WO2013143775A1 - Fahrzeug-tanksystem zur speicherung eines betriebsstoffes in tiefkaltem zustand - Google Patents

Fahrzeug-tanksystem zur speicherung eines betriebsstoffes in tiefkaltem zustand Download PDF

Info

Publication number
WO2013143775A1
WO2013143775A1 PCT/EP2013/053024 EP2013053024W WO2013143775A1 WO 2013143775 A1 WO2013143775 A1 WO 2013143775A1 EP 2013053024 W EP2013053024 W EP 2013053024W WO 2013143775 A1 WO2013143775 A1 WO 2013143775A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
vehicle
vacuum pump
tank
fuel
Prior art date
Application number
PCT/EP2013/053024
Other languages
English (en)
French (fr)
Inventor
Oliver Kircher
Klaas Kunze
Bastian Landeck
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to EP13703849.3A priority Critical patent/EP2831489A1/de
Publication of WO2013143775A1 publication Critical patent/WO2013143775A1/de
Priority to US14/496,944 priority patent/US20150028039A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03309Tanks specially adapted for particular fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control

Definitions

  • Vehicle tank system for storing a fuel in cryogenic condition
  • the invention relates to a vehicle tank system for storing a fuel in the cryogenic state, consisting of an inner tank receiving the fuel and an outer skin surrounding it to form an insulating layer representing an approximately vacuum. Furthermore, the invention relates to an operating method for a vehicle tank system according to the invention. Examples of possible operating materials stored in such a tank system include liquid hydrogen, cryogenic hydrogen in the supercritical state, liquefied natural gas or other liquefied or cryogenic gases which are stored and carried in the vehicle, in particular as an energy source for driving the vehicle or motor vehicle. Reference is made to the prior art, in particular to DE 10 2006 025 657.
  • the present invention proposes the use of a permanently installed in the vehicle vacuum pump to ensure the vacuum quality practically over the entire life of the vehicle cryo-tank.
  • vacuum quality is known to the person skilled in the art and means that a certain tolerance band is maintained for the absolute pressure prevailing in the vacuum or so-called “near vacuum”.
  • a sufficient vacuum quality may be present for a vehicle tank system according to the preamble of claim 1 if the absolute pressure in the vacuum insulation layer is less than 10 -3 mbar (0.001 millibar). that the quality of the currently prevailing in the insulation layer vacuum is not sufficient, the vacuum pump (by this control unit) is put into operation and either for a certain predetermined period of time or kept in operation until the desired vacuum quality is restored.
  • the pressure in the vacuum insulation layer can be monitored by means of an absolute pressure sensor, which also measures the smallest pressure values, and it can then preferably, if sufficient energy for the operation of the vacuum pump is available, put this vacuum pump into operation and thus the vacuum insulation layer of the tank Furthermore, in this isolation layer, an absolute pressure below a predetermined limit value or desired value prevails in the above-mentioned order of magnitude of, for example, 10.sup.- 3 mbar
  • a dependent one can also be used Substitute size is used, this dependence being expressed by the concept of correlation in claim 6.
  • a possible and preferred substitute variable which correlates positively with the absolute pressure in the vacuum insulation layer is the heat input via the vacuum in a given time unit.
  • Insulation layer adjusting heating of the equipment.
  • the pressure and the temperature of the fuel in the inner tank are continuously measured on a vehicle tank system according to the preamble of claim 1.
  • On the basis of stored tables and / or model calculations can then be determined from the heating of the fuel within a certain time unit with appropriate consideration of other influences and boundary conditions, whether there is sufficient or insufficient vacuum quality in the insulation layer between the inner tank and the outer shell.
  • the preferably via a switchable vacuum valve to the vacuum insulation layer of the tank ankoppeibare or generally connected vacuum pump is permanently installed in the vehicle and is installed by an electronic control unit, the appropriate suitable signals of this Sensors - for example, as just explained a pressure sensor or in addition a temperature sensor - evaluates, if necessary, controlled. It may preferably then, if sufficient energy for the operation of the vacuum pump is available, this vacuum pump as long put into operation and thus the vacuum insulation layer of the tank will be further evacuated until the vacuum quality meets the requirements again, which found in the same way can be used as the current vacuum quality in the context of continuous monitoring. But it is also possible to operate the vacuum pump for a fixed period of time, which in turn may be dependent on current boundary conditions.
  • Sufficient energy for operating the pump is available, for example, when the vehicle is itself in operation, since then the energy converter also operated in the vehicle can gain the necessary energy from the stored fuel in the tank. Sufficient energy for operating the pump can also be available when the vehicle is parked (stopped) and the or a drive for the vacuum pump from an external power source, for example. In the form of electrical power can be fed from the mains.
  • the vacuum pump which may preferably be a turbomolecular pump or a comparatively robust vacuum pump capable of producing vacuum pressures of the order of 10 -3 mbar or less, may be driven directly or indirectly by the drive system of the vehicle Actuator optionally with intermediate switch tion of a transmission by a drive shaft of the vehicle possible; for an indirect drive is an electric motor into consideration, for example, from a fuel cell, which is part of the vehicle drive system, is fed.
  • the commissioning of the vacuum pump is carried out in partial load phases or coasting phases of the vehicle drive system in order to minimize the negative impact on the efficiency of the drive as possible.
  • a "supercharged" internal combustion engine part of the vehicle drive system it can be coupled in a synergistic manner with the existing exhaust gas turbine engine especially when using a turbomolecule pump as a vacuum pump whose drive.
  • this blown subset can be fed to an energy converter, which generates energy for the operation of the vacuum pump, so that the Vacuum pump can be taken during a longer life of the vehicle in operation.
  • a vacuum pump provided according to the invention can be combined with a device for increasing the pressure in the vacuum insulation layer and used to actively regulate the absolute pressure in the "near-vacuum" or the vacuum quality prevailing there Withdrawal phases without interruption, in particular full load phases of the consumer of the operating fluid, the tank pressure drop without active introduction of heat into the inner tank to the extent that a reliable supply to the consumer is no longer guaranteed heat provided to the tank heat to increase the pressure in the storage volume brought in.
  • a heat exchanger is no longer needed if a targeted heat input into the storage volume via the outer shell and the (vacuum) insulation layer takes place.
  • the so-called “near-vacuum” is reduced to such an extent that the desired amount of heat from the environment can reach the inner tank via the walls of the tank, in other words the quality of the vacuum is reduced if the pressure prevailing in the inner tank (and continuous
  • the quality of the vacuum is regulated by commissioning or putting the vacuum pump into operation depending on the pressure prevailing in the inner tank and on the temperature prevailing there a small amount of ambient air may be introduced into the vacuum insulation layer in the insulation layer by opening a suitably provided valve, but it may also be purposeful degradation of the "near-vacuum" of the insulation layer with a gas having a high thermal conductivity.
  • a vacuum pump provided according to the invention can also be used when a leak occurs at the vacuum in order to prevent or at least delay a complete loss of the vacuum.
  • opening of safety devices in case of loss of vacuum due to the then rapidly increasing heat input and tank pressure can be completely prevented or delayed in time so that there is sufficient time for appropriate action and warning.
  • the production process for a tank / storage container used according to the invention can be substantially shortened and thus also cost-optimized, because the heating and evacuation process can be greatly reduced or even partially eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Die Erfindung betrifft ein Fahrzeug-Tanksystem zur Speicherung eines Betriebsstoffes in tiefkaltem Zustand, bestehend aus einem den Betriebsstoff aufnehmenden Innentank und einer diesen unter Bildung einer annähernd ein Vakuum darstellenden Isolationsschicht umhüllenden Außenhaut, und ist gekennzeichnet durch eine permanent im Fahrzeug vorgesehene und an die Isolationsschicht angeschlossene Vakuumpumpe, mittels derer die Güte des Vakuums steigerbar ist, wenn die Vakuum-Güte vorgegebenen Anforderungen nicht genügt.

Description

Fahrzeug-Tanksystem zur Speicherung eines Betriebsstoffes in tiefkaltem Zustand
Die Erfindung betrifft ein Fahrzeug-Tanksystem zur Speicherung eines Betriebsstoffes in tiefkaltem Zustand, bestehend aus einem den Betriebsstoff aufnehmenden Innentank und einer diesen unter Bildung einer annähernd ein Vakuum darstellenden Isolationsschicht umhüllenden Außenhaut. Ferner betrifft die Erfindung ein Betriebsverfahren für ein erfindungsgemäßes Fahrzeug-Tanksystem. Als mögliche Betriebsstoffe, die in einem solchen Tanksystem gespeichert werden, seien beispielsweise Flüssigwasserstoff, kryogener Wasserstoff im überkritischen Zustand, Flüssigerdgas oder andere verflüssigte oder tiefkalte Gase genannt, die insbesondere als Energiequelle für den Antrieb des Fahrzeugs bzw. Kraftfahrzeugs im Fahrzeug gespeichert und mitgeführt werden. Zum Stand der Technik wird insbesondere auf die DE 10 2006 025 657 verwiesen.
Für eine ökologisch und ökonomisch vertretbare mobile Speicherung kryogener Gase ist es notwendig, den Wärmeeintrag aus der Umgebung in das gespeicherte Gas auf ein Minimum zu reduzieren, um ungewollte und nachteilige Druckanstiege im Speicherbehälter (Tank) und daraus ggf. resultierenden Gasverluste als Folge eines anteiligen Abblasens von gespeichertem Gas zur Vermeidung eines unzulässig hohen Druckaufbaus zu verhindern. Daher weisen Tanksysteme zur Speicherung von Betriebsstoffen in tiefkaltem Zustand eine Vakuumsuperisoiation auf, die aus in einem sog. „Nahezu-Vakuum" durch Spaceriagen voneinander getrennten Reflektorschilden besteht (vgl. bspw. DE102006057663 A1) und mit Absolut- Druckwerten im Bereich zwischen 10~5 mbar und 10-3 mbar (Millibar) arbeitet. Zur Erzeugung und nachhaltigen Aufrechterhaltung dieses Vakuums in der Isolationsschicht des Tanks auch über mehrere Jahre hinweg ist beim Herstellprozess eines solchen mit Vakuum-Superisolation versehenen Kryo- Tanks ein aufwändiger, sich über mehrere Tage erstreckender Ausheizpro- zess und Evakuierprozess notwendig, was für eine Großserienfertigung praktisch nicht wirtschaftlich darstellbar ist. Weiterhin ist zur Gewährleistung der notwendigen Vakuumgüte über den kompletten Lebenszyklus eines solchen kryogenen Tanks bzw. Gasspeichers in der Vakuumsuperisolation desselben ein Getter (vgl. bspw. DE102008031344 A1 ) vorzusehen. Auch ein solches Getter ist aufwändig, insbesondere wenn ein Austausch desselben erforderlich werden sollte.
Zumeist erfolgt die Entnahme von gespeichertem Gas aus dem Tank unter Nutzung eines im Tank herrschenden Überdrucks, der hierfür auch bei intensiverer Entnahme und insbesondere auch für eine nahezu vollständige Entleerung des Tanks dargestellt bzw. aufrecht erhalten werden muss. Dies wird üblicherweise mittels eines im Speichervolumen des Tanks vorgesehenen Wärmetauschers (vgl. bspw. DE 10 2006 025 657 A1 ) realisiert, über den Wärme in das Speichervolumen bzw. den Innentank einbringbar ist. In Entwicklung befinden sich derzeit sog. Kryo-Drucktanks, in denen Wasserstoff in überkritischem Zustand gespeichert werden kann und bei denen in nahezu allen Betriebszuständen eines damit ausgerüsteten Fahrzeugs auch ohne zusätzliche Wärmezufuhr in den Tank ein ausreichend hoher Druck zur Verfügung stehen könnte. Dennoch müsste auch bei einem Kryo-Drucktank ein solcher aufwändiger Wärmetauscher vorgesehen werden, um eine vollständige Entleerung des Tanks auch dann zu ermöglichen, wenn das Fahrzeug zwischenzeitlich nicht abgestellt wird. Ferner muss ein solcher Wärmetauscher in aufwändiger Weise gegen Risiken aus einer möglicherweise erfolgenden Leckage abgesichert werden, da im Leckagefall über die zusätzlichen dem Wärmetauscher zugeordneten Leitungen gespeichertes Gas aus dem Tank gelangen könnte. Quasi im Vorgriff auf die vorliegende Erfindung sei weiterhin kurz auf die
DE 695 16 117 T2 verwiesen, die einen Kühlschrank mit einer Vakuum- Isolation beschreibt, weiche mittels einer permanent vorgesehenen Vakuumpumpe aufrecht erhalten wird.
Hiermit soll nun ein Fahrzeug-Tanksystem nach dem Oberbegriff des Anspruchs 1 aufgezeigt werden, welches allgemein gesprochen eine einfacher zu handhabende Vakuum-Isolationsschicht aufweist (= Aufgabe der vorliegenden Erfindung).
Die Lösung dieser Aufgabe ist gekennzeichnet durch eine permanent im Fahrzeug vorgesehene und an die Isolationsschicht angeschlossene Vakuumpumpe, mittels derer die Güte des Vakuums steigerbar ist, wenn die Vakuum-Güte vorgegebenen Anforderungen nicht genügt. Vorteilhafte Aus- und Weiterbildungen sowie günstige Betriebsverfahren für ein erfindungsgemäßes Tanksystem sind Inhalt der Unteransprüche.
Die vorliegende Erfindung schlägt den Einsatz einer permanent im Fahrzeug installierten Vakuumpumpe vor, um die Vakuumgüte praktisch über die komplette Lebensdauer des Fahrzeug-Kryo-Tanks zu gewährleisten. Der Begriff der„Vakuumgüte" ist dem Fachmann bekannt und bedeutet, dass ein gewisses Toleranzband für den im Vakuum bzw. sog. „Nahezu-Vakuum" herrschenden Absolutdruck eingehalten wird. Beispielsweise kann für ein Fahrzeug-Tanksystem nach dem Oberbegriff des Anspruchs 1 eine ausreichende Vakuumgüte vorliegen, wenn der Absolutdruck in der Vakuum- Isolationsschicht kleiner 10"3 mbar (0,001 Millibar) ist. Wenn also auf geeignete Weise vorzugsweise von einer elektronischen Steuereinheit festgestellt wird, dass die Güte des aktuell in der Isolationsschicht herrschenden Vakuums nicht ausreichend ist, so wird die Vakuumpumpe (durch diese Steuereinheit) in Betrieb genommen und entweder für eine gewisse vorgegebene Zeitspanne oder solange in Betrieb gehalten, bis die gewünschte Vakuumgüte wieder hergestellt ist. Was die Ermittlung der aktuellen (oder gewünschten) Vakuumgüte betrifft, so ist dies auf unterschiedliche Weise möglich. So kann mitteis eines auch kleinste Druckwerte erfassenden Absoiutdrucksensors der Druck in der Vakuum-Isolationsschicht überwacht werden und es kann vorzugsweise dann, wenn ausreichende Energie für den Betrieb der Vakuumpumpe zur Verfügung steht, diese Vakuumpumpe solange in Betrieb genommen und damit die Vakuum-Isolationsschicht des Tanks weiter evakuiert werden, bis in dieser Isolationsschicht ein Absolutdruck unterhalb eines vorgegebenen Grenzwerts bzw. Sollwerts in der weiter oben genannten Größenordnung von bspw. 10"3 mbar herrscht. Anstelle des Absolutdrucks, der nur mit relativ großem Aufwand messbar ist, kann auch eine hiervon abhängige Ersatzgröße herangezogen werden, wobei diese Abhängigkeit im Patentanspruch 6 durch den Begriff der Korrelation ausgedrückt ist. Eine mögliche und bevorzugte positiv mit dem Absolutdruck in der Vakuum-Isolationsschicht korrelierende Ersatzgröße ist die sich in einer bestimmten Zeiteinheit durch den Wärmeeintrag über die Vakuum-Isolationsschicht einstellende Erwärmung des Betriebsmittels. Üblicherweise wird an einem Fahrzeug- Tanksystem nach dem Oberbegriff des Anspruchs 1 der Druck und die Temperatur des im Innentank befindlichen Betriebsstoffes kontinuierlich gemessen. Anhand hinterlegter Tabellen und/oder über Modellrechnungen lässt sich dann aus der Erwärmung des Betriebsstoffes innerhalb einer bestimmten Zeiteinheit unter geeigneter Berücksichtigung weiterer Einflüsse und Randbedingungen ermitteln, ob eine ausreichende oder eine ungenügende Vakuumgüte in der Isolationsschicht zwischen dem Innentank und der Außenhülle vorliegt.
Die vorzugsweise über ein schaltbares Vakuumventil an die Vakuum- Isolationsschicht des Tanks ankoppeibare bzw. allgemein angeschlossene Vakuumpumpe ist im Fahrzeug fest installiert und wird von einer elektronischen Steuereinheit, die hierfür geeignete Signale von geeignet installierten Sensoren - beispielsweise wie soeben erläutert einem Drucksensor oder zusätzlich einem Temperatursensor - auswertet, bedarfsweise angesteuert. Es kann vorzugsweise dann, wenn ausreichende Energie für den Betrieb der Vakuumpumpe zur Verfügung steht, diese Vakuumpumpe solange in Betrieb genommen und damit die Vakuum-Isolationsschicht des Tanks weiter evakuiert werden, bis die Vakuum-Güte den Anforderungen wieder entspricht, was in gleicher Weise festgestellt werden kann wie die aktuelle Vakuumgüte im Rahmen der fortlaufenden Überwachung. Es ist aber auch möglich, die Vakuumpumpe für festgelegte Zeitspannen, die ihrerseits von aktuellen Randbedingungen abhängig sein können, zu betreiben. Grundsätzlich ist es auch möglich, nach Ablauf eines bestimmten Zeitraumes seit der letzten Inbetriebnahme der Vakuumpumpe davon auszugehen, dass die aktuelle Vakuumgüte den Anforderungen nicht mehr entspricht, so dass die Vakuumpumpe innerhalb vorgegebener Zeiträume stets für eine gewisse vorgegebene Zeitspanne, die ebenfalls von aktuellen Randbedingungen abhängig sein kann, betrieben werden kann.
Ausreichende Energie zum Betrieb der Pumpe steht beispielsweise dann zur Verfügung, wenn das Fahrzeug selbst in Betrieb ist, da dann der ebenfalls betriebene Energiewandler im Fahrzeug die nötige Energie aus dem im Tank gespeicherten Betriebsstoff gewinnen kann. Ausreichende Energie zum Betrieb der Pumpe kann aber auch dann zur Verfügung stehen, wenn das Fahrzeug abgestellt (stillgesetzt) ist und der bzw. ein Antrieb für die Vakuumpumpe aus einer externen Energiequelle bspw. in Form elektrischen Stroms aus dem Stromnetz gespeist werden kann.
Die Vakuumpumpe, welche vorzugsweise eine Turbomolekularpumpe oder eine vergleichbar robuste Vakuumpumpe sein kann, die Vakuumdrücke in der Größenordnung von 10"3 mbar oder weniger zu erzeugen in der Lage ist, kann direkt oder in indirekt vom Antriebssystem des Fahrzeugs angetrieben werden. Dabei ist ein direkter Antrieb gegebenenfalls unter Zwischenschal- tung eines Getriebes durch eine Antriebswelle des Fahrzeuges möglich; für einen indirekten Antrieb kommt ein Elektromotor in Betracht, der bspw. aus einer Brennstoffzelle, die Bestandteil des Fahrzeug-Antriebssystems ist, gespeist wird. Vorzugsweise erfolgt die Inbetriebnahme der Vakuumpumpe in Teillastphasen oder Schubphasen des Fahrzeug-Antriebssystems, um die negative Auswirkung auf den Wirkungsgrad des Antriebes so gering wie möglich zu halten. Ist ein„aufgeladener" Verbrennungsmotor Bestandteil des Fahrzeug-Antriebssystems, so kann insbesondere bei Verwendung einer Turbomolekuiarpumpe als Vakuumpumpe deren Antrieb in synergetischer Weise mit der bereits vorhandenen Abgasturbine des Verbrennungsmotors gekoppelt werden.
Wenn in Folge einer langen Stilistandphase des Fahrzeugs eine geringe Teilmenge des im Tank gespeicherten Betriebsstoffes zur Vermeidung unzulässig hoher Drücke im Tank abgeblasen werden muss, so kann diese abgeblasene Teilmenge einem Energiewandler zugeführt werden, der hieraus Energie für den Betrieb der Vakuumpumpe erzeugt, so dass die Vakuumpumpe auch während einer längeren Standzeit des Fahrzeugs in Betrieb genommen werden kann.
Im Sinne einer vorteilhaften Weiterbildung kann eine erfindungsgemäß vorgesehene Vakuumpumpe mit einer Vorrichtung zur Erhöhung des Drucks in der Vakuum-Isolationsschicht kombiniert und dazu genutzt werden, den Absolutdruck im„Nahezu-Vakuum" bzw. die dort herrschende Vakuumgüte aktiv zu regeln. Bekanntlich kann während langer Entnahmephasen ohne Unterbrechung, insbesondere Vollastphasen des Verbrauchers des Betriebsstoffs, der Tankdruck ohne aktive Einbringung von Wärme in den Innentank soweit absinken, dass eine sichere Versorgung des Verbrauchers nicht mehr gewährleistet ist. Wie eingangs erläutert wurde, wird im Stand der Technik dann mittels eines im Speichervolumen des Tanks vorgesehenen Wärmetauschers Wärme zur Druckerhöhung in das Speichervolumen eingebracht. Ein solcher Wärmetauscher wird nicht mehr benötigt, wenn ein gezielter Wärmeeintrag in das Speichervolumen über die Außenhülle und die (Vakuum)-Isolationsschicht erfolgt. Hierfür wird das sog.„Nahezu-Vakuum" soweit abgebaut, dass die gewünschte Wärmemenge aus der Umgebung über die Wände des Tanks in den Innentank gelangen kann. In anderen Worten ausgedrückt wird die Güte des Vakuums verringert, wenn der im Innentank herrschende (und kontinuierlich gemessene) Betriebsmittel-Druck unter einen gewünschten Minimalwert absinkt. Gesamthaft betrachtet wird mit dieser Weiterbildung mittels Inbetriebnahme oder Au ßerbetriebsetzen der Vakuumpumpe die Güte des Vakuums in Abhängigkeit vom im Innentank herrschenden Druck sowie von der dort herrschenden Temperatur geregelt. Dabei kann für eine Verringerung der Vakuumgüte in der Isolationsschicht durch Öffnen eines geeignet vorgesehenen Ventils eine geringe Menge von Umgebungsluft in die Vakuum-Isolationsschicht eingeführt werden; es kann aber auch eine gezielte Degradierung des „Nahezu- Vakuums" der Isolationsschicht mit einem Gas erfolgen, welches eine hohe Wärmeleitfähigkeit besitzt.
Vorteilhafterweise kann eine erfindungsgemäß vorgesehene Vakuumpumpe auch bei Auftreten einer Leckage am Vakuum genutzt werden, um einen vollständigen Verlust des Vakuums zu verhindern oder zumindest zu verzögern. Somit kann ein Öffnen von Sicherheitseinrichtungen bei Verlust des Vakuums bedingt durch den dann schnell ansteigenden Wärmeeintrag und Tankdruck gänzlich verhindert oder zeitlich so stark verzögert werden, dass ausreichend Zeit für geeignete Maßnahmen und zur Warnung besteht. Insbesondere jedoch kann der Herstellprozess für einen erfindungsgemäß eingesetzten Tank/Speicherbehälter wesentlich verkürzt und damit auch kostenseitig optimiert werden, weil der Ausheiz- und Evakuierprozess stark verkürzt werden oder sogar teilweise entfallen kann.

Claims

Patentansprüche
1. Fahrzeug-Tanksystem zur Speicherung eines Betriebsstoffes in tief kaltem Zustand, bestehend aus einem den Betriebsstoff aufnehmenden Innentank und einer diesen unter Bildung einer annähernd ein Vakuum darstellenden Isolationsschicht umhüllenden Außenhaut, gekennzeichnet durch eine permanent im Fahrzeug vorgesehene und an die Isolationsschicht angeschlossene Vakuumpumpe, mittels derer die Güte des Vakuums steigerbar ist, wenn die Vakuum-Güte vorgegebenen Anforderungen nicht genügt.
2. Fahrzeug-Tanksystem nach Anspruch 1 , dadurch gekennzeichnet, dass die Vakuumpumpe direkt oder in indirekt von einem Antriebssystem des Fahrzeugs angetrieben wird.
3. Fahrzeug-Tanksystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass ein Wandler zur Erzeugung von Antriebsenergie für die Vakuumpumpe vorgesehen ist, der mit einer in Stillstandphasen des Fahrzeugs aufgrund einer Druckerhöhung im Innentank abgeblasenen Teilmenge von Betriebsstoff betreibbar ist.
4. Fahrzeug-Tanksystem nach einem der vorangegangenen Ansprüche, gekennzeichnet durch eine Vorrichtung, mittels derer die Güte des Vakuums in der Isolationsschicht gezielt verringerbar ist.
5. Fa h rzeug-Ta n ksystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Vakuumpumpe als Turbomolekularpumpe ausgebildet ist.
6. Betriebsverfahren für ein Fahrzeug-Tanksystem nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Vakuumpumpe wegen mangelnder Vakuum-Güte in Betrieb genommen wird, wenn die Höhe des Absoiutdrucks in der Vakuum- Isolationsschicht oder einer mit diesem positiv korrelierenden Ersatzgröße einen Grenzwert überschreitet oder wenn eine mit dem Absolutdruck negativ korrelierende Ersatzgröße einen Grenzwert unterschreitet.
7. Betriebsverfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Vakuumpumpe solange betrieben wird, bis der Absolutdruck oder die Ersatzgröße hierfür wieder im gewünschten Bereich liegt.
8. Betriebsverfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Vakuumpumpe nur betrieben wird, falls ein den Betriebsstoff verarbeitender Energiewandler betrieben wird oder eine externe Energiequelle für die Vakuumpumpe zur Verfügung steht.
9. Betriebsverfahren für ein Fahrzeug-Tanksystem nach Anspruch 2, dadurch gekennzeichnet, dass die Vakuumpumpe nur in Betriebsphasen des Fahrzeugs, in denen dessen Antriebssystem nicht mit maximaler Leistungsabgabe arbeitet, betrieben wird.
10. Betriebsverfahren für ein Fahrzeug-Tanksystem nach Anspruch 4, dadurch gekennzeichnet, dass mittels der Vorrichtung zur Vergrößerung des Absolutdrucks in der Isolationsschicht solchermaßen ein größerer Wärmeeintrag über die Außenhaut in den Innentank eingestellt wird, dass sich im Innentank ein gewünschtes Druckniveau des Betriebsstoffes aufbaut.
PCT/EP2013/053024 2012-03-26 2013-02-14 Fahrzeug-tanksystem zur speicherung eines betriebsstoffes in tiefkaltem zustand WO2013143775A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13703849.3A EP2831489A1 (de) 2012-03-26 2013-02-14 Fahrzeug-tanksystem zur speicherung eines betriebsstoffes in tiefkaltem zustand
US14/496,944 US20150028039A1 (en) 2012-03-26 2014-09-25 Vehicle Tank System for Storing a Fuel in an Extremely Cold State

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012204820.0 2012-03-26
DE201210204820 DE102012204820A1 (de) 2012-03-26 2012-03-26 Fahrzeug-Tanksystem zur Speicherung eines Betriebsstoffes in tiefkaltem Zustand

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/496,944 Continuation US20150028039A1 (en) 2012-03-26 2014-09-25 Vehicle Tank System for Storing a Fuel in an Extremely Cold State

Publications (1)

Publication Number Publication Date
WO2013143775A1 true WO2013143775A1 (de) 2013-10-03

Family

ID=47710188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/053024 WO2013143775A1 (de) 2012-03-26 2013-02-14 Fahrzeug-tanksystem zur speicherung eines betriebsstoffes in tiefkaltem zustand

Country Status (4)

Country Link
US (1) US20150028039A1 (de)
EP (1) EP2831489A1 (de)
DE (1) DE102012204820A1 (de)
WO (1) WO2013143775A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015203703A1 (de) 2014-03-27 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug-Tanksystem zur Speicherung eines Betriebsstoffes in tiefkaltem Zustand
US20220163168A1 (en) * 2020-11-23 2022-05-26 Chart Inc. Getter Material, Tanks Containing the Same, and Methods of Making and Using Getter Material to Absorb Hydrogen

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110216A1 (de) 2014-01-24 2015-07-30 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur verstärkung des vakuums an einem vakuumisolierten speicherbehälter eines fahrzeugs sowie evakuierstation
DE102014207300B4 (de) * 2014-04-16 2021-07-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Tanks, insbesondere eines Kraftfahrzeugtanks
DE102014226545A1 (de) * 2014-12-19 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug mit einem kryogenen Druckbehälter und Verfahren zum Betanken eines kryogenen Druckbehälters eines Kraftfahrzeuges
DE102015203702A1 (de) 2015-03-02 2016-09-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bestimmung der Isolationsgüte eines kryogenen Druckbehälters sowie Kraftfahrzeug mit einem kryogenen Druckbehälter
DE102016216551A1 (de) * 2016-09-01 2018-03-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bestimmen der Isolationsgüte eines Druckbehälters zum Speichern eines Brennstoffs, insbesondere von Wasserstoff, in einem Fahrzeug und Druckbehältersystem für ein Fahrzeug, umfassend einen Druckbehälter zum Speichern eines Brennstoffs, insbesondere von Wasserstoff
DE102016216572A1 (de) * 2016-09-01 2018-03-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Überwachen eines Druckbehältersystems in einem Fahrzeug und Druckbehältersystem in einem Fahrzeug
DE102016216525A1 (de) 2016-09-01 2018-03-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Fahrzeugs mit kryogenem Druckbehälter
DE102016223693A1 (de) * 2016-11-29 2018-05-30 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zur Überwachung eines Drucktanksystems
EP4306841A1 (de) * 2023-09-07 2024-01-17 Pfeiffer Vacuum Technology AG Fluidtank

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2535831A1 (fr) * 1982-11-05 1984-05-11 Gaz Transport Procede pour ameliorer l'isolation thermique d'une cuve destinee au stockage d'un gaz liquefie et cuve correspondante
DE4443079A1 (de) * 1994-12-03 1996-06-13 Messer Griesheim Gmbh Verfahren zum Verdampfen von tiefkalt verflüssigten Gasen
DE69516117T2 (de) 1994-01-19 2001-01-11 Elcold Tectrade I S Hobro Thermische isolation mit einem vakuum
DE10335245A1 (de) * 2003-08-01 2005-03-03 Bayerische Motoren Werke Ag Kryotank-System zum Speichern von Brennstoff
DE102006025657A1 (de) 2006-06-01 2007-12-06 Bayerische Motoren Werke Ag Vorrichtung zur Förderung von kryogen gespeichertem Kraftstoff
DE102006057663A1 (de) 2006-12-07 2008-06-12 Bayerische Motoren Werke Ag Wärmeisolationsschichtanordnung und Gaslanze,Isolationsvorrichtung und Verfahren zum Evakuieren und/oder Begasen der Wärmeisolationsschichtanordnung
DE102007016974A1 (de) * 2007-04-10 2008-10-16 Bayerische Motoren Werke Aktiengesellschaft Behältersysstem mit einer Vakuum-Isolationshülle, insbesondere Fahrzeug-Kryotank
DE102008031344A1 (de) 2008-07-02 2010-01-07 Bayerische Motoren Werke Aktiengesellschaft Betriebsverfahren für einen mit einer Vakuumisolation versehenen Kryotank eines Kraftfahrzeugs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1073641A (en) * 1911-07-06 1913-09-23 Wesley Linford Smith Apparatus for preserving organic substances.
US2830444A (en) * 1956-07-17 1958-04-15 Constock Liquid Methane Corp Apparatus for storing and utilizing volatile hydrocarbons and the like
JP4633370B2 (ja) * 2004-02-17 2011-02-16 財団法人国際科学振興財団 真空装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2535831A1 (fr) * 1982-11-05 1984-05-11 Gaz Transport Procede pour ameliorer l'isolation thermique d'une cuve destinee au stockage d'un gaz liquefie et cuve correspondante
DE69516117T2 (de) 1994-01-19 2001-01-11 Elcold Tectrade I S Hobro Thermische isolation mit einem vakuum
DE4443079A1 (de) * 1994-12-03 1996-06-13 Messer Griesheim Gmbh Verfahren zum Verdampfen von tiefkalt verflüssigten Gasen
DE10335245A1 (de) * 2003-08-01 2005-03-03 Bayerische Motoren Werke Ag Kryotank-System zum Speichern von Brennstoff
DE102006025657A1 (de) 2006-06-01 2007-12-06 Bayerische Motoren Werke Ag Vorrichtung zur Förderung von kryogen gespeichertem Kraftstoff
DE102006057663A1 (de) 2006-12-07 2008-06-12 Bayerische Motoren Werke Ag Wärmeisolationsschichtanordnung und Gaslanze,Isolationsvorrichtung und Verfahren zum Evakuieren und/oder Begasen der Wärmeisolationsschichtanordnung
DE102007016974A1 (de) * 2007-04-10 2008-10-16 Bayerische Motoren Werke Aktiengesellschaft Behältersysstem mit einer Vakuum-Isolationshülle, insbesondere Fahrzeug-Kryotank
DE102008031344A1 (de) 2008-07-02 2010-01-07 Bayerische Motoren Werke Aktiengesellschaft Betriebsverfahren für einen mit einer Vakuumisolation versehenen Kryotank eines Kraftfahrzeugs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015203703A1 (de) 2014-03-27 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug-Tanksystem zur Speicherung eines Betriebsstoffes in tiefkaltem Zustand
US20220163168A1 (en) * 2020-11-23 2022-05-26 Chart Inc. Getter Material, Tanks Containing the Same, and Methods of Making and Using Getter Material to Absorb Hydrogen

Also Published As

Publication number Publication date
DE102012204820A1 (de) 2013-09-26
EP2831489A1 (de) 2015-02-04
US20150028039A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
WO2013143775A1 (de) Fahrzeug-tanksystem zur speicherung eines betriebsstoffes in tiefkaltem zustand
EP2909524B1 (de) Verfahren zum befüllen einer kraftstoffspeicheranlage eines kraftfahrzeugs
DE112013001671B4 (de) Verfahren und Vorrichtung zum Sicherheitsbetrieb einer Entnahmedampfturbine, die für eine Stromerzeugungsanlage genutzt ist
EP3184807B1 (de) System zur energiespeicherung und -rückgewinnung
DE102016014928A1 (de) Kraftstoffsystem mit einem Tank zum Speichern von Flüssiggas als Kraftstoff
DE102009018012A1 (de) Verfahren zum Steuern des Systemdrucks in einem Kühlmittelkreislauf
DE102015206782A1 (de) Verfahren zum Betanken eines kryogenen Druckbehälters eines Kraftfahrzeuges
EP3366502B1 (de) Klimaanlage für ein fahrzeug
WO2021190942A1 (de) Verfahren zum kompensieren eines temperaturbedingten druckanstiegs in einem anodenabschnitt eines brennstoffzellensystems
DE102016203200A1 (de) Verfahren zum Abkühlen eines ersten kryogenen Druckbehälters
DE102015218986A1 (de) Verfahren zum Abführen von Brennstoff aus einem Druckbehältersystem durch eine externe Brennstoffleitung sowie Druckbehältersystem
DE102017208807A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs mit einem Druckbehälter
WO2011003384A9 (de) Vorrichtung zum antreiben eines kraftfahrzeugs
WO2017215816A1 (de) Kraftstofffördereinrichtung für kryogene kraftstoffe, gaseinblassystem und verfahren zum betreiben einer kraftstofffördereinrichtung
DE102014102830B4 (de) Kältesystem für eine Klimaanlage zur Klimatisierung eines Kraftfahrzeugs sowie Verfahren zum Kühlen von Ladeluft eines Turboladers eines Kraftfahrzeugs
DE102009036198A1 (de) Verfahren zum Abstellen eines Brennstoffzellensystems
DE102017212424A1 (de) Verfahren und Vorrichtung zur Herstellung eines kryogenen Druckbehälters
DE102015215066B4 (de) Verfahren zum Betreiben eines Brennstoffzellensystems von einem Kraftfahrzeug
EP2708719A1 (de) Erweitertes Gaskraftwerk zur Stromspeicherung
DE102016220994A1 (de) Kraftfahrzeug mit Ausströmöffnungen für Brennstoff und Verfahren zum Ablassen von Brennstoff
DE102016209025A1 (de) Kryogenes Druckbehältersystem für ein Kraftfahrzeug
DE102016216525A1 (de) Verfahren zum Betrieb eines Fahrzeugs mit kryogenem Druckbehälter
DE10105819A1 (de) Vorrichtung und Verfahren für die Kraftstoffversorgung eines mit kryogenem Kraftstoff betriebenen Fahrzeugs
DE102006011060A1 (de) Kälte-Kreislauf
DE102014206201B4 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie zugehörige Vorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13703849

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013703849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013703849

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE