country Status (4)

Country Link
US (1) US9026320B2 (ja)
EP (1) EP2664824B1 (ja)
CN (1) CN103429935B (ja)
WO (1) WO2013145340A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958782B (zh) * 2013-12-06 2016-02-24 株式会社小松制作所 液压挖掘机
CN103696453B (zh) * 2013-12-12 2017-02-15 三一重机有限公司 用于挖掘机电控泵的控制方法和系统
JP6271270B2 (ja) * 2014-01-31 2018-01-31 株式会社小松製作所 作業車両及び作業車両の制御方法
US20160281323A1 (en) * 2015-03-25 2016-09-29 Komatsu Ltd. Wheel Loader
US9856973B1 (en) * 2016-07-07 2018-01-02 Deere & Company System and method for transmission with creeper mode selection
JP7095287B2 (ja) * 2018-01-22 2022-07-05 コベルコ建機株式会社 旋回式油圧作業機械
DE102020211075A1 (de) * 2020-09-02 2022-03-03 Zf Friedrichshafen Ag Verfahren zur traktionsbezogenen Steuerung eines Antriebsstrangs einer Arbeitsmaschine
CN113954843B (zh) * 2021-11-12 2023-06-27 燕山大学 一种液压机械无级变速装载机实时工况识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229560A (ja) * 1994-02-18 1995-08-29 Komatsu Ltd 静油圧−機械式変速機の制御装置
JP2004024172A (ja) * 2002-06-27 2004-01-29 Iseki & Co Ltd ロータリの耕耘ピッチ制御装置
JP2008144942A (ja) 2006-12-13 2008-06-26 Komatsu Ltd 建設車両の牽引力制御装置
JP2011063945A (ja) * 2009-09-15 2011-03-31 Kcm:Kk 産業用車両

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156237B2 (ja) * 2007-01-24 2013-03-06 株式会社小松製作所 油圧駆動装置及び油圧駆動車両
US8036797B2 (en) 2007-03-20 2011-10-11 Deere & Company Method and system for controlling a vehicle for loading or digging material
JP5261419B2 (ja) * 2010-03-05 2013-08-14 株式会社小松製作所 作業車両及び作業車両の制御方法
JP5222895B2 (ja) * 2010-05-07 2013-06-26 株式会社小松製作所 作業車両及び作業車両の制御方法
JP5119487B2 (ja) * 2010-09-13 2013-01-16 株式会社小松製作所 フォークリフトのエンジン制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229560A (ja) * 1994-02-18 1995-08-29 Komatsu Ltd 静油圧−機械式変速機の制御装置
JP2004024172A (ja) * 2002-06-27 2004-01-29 Iseki & Co Ltd ロータリの耕耘ピッチ制御装置
JP2008144942A (ja) 2006-12-13 2008-06-26 Komatsu Ltd 建設車両の牽引力制御装置
JP2011063945A (ja) * 2009-09-15 2011-03-31 Kcm:Kk 産業用車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2664824A4

Also Published As

Publication number Publication date
US9026320B2 (en) 2015-05-05
EP2664824B1 (en) 2014-05-14
CN103429935A (zh) 2013-12-04
EP2664824A1 (en) 2013-11-20
EP2664824A4 (en) 2013-11-20
US20140169923A1 (en) 2014-06-19
CN103429935B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5092070B1 (ja) ホイールローダ及びホイールローダの制御方法
JP5092071B1 (ja) ホイールローダ及びホイールローダの制御方法
JP5161380B1 (ja) 作業車両及び作業車両の制御方法
WO2013145340A1 (ja) ホイールローダ及びホイールローダの制御方法
JP5113946B1 (ja) 作業車両及び作業車両の制御方法
JP5192605B1 (ja) ホイールローダ
JP5192601B1 (ja) 作業車両及び作業車両の制御方法
JP5092069B1 (ja) ホイールローダ及びホイールローダの制御方法
US8607919B2 (en) Working vehicle and method for controlling a working vehicle
US20150082779A1 (en) Work vehicle and method for controlling work vehicle
JP2014055439A (ja) ホイールローダ
WO2016043222A1 (ja) ホイールローダ及びその制御方法
WO2013145342A1 (ja) ホイールローダ及びホイールローダの制御方法
JP5106694B1 (ja) 作業車両及び作業車両の制御方法
KR102452805B1 (ko) 휠 로더의 제어 방법 및 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012524796

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13808732

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012832792

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE