WO2013141079A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2013141079A1
WO2013141079A1 PCT/JP2013/056790 JP2013056790W WO2013141079A1 WO 2013141079 A1 WO2013141079 A1 WO 2013141079A1 JP 2013056790 W JP2013056790 W JP 2013056790W WO 2013141079 A1 WO2013141079 A1 WO 2013141079A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
frame
separator
membrane electrode
electrode assembly
Prior art date
Application number
PCT/JP2013/056790
Other languages
English (en)
French (fr)
Inventor
桂太 入月
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP13764459.7A priority Critical patent/EP2830130B1/en
Priority to US14/384,563 priority patent/US9318753B2/en
Priority to JP2014506151A priority patent/JP5773232B2/ja
Priority to CN201380014064.0A priority patent/CN104205450B/zh
Priority to CA2861978A priority patent/CA2861978C/en
Publication of WO2013141079A1 publication Critical patent/WO2013141079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an improvement in a fuel cell such as a polymer electrolyte fuel cell (PEFC).
  • a fuel cell such as a polymer electrolyte fuel cell (PEFC).
  • PEFC polymer electrolyte fuel cell
  • Patent Document 1 As this type of fuel cell, for example, there is one described in Patent Document 1.
  • the fuel cell described in Patent Document 1 includes a membrane electrode assembly in which an insulating member is integrated on the outer periphery, and a separator that forms a gas flow path between the membrane electrode assembly.
  • This fuel cell has a structure in which the flat portions of the insulating member and the separator are joined together with an adhesive member.
  • the present invention has been made paying attention to the above-described conventional problems, and in a fuel cell including a membrane electrode assembly and a separator having a frame on the outer peripheral portion, the sealing performance between the frame and the separator can be improved. It aims at providing the fuel cell which can be performed.
  • the fuel cell according to the present invention includes a membrane electrode assembly having a frame on the outer periphery, and separators disposed on both sides of the frame and the membrane electrode assembly.
  • a ridge portion and a groove portion into which the top portion of the ridge portion enters are relatively formed in opposite portions of the frame and the separator, and the top portion of the ridge portion is immersed in the adhesive injected into the groove portion.
  • the groove portion and the ridge portion are bonded to each other in the state, and the above configuration is used as means for solving the conventional problems.
  • the sealing performance between the frame and the separator can be greatly enhanced.
  • FIGS. 1 and 2 are diagrams for explaining an embodiment of a fuel cell and a fuel cell stack according to the present invention.
  • the fuel cell FC shown in FIGS. 1 and 2 includes a membrane electrode assembly 2 having a frame 1 on the outer periphery, and separators 3 and 3 disposed on both sides of the frame 1 and the membrane electrode assembly 2.
  • 1 is a cross-sectional view based on the line AA in FIG.
  • the membrane electrode assembly 2 is generally called MEA (Membrane Electrode Assembly), and an electrolyte layer made of a solid polymer, for example, is sandwiched between a cathode layer (air electrode layer) and an anode layer (fuel electrode layer). It has a structure. Although not shown, the cathode layer and the anode layer have a structure in which a catalyst layer and an appropriate number of gas diffusion layers are laminated.
  • MEA Membrane Electrode Assembly
  • the frame 1 is made of resin and is integrally formed on the outer peripheral portion of the membrane electrode assembly 2 by injection molding or the like.
  • the frame 1 has a rectangular shape with the membrane electrode assembly 2 in the center.
  • the frame 1 has three manifold holes (not shown) arranged at both ends, and a region from each manifold hole group to the membrane electrode assembly 2 serves as a reaction gas flow region.
  • Each separator 3 is made of stainless steel as a more preferred embodiment, and has a rectangular shape corresponding to the frame 1 and the membrane electrode assembly 2.
  • Each separator 3 has a central portion corresponding to the membrane electrode assembly 2 formed in a wave shape in a cross section in the short side direction. This wave shape is continuous in the long side direction as shown in the figure.
  • each separator 3 has a corrugated convex portion in contact with the membrane electrode assembly 2 at the central portion corresponding to the membrane electrode assembly 2, and a cathode gas (air) and an anode gas (hydrogen) in the corrugated concave portion. Gas) gas flow paths are respectively formed. Further, as shown in FIG. 2, each separator 3 has manifold holes H1 to H6 communicating with the manifold holes of the frame 1 at both ends.
  • the manifold holes H1 to H3 on one side shown on the left side of FIG. 2 are for cathode gas supply (H1), coolant supply (H2) and anode gas discharge (H3), and communicate with each other in the stacking direction.
  • the flow path is formed.
  • the other manifold holes H4 to H6 shown on the right side of FIG. 2 are for anode gas supply (H4), coolant discharge (H5) and cathode gas discharge (H6), and communicate with each other in the stacking direction.
  • H4 to H4 shown on the right side of FIG. 2 are for anode gas supply (H4), coolant discharge (H5) and cathode gas discharge (H6), and communicate with each other in the stacking direction.
  • the positional relationship between these supply and discharge can be selected as appropriate.
  • gas seals are provided between the edges of the frame 1 and each separator 3 and around the manifold holes H1 to H6. Further, in a state where a plurality of fuel cells FC are stacked, a gas seal is also provided between the fuel cells FC, that is, between the adjacent separators 3. In this embodiment, the coolant is circulated between the adjacent separators 3.
  • the gas seal described above separates the circulation regions of the cathode gas, the anode gas, and the coolant between the individual layers, and at the periphery of the manifold holes H1 to H6 so that a predetermined fluid flows between the layers. Openings are made at appropriate locations in the section.
  • a plurality of fuel cells FC having the above-described configuration are stacked to form a fuel cell stack FS as shown in FIG.
  • the fuel cell stack FS has a current collector plate 4A and a spacer 5 at one end (the right end in FIG. 3) in the stacking direction with respect to the stack S of the fuel cells FC.
  • An end plate 6A is provided via
  • the end plate 6B is provided also in the other end part of the lamination direction via the current collecting plate 4B.
  • the fuel cell stack FS is provided with fastening plates 7A and 7B on both sides (upper and lower surfaces in FIG. 3) on the long side of the fuel cell FC with respect to the stack S, and on the short side. Reinforcing plates 8A and 8B are provided on both sides.
  • the fastening plates 7A and 7B and the reinforcing plates 8A and 8B are connected to both end plates 6A and 6B by bolts B.
  • the fuel cell stack FS has a case-integrated structure as shown in FIG. 3 (B), and the stack S is restrained and pressurized in the stacking direction so that each fuel cell FC has a predetermined contact surface pressure. In order to maintain good gas sealing properties and conductivity.
  • the fuel cell FC of the present invention includes the membrane electrode assembly 2 having the frame 1 and the separators 3 and 3 as described above, and a ridge portion and a ridge at opposite portions of the frame 1 and the separator 3.
  • a groove part into which the top part of the part enters is formed relatively, and an adhesive is injected into the groove part to bond the groove part and the protrusion part.
  • This seal configuration is provided along the gas seal provided between the frame 1 and the edge of each separator 3 described above.
  • the groove 1G is formed in the frame 1 and the protrusion 3R is formed in the separator 3 at the opposing portions of the frame 1 and the separator 3.
  • an inward (downward in FIG. 1) recess 3A is formed in the separator 3, and a protrusion 3R is formed at the center of the bottom of the recess 3A.
  • the groove 1G of the frame 1 and the recess 3A of the separator 3 have substantially equal width dimensions.
  • the groove 1G of the frame 1 can be provided at the same time when the frame 1 is injection molded. Further, the protrusion 3R and the recess 3A of the separator 3 can be provided at the same time when the separator 3 is formed by press working or the like.
  • the fuel cell FC injects the adhesive 10 into the groove 1G of the frame 1 and makes the groove 1G and the protrusion 3R be in a state where the top of the protrusion 3R of the separator 3 is immersed in the adhesive 10.
  • the frame 1 and the separator 3 are bonded together.
  • a space 11 that is hermetically partitioned by the adhesive 10 is formed between the frame 1 and the separator 3 at least on the protrusion 3R side of the membrane electrode assembly 2 side. In the illustrated example, spaces 11 are formed on both sides of the ridge 3R.
  • the fuel cell FC and the fuel cell stack FS having the above-described configuration bond the groove 1G and the protrusion 3R with the top of the protrusion 3A immersed in the adhesive 10 injected into the groove 1G.
  • the interface between the both is complicated. Thereby, the fuel cell FC can greatly enhance the sealing performance between the frame 1 and the separator 3.
  • the space 11 that is hermetically partitioned by the adhesive 10 is formed between the frame 1 and the separator 3 on the membrane electrode assembly 2 side of the protrusion 3R.
  • the nature is further enhanced. That is, in the fuel cell FC, when the reaction gas enters between the frame 1 and the separator 3 from the power generation region (region of the membrane electrode assembly 2) indicated by an arrow in FIG. It flows into the space 11. As a result, the gas pressure acts on the surface of the adhesive 10, and the so-called self-seal function in which the adhesive 10 is pressurized by the gas pressure works, and the reaction gas leaks from the adhesive 10 to the outside. Stop completely.
  • the adhesive 10 may be provided in the groove 1G, the operation of injecting the adhesive 10 becomes very easy, and the adhesive 10 flows out to other parts. Since there is no worry, the adhesive 10 having a low viscosity can be used. As a result, it is possible to improve productivity and reduce costs.
  • the protrusion 1R is formed on the frame 1
  • the groove 3G is formed on the separator 3
  • the top of the protrusion 1R is immersed in the adhesive 10 injected into the groove 3G.
  • the groove 3G and the protrusion 1R are bonded together. Also, spaces 11 that are hermetically partitioned by the adhesive 10 are formed on both sides of the ridge 1R.
  • the configuration of the fuel cell according to the present invention is not limited to the above embodiments, and details of each configuration can be appropriately changed without departing from the gist of the present invention. Moreover, in each embodiment shown in FIG.1 and FIG.4, although the structure which provided the protrusion part and the groove part relatively in the flame

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 外周部にフレーム1を有する膜電極接合体2と、フレーム1及び膜電極接合体2の両面側に配置されるセパレータ3を備え、フレーム1及びセパレータ3の相対向部分に、突条部3Rと、突条部3Rの頂部が入り込む溝部1Gを相対的に形成すると共に、溝部1Gに注入した接着剤10に突条部3Rの頂部を没入状態にして溝部1Gと突条部3Rを接着した燃料電池FCとしたことにより、フレーム1とセパレータ3との間のシール性を大幅に高めた。

Description

燃料電池
 本発明は、固体高分子型燃料電池(PEFC)などの燃料電池の改良に関する。
 この種の燃料電池としては、例えば、特許文献1に記載されているものがある。特許文献1に記載の燃料電池は、外周部に絶縁部材を一体化した膜電極接合体と、膜電極接合体との間にガス流路を形成するセパレータを備えている。この燃料電池は、絶縁部材及びセパレータの互いの平坦部同士を接着部材で接合した構造になっている。
日本国特開2010-123377号公報
 しかしながら、上記したような従来の燃料電池にあっては、絶縁部材とセパレータとの間において、一定のシール性を確保することはできるものの、双方の平坦部同士で接合した構造であるため、必ずしもシール性が充分ではないという問題点があり、このような問題点を解決することが課題であった。
 本発明は、上記従来の課題に着目して成されたもので、外周部にフレームを有する膜電極接合体及びセパレータを備えた燃料電池において、フレームとセパレータとの間のシール性を高めることができる燃料電池を提供することを目的としている。
 本発明に係る燃料電池は、外周部にフレームを有する膜電極接合体と、フレーム及び膜電極接合体の両面側に配置されるセパレータを備えている。そして、燃料電池は、フレーム及びセパレータの相対向部分に、突条部と、突条部の頂部が入り込む溝部を相対的に形成すると共に、溝部に注入した接着剤に突条部の頂部を没入状態にして溝部と突条部を接着した構成としており、上記構成をもって従来の課題を解決するための手段としている。
 本発明によれば、外周部にフレームを有する膜電極接合体及びセパレータを備えた燃料電池において、フレームとセパレータとの間のシール性を大幅に高めることができる。
本発明に係る燃料電池の一実施形態を説明する断面図である。 図1に示す燃料電池の分解状態の平面図である。 図1に示す燃料電池を積層して成る燃料電池スタックを説明する分解斜視図(A)及び組立後の斜視図(B)である。 本発明に係る燃料電池の他の実施形態を説明する断面図である。
 図1~図3は、本発明に係る燃料電池及び燃料電池スタックの一実施形態を説明する図である。図1及び図2に示す燃料電池FCは、外周部にフレーム1を有する膜電極接合体2と、フレーム1及び膜電極接合体2の両面側に配置されるセパレータ3,3を備えている。なお、図1は、図2中のA-A線に基づく断面図である。
 膜電極接合体2は、一般に、MEA(Membrane Electrode Assembly)と呼ばれるものであって、例えば固体高分子から成る電解質層をカソード層(空気極層)とアノード層(燃料極層)とで挟持した構造を有している。カソード層及びアノード層は、図示を省略したが、触媒層や適数のガス拡散層を積層した構造である。
 フレーム1は、樹脂製であって、射出成形等によって膜電極接合体2の外周部に一体成形してあり、図示例では膜電極接合体2を中央にして矩形状を成している。フレーム1は、両端部に、各々三個ずつのマニホールド穴(図示せず)が配列してあり、各マニホールド穴群から膜電極接合体2に至る領域が反応用ガスの流通領域となる。
 各セパレータ3は、より好適な実施形態としてステンレス製であって、フレーム1及び膜電極接合体2に対応した矩形状を成している。各セパレータ3は、膜電極接合体2に対応する中央部分が、短辺方向の断面において波形状に形成してある。この波形状は図示の如く長辺方向に連続している。
 これにより、各セパレータ3は、膜電極接合体2に対応する中央部分では、波形の凸部分が膜電極接合体2に接触すると共に、波形の凹部分でカソードガス(空気)及びアノードガス(水素ガス)のガス流路をそれぞれ形成する。また、各セパレータ3は、図2に示すように、両端部に、フレーム1の各マニホールド穴と連通するマニホールド穴H1~H6を有している。
 図2の左側に示す一方側のマニホールド穴H1~H3は、カソードガス供給用(H1)、冷却液供給用(H2)及びアノードガス排出用(H3)であり、積層方向に互いに連通して夫々の流路を形成する。また、図2の右側に示す他方側のマニホールド穴H4~H6は、アノードガス供給用(H4)、冷却液排出用(H5)及びカソードガス排出用(H6)であり、積層方向に互いに連通して夫々の流路を形成する。なお、これらの供給及び排出の位置関係は適宜選択することができる。
 さらに、燃料電池FCは、フレーム1と各セパレータ3の縁部同士の間や、マニホールド穴H1~H6の周囲に、ガスシールが設けてある。また、燃料電池FCを複数枚を積層した状態では、燃料電池FC同士すなわち隣接するセパレータ3同士の間にもガスシールを設ける。この実施形態では、隣接するセパレータ3間に冷却液を流通させる構造である。
 上記のガスシールは、個々の層間において、カソードガス、アノードガス及び冷却液の夫々の流通域を気密的に分離すると共に、その層間に所定の流体が流れるように、マニホールド穴H1~H6の周縁部の適当な箇所に開口を設ける。
 上記構成を備えた燃料電池FCは、複数枚を積層して、図3に示すような燃料電池スタックFSを構成する。燃料電池スタックFSは、図3(A)に示すように、燃料電池FCの積層体Sに対し、その積層方向の一端部(図3中で右側端部)に、集電板4A及びスペーサ5を介してエンドプレート6Aが設けてある。また、積層方向の他端部にも、集電板4Bを介してエンドプレート6Bが設けてある。さらに、燃料電池スタックFSは、積層体Sに対し、燃料電池FCの長辺側となる両面(図3中で上下面)に、締結板7A,7Bが設けてあると共に、短辺側となる両面に、補強板8A,8Bが設けてある。
 そして、燃料電池スタックFSは、各締結板7A,7B及び補強板8A,8BをボルトBにより両エンドプレート6A,6Bに連結する。このようにして、燃料電池スタックFSは、図3(B)に示すようなケース一体型構造となり、積層体Sをその積層方向に拘束・加圧して個々の燃料電池FCに所定の接触面圧を加え、ガスシール性や導電性等を良好に維持する。
 ここで、本発明の燃料電池FCは、先述の如くフレーム1を有する膜電極接合体2と、セパレータ3,3を備え、フレーム1及びセパレータ3の相対向部分に、突条部と、突条部の頂部が入り込む溝部を相対的に形成すると共に、溝部に接着剤を注入して溝部と突条部を接着した構成になっている。このシール構成は、先述したフレーム1と各セパレータ3の縁部同士の間に設けたガスシールに沿って設ける。
 この実施形態における燃料電池FCでは、図1に示すように、フレーム1及びセパレータ3の相対向部分において、フレーム1に溝部1Gを形成すると共に、セパレータ3に突条部3Rを形成している。また、図示例では、セパレータ3に内向き(図1では下向き)の凹部3Aを形成し、この凹部3Aの底部中央に突条部3Rが形成してある。フレーム1の溝部1Gとセパレータ3の凹部3Aは、ほぼ等しい幅寸法である。
 フレーム1の溝部1Gは、当該フレーム1を射出成形する際に、同時に設けることができる。また、セパレータ3の突条部3Rや凹部3Aは、当該セパレータ3をプレス加工等で成形する際に、同時に設けることができる。
 そして、燃料電池FCは、フレーム1の溝部1Gに接着剤10を注入すると共に、セパレータ3の突条部3Rの頂部を接着剤10に没入させた状態にして、溝部1Gと突条部3Rを接着し、フレーム1とセパレータ3とを接合している。このとき、燃料電池FCは、フレーム1とセパレータ3との間において、突条部3R少なくとも膜電極接合体2側に、接着剤10により気密的に仕切られた空間11が形成される。図示例では、突条部3Rの両側に空間11,11が形成されている。
 上記の構成を備えた燃料電池FC及び燃料電池スタックFSは、溝部1Gに注入した接着剤10に突条部3Aの頂部を没入状態にして溝部1Gと突条部3Rを接着しているので、双方を平坦部同士で接着するシール構造に比べて、双方の界面が複雑なものとなる。これにより、燃料電池FCは、フレーム1とセパレータ3との間のシール性を大幅に高めることができる。
 また、上記の燃料電池FCでは、フレーム1とセパレータ3との間において、突条部3Rの膜電極接合体2側に、接着剤10により気密的に仕切られた空間11を形成したので、シール性がより一層高められる。つまり、燃料電池FCは、図1中に矢印で示す発電領域(膜電極接合体2の領域)から、フレーム1とセパレータ3との間に反応用ガスが侵入すると、その反応用ガスは内側の空間11に流入する。これにより、ガス圧が接着剤10の表面に作用することとなり、そのガス圧により接着剤10が加圧される、いわゆるセルフシール機能が働き、接着剤10から外側への反応用ガスの漏出を完全に阻止する。
 さらに、上記の燃料電池FCでは、溝部1Gに接着剤10を設ければ良いので、接着剤10の注入作業が非常に容易なものとなり、また、接着剤10が他の部分に流出するような心配がないので、粘性の低い接着剤10を使用することもできる。これにより、生産性の向上や低コスト化などを図ることも可能になる。
 図4に示す燃料電池FCは、フレーム1に突条部1Rを形成すると共に、セパレータ3に溝部3Gを形成し、溝部3Gに注入した接着剤10に突条部1Rの頂部を没入状態にして溝部3Gと突条部1Rを接着した構成である。また、突条部1Rの両側には、接着剤10により気密的に仕切られた空間11が形成されている。
 上記の燃料電池FCにあっても、先の実施形態と同様に、双方を平坦部同士で接着する構造に対して、双方の界面が複雑なものとなり、フレーム1とセパレータ3との間のシール性を大幅に高めることができる。
 なお、本発明に係る燃料電池は、その構成が上記各実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲で各構成の細部を適宜変更することが可能である。また、図1及び図4に示す各実施形態では、フレームと一方のセパレータとに突条部及び溝部を相対的に設けた構成を例示したが、当然のことながら、フレームと他方のセパレータとの間にも同等の構成を設けることができる。
 FC 燃料電池
 FS 燃料電池スタック
 1  フレーム
 1G 溝部
 1R 突条部
 2  膜電極接合体
 3  セパレータ
 3R 突条部
 3G 溝部
 10 接着剤
 11 空間

Claims (5)

  1.  外周部にフレームを有する膜電極接合体と、
     フレーム及び膜電極接合体の両面側に配置されるセパレータを備え、
     フレーム及びセパレータの相対向部分に、突条部と、突条部の頂部が入り込む溝部を相対的に形成すると共に、溝部に注入した接着剤に突条部の頂部を没入状態にして溝部と突条部を接着したことを特徴とする燃料電池。
  2.  フレームとセパレータとの間において、突条部の少なくとも膜電極接合体側に、接着剤により気密的に仕切られた空間を形成したことを特徴とする請求項1に記載の燃料電池。
  3.  フレームに溝部を形成すると共に、セパレータに突条部を形成したことを特徴とする請求項1又は2に記載の燃料電池。
  4.  フレームに突条部を形成すると共に、セパレータに溝部を形成したことを特徴とする請求項1又は2に記載の燃料電池。
  5.  請求項1~4のいずれか1項に記載の燃料電池を複数枚積層して成ることを特徴とする燃料電池スタック。
PCT/JP2013/056790 2012-03-21 2013-03-12 燃料電池 WO2013141079A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13764459.7A EP2830130B1 (en) 2012-03-21 2013-03-12 Fuel cell
US14/384,563 US9318753B2 (en) 2012-03-21 2013-03-12 Fuel cell
JP2014506151A JP5773232B2 (ja) 2012-03-21 2013-03-12 燃料電池
CN201380014064.0A CN104205450B (zh) 2012-03-21 2013-03-12 燃料电池
CA2861978A CA2861978C (en) 2012-03-21 2013-03-12 Fuel cell with sealing structure between the frame and separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012063075 2012-03-21
JP2012-063075 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013141079A1 true WO2013141079A1 (ja) 2013-09-26

Family

ID=49222539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056790 WO2013141079A1 (ja) 2012-03-21 2013-03-12 燃料電池

Country Status (6)

Country Link
US (1) US9318753B2 (ja)
EP (1) EP2830130B1 (ja)
JP (1) JP5773232B2 (ja)
CN (1) CN104205450B (ja)
CA (1) CA2861978C (ja)
WO (1) WO2013141079A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207451A (ja) * 2014-04-21 2015-11-19 トヨタ自動車株式会社 燃料電池
JP2015207505A (ja) * 2014-04-23 2015-11-19 トヨタ自動車株式会社 燃料電池
JP2016004739A (ja) * 2014-06-19 2016-01-12 トヨタ自動車株式会社 燃料電池
JP2019102276A (ja) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 燃料電池セル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2985885C (en) * 2015-05-13 2019-07-30 Nissan Motor Co., Ltd. Fuel cell stack
JP7196773B2 (ja) * 2019-05-31 2022-12-27 トヨタ自動車株式会社 燃料電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007328A (ja) * 2001-06-20 2003-01-10 Nok Corp 燃料電池用構成部品
JP2003077499A (ja) * 2001-06-18 2003-03-14 Toyota Motor Corp 燃料電池
JP2006019204A (ja) * 2004-07-05 2006-01-19 Toyota Motor Corp 2部材の接合構造および燃料電池
JP2007035296A (ja) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd 電解質膜/電極積層体および燃料電池セル
WO2007105740A1 (ja) * 2006-03-08 2007-09-20 Toyota Jidosha Kabushiki Kaisha セル積層体およびこれを備えた燃料電池
JP2007294248A (ja) * 2006-04-25 2007-11-08 Toyota Motor Corp 燃料電池およびそのセパレータ
JP2010123377A (ja) 2008-11-19 2010-06-03 Nissan Motor Co Ltd 燃料電池スタック
JP2010129342A (ja) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd 燃料電池及び燃料電池スタック製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077290B2 (ja) * 2009-05-25 2012-11-21 日産自動車株式会社 燃料電池モジュール及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077499A (ja) * 2001-06-18 2003-03-14 Toyota Motor Corp 燃料電池
JP2003007328A (ja) * 2001-06-20 2003-01-10 Nok Corp 燃料電池用構成部品
JP2006019204A (ja) * 2004-07-05 2006-01-19 Toyota Motor Corp 2部材の接合構造および燃料電池
JP2007035296A (ja) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd 電解質膜/電極積層体および燃料電池セル
WO2007105740A1 (ja) * 2006-03-08 2007-09-20 Toyota Jidosha Kabushiki Kaisha セル積層体およびこれを備えた燃料電池
JP2007294248A (ja) * 2006-04-25 2007-11-08 Toyota Motor Corp 燃料電池およびそのセパレータ
JP2010123377A (ja) 2008-11-19 2010-06-03 Nissan Motor Co Ltd 燃料電池スタック
JP2010129342A (ja) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd 燃料電池及び燃料電池スタック製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207451A (ja) * 2014-04-21 2015-11-19 トヨタ自動車株式会社 燃料電池
US9966614B2 (en) 2014-04-21 2018-05-08 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2015207505A (ja) * 2014-04-23 2015-11-19 トヨタ自動車株式会社 燃料電池
JP2016004739A (ja) * 2014-06-19 2016-01-12 トヨタ自動車株式会社 燃料電池
JP2019102276A (ja) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 燃料電池セル

Also Published As

Publication number Publication date
JP5773232B2 (ja) 2015-09-02
CN104205450B (zh) 2018-01-26
US20150086899A1 (en) 2015-03-26
JPWO2013141079A1 (ja) 2015-08-03
US9318753B2 (en) 2016-04-19
EP2830130A1 (en) 2015-01-28
CA2861978A1 (en) 2013-09-26
CN104205450A (zh) 2014-12-10
EP2830130B1 (en) 2017-09-06
CA2861978C (en) 2017-06-20
EP2830130A4 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5773232B2 (ja) 燃料電池
JP5790083B2 (ja) 燃料電池セル
CA2801416C (en) Fuel cell
WO2014174959A1 (ja) 燃料電池スタックのセル構造
CA2920772C (en) Membrane electrode assembly with frame, fuel cell single cell, and fuel cell stack
JP2014093212A (ja) 燃料電池及び燃料電池スタック
JPWO2014080761A1 (ja) 燃料電池単セル
JP2006331783A (ja) 燃料電池用単セル
JP2017045637A (ja) 膜電極接合体
WO2014080760A1 (ja) 燃料電池スタック
JP2014229577A (ja) 燃料電池用のセパレータ
JP6229874B2 (ja) フレーム付き膜電極接合体、燃料電池単セル及び燃料電池スタック
WO2016181523A1 (ja) 燃料電池スタック
JP2015191801A (ja) 燃料電池
JP6241594B2 (ja) フレーム付き膜電極接合体、燃料電池単セル及び燃料電池スタック
JP6150060B2 (ja) フレーム付き膜電極接合体、燃料電池用単セル及び燃料電池スタック
JP6150528B2 (ja) 燃料電池スタック
JP2007250206A (ja) 燃料電池
JP6395121B2 (ja) 燃料電池スタック
JP6656596B2 (ja) 燃料電池の単セル構造
JP6619646B2 (ja) 燃料電池用ガスケット及びその製造方法
JP2011008951A (ja) 燃料電池用ガスケット、燃料電池用積層部材、および燃料電池
JP2009224153A (ja) 燃料電池の製造方法、セパレータ、および燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506151

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013764459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013764459

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2861978

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14384563

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE