WO2013140811A1 - Film antireflet - Google Patents

Film antireflet Download PDF

Info

Publication number
WO2013140811A1
WO2013140811A1 PCT/JP2013/001937 JP2013001937W WO2013140811A1 WO 2013140811 A1 WO2013140811 A1 WO 2013140811A1 JP 2013001937 W JP2013001937 W JP 2013001937W WO 2013140811 A1 WO2013140811 A1 WO 2013140811A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
meth
refractive index
antireflection film
index layer
Prior art date
Application number
PCT/JP2013/001937
Other languages
English (en)
Japanese (ja)
Inventor
航 大久保
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2014506045A priority Critical patent/JP6233298B2/ja
Priority to KR1020147028208A priority patent/KR102014569B1/ko
Priority to CN201380014317.4A priority patent/CN104204864B/zh
Publication of WO2013140811A1 publication Critical patent/WO2013140811A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Definitions

  • the content disclosed in this specification includes an antireflection film provided for the purpose of preventing external light from being reflected on a display screen such as a display device, a display device including the antireflection film, and an antireflection film.
  • the present invention relates to a polarizing plate and a touch panel. Such an antireflection panel is preferably provided and used on a display screen of a display device.
  • the display is used in an environment where external light or the like enters regardless of whether it is used indoors or outdoors. Incident light such as external light is specularly reflected on the display surface and the like, and the reflected image thereby mixes with the display image, thereby degrading the screen display quality. Therefore, it is essential to provide an antireflection function on the display surface or the like, and there is a demand for higher performance of the antireflection function.
  • the antireflection function can be obtained by forming an antireflection layer having a multilayer structure with a repeating structure of a high refractive index layer and a low refractive index layer made of a transparent material such as a metal oxide on a transparent support.
  • These antireflection layers having a multilayer structure can be formed by a dry film forming method such as a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • One of the objects of the content disclosed in the present specification is to reduce the hue of reflected light from the front and to reduce the hue of reflected light of external light incident from various angles,
  • the object is to provide a display device including the antireflection film, a polarizing plate including the antireflection film, and a touch panel.
  • This object is achieved by providing an antireflection film as described later, an image display device or liquid crystal display device provided with the antireflection film, and a polarizing plate provided with the antireflection film.
  • this antireflection film is suitable for any incident light having an incident angle in the range of 5 ° to 50 ° in the wavelength range of 380 nm to 780 nm of the C light source that is the CIE standard light source.
  • the hue of the reflected light under the reflection condition where the incident angle and the reflection angle are equal satisfies the following conditions: ⁇ 3 ⁇ a * ⁇ 3 and ⁇ 5 ⁇ b * ⁇ 5 in the CIE1976L * a * b * color space.
  • an antireflection film is provided in which the luminous average reflectance on the surface of the antireflection film is in the range of 0.05% to 1.0%.
  • the term “display device” refers to a terminal device for visual output to the user, such as the display screen. Project an image.
  • Examples of such a display device include a liquid crystal display (LCD), a CRT display, an organic electroluminescence display (ELD), a plasma display (PDP), a surface electric field display (SED), a field emission display (FED), and the like.
  • the polarizing plate can be provided as the polarizing plate including the above-described antireflection film.
  • it can be provided as a touch panel including the above-described antireflection film.
  • the visual average reflectance on the surface of the antireflection film is in the range of 0.05% to 1.0%. It is possible to reduce the coloring of the reflected light from the front, and to reduce the coloring of the reflected light of the external light incident from various angles. Further, the same effect can be obtained by providing a polarizing plate using the antireflection film on the surface of the liquid crystal display device and also using the antireflection film for a touch panel.
  • FIG. 1 is a schematic cross-sectional view of an antireflection film according to an embodiment.
  • FIG. 2 is a diagram showing the angle dependency of the hue of reflected light in the antireflection films produced in Examples and Comparative Examples.
  • the antireflection film disclosed in the present specification can be applied to any incident light having an incident angle in the range of 5 ° to 50 ° in the wavelength range of 380 nm to 780 nm of the C light source, which is a CIE standard light source.
  • the hue of reflected light under a reflection condition in which the incident angle and the reflection angle are equal satisfies ⁇ 3 ⁇ a * ⁇ 3 and ⁇ 5 ⁇ b * ⁇ 5 in the CIE1976L * a * b * color space. Therefore, even when the incident angle of outside light changes, the hue of the reflected light of the antireflection film becomes a neutral color.
  • the hue of the reflected light in the range of the reflection angle from ⁇ 5 ° to ⁇ 80 ° with respect to the incident light having an incident angle of 5 ° is ⁇ 3 ⁇ a * ⁇ 3 in the CIE1976L * a * b * color space.
  • the luminous average reflectance of the antireflection film is preferably in the range of 0.05% to 1.0%.
  • the layer configuration of the antireflection film will be described in detail with reference to FIG.
  • the antireflection film of this example is provided so as to have a multilayer structure in which a hard coating layer is applied on a transparent support and a high refractive index layer and a low refractive index layer are sequentially laminated.
  • the number of layers of the high refractive index layer and the low refractive index layer is not limited.
  • the antireflection film (10) of this example has a hard coat layer (12) applied on the transparent support (11).
  • a high refractive index layer (13) is further coated thereon and a low refractive index layer (14) is laminated thereon, it can be suitably used as an antireflection film.
  • the hard coat layer has a thickness of 3.0 ⁇ m or more and 10 ⁇ m or less, the hard coat layer has a refractive index of 1.48 or more and 1.53 or less, and the high refractive index layer has a thickness of 230 nm or more.
  • the refractive index of the high refractive index layer is in the range of 1.58 or more and 1.64 or less, and the thickness of the low refractive index layer is in the range of 115 nm or more and 135 nm or less.
  • the refractive index is desirably a refractive index (for example, a refractive index of 1.30) that can make the luminous average reflectance within a range of 0.05% to 1.0%.
  • Examples of the coating method for the hard coat layer, the high refractive index layer, and the low refractive index layer as described above include existing coating methods such as a spray method, a screen printing method, a doctor blade method, a gravure printing method, a die coating method, and an inkjet method. Although it is mentioned, it does not specifically limit.
  • the transparent support in the antireflection film of this example is made from various organic polymers in consideration of optical properties such as transparency and refractive index of light, and various physical properties such as impact resistance, heat resistance and durability.
  • organic polymer include, but are not limited to, polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, and celluloses such as triacetyl cellulose, diacetyl cellulose, and cellophane.
  • the organic polymer is polyethylene terephthalate, triacetyl cellulose, polycarbonate, polymethyl methacrylate. More preferably, the organic polymer is triacetyl cellulose, which can be suitably used for various displays because of its low birefringence and good transparency.
  • the transparent support may be prepared from one or a mixture of two or more selected from the above organic polymers, or a polymer, or may be a laminate of a plurality of layers.
  • the thickness of the transparent support is preferably in the range of 20 ⁇ m to 200 ⁇ m, and more preferably in the range of 20 ⁇ m to 80 ⁇ m.
  • an acrylic material can be used as the hard coat layer in the antireflection film.
  • the acrylic material include monofunctional, bifunctional or trifunctional (meth) acrylate compounds such as acrylic acid or methacrylic acid ester of polyhydric alcohol, diisocyanate and polyhydric alcohol, and hydroxyester of acrylic acid or methacrylic acid.
  • a polyfunctional urethane (meth) acrylate compound as synthesized from the above can be used.
  • (meth) acrylate refers to both “acrylate” and “methacrylate”.
  • urethane (meth) acrylate indicates both “urethane acrylate” and “urethane methacrylate”.
  • Examples of the monofunctional (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl ( (Meth) acrylate, t-butyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) ) Acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, benz
  • bifunctional (meth) acrylate compound examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, and nonanediol di ( (Meth) acrylate, ethoxylated hexanediol di (meth) acrylate, propoxylated hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethoxylated neopentyl glycol di (meth) acrylate, tripropylene Rikoruji (meth) acrylate, but di
  • Examples of the trifunctional or higher functional (meth) acrylate compound include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, and tris 2-hydroxy.
  • Trifunctional (meth) acrylate compounds pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol Trifunctional or higher polyfunctionality such as tra (meth) acrylate, dipentaerythritol penta (meth) acrylate, ditrimethylolpropane penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane hexa (meth) acrylate ( Examples thereof include, but are not limited to, (meth) acrylate compounds and polyfunctional (meth) acrylate compounds in which a part of these (meth) acrylates is substituted with an alkyl group or ⁇ -caprolactone.
  • polyfunctional urethane acrylates can be suitably used because the desired molecular weight and molecular structure can be designed and the physical properties of the formed hard coat layer can be easily balanced.
  • the urethane acrylate is obtained by reacting a polyhydric alcohol, a polyvalent isocyanate, and a hydroxyl group-containing acrylate.
  • polyether resins such as polyether resins, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, etc. having acrylate functional groups can be used.
  • the material is not particularly limited.
  • a photopolymerization initiator is added to the hard coat layer forming coating solution.
  • Any photopolymerization initiator may be used as long as it generates radicals when irradiated with ultraviolet rays.
  • acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones are used. Can do.
  • the addition amount of the photopolymerization initiator is 0.1 to 10 parts by weight, preferably 1 to 7 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the ionizing radiation curable material. Parts by weight.
  • Solvents include aromatic hydrocarbons such as toluene, xylene, cyclohexane and cyclohexylbenzene, hydrocarbons such as n-hexane, dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, dioxane, dioxolane, and trioxane.
  • aromatic hydrocarbons such as toluene, xylene, cyclohexane and cyclohexylbenzene
  • hydrocarbons such as n-hexane, dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, dioxane, dioxolane, and trioxane.
  • Ethers such as tetrahydrofuran, anisole and phenetole, and ketones such as methyl isobutyl ketone, methyl butyl ketone, acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, and methylcyclohexanone , Ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate Applicable from esters such as n-pentyl acetate and ⁇ -ptyrolactone, cellosolves such as methyl cellosolve, cellosolve, butyl cellosolve and cellosolve acetate, and alcohols such as methanol, ethanol, is
  • additives may be added to the hard coat layer forming coating solution.
  • additives include a defoaming agent, a leveling agent, an antioxidant, an ultraviolet absorber, a light stabilizer, and a polymerization inhibitor.
  • the high refractive index layer in the antireflection film is composed of a binder obtained by combining one or more of metal alkoxides, silane coupling agents, and organic resins, and further includes metal fine particles and organic fine particles in the binder. What was added can be used. These components are appropriately selected depending on the required refractive index of the organic coating layer, and the refractive index is adjusted by a combination of materials, a mixing ratio, or the like. For example, metal alkoxides such as Ti, Ta, Zr, In, and Zn, and metal fine particles such as titanium oxide, zirconium oxide, zinc oxide, and indium oxide are used as the high refractive index material.
  • the dilution solvents used include alcohols such as methanol, ethanol, isopropanol, butanol, 2-methoxyethanol, acetone, methyl ethyl ketone , Ketones such as methyl isobutyl, esters such as methyl acetate, ethyl acetate, butyl acetate, ethers such as diisopropyl ether, glycols such as ethylene glycol, propylene glycol, hexylene glycol, ethyl cellosolve, butyl cellosolve, ethyl carbitol Glycol ethers such as butyl carbitol, aliphatic hydrocarbons such as hexane, heptane and octane, halogenated hydrocarbons, aromatic hydrocarbons such as
  • a binder matrix forming material for forming the high refractive index layer is an ionizing radiation curable material.
  • the ionizing radiation curable material acrylic materials exemplified as the ionizing radiation curable material contained in the hard coat layer forming coating liquid can be used.
  • Acrylic materials are synthesized from polyfunctional or polyfunctional (meth) acrylate compounds such as polyhydric alcohol acrylic acid or methacrylic acid ester, diisocyanate and polyhydric alcohol, and acrylic acid or methacrylic acid hydroxy ester.
  • polyfunctional urethane (meth) acrylate compound can be used.
  • polyether resins having an acrylate functional group polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can be used. .
  • the low refractive particles include LiF, MgF, 3NaF ⁇ AlF or AlF (all having a refractive index of 1.4), or Na 3 AlF 6 (ice).
  • Low refractive index particles made of a low refractive material such as crystallite and a refractive index of 1.33) can be used.
  • grain can be used suitably.
  • the voids can be made to have a refractive index of air ( ⁇ 1), so that they can be low refractive index particles having a very low refractive index.
  • low refractive index silica particles having voids inside can be used.
  • the particle size of the low refractive index particles used in the low refractive index layer is preferably 1 nm to 100 nm.
  • the particle diameter exceeds 100 nm, light is remarkably reflected by Rayleigh scattering, and the low refractive index layer tends to be whitened and the transparency of the antireflection film tends to be lowered.
  • the particle size is less than 1 nm, problems such as non-uniformity of particles in the low refractive index layer due to aggregation of particles occur.
  • a binder matrix forming material for forming the low refractive index layer is an ionizing radiation curable material.
  • the ionizing radiation curable material acrylic materials exemplified as the ionizing radiation curable material contained in the hard coat layer forming coating liquid can be used.
  • Acrylic materials are synthesized from polyfunctional or polyfunctional (meth) acrylate compounds such as polyhydric alcohol acrylic acid or methacrylic acid ester, diisocyanate and polyhydric alcohol, and acrylic acid or methacrylic acid hydroxy ester.
  • polyfunctional urethane (meth) acrylate compound can be used.
  • polyether resins having an acrylate functional group polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can be used. . Further, these resins may be appropriately fluorinated.
  • Preparation examples 1 to 3 described later are preparation examples of the coating liquid for forming a hard coat layer, the coating liquid for forming a high refractive index layer, and the coating liquid for forming a low refractive index layer, respectively, used in Example 1. is there. Using these, the antireflection film according to Example 1 was produced according to the procedures shown in Formation Examples 1 to 3. Moreover, the film from the comparative example 1 to the comparative example 7 was produced by the change of the preparation conditions mentioned later.
  • ⁇ Preparation Example 1> (Coating liquid for forming hard coat layer) 25 parts by mass of dipentaerythritol triacrylate, 25 parts by mass of pentaerythritol tetraacrylate, 50 parts by mass of urethane acrylate, 5 parts by mass of Irgacure 184 (manufactured by BASF (photopolymerization initiator)) and dissolved in 118 parts by mass of methyl ethyl ketone Thus, a hard coat layer forming coating solution was prepared.
  • ⁇ Preparation Example 2> (Coating liquid for forming high refractive index layer) 3 parts by mass of urethane acrylate, 18 parts by mass of zirconium oxide fine particle dispersion (solid content 25%, solvent: methyl isobutyl ketone), 0.1 part by mass of Irgacure 184 (manufactured by BASF (photopolymerization initiator)) Diluted with 79 parts by weight of methyl isobutyl ketone to prepare a coating solution for forming a high refractive index layer.
  • ⁇ Preparation Example 3> (Coating liquid for forming low refractive index layer) Porous silica fine particle dispersion (solid content 20%, solvent: methyl isobutyl ketone) 18 parts by mass, EO-modified dipentaerythritol hexaacrylate (trade name: DPEA-12, Nippon Kayaku) 1.99 parts by mass, polymerization started 0.07 parts by mass of an agent (trade name; Irgacure 184, manufactured by BASF), 0.20 parts by mass of TSF4460 (trade name, manufactured by Momentive Performance Materials, Inc .: alkyl polyether-modified silicone oil) A coating solution for forming a low refractive index layer was prepared by diluting with 80 parts by weight of methyl isobutyl ketone.
  • Formation of layer structure of antireflection film ⁇ Formation Example 1> (Formation of hard coat layer) A coating liquid for forming a hard coat layer is applied to one side of a triacetyl cellulose film (manufactured by Fuji Film: film thickness 60 ⁇ m), dried in an oven at 80 ° C. for 60 seconds, dried, and then irradiated with an ultraviolet irradiation device (Fusion UV System Japan, light source) A transparent hard coat layer having a dry film thickness of 5 ⁇ m was formed by irradiating ultraviolet rays at an irradiation dose of 300 mJ / m 2 using an H bulb. The refractive index of the hard coat layer was 1.52.
  • ⁇ Formation Example 2> (Formation of high refractive index layer)
  • the coating liquid for forming a high refractive index layer was applied on the hard coat layer formed by the above method so that the film thickness after drying was 250 nm.
  • a high refractive index layer was formed by irradiating with an ultraviolet ray irradiation at an irradiation dose of 192 mJ / m 2 using an ultraviolet ray irradiation apparatus (Fusion UV System Japan, light source H bulb).
  • the refractive index of the high refractive index layer was 1.60.
  • ⁇ Formation Example 3> (Formation of a low refractive index layer) A coating solution for forming a low refractive index layer was applied on the high refractive index layer formed by the above method so that the film thickness after drying was 120 nm. This was irradiated with ultraviolet rays at an irradiation dose of 192 mJ / m 2 using an ultraviolet irradiation device (Fusion UV System Japan, light source H bulb) and cured to form a low refractive index layer, thereby producing an antireflection film. The refractive index of the low refractive index layer was 1.30.
  • Porous silica fine particle dispersion of Preparation Example 3 solid content 20%, solvent: methyl isobutyl ketone
  • EO-modified dipentaerythritol hexaacrylate (trade name: DPEA-12, manufactured by Nippon Kayaku Co., Ltd.) 1.99 mass Parts
  • polymerization initiator (BASF, trade name; Irgacure 184) 0.07 parts by weight
  • TSF4460 trade name, manufactured by Momentive Performance Materials, Inc .: alkyl polyether-modified silicone oil
  • the antireflection films of Comparative Examples 6 to 7 were prepared by changing mainly the amount of methyl isobutyl ketone based on 80 parts by weight of methyl isobutyl ketone.
  • ⁇ Comparative example 2> This is an example in which the high refractive index layer of Formation Example 2 was applied so that the film thickness after drying was 290 nm.
  • a coating solution for forming a high refractive index layer was prepared with 74 parts by weight of methyl isobutyl ketone as a solvent.
  • ⁇ Comparative Example 3> This is an example in which the film thickness after drying of the high refractive index layer of Formation Example 2 was applied to be 190 nm.
  • a coating solution for forming a high refractive index layer was prepared with 84 parts by weight of methyl isobutyl ketone as a solvent.
  • the low refractive index layer of the formation example 3 was applied so that the film thickness after drying was 140 nm.
  • a coating solution for forming a low refractive index layer was prepared with 75 parts by weight of methyl isobutyl ketone as a solvent.
  • ⁇ Comparative Example 7> This is an example in which the low refractive index layer of Formation Example 3 was applied so that the film thickness after drying was 110 nm.
  • a coating solution for forming a low refractive index layer was prepared with 85 parts by weight of methyl isobutyl ketone as a solvent.
  • the spectral reflectance at an incident angle of 5 ° was measured using an automatic spectrophotometer (manufactured by Hitachi, U-4100). Moreover, the luminous average reflectance was obtained from the obtained spectral reflectance curve in accordance with JIS R3106. In the measurement, a matte black paint was applied to the surface of the triacetyl cellulose film, which is a transparent support, on which the low refractive index layer was not formed, and antireflection treatment was performed.
  • the spectral reflectance at an incident angle of 5 ° was measured using an automatic spectrophotometer (manufactured by Hitachi, Ltd., U-4100), and from the obtained spectral reflectance curve The hue of reflected light was determined.
  • a matte black paint was applied to the surface of the triacetyl cellulose film, which is a transparent support, on which the low refractive index layer was not formed, and antireflection treatment was performed.
  • Example 1 showed good performance. Moreover, Example 1 showed the favorable performance also about the angle dependence of the hue of reflected light from the result of FIG.
  • symbol 21 means the hue range used as the neutral color in which the reflected light of an anti-reflective film does not have a tint. Moreover, about the comparative example 4, since the uniform film
  • the antireflection film can have a luminous average reflectance on the surface of the antireflection film in the range of 0.05% to 1.0%, and the hue of reflected light from the front surface. In addition, the hue can be reduced with respect to reflected light of external light incident from various angles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

La présente invention concerne un film antireflet avec lequel une teinte n'est pas appliquée à une lumière réfléchie d'une lumière externe provenant d'une face avant, il est possible de réduire la teinte même par rapport à la lumière réfléchie de la lumière externe qui entre à partir de divers angles. En particulier, une nuance de la lumière réfléchie dans une condition de réflexion dans laquelle un angle d'entrée et un angle de réflexion sont équivalents même pour n'importe quelle lumière d'entrée pour laquelle l'angle d'entrée se trouve dans la plage de 5 à 50° dans une région de longueur d'onde de 380 à 780 nm d'une source de lumière C qui est une source de lumière répondant à la norme CIE satisfait aux formules -3 ≤ a ≤ 3 et -5 ≤ b ≤ 5 dans l'espace colorimétrique L*a*b* adopté par la CIE en 1976.
PCT/JP2013/001937 2012-03-23 2013-03-21 Film antireflet WO2013140811A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014506045A JP6233298B2 (ja) 2012-03-23 2013-03-21 反射防止フィルム
KR1020147028208A KR102014569B1 (ko) 2012-03-23 2013-03-21 반사 방지 필름
CN201380014317.4A CN104204864B (zh) 2012-03-23 2013-03-21 防反射膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012067468 2012-03-23
JP2012-067468 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013140811A1 true WO2013140811A1 (fr) 2013-09-26

Family

ID=49222284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001937 WO2013140811A1 (fr) 2012-03-23 2013-03-21 Film antireflet

Country Status (5)

Country Link
JP (1) JP6233298B2 (fr)
KR (1) KR102014569B1 (fr)
CN (1) CN104204864B (fr)
TW (1) TWI628456B (fr)
WO (1) WO2013140811A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016177185A (ja) * 2015-03-20 2016-10-06 大日本印刷株式会社 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP2016177183A (ja) * 2015-03-20 2016-10-06 大日本印刷株式会社 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP2018072807A (ja) * 2016-10-20 2018-05-10 日油株式会社 防眩性反射防止フィルム及びそれを備えた画像表示装置
JP2018197829A (ja) * 2017-05-25 2018-12-13 日油株式会社 防眩性反射防止フィルム及びそれを備えた画像表示装置
JP2019028364A (ja) * 2017-08-02 2019-02-21 日東電工株式会社 反射防止フィルム
JP2019197234A (ja) * 2017-11-10 2019-11-14 住友化学株式会社 円偏光板
JPWO2020218374A1 (fr) * 2019-04-23 2020-10-29
US20200408954A1 (en) * 2018-03-02 2020-12-31 Corning Incorporated Anti-reflective coatings and articles and methods of forming the same
JP2021152654A (ja) * 2020-03-23 2021-09-30 デクセリアルズ株式会社 光学積層体および物品
CN114144701A (zh) * 2019-05-21 2022-03-04 日涂汽车涂料有限公司 涂布构件和涂布构件的制造方法
JP7349235B2 (ja) 2017-10-10 2023-09-22 株式会社ダイセル 反射防止フィルム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101807208B1 (ko) 2015-08-18 2017-12-08 주식회사 엘지화학 저굴절층 및 이를 포함하는 반사 방지 필름
KR101956830B1 (ko) 2015-08-18 2019-03-12 주식회사 엘지화학 저굴절층 및 이를 포함하는 반사 방지 필름
CN106441126A (zh) * 2016-10-26 2017-02-22 电子科技大学 一种基于反射率光谱测量光学薄膜厚度的方法及系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138662A (ja) * 2002-10-15 2004-05-13 Fuji Photo Film Co Ltd 反射防止膜、反射防止フィルムおよび画像表示装置
JP2006072315A (ja) * 2004-05-20 2006-03-16 Fuji Photo Film Co Ltd 反射防止能付き偏光板、その製造方法、及びそれを用いた画像表示装置
JP2006126799A (ja) * 2004-09-28 2006-05-18 Fuji Photo Film Co Ltd 反射防止フィルムの製造方法、反射防止フィルム、それを用いた偏光板及びそれらを用いた画像表示装置
JP2006235336A (ja) * 2005-02-25 2006-09-07 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、およびそれを用いた画像表示装置
JP2007256346A (ja) * 2006-03-20 2007-10-04 Fujifilm Corp 反射防止フィルム、偏光板及び画像表示装置、液晶表示装置
JP2010060995A (ja) * 2008-09-05 2010-03-18 Hitachi Maxell Ltd 機能性光学フィルム
JP2011123513A (ja) * 2007-12-20 2011-06-23 Toppan Printing Co Ltd 反射防止フィルム
JP2011208102A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 塗布組成物、光学フィルム、偏光板、及び画像表示装置
JP2012032661A (ja) * 2010-07-30 2012-02-16 Fujifilm Corp 積層体、光学フィルムおよびそれらの製造方法、偏光板、画像晶表示装置、立体画像表示システム
JP2012036394A (ja) * 2006-03-30 2012-02-23 Fujifilm Corp 光学フィルムの製造方法
JP2012058415A (ja) * 2010-09-07 2012-03-22 Toppan Printing Co Ltd 反射防止フィルムおよびその製造方法
JP2012078539A (ja) * 2010-09-30 2012-04-19 Fujifilm Corp 偏光板及び液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043749A (ja) * 2003-07-24 2005-02-17 Fuji Photo Film Co Ltd 反射防止膜、反射防止フィルム、偏光板、画像表示装置およびハードコート処理物品
JP2008116597A (ja) * 2006-11-02 2008-05-22 Riken Technos Corp 反射防止フィルム
JP2011075938A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置
JP5408075B2 (ja) * 2009-10-06 2014-02-05 日油株式会社 透明導電性フィルム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138662A (ja) * 2002-10-15 2004-05-13 Fuji Photo Film Co Ltd 反射防止膜、反射防止フィルムおよび画像表示装置
JP2006072315A (ja) * 2004-05-20 2006-03-16 Fuji Photo Film Co Ltd 反射防止能付き偏光板、その製造方法、及びそれを用いた画像表示装置
JP2006126799A (ja) * 2004-09-28 2006-05-18 Fuji Photo Film Co Ltd 反射防止フィルムの製造方法、反射防止フィルム、それを用いた偏光板及びそれらを用いた画像表示装置
JP2006235336A (ja) * 2005-02-25 2006-09-07 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、およびそれを用いた画像表示装置
JP2007256346A (ja) * 2006-03-20 2007-10-04 Fujifilm Corp 反射防止フィルム、偏光板及び画像表示装置、液晶表示装置
JP2012036394A (ja) * 2006-03-30 2012-02-23 Fujifilm Corp 光学フィルムの製造方法
JP2011123513A (ja) * 2007-12-20 2011-06-23 Toppan Printing Co Ltd 反射防止フィルム
JP2010060995A (ja) * 2008-09-05 2010-03-18 Hitachi Maxell Ltd 機能性光学フィルム
JP2011208102A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 塗布組成物、光学フィルム、偏光板、及び画像表示装置
JP2012032661A (ja) * 2010-07-30 2012-02-16 Fujifilm Corp 積層体、光学フィルムおよびそれらの製造方法、偏光板、画像晶表示装置、立体画像表示システム
JP2012058415A (ja) * 2010-09-07 2012-03-22 Toppan Printing Co Ltd 反射防止フィルムおよびその製造方法
JP2012078539A (ja) * 2010-09-30 2012-04-19 Fujifilm Corp 偏光板及び液晶表示装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016177185A (ja) * 2015-03-20 2016-10-06 大日本印刷株式会社 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP2016177183A (ja) * 2015-03-20 2016-10-06 大日本印刷株式会社 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP2018072807A (ja) * 2016-10-20 2018-05-10 日油株式会社 防眩性反射防止フィルム及びそれを備えた画像表示装置
JP2018197829A (ja) * 2017-05-25 2018-12-13 日油株式会社 防眩性反射防止フィルム及びそれを備えた画像表示装置
JP2019028364A (ja) * 2017-08-02 2019-02-21 日東電工株式会社 反射防止フィルム
JP2022106002A (ja) * 2017-08-02 2022-07-15 日東電工株式会社 反射防止フィルム
JP7100225B2 (ja) 2017-08-02 2022-07-13 日東電工株式会社 反射防止フィルム
JP7349235B2 (ja) 2017-10-10 2023-09-22 株式会社ダイセル 反射防止フィルム
JP2019197234A (ja) * 2017-11-10 2019-11-14 住友化学株式会社 円偏光板
US20200408954A1 (en) * 2018-03-02 2020-12-31 Corning Incorporated Anti-reflective coatings and articles and methods of forming the same
JP7515118B2 (ja) 2019-04-23 2024-07-12 パナソニックIpマネジメント株式会社 光学フィルム積層体
WO2020218374A1 (fr) * 2019-04-23 2020-10-29 パナソニックIpマネジメント株式会社 Stratifié de film optique
JPWO2020218374A1 (fr) * 2019-04-23 2020-10-29
CN114144701B (zh) * 2019-05-21 2024-08-23 日涂汽车涂料有限公司 涂布构件和涂布构件的制造方法
CN114144701A (zh) * 2019-05-21 2022-03-04 日涂汽车涂料有限公司 涂布构件和涂布构件的制造方法
EP3974068A4 (fr) * 2019-05-21 2023-06-14 Nippon Paint Automotive Coatings Co., Ltd. Élément de revêtement et procédé de production d'un élément de revêtement
WO2021193416A1 (fr) * 2020-03-23 2021-09-30 デクセリアルズ株式会社 Stratifié optique et article
KR102439066B1 (ko) 2020-03-23 2022-09-01 데쿠세리아루즈 가부시키가이샤 광학 적층체 및 물품
KR20210134762A (ko) * 2020-03-23 2021-11-10 데쿠세리아루즈 가부시키가이샤 광학 적층체 및 물품
JP2021152654A (ja) * 2020-03-23 2021-09-30 デクセリアルズ株式会社 光学積層体および物品

Also Published As

Publication number Publication date
JPWO2013140811A1 (ja) 2015-08-03
KR20140138262A (ko) 2014-12-03
TW201339628A (zh) 2013-10-01
KR102014569B1 (ko) 2019-08-26
CN104204864A (zh) 2014-12-10
TWI628456B (zh) 2018-07-01
CN104204864B (zh) 2017-09-05
JP6233298B2 (ja) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6233298B2 (ja) 反射防止フィルム
JP5633149B2 (ja) 反射防止フィルム及びその製造方法、偏光板、透過型液晶ディスプレイ
JP5659494B2 (ja) 反射防止フィルム及びその製造方法、偏光板、透過型液晶ディスプレイ
WO2011074119A1 (fr) Film antiréfléchissant
JP6354124B2 (ja) 反射防止フィルム
JP2013097356A (ja) 反射防止フィルム製造方法、反射防止フィルム、偏光板、および表示装置
JP6146103B2 (ja) 反射防止フィルム、それを用いた偏光板、タッチパネル基板、画像表示装置
JP6155850B2 (ja) 反射防止フィルム
JP2011186290A (ja) 反射防止フィルムおよびその製造方法
WO2010038709A1 (fr) Film antireflet
JP2014126662A (ja) 反射防止フィルム、反射防止フィルム付偏光板および透過型液晶ディスプレイ
JP2013104959A (ja) 反射防止フィルム
JP2013190561A (ja) 反射防止フィルム及びその製造方法、偏光板、透過型液晶ディスプレイ
JP6484925B2 (ja) 反射防止フィルム、反射防止フィルム付偏光板及びそれを具備した透過型液晶ディスプレイ
JP2014092616A (ja) 反射防止フィルム
JP5245774B2 (ja) 反射防止フィルム
JP2013205644A (ja) 反射防止フィルム形成用の硬化性組成物、反射防止フィルムおよびその製造方法、偏光板、表示装置
JP6492412B2 (ja) 反射防止フィルム、それを用いた偏光板、画像表示装置、液晶表示装置、およびタッチパネル
JP2014106240A (ja) 反射防止フィルム
JP2012078466A (ja) 反射防止フィルム
JP2012150154A (ja) 反射防止フィルムおよびその製造方法
JP2011028074A (ja) 反射防止フィルム
JP2014238539A (ja) 反射防止フィルム
JP2014202853A (ja) 反射防止フィルム、反射防止フィルム付偏光板および透過型液晶ディスプレイ
JP2012189754A (ja) 反射防止フィルム、表示装置および低屈折率コーティング剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506045

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028208

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764753

Country of ref document: EP

Kind code of ref document: A1