WO2011003384A9 - Vorrichtung zum antreiben eines kraftfahrzeugs - Google Patents

Vorrichtung zum antreiben eines kraftfahrzeugs Download PDF

Info

Publication number
WO2011003384A9
WO2011003384A9 PCT/DE2010/000718 DE2010000718W WO2011003384A9 WO 2011003384 A9 WO2011003384 A9 WO 2011003384A9 DE 2010000718 W DE2010000718 W DE 2010000718W WO 2011003384 A9 WO2011003384 A9 WO 2011003384A9
Authority
WO
WIPO (PCT)
Prior art keywords
steam
energy
turbine
container
compressed gas
Prior art date
Application number
PCT/DE2010/000718
Other languages
English (en)
French (fr)
Other versions
WO2011003384A3 (de
WO2011003384A4 (de
WO2011003384A2 (de
Inventor
Dieter Lang
Original Assignee
Dieter Lang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dieter Lang filed Critical Dieter Lang
Priority to CN2010800306110A priority Critical patent/CN102472119A/zh
Priority to DE112010002871T priority patent/DE112010002871A5/de
Publication of WO2011003384A2 publication Critical patent/WO2011003384A2/de
Publication of WO2011003384A3 publication Critical patent/WO2011003384A3/de
Publication of WO2011003384A4 publication Critical patent/WO2011003384A4/de
Publication of WO2011003384A9 publication Critical patent/WO2011003384A9/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K15/067Mounting of tanks
    • B60K15/07Mounting of tanks of gas tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K3/00Arrangement or mounting of steam or gaseous-pressure propulsion units
    • B60K3/04Arrangement or mounting of steam or gaseous-pressure propulsion units of turbine type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/10Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel
    • B60K6/105Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel the accumulator being a flywheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/003Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind solar power driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/15Pneumatic energy storages, e.g. pressure air tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/90Energy harvesting concepts as power supply for auxiliaries' energy consumption, e.g. photovoltaic sun-roof

Definitions

  • the invention relates to a device for driving a vehicle on land, water and in the air with the features of claim 1.
  • Such a compressed air-powered automobile for example, on the Internet
  • the principle of a gas expansion engine is used. It expands compressed air within at least two cylinders, with a
  • Hubkolbentrieb the volume work of the gas is converted into rotational energy and thus in drive energy for the motor vehicle.
  • a value of 30 hp (22 kW) is given, the total mass of vehicles should be 500 to 700 kg. The range is estimated at only 70 km. Compressed air is stored at about 300 bar.
  • the efficiency of such a drive unit should be at 34% Hegen. It should be higher than the efficiency of comparable gasoline or diesel engines, but is surpassed by electric drives.
  • a first problem is the relatively unfavorable relationship between the available drive energy and the required mass of relatively robust compressed air tanks. Furthermore, the production of compressed air is relatively inefficient compared to the engine output delivered. In addition, the heat produced by the compression of the grass can not be used and thus 50-60% of the energy balance is lost in heat. Furthermore, the pneumatic motor designed by Negre requires a multi-stage decompression of the compressed air in conjunction with a Swisser carcinomannung, making the
  • the sought-after device should be distinguished, above all, by the most efficient utilization of the available energy sources, to be able to variably access different energy sources, to store energy and to be environmentally friendly.
  • the basic idea of the device according to the invention is not to use the compressed gas directly for driving a compressed-air motor, but between
  • Fig. 2 shows an exemplary embodiment of thermally coupled compressed gas
  • FIG. 1 shows that according to the invention the device comprises an energy storage unit 1, an energy conversion unit 4 and a drive unit 8.
  • the energy storage unit 1 contains a compressed gas container 2 for storing a
  • the compressed gas container 2 is with a
  • the evaporating liquid for example, water is used.
  • other liquids such as, for example, ethanol or mixtures of ethanol and water, in particular in the azeotropic mixing ratio, can be circulated in this closed system.
  • the Energyfo rmgseiimeit 4 includes a connected to the steam tank 3
  • the electric drive unit 8 includes an electric motor 9 connected to the generator 7.
  • the electric motor is advantageously designed as a wheel hub motor.
  • the energy storage unit 1 has a
  • Scliwungradvortechnische 10 for storing rotational energy of the steam turbine 5 and / or the pressure gas turbine 6. With this configuration, it is possible to partially store rotational energy and, in cases of increased energy demand or a temporarily decreasing efficiency of the turbine device, to feed it again for energy conversion processes.
  • Generator 7 and flywheel device 10 can by means of a coupling device of the Wave 7a are required to be disconnected.
  • the energy storage unit I has an accumulator 1 1 connected to the generator 7 and the electric motor 9 for storing and releasing electrical energy. This provides a further possibility for energy storage in the drive device.
  • the energy conversion unit 4 has an electrically operated compressor 12 for filling the compressed gas container.
  • the compressor 12 is operable with a combustion fuel.
  • Steam turbine 5 is connected in a steam cycle with a steam turbine 5 downstream capacitor 13.
  • the condenser 13 is designed to be coolable by the expanded gas emerging from the pressure gas turbine 6.
  • Thermal contact between the steam within the steam cycle and the compressed gas is achieved both via the thermal coupling between compressed gas tank 2 and steam tank 3 and in the area of the turbines, with which part of the thermal energy can be retained and used.
  • the steam cycle heats the pressure turbine 6.
  • the compressor 12 is advantageously connected for cooling in the steam cycle.
  • the energy conversion unit 4 has a means 14 for converting a kinetic energy of the electric motor 9 into a charging current for the accumulator 11. At the same time, braking of the electric motor 9 can be achieved and the kinetic energy removed by the braking process can again be stored in the form of electrical energy in the accumulator 11.
  • at least one exhaust nozzle is provided for a recoil drive, with which the compressed gas and / or the steam can be directed blown off.
  • the boat is controlled by adjusting the compressed air pressure from different thrusters. Hot air is used against icing of the nozzles.
  • lighter materials for containers should be used instead of heavy steel cylinders.
  • Fig. 2 shows an exemplary arrangement of compressed gas tank 2 and steam tank 3 in section.
  • the compressed gas container 2 is arranged at least once inside the vapor container 3.
  • a space grid 17 is arranged in the interior of the vapor container 3, which ensures a secure storage of at least one compressed gas container 2.
  • the space grid has a close contact with the compressed gas cylinders and guarantees rapid heating of the liquid contained within the vapor container 3.
  • a steam dome 18 is provided in the interior of the steam tank 3.
  • the compressed gas containers are sheathed with Kevlar, for example.
  • Pressure reduction valves provided which cause an adjustment of the internal pressure of the compressed medium to the operating pressure of the pressure gas turbine 6.
  • the thermal contact between the compressed gas container 2 and the vapor container 3 may be effected by a series of tubes wound around the compressed gas containers, through which the liquid to be evaporated flows. These tubes are suitably made of copper and are thermally insulated to the outside.
  • the compressed gas container 2 is structurally separated from the vapor container 3.
  • a thermal insulation for example, foam glass can be used.
  • the device can be operated as follows: First, the vehicle is charged photovoltaic. With the photovoltaically generated electrical energy of the compressor 12 is put into operation. As a result, the compressed gas container 2 and the vapor container 3 are filled or heated. The excess of steam and compressed gas generated in this Be SheUvorgang is passed to the turbines 5 and 6. As a result, rotational energy is stored in the flywheel 10 or via the operation of the generator 7 electrical energy in the accumulator 11. In this by incidence of light constantly occurring charging the mentioned
  • a major advantage of the turbine assembly, the generator and the electric motor are the rotational movement generated directly without movement transformation, the achievable high speeds, the comparatively large marginal performance, small sizes and high efficiency at about 90%. This can achieve a theoretical system efficiency of about 70%.
  • the compressed gas, the steam, the flywheel and the accumulator there are four means of energy storage. Further energy is generated by photovoltaics, pedal energy and recovered braking energy.
  • the electric drive set in motion requires neither gears nor foot pedals for throttle, brake and clutch.
  • the vehicle generates zero C02.
  • the range of a land vehicle, without expensive lithium-ion batteries, is estimated at over 330 km. By internal charging and storage operations of the vehicle even there is the possibility to drive with zero drive costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zum Antreiben eines Kraftfahrzeugs an Land, zu Wasser und in der Luft. Diese umfasst eine Energiespeichereinheit (1), enthaltend einen Druckgasbehälter (2) zur Bevorratung des komprimierten erhitzten Gases in thermischer Kopplung mit einem Dampfbehälter (3), eine Energieumformungseinheit (4), enthaltend eine mit dem Dampfbehälter verbundene Dampfturbine (5) und/oder einer mit dem Druckgasbehälter verbundenen Druckgasturbine (6) zum Antreiben eines Generators (7) und eine elektrische Antriebseinheit (8), enthaltend einen mit dem Generator (7) elektrisch verbundenen Elektromotor (9). Dabei sind weitere Komponenten, insbesondere eine Schwungradvorrichtung (10), Mittel (14) zum Umsetzen von Bremsenergie in einen Ladestrom für einen Akkumulator (11) und eine Photovoltaikeinrichtung (15) zuschaltbar.

Description

Vorrichtung zum Antreiben eines Kraftfahrzeugs
Beschreibung
Die Erfindung betrifft eine Vorrichtung zum Antreiben eines Fahrzeugs an Land, zu Wasser und in der Luft mit den Merkmalen des Anspruchs 1.
Es ist bekannt, komprimierte Luft zum Antreiben eines Kraftfahrzeuges zu nutzen.
Ein derartiges druckluftbetriebenes Automobil wird beispielsweise im Internet unter
ht^://de.wikipedia.org/wiki/Drackluftauto beschrieben. In den 1990er Jahren wurden hierzu von der französischen Firma MDI (Motor Develepment International) in Zusammenarbeit mit dem Motorenkonstrukteur Guy Negre verstärkt Entwicklungs- arbeiten vorangetrieben.
Gemäß dem dort verfolgten Konzept wird das Prinzip eines Gasexpansionsmotors verwendet. Dabei expandiert Druckluft innerhalb von mindestens zwei Zylindern, wobei über einen
Hubkolbentrieb die Volumenarbeit des Gases in Rotationsenergie und somit in Antriebenergie für das Kraftfahrzeug umgesetzt wird. Als Leistung derartiger Motoren wird ein Wert von 30 PS (22 kW) angegeben, wobei die Gesamtmasse der Fahrzeuge 500 bis 700 kg betragen soll. Die Reichweite wird auf lediglich 70 km geschätzt. Druckluft wird mit etwa 300 Bar gespeichert. Der Wirkungsgrad einer derartigen Antriebseinheit soll bei 34% Hegen. Er soll höher sein als der Wirkungsgrad vergleichbarer Benzin- oder Dieselmotoren, wird aber durch elektrische Antriebe übertroffen.
Ein derartiges Antriebssystem weist aus physikaKsch-technischen Gründen eine Reihe gravierender Nachteile auf. Ein erstes Problem ist das relativ ungünstige Verhältnis zwischen der verfügbaren Antriebsenergie und der erforderlichen Masse der relativ robust auszuführenden Drucklufttanks. Weiterhin ist die Herstellung von Druckluft im Vergleich zur abgegebenen Motorleistung relativ ineffizient. Hierzu kommt noch, dass die bei der Kompression des Grases anfallende Wärme nicht genutzt werden kann und somit in der Energiebilanz 50-60% in Wärme verloren geht. Weiterhin benötigt der von Negre konzipierte Druckluftmotor eine mehrstufige Entspannimg der Druckluft in Verbindung mit einer Zwischenerwännung, wodurch das
Motorenkonzept unnötig kompliziert wird. Schließlich bewirkt die im Driickluftmotor stattfindende Entspannung des Gases eine Abkühlung des Motors. Der Motor nimmt dabei Wärme aus der Umgebung auf und ist somit auf eine gewisse externe Wärmezufuhr angewiesen. Bei niedrigen Umgebungstemperaturen sinkt dadurch die Leistung des druckluftbetriebenen Motors beträchtlich ab.
Es besteht somit die Aufgabe, eine Vorrichtung zum Antreiben eines Kraftfahrzeuges mittels eines unter Druck stehenden Gases anzugeben, bei dem die genannten Nachteile beseitigt oder zumindest nachhaltig minimiert sind. Die gesuchte Vorrichtung soll sich vor allem durch eine möglichst effiziente Ausnutzung der zur Verfügung stehenden Energiequellen auszeichnen, auf verschiedene Energiequellen variabel zugreifen, Energie speichern können und umweltfreundhch sein.
Grundgedanke der erfindungsgemäßen Vorrichtung ist es, das komprimierte Gas nicht unmittelbar zum Antreiben eines Druckluftmotors zu verwenden, sondern zwischen der
Gaskompression und dem tatsächlichen Antriebsmechanismus eine Reihe von
Energieumwandlungen vorzusehen, mit denen der Energiefluss gesteuert und in die zusätzliche Energiespeicherprozesse bzw. zusätzliche Energiequellen einbezogen werden können.
Erfindungsgemäß entsteht ein Fahrzeug mit direktem Drackluftantrieb und/oder mit
Elektromotorantrieb mit Null-C02- Ausstoß. Die erfindungsgemäße Vorrichtung soll nachfolgend anhand eines Ausfuhrungsbeispiels näher erläutert werden. Zur Verdeutlichung dienen die beigefügten Figuren 1 und 2. Es werden für gleiche bzw. gleichwirkende Teile die selben Bezeichnungen verwendet. Es zeigt:
Fig. 1 eine beispielhafte Gesamtdarstellung der erfindungsgemäßen Vorrichtung,
Fig. 2 eine beispielhafte Ausführungsform für thermisch gekoppelte Druckgas- und
Dampfbehälter
Fig. 1 zeigt: erfindungsgemäß umfasst die Vorrichtung eine Energiespeichereinheit 1, eine Energieumformungseinheit 4 und eine Antriebseinheit 8.
Die Energiespeichereinheit 1 enthält einen Druckgasbehälter 2 zur Bevorratung eines
komprimierten erhitzten Gases, inbesondere Luft. Der Druckgasbehälter 2 ist mit einem
Dampfbehälter 3 thermisch gekoppelt. Ein Kompressor 12 befüllt den Druckgasbehälter. Die bei dem Kompressionsvorgang erzeugte Wärme wird über die thermische Kopplung in den
Dampfbehälter 3 übertragen und dient dort zur Dampfbereitung. Als verdampfende Flüssigkeit wird beispielsweise Wasser verwendet. Neben Wasser können in diesem geschlossenen System auch andere Flüssigkeiten, wie beispielsweise Ethanol oder Mischungen aus Ethanol und Wasser, insbesondere im azeotropen Mischungsverhältnis, umgetrieben werden.
Die Energieumfo rmgseiimeit 4 enthält eine mit dem Dampfbehälter 3 verbundene
Dampfturbine 5 und/oder eine mit dem Druckgasbehälter 2 verbundene Druckgasturbine 6 zum Antreiben eines Generators 7. Der Geräuschpegel der Druckgasturbine 6 wird durch Lavaldüsen vermindert.
Schließlich enthält die elektrische Antriebseinheit 8 einen mit dem Generator 7 verbundenen Elektromotor 9. Der Elektromotor ist vorteilhafterweise als Radnabenmotor ausgebildet.
Bei einer zweckmäßigen Ausfuhrungsform weist die Energiespeichereinheit 1 eine
Scliwungradvorrichtung 10 zum Speichern von Rotationsenergie der Dampfturbine 5 und/oder der Druckgasturbine 6 auf. Durch diese Ausgestaltung ist es möglich, Rotationsenergie teilweise zu speichern und in Fällen eines erhöhten Energiebedarfs oder eines vorübergehend sinkenden Wirkungsgrads der Turbineneinrichtung wieder für Energieumwandlungsprozesse einzuspeisen. Generator 7 und Schwungradvorrichtung 10 können mittels einer Kupplungsvorrichtung von der Welle 7a bedarfsweise getrennt werden. Ein Schwungrad 10 aus kohlefaserverstärkten
Kunststoffen erweist sich als zweckmäßig.
Die Energiespeichereinheit I weist bei einer weiteren zweckmäßigen Ausführungsform einen mit dem Generator 7 und dem Elektromotor 9 verbundenen Akkumulator 1 1 zum Speichern und Freigeben elektrischer Energie auf. Damit ist eine weitere Möglichkeit zur Energjespeicherung in der Antriebsvorrichtung gegeben.
Die Energieumformungseinheit 4 weist bei einer weiteren vorteilhaften Ausführungsform einen elektrisch betriebenen Kompressor 12 zum Befüllen des Druckgasbehälters auf.
Das bedeutet, dass keine externe Druckgasquelle zum Befüllen angeschlossen werden muss, sondern dass die Druckgasbereitung in der Antriebsvorrichtung selbst ausgeführt wird. Bei einer weiteren Ausführungsform ist der Kompressor 12 mit einem Verbrennungstreibstoff betreibbar.
Bei einer weiteren zweckmäßigen Ausführungsform ist der Dampfbehälter 3 mit der
Dampfturbine 5 in einen Dampfkreislauf mit einem der Dampfturbine 5 nachgeschalteten Kondensator 13 geschaltet. Dabei ist der Kondensator 13 durch das aus der Druckgasturbine 6 austretende entspannte Gas kühlbar ausgebildet. Es wird ein thermischer Kontakt zwischen dem Dampf innerhalb des Dampfkreislaufs und dem komprimierten Gas sowohl über die thermische Kopplung zwischen Druckgasbehälter 2 und Dampfbehälter 3 als auch im Bereich der Turbinen erreicht, womit ein Teil der thermischen Energie zurückbehalten und genutzt werden kann. Der Dampfkreislauf erwärmt die DrucWuftrurbine 6. Der Kompressor 12 ist vorteilhafterweise zur Kühlung in den Dampfkreislauf geschaltet.
Bei einer weiteren vorteilhaften Ausgestaltung weist die Energieumformungseinheit 4 ein Mittel 14 zum Umsetzen einer Bewegungsenergie des Elektromotors 9 in einen Ladestrom für den Akkumulator 11 auf. Dabei kann gleichzeitig ein Bremsen des Elektromotors 9 erreicht werden und die durch den Bremsvorgang entzogene Bewegungsenergie wieder in Form elektrischer Energie im Akkumulator 11 gespeichert werden. Bei einer weiteren vorteilhaften Ausfühningsform ist mindestens eine Schubdüse für einen Rückstoßantrieb vorgesehen, mit der das komprimierte Gas und/oder der Dampf gerichtet abgeblasen werden kann.
Zum Beispiel treiben unter einem Boot mehrere Schubdüsen als Strahltriebwerke das Boot an. Während der Bootsfahrt wird Seewasser von vorn den Schubdüsen zugeführt, expandierende Druckluft beschleunigt dieses Wasser, beides wird am Heck ausgestoßen und dient so zum Antreiben des Jetbootes. Weitere Düsen sorgen für ein Luftpolster unter dem Jetboot.
Die Steuerung des Bootes erfolgt durch Regulierung der Druckluftstärke aus verschiedenen Schubdüsen. Gegen Vereisung der Düsen wird Warmluft eingesetzt.
Für Luftfahrzeuge sind anstatt schwerer Druckluftflaschen aus Stahl leichtere Materialien für Behälter zu verwenden.
Fig. 2 zeigt eine beispielhafte Anordnung aus Druckgasbehälter 2 und Dampfbehälter 3 im Schnitt. In einer Ausführungsform ist der Druckgasbehälter 2 mindestens einmal im Inneren des Dampfbehälters 3 angeordnet. Dabei ist im Innenraum des Dampf behälters 3 ein Raumgitter 17 angeordnet, das eine sichere Lagerung des mindestens einen Druckgasbehälters 2 gewährleistet. Das Raumgitter weist einen engen Kontakt mit den Druckgasflaschen auf und garantiert eine schnelle Erwärmung der innerhalb des Dampfbehälters 3 enthaltenen Flüssigkeit. Für eine möglichst effektive Dampferzeugung ist im Innenraum des Dampfbehälters 3 ein Dampfdom 18 vorgesehen. Die Druckgasbehälter sind beispielsweise mit Kevlar ummantelt. Es sind
Druckminderungsventile vorgesehen, die eine Anpassung des Innendrucks des komprimierten Mediums an den Betriebsdruck der Druckgasturbine 6 bewirken.
Alternativ kann der Wärmekontakt zwischen dem Druckgasbehälter 2 und dem Dampfbehälter 3 durch eine Reihe von um die Druckgasbehälter herum gewundenen Rohren bewirkt, die mit der zu verdampfenden Flüssigkeit durchströmt werden. Diese Rohre bestehen zweckmäßigerweise aus Kupfer und sind nach außen hin wärmegedämmt. Bei dieser Ausführungsform ist der Druckgasbehälter 2 baulich vom Dampfbehälter 3 getrennt. Zur Verringerung des Wärmeverlustes ist der Dampfbehälter 3 mit einer Wärmedämmung versehen, beispielsweise kann Schaumglas verwendet werden.
Die Vorrichtung kann wie folgt betrieben werden: Zunächst wird das Fahrzeug photovoltaisch aufgeladen. Mit der photovoltaisch erzeugten elektrischen Energie wird der Kompressor 12 in Betrieb gesetzt. Dadurch werden der Druckgasbehälter 2 und der Dampfbehälter 3 gefüllt bzw. beheizt. Der bei diesem BefüUvorgang erzeugte Überschuss an Dampf und komprimiertem Gas wird an die Turbinen 5 und 6 geleitet. Dadurch wird Rotationsenergie im Schwungrad 10 bzw. über den Betrieb des Generators 7 elektrische Energie im Akkumulator 11 gespeichert. Bei diesem durch Lichteinfall ständig stattfindenden Aufladevorgang werden die genannten
Energiespeicher gleichmäßig aufgefüllt. Dabei kann durch eine interne Steuereinheit eine Beeinflussung der ablaufenden Energiewandlungsprozesse, beispielsweise durch ein Zu- oder Abkoppeln des Schwungrades oder ein Aktivieren oder Deaktivieren des Kompressors, erfolgen. Eine Aufladung der Energiespeicher über ein externes Stromnetz erfolgt zweckmäßigerweise möglichst zeitnah vor dem Fahrbeginn des Fahrzeugs, um die Kompressionswärme im
komprimierten Gas optimal zu nutzen.
Ein großer Vorteil der Turbinenanordnung, des Generators und des Elektomotors sind die unmittelbar ohne Bewegungsumformung erzeugte Drehbewegung, die erreichbaren hohen Drehzahlen, die vergleichsweise großen Grenzleistungen, geringe Baugrößen und ein hoher Wirkungsgrad bei etwa 90%. Damit lässt sich ein theoretischer Systemwirkungsgrad von etwa 70% erreichen. In Form des komprimierten Gases, des Dampfes, des Schwungrades und des Akkumulators sind vier Mittel zur Energiespeicherung vorhanden. Weitere Energiegewinnung erfolgt durch Photovoltaik, Pedal energie und rückgewonnene Bremsenergie.
Der in Gang gesetzte Elektroantrieb erfordert weder Getriebe noch Fußpedale für Gas, Bremse und Kupplung. Die Verwendung der Pedaleinrichtung als Antrieb führt zusätzlich zu einer gesundheitsfördernden Wirkung.
Das Fahrzeug erzeugt Null C02. Die Reichweite eines Landfahrzeugs, ohne teure Lithium-Ionen- Batterien, wird auf über 330 km geschätzt. Durch interne Auflade- und Speichervorgänge des Fahrzeugs besteht sogar die Mögliclikeit mit Null Antriebskosten zu fahren.
Die Erfindung wurde anhand eines Ausführungsbeispiels näher erläutert. Im Rahmen fachmännischen Handelns sind eine Reihe weiterer Ausfühningsformen möglich, die im Bereich des erfindungsgemäßen Grundgedankens verbleiben. Weitere Ausfuhrungsformen ergeben sich insbesondere aus den Unteransprüchen.
Bezugszeichenliste
1 Energiespeichereinheit
2 Druckgasbehälter
3 Dampfbehälter
4 Energieumformungseinheit
5 Dampfturbine
6 Druckgasturbine
7 Generator
7a Welle
8 Antriebseinheit
9 Elektromotor
10 Schwungrad
11 Akkumulator
12 Kompressor
13 Kondensator
14 MittelAJmsetzerschaitung
15 Photovoltaikeinri chtung
16 Pedalvorrichtung
17 Raumgitter
18 Dampfdom
19 Wärmedämmung

Claims

Patentansprüche
1. Vorrichtung zum Antreiben eines Kraftfahrzeugs an Land, zu Wasser und in der Luft, umfassend
eine Energiespeichereinheit (1), enthaltend einen Druckgasbehälter (2) zur Bevorratung des komprimierten erhitzten Gases in thermischer Kopplung mit einem Dampfbehälter (3),
eine Energieumformungseinheit (4), enthaltend eine mit dem Dampfbehälter verbundenen Dampfturbine (5) und/oder einer mit dem Druckgasbehälter verbundenen Druckgasturbine (6) zum Antreiben eines Generators (7), eine elektrische Antriebseinheit (8), enthaltend einen mit dem Generator (7) elektrisch verbundenen Elektromotor (9).
2. Vorrichtung nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Energiespeichereinheit (1) eine zuschaltbare Schwungradvorrichtung (10) zum Speichern von Rotationsenergie der Dampfturbine (5) und/oder der Druckgasturbine (6) aufweist.
3. Vorrichtung nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass die Energiespeichereinheit (1) einen mit dem Generator (7) und dem
Elektromotor (9) verschaltbaren Akkumulator (1 1) zum Speichern und Freigeben elektrischer Energie aufweist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Energieumformungseinheit (4) einen elektrisch betriebenen Kompressor (12) zum Befüllen des Druckgasbehälters (2) aufweist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Dampfbehälter (3) mit der Dampfturbine (5) in einen Dampfkreislauf mit einem der Dampfturbine nachgeschalteten Kondensator (13) geschaltet ist, wobei der Kondensator durch das aus der Druckgasturbine (6) austretende entspannte Gas kühlbar ausgebildet ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Energieumformungseinheit (4) ein zuschaltbares Mittel (14) zum Umsetzen einer Bewegungsenergie des Elektromotors in einen Ladestrom für den
Akkumulator (11) aufweist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Energieumfonnungseinheit (4) eine zuschaltbare Photovoltaikeinrichtung (15) zum Bereitstellen eines Ladestroms für den Akkumulator (11) und oder elektrischer Energie für den Elektromotor (9) und/oder für den Kompressor (12) aufweist.
8. Vorrichtung nach Anspruch 7,
dadurch gekennzeichnet, dass die Photovoltaikeinrichtung (15) durch das aus der Druckgasturbine austretende entspannte Gas kühlbar ist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
eine Pedaleinrichtung (16) zum Erzeugen eines Ladestroms für den Akkiunulator (11) und/oder elektrischer Energie für den Elektromotor (9) und oder
Kompressor (12) vorgesehen ist.
10 Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Druckgasbeliälter (2) mindestens einmal im Inneren des Dampfbehälters (3) angeordnet ist, wobei ein im Innenraum des Dampfbehälters angeordnetes Raumgitter (17) für eine sichere Lagerung des mindestens einen Druckgasbehälters vorgesehen ist.
11 Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Innenraum des Dampfbehälters (3) einen Dampfdom (18) aufweist.
12 Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Kompressor (12) zur Kühlung in den Dampf kreislauf geschaltet ist.
13 Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Akkumulator (11), die Drackgasturbine (6) und/oder ein Fahrgastinnenraum mit Kompressionswärme beheizbar sind.
14 Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Fahrgastinnenraum und/oder der Akkumulator (11) durch das aus der Druckgasturbine austretende entspannte Gas kühlbar ist.
15 Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
mindestens eine Schubdüse und/oder Strahltriebwerk für den Rückstoßantrieb zum Abblasen des komprimierten Gases und/oder des Dampfes vorgesehen ist.
16. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Dampfbehälter (3) elektrisch beheizbar und/oder der Kondensator (13) elektrisch kühlbar ist.
17 Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Kompressor (12) mit einem Verbrennungstreibstoff betreibbar ist.
18. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Dampfturbine (5) auf einer ersten Welle und die Druckgasturbine (6) auf einer zweiten Welle angeordnet sind, wobei die erste und/oder die zweite Welle mit einem Generator und einem Schwungrad verbunden sind.
PCT/DE2010/000718 2009-07-07 2010-06-21 Vorrichtung zum antreiben eines kraftfahrzeugs WO2011003384A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800306110A CN102472119A (zh) 2009-07-07 2010-06-21 用于驱动交通工具的设备
DE112010002871T DE112010002871A5 (de) 2009-07-07 2010-06-21 Vorrichtung zum antreiben eines kraftfahrzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009032018.0 2009-07-07
DE102009032018 2009-07-07

Publications (4)

Publication Number Publication Date
WO2011003384A2 WO2011003384A2 (de) 2011-01-13
WO2011003384A3 WO2011003384A3 (de) 2011-08-18
WO2011003384A4 WO2011003384A4 (de) 2011-10-27
WO2011003384A9 true WO2011003384A9 (de) 2012-02-02

Family

ID=43402739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000718 WO2011003384A2 (de) 2009-07-07 2010-06-21 Vorrichtung zum antreiben eines kraftfahrzeugs

Country Status (3)

Country Link
CN (1) CN102472119A (de)
DE (2) DE102009040311A1 (de)
WO (1) WO2011003384A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056596B4 (de) * 2009-08-31 2014-12-04 Dieter Lang Wellenkraftwerk
DE102011115281B4 (de) * 2011-09-29 2017-04-20 Audi Ag Hybridfahrzeug
KR101300699B1 (ko) * 2012-08-24 2013-08-26 한국에너지기술연구원 압축공기 에너지저장을 이용한 차량용 전력저장장치 및 이의 전력저장방법
CN204877548U (zh) * 2015-05-29 2015-12-16 王力丰 经济利用压缩空气为汽车动力源的系统
DE102017005303B4 (de) 2017-05-31 2019-02-21 Friedrich Grimm Temperiersystem für ein Elektrofahrzeug

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311917A (en) * 1980-03-31 1982-01-19 Thomas R. Hencey, Jr. Non-pollution motor
DE3049523A1 (de) * 1980-12-30 1982-07-29 Alup-Kompressoren GmbH, 7316 Köngen Anlage zum rueckgewinnen der im verlaufe der kompressionsarbeit in einem kolbenkompressor oder einem kompressor ohne kuehloeleinspritzung erzeugten und zweckmaessigerweise zur erzeugung von warmwasser oder zum erwaermen eines anderen mediums dienenden waerme
US6054838A (en) * 1998-07-23 2000-04-25 Tsatsis; Constantinos Pressurized electric charging
DE10138605A1 (de) * 2001-08-07 2003-03-06 Josef Anton Mesner Kraftübertragungssystem für Kraftfahrzeuge
US7201095B2 (en) * 2004-02-17 2007-04-10 Pneuvolt, Inc. Vehicle system to recapture kinetic energy
NZ533349A (en) * 2004-06-04 2007-01-26 Muthuvetpillai Jegatheeson Drive and regenerative braking system using first and second transmission units and flywheel
CN201122019Y (zh) * 2007-11-28 2008-09-24 谢坤 显热吸收式热泵结构

Also Published As

Publication number Publication date
WO2011003384A3 (de) 2011-08-18
WO2011003384A4 (de) 2011-10-27
DE102009040311A1 (de) 2011-02-03
WO2011003384A2 (de) 2011-01-13
DE112010002871A5 (de) 2012-06-21
CN102472119A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2011003384A9 (de) Vorrichtung zum antreiben eines kraftfahrzeugs
DE102012004600A1 (de) Abwärmenutzungsvorrichtung für ein Kraftfahrzeug
DE102010047518A1 (de) Vorrichtung zur Energierückgewinnung aus einem Abgasstrom einer Verbrennungskraftmaschine
EP2653668A1 (de) Verfahren zum Laden und Entladen eines Wärmespeichers und Anlage zur Speicherung und Abgabe von thermischer Energie, geeignet für dieses Verfahren
EP2574756A1 (de) Verfahren zum Betrieb eines adiabatischen Druckluftspeicherkraftwerks und adiabatisches Druckluftspeicherkraftwerk
DE102010049916A1 (de) Verfahren und Vorrichtung zur Abwärmenutzung aus einem Abgasstrom einer Verbrennungskraftmaschine
DE102009056596B4 (de) Wellenkraftwerk
EP2710236A2 (de) Vorrichtung und verfahren zur nutzung der abwärme einer brennkraftmaschine
DE102009045979A1 (de) Antriebsvorrichtung für ein Fahrzeug, Elektrofahrzeug, Verfahren zum Betreiben einer Antriebsvorrichtung
EP1861587A2 (de) Verfahren und vorrichtungen zur verbesserung des wirkungsgrades von energieumwandlungseinrichtungen
DE102010029972A1 (de) Verbrennungsmotor für Wasserstoff mit hohem Wirkungsgrad
WO2011066813A2 (de) Universal-kreiskolbenkompressor
DE102010004079A1 (de) Brennkraftmaschine, kombiniert mit Rankineprozess zur effizienten Nutzung der Kühlmittel- und Abgaswärme
DE102011116425A1 (de) Reichweitenverlängerungsmodul eines elektrisch betreibbaren Fahrzeuges, mit zumindest einer Verbrennungskraftmaschine und einem mit dieser gekoppelten Generator sowie dessen Anwendung
DE102010047520A1 (de) Verfahren und Vorrichtung zur Energierückgewinnung aus einem Abgasstrom einer Verbrennungskraftmaschine
DE102005039281A1 (de) Hybridantrieb für ein Fahrzeug
WO2011103873A2 (de) Heiz- und/oder kühlsystem
DE102009024776A1 (de) Fahrzeug mit einem geschlossenen Fluidkreislauf
DE102007034025A1 (de) Hydraulischer Hybridantrieb für ein Fahrzeug
AT502605A1 (de) Verfahren zur erzeugung elektrischer energie, verfahren zum betrieb eines elektrisch betriebenen kraftfahrzeuges, sowie vorrichtung zur erzeugung elektrischer energie und elektrofahrzeug
DE102006005477B4 (de) Vorrichtung zur Erzeugung von Strom, sowie Kraftfahrzeug mit Elektroantrieb und solcher Vorrichtung
DE102008011213A1 (de) Verfahren und Vorrichtung zur Nutzung von Bremsenergie in Kraftfahrzeugen
WO2014063810A2 (de) Vorrichtung zum umwandeln thermischer energie in mechanische energie sowie kraftfahrzeug mit einer solchen vorrichtung
DE102016213763A1 (de) Kraftfahrzeug mit einem Verbrennungsmotor und einer elektrischen Bremsenergierückgewinnungseinrichtung und Verfahren zum Betrieb des Kraftfahrzeugs
DE10352520B4 (de) Verfahren zum Betreiben einer stationären oder mobilen Kraftmaschine mittels Druckgas und Einrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030611.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10760221

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 112010002871

Country of ref document: DE

Ref document number: 1120100028710

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112010002871

Country of ref document: DE

Effective date: 20120621

122 Ep: pct application non-entry in european phase

Ref document number: 10760221

Country of ref document: EP

Kind code of ref document: A2