WO2013139167A1 - 木板表面粉末固化的红外脉冲辐照加热方法及其设备 - Google Patents

木板表面粉末固化的红外脉冲辐照加热方法及其设备 Download PDF

Info

Publication number
WO2013139167A1
WO2013139167A1 PCT/CN2013/000238 CN2013000238W WO2013139167A1 WO 2013139167 A1 WO2013139167 A1 WO 2013139167A1 CN 2013000238 W CN2013000238 W CN 2013000238W WO 2013139167 A1 WO2013139167 A1 WO 2013139167A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
wave infrared
medium
irradiation
curing
Prior art date
Application number
PCT/CN2013/000238
Other languages
English (en)
French (fr)
Inventor
周师岳
窦心涛
胡业锋
Original Assignee
山东朗法博粉末涂装科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东朗法博粉末涂装科技有限公司 filed Critical 山东朗法博粉末涂装科技有限公司
Priority to US14/387,480 priority Critical patent/US20150182994A1/en
Publication of WO2013139167A1 publication Critical patent/WO2013139167A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0263After-treatment with IR heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/06Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • B27N7/005Coating boards, e.g. with a finishing or decorating layer

Definitions

  • the invention relates to an infrared pulse irradiation heating method and a device for powder curing of a wood board surface, and belongs to the field of infrared technology application.
  • the artificial wood boards such as MDF wood board, HDF board, LDF board and particle board on the market can greatly reduce the release concentration of formaldehyde harmful substances in the board after applying powder coating on the surface. Because the powder coating is 100% solid, it is evenly coated on the surface of the artificial wood board. Therefore, artificial wood boards have become a favorite green environmental protection product.
  • the amount of formaldehyde released from the original board of the particle board is 2.8 mg/L. After electrostatic spraying of the powder coating, the amount of formaldehyde released is reduced to 0.1 mg/L.
  • medium-wave infrared irradiation technology has been successfully applied in electrostatic coating of MDF board powder.
  • the advantage of using medium-wave infrared heating technology is that the heat supplied to the MDF artificial wood board can be reasonably distributed, and the proportion of the heat of the coating film on the surface of the wooden board can be increased as much as possible, and the heat absorption rate of the coating film can be accelerated. That is, the heat is transferred to the coating film in the shortest time, so that it solidifies quickly, shortening the curing time, and the wood substrate greatly reduces the heat absorption due to the shortening of the heating time, so that the temperature when going out of the drying tunnel is lower than 100 °C. This not only ensures the curing quality of the film, but also greatly reduces the energy consumption (compared to the conventional circulating hot air drying tunnel) and shortens the length of the drying tunnel.
  • the medium-wave infrared tube and the workpiece in the device in order to solve the problem of uniform heating of various parts of the workpiece in the effective heating region, the medium-wave infrared tube and the workpiece in the device must still be far enough apart, so that the heating region in the device is The cavity space is relatively large.
  • the representative of the famous German Heraeus company's medium-wave infrared radiation heating tunnel in the medium-wave infrared irradiation technology, the representative of the famous German Heraeus company's medium-wave infrared radiation heating tunnel.
  • the arrangement of the middle and infrared lamps in the drying tunnel adopts a horizontal arrangement parallel to the length direction of the drying tunnel.
  • the heating concept is to provide uniform irradiation in the heating zone of the drying tunnel and the workpiece is in a uniform temperature field, so in the drying tunnel
  • the upper, middle and lower horizontal arrangement of the medium-wave infrared lamp needs to be accurately calculated, and the arrangement requirements are relatively slim.
  • the medium-wave infrared tube is far away from the workpiece, and the space distance of the drying tunnel is large.
  • the medium-wave infrared irradiation drying tunnel of the traditional suspension conveyor chain structure needs to solve the requirement of uniform heating of the upper and lower parts of the workpiece, and it is required to accurately design the horizontal arrangement of the upper and lower horizontal lamps to ensure the same irradiation intensity of the upper and lower parts of the workpiece ( Including the superposition effect of irradiation).
  • This is the subject of cutting-edge scientific research on the current research and development of MDF artificial board infrared irradiation heating tunnel. .
  • the invention adopts the medium wave infrared tube vertical arrangement mode and the concept of "equal probability to obtain uniformity", which can realize the breakthrough of this technical difficulty.
  • the technical problem to be solved by the present invention is to provide an infrared pulse irradiation heating method and a device for curing the surface of a wooden board, which method can uniformly cure the coating film, and ensure that the surface of the wood board in the automatic coating production line is in the same heated state;
  • the invention also provides an apparatus for implementing such a method.
  • the infrared pulse irradiation heating method for solidifying the surface of the wood surface of the invention comprises the steps of melting and solidifying in sequence, and the solidification is to rapidly melt the powder coating into a film, and the wooden board is heated by the medium-wave infrared pulse irradiation area, and the heating is high temperature.
  • the medium wave infrared pulse irradiation area is composed of a continuous single medium wave pulse irradiation heating unit, and the medium wave infrared heating tube in the medium wave infrared pulse irradiation area adopts a vertical arrangement manner.
  • the working curve of the single medium wave infrared pulse irradiation heating unit is: heating ⁇ high temperature ⁇ cooling, that is, the surface temperature of the coating film is raised to 150 to 180 ° C, and after curing at this temperature, the temperature is then lowered to 120 to 140 ° C, Complete a medium wave infrared pulse irradiation heating.
  • the time of each stage is generally determined according to the running speed of the conveyor chain in the drying tunnel, and the conveying chain is a uniform linear motion, and the speed is generally 1 to 2 meters/minute.
  • the working curve at this time is as follows: In the first second, the surface of the coating film is heated to 150 ⁇ 180'C, and then cured at this temperature for 3 to 5 seconds, and then cooled. The temperature is 120 ⁇ 140 °C for 14 ⁇ 18 seconds, and the total time is 18 ⁇ 24 seconds to complete a medium-wave infrared pulse irradiation heating.
  • the flattening is to heat the wood board coated with the powder coating through the medium-wave infrared irradiation area to obtain a smooth and smooth coating film, and the medium-wave infrared heating tube in the medium-wave infrared irradiation area adopts a vertical dense arrangement manner. .
  • the device for realizing the above heating method adopts a drying tunnel form, which comprises a melting section and a solidification section, and the melting section is divided into a heating section and a cooling section, and a medium wave infrared irradiation heating device is symmetrically arranged on both sides of the heating section, the device is composed of multiple roots
  • the medium-wave infrared heating tube is composed of a vertical dense arrangement, which is fixedly connected with the outer irradiation distance adjuster; the medium-wave infrared pulse irradiation heating device is symmetrically arranged on both sides of the solidification section, and the device is arranged by interval uniformity
  • the pulse irradiation heater is composed of a single or double medium-wave infrared heating tube, which is composed of a vertical arrangement, and the medium-wave infrared pulse irradiation heating device is fixedly connected with the external irradiation distance adjuster.
  • the medium wave infrared radiation heating device is fixedly coupled to the outer corresponding radiation distance adjuster by a bracket provided on the heating device.
  • the medium wave infrared pulse irradiation heating device and the corresponding external irradiation distance adjuster are fixedly connected by a bracket provided on the heating device, and the fixing pin functions to be positioned.
  • One end of the adjusting rod in the irradiation distance adjuster is connected to the bracket, and the adjusting rod is uniformly arranged with a through hole, and the other end of the adjusting rod is set in the guiding tube with the through hole, and the guiding tube is fixedly connected with the drying tunnel wall,
  • the guide tube and the adjusting rod are connected by a fixing pin on the outside of the drying tunnel wall.
  • the medium wave infrared irradiation heating device is connected to the melting level voltage regulator.
  • the medium wave infrared pulse irradiation heating device is connected to the curing section voltage regulator.
  • a blowing pipe is arranged at the top of the inner cavity of the drying tunnel, and a suction pipe is arranged at the bottom of the inner cavity of the drying tunnel, and the blowing pipe and the suction pipe are respectively connected with the fan.
  • the minimum vertical distance of the medium-wave infrared heating tube to the one side of the heated wood board is 120 to 200 mm.
  • the construction and use of the irradiation distance adjuster used in either the medium wave infrared irradiation heating device or the medium wave infrared pulse irradiation heating device are the same, and an appropriate number of adjustment rods can be set according to the length of the bracket.
  • the surface coating film of the workpiece can be uniformly cured.
  • the radiation power density of the medium-wave infrared tube is distributed along the length of the tube.
  • the design of the medium-wave infrared pulse irradiation drying tunnel does not focus on the uniformity of the temperature in the length direction of the drying tunnel, but it is required to ensure that all the irradiation energy received by the surface of the workpiece is equal, so that uniform irradiation along the vertical direction of the drying tunnel is the key point. . Therefore, the medium-wave infrared tube must be placed vertically (perpendicular to the Z-axis direction at the bottom of the drying tunnel) on both sides of the inner wall of the supply channel, as shown in Figure 1.
  • the top-down convection circulating hot air is used to adjust the uniformity of the air temperature in the upper and lower areas, the blowing pipe and the suction pipe. Connected to the fan separately, the fan is connected to the motor. As shown in Figure 5. During operation, the blowing pipe is blown outward, and after the suction pipe is sucked in, the air sucked by the circulating fan by the circulating fan is blown out by the blowing pipe to form a circulation.
  • the irradiation heat of the workpiece in the Z-axis direction at each moment of the conveying operation is uniformly hooked, but the infrared radiation heat received at each point on the X-axis in the motion direction is pulse wave-type change, that is, the supply path along the road
  • the temperature distribution in the length direction is a very variable temperature field.
  • each workpiece is guaranteed to have the same probability of uneven irradiation during the operation of the drying tunnel, the heat-cured state of each part of the workpiece can be completely consistent. This is the concept of "equal probability of uneven irradiation to solve the uniform curing of the film". Therefore, the position and orientation of the medium-wave infrared tube in the flood channel and the stability of the operation of the production line conveyor chain are important factors to ensure uniform curing of the coating film of the workpiece.
  • the medium-wave infrared pulse irradiation heating unit technology can solve the high temperature thermal damage of the MDF board surface.
  • the single medium-wave infrared pulse irradiation heating unit is composed of three temperature processes of temperature rising ⁇ high temperature ⁇ cooling, as shown in Fig. 2, that is, the surface temperature of the coating film is raised to 150 ⁇ 180° C., after curing at this temperature, then cooling To 120 ⁇ 140 °C, complete a medium-wave infrared pulse irradiation heating.
  • This pulsed infrared radiation heating is an intermittent low-dose irradiation heating method which allows the surface of the board to have sufficient time to transfer heat to the depth of the board to avoid thermal damage to the surface of the board.
  • the heat of the infrared radiation is first absorbed by the coating film and then transferred to the substrate of the board through the surface of the board. Therefore, as long as the surface layer has sufficient time to dissipate heat deep, its temperature does not accumulate rapidly.
  • the infrared pulse irradiation heating unit technology greatly increases the proportion of energy distribution of the coating film, so that the coating film is maintained at a high temperature curing state, and the total curing time is correspondingly reduced.
  • the total energy received by the board is reduced, and the heat capacity of the board substrate is much greater than the coating covering the surface. Therefore, when the coating film has reached sufficient curing, the wood substrate can still be at a lower temperature.
  • the MDF board is at an instantaneous temperature of 160 ⁇ 180 °C, and there is no thermal damage on the surface. Therefore during the heating process, As long as the sum of the above-mentioned high-temperature curing times in all the pulse heating is 150 to 40 seconds, the coating film can be cured. Considering the safety margin, if the high temperature of the pulse drying tunnel is 160 °C, the corresponding curing time should be 150 seconds. It is 8 times shorter than the curing temperature at 130'C. Therefore, the cumulative effect of the pulse instantaneous high temperature action can effectively accelerate the curing speed of the coating film.
  • each medium-wave infrared pulse irradiates the heating unit area, and the coating film is subjected to short-time high-temperature intense irradiation and cooling (low temperature) alternate curing;
  • each medium-wave infrared pulse irradiation heating unit is that the surface temperature of the coating film is raised to 150 ⁇ 180 ° C, and after solidification at this temperature, the temperature is then lowered to 120 to 140 ⁇ to complete a medium-wave infrared pulse irradiation heating.
  • the MDF board solidifies the film by the accumulation and solidification effect of all the medium-wave infrared pulse irradiation unit heating in the curing section, and keeps the board in a safe low temperature state.
  • the heating method of the present invention utilizes a new concept of medium-wave infrared pulse irradiation heating unit, and adopts a method of pulse-type high-temperature curing of powder coating on MDF board surface by short-time pulse high temperature, avoiding wood board The surface is thermally damaged.
  • pulse high temperature curing not only the curing time of the coating film is greatly shortened, but also the heat absorption of the wood substrate is greatly reduced, and the MDF artificial wood board can be kept at a low temperature lower than 100 ° C when it is discharged.
  • the invention is based on the concept of non-uniform irradiation with equal probability, and adopts a vertical arrangement of medium-wave infrared tube method in the supply channel to obtain uniform uniform curing of the surface coating film of each workpiece running in the production line.
  • This pulsed wave-type uneven illumination heating tunnel is fundamentally different from the traditional concept of pursuing the uniformity of the temperature of the tunnel.
  • the equipment for realizing this technology can reduce the effective heating space and length, which not only ensures that the surface of the MDF board in the automatic coating production line is in the same state of heating, so that the coating film is uniformly cured, and the energy saving effect is very remarkable.
  • the method is particularly suitable as a heat treatment method for rapid melting and solidification of powder coatings for flat products such as MDF wood boards and plastic products.
  • Figure 1 is a vertical layout of a medium wave infrared tube in a drying tunnel.
  • Figure 2 is a time chart of the wave infrared radiation irradiation unit of the present invention.
  • FIG. 3 is a schematic view showing the structure of a wave infrared radiation irradiation tunnel in the present invention.
  • Figure 4 is a schematic view showing the structure of the irradiation distance adjuster of the present invention.
  • Fig. 5 is a schematic view showing the structure of the air duct in the drying tunnel of the present invention.
  • Medium wave infrared irradiation heating device MDF board; 8, melting level voltage regulator; 9, channel; 10, curing section voltage regulator; 11, adjustment rod; 12, guide tube; 13, fixed pin; 14, drying tunnel wall; 16, motor; 17, blowing pipe; 18, suction pipe;
  • A a single medium wave infrared pulse irradiation heating time unit
  • B melting section
  • C curing section
  • D cooling section in the melting section
  • E the irradiation area in the medium-wave infrared pulse irradiation heating unit
  • F the temperature-lowering section in the medium-wave infrared pulse irradiation heating unit
  • S! the distance between the melting level and the plate
  • S 2 the solidification section The distance from the plate.
  • the MDF board is taken as an example in the embodiment:
  • the infrared pulse irradiation heating method for solidifying the surface of a wooden board surface comprises sequentially melting and solidifying, wherein the MDF board 7 coated with the powder coating is heated by a medium wave infrared pulse irradiation area, and is heated. It is an alternating heating of high temperature and low temperature, the medium wave infrared pulse irradiation area is composed of a continuous single medium wave pulse irradiation heating unit, and the medium wave infrared heating tube 2 in the medium wave infrared pulse irradiation area is arranged vertically. The way.
  • the working curve of the single medium wave infrared pulse irradiation heating unit is: heating up ⁇ high temperature ⁇ cooling, the surface of the coating film is heated to 160 ° C, after curing at this temperature, then cooling to 120 ⁇ 140 ° C, complete A medium wave infrared pulse is irradiated and heated.
  • the time of each stage is generally determined according to the running speed of the conveyor chain in the drying tunnel, and the conveying chain is a uniform linear motion at a speed of 1.5 m/min.
  • the curve is as follows: In the first second, the surface of the coating is heated to 160 ° C, and then cured at this temperature for 4 seconds, then cooled to 130 ° C for 15 seconds, and the total time is 20 seconds to complete a medium-wave infrared pulse. Radiation heating.
  • the flattening is to heat the MDF board 7 coated with the powder coating through the medium-wave infrared irradiation area to obtain a smooth and smooth coating film, and the medium-wave infrared heating tube 2 in the medium-wave infrared irradiation area adopts a vertical dense row. The way of cloth.
  • Drying tunnel structure the drying tunnel for realizing the above heating method, including the melting flat section B and the solidifying section C, the melting flat section B is divided into a heating section and a cooling section D, and the medium-wave infrared irradiation heating device is symmetrically arranged on both sides of the heating section 6, the device consists of a plurality of medium-wave infrared heating tubes 2 in a vertical dense arrangement, which is fixedly connected with the corresponding irradiation distance adjuster on the outside; symmetrical setting of the medium-wave infrared pulse irradiation heating on both sides of the curing section C
  • the device 4 is composed of a pulse irradiation heater 5 arranged at intervals, and the pulse irradiation heater 5 is composed of a single or double medium-wave infrared heating tube 2 in a vertical arrangement, and the medium-wave infrared pulse The irradiation heating device 4 is fixedly connected to the corresponding irradiation distance adjuster on the outside.
  • the medium wave infrared irradiation heating device 6 and the corresponding external irradiation distance adjuster are disposed on the heating device
  • the bracket 3 is fixedly connected.
  • the medium-wave infrared pulse irradiation heating device 4 is fixedly coupled to the outer side of the corresponding irradiation distance adjuster via a bracket 3 provided on the heating device.
  • One end of the adjusting rod 11 in the irradiation distance adjuster is connected to the bracket 3, and the adjusting rod 11 is uniformly provided with a through hole, and the other end of the adjusting rod 11 is set in the guiding tube 12 with the through hole, and the guiding tube 12 It is fixedly connected to the drying tunnel wall 14, and the guiding tube 12 and the adjusting rod 11 are connected by the outer fixing pin 13 of the drying tunnel wall 14.
  • the function of the fixing pin 13 is positioning.
  • the medium wave infrared irradiation heating device 6 is connected to the leveling stage voltage regulator 8.
  • the medium wave infrared pulse irradiation heating device 4 is connected to the solidification stage voltage regulator 10.
  • the medium-wave infrared heating tube 2 has a minimum vertical distance of 120 mm on one side of the heated MDF board 7.
  • the medium-wave infrared radiation heating device 6 of the melting section is composed of 12 medium-wave infrared heating tubes 2 which are arranged in a vertical dense arrangement. It is fixedly connected to the irradiation distance adjuster.
  • the powder coating on the surface of the MDF board 7 entering the melted section was quickly raised from room temperature to 160 ⁇ and then melted and leveled.
  • the vertical distance between one side of the MDF board 7 and the medium wave infrared heating tube 2 is 100 mm.
  • Area D is the cooling section after the film is flattened, and the powder coating film is quickly cooled to 130 °C.
  • Medium-wave infrared pulse irradiation heater 5 of curing section C consists of two medium-wave infrared heating tubes 2.
  • the coating film of the MDF artificial board passes through the irradiation area E, that is, the temperature rising and high temperature irradiation heating process in the heating unit of the medium wave infrared pulse irradiation is completed, the period of time is 5 seconds, and the medium wave infrared pulse irradiation heating device 4 Fixed connection to the irradiation distance adjuster.
  • Area F is the cooling section in the infrared pulse irradiation heating unit. In this stage, the coating film is still solidified at 130 °C. Only the curing speed gradually decreased to a curing speed level of 130 ° C, which was 15 seconds.
  • the adjustment of the irradiation distance S is done by the irradiation distance adjuster. As shown in Fig. 4, the movement of the adjustment lever 11 in the guide tube 12 changes the magnitude of the irradiation distance S.
  • the adjusting rod 11 is uniformly distributed with a through hole, and the guiding tube 12 has a through hole on the pipe section outside the drying tunnel wall 14, and the fixing pin 13 is passed through the guiding tube 12 and the through hole of the adjusting rod 11, so that the irradiation distance can be adjusted.
  • the device is locked in the desired position.
  • the middle wave infrared tube 2 with the length direction of the drying tunnel 1 is arranged at the top and the bottom of the inner cavity as the top and bottom lamps of the solid wood board and the bottom side, and the corresponding voltage regulator is arranged.
  • the drying channel 1 adopts a top-down convection circulating hot air to adjust the uniformity of the air temperature in the upper and lower areas.
  • the top of the inner cavity of the drying tunnel 1 is provided with a blowing pipe 17, and the bottom of the inner cavity of the drying tunnel is provided with an air suction pipe 18, a blowing pipe 17,
  • the suction duct 18 is connected to the circulation fan 15, and the motor 16 is disposed on the circulation fan 15.
  • Figure 5 As shown in Figure 5.
  • the blow pipe 17 is blown outward, and after the suction pipe 18 is sucked in, the wind sucked by the circulation fan 15 by the circulation fan 15 is blown out by the blow pipe 17 to form a circulation.
  • the number of infrared irradiation pulses m to be subjected to can be obtained by the following formula.
  • the two sides of the drying tunnel should be equipped with 22 pulse irradiation heaters.
  • the distance traveled by the workpiece through a pulse irradiation heating unit is
  • the length of the curing section of the drying tunnel can be shorter than 11 meters. If it takes more than 20 minutes to cure the same powder by circulating hot air, the length of the drying tunnel should be more than 30 meters.
  • the drying tunnel of the present invention can reduce the effective heating space and length, and not only ensures that the surface of the MDF artificial wood board in the automatic coating production line is in the same heated state, so that the coating film is uniformly cured, and the energy saving effect is very remarkable.
  • the production test line of the medium wave infrared pulse irradiation drying tunnel developed according to the present invention has confirmed the feasibility and practicability of the novel heating technology through painting production practice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Manufacturing & Machinery (AREA)
  • Forests & Forestry (AREA)

Abstract

一种木板表面粉末固化的红外脉冲辐照加热方法,其包括依次进行的熔平和固化,该固化是将粉末涂料快速熔平成膜的木板通过中波红外脉冲辐照区域进行加热,加热是高温和低温的交替加热,该中波红外脉冲辐照区域由连续的单个中波红外脉冲辐照加热单元组成,中波红外脉冲辐照区域中的中波红外加热管采用立式排布方式。还提供了一种实现该加热方法的设备。该方法及设备避免了木板产生热损伤,使涂膜固化均匀,提高了节能效果。

Description

说 明 书 木板表面粉末固化的红外脉冲辐照加热方法及其设备 技术领域
本发明涉及一种木板表面粉末固化的红外脉冲辐照加热方法及其设备, 属于红外技术应 用领域。
背景技术
目前, 市场上的 MDF木扳、 HDF木板、 LDF木板、 刨花板等人造木板在表面涂装粉末 涂料后, 可大幅度降低木板内部甲醛有害物质的释放浓度。 因为粉末涂料是 100%固体, 其 均匀包覆在人造木板表面。 因而人造木板成为人们喜爱的绿色环保产品。 例如刨花板其原板 的甲醛释放量为 2.8mg/L, 静电喷涂粉末涂料后, 甲醛释放量降低至 0.1mg/L。
由于木材不能承受高温作用, 国外开发了 UV光固化粉末静电涂装技术, 但因设备昂贵、 涂装成本高、 工艺控制难度高等原因, 推广应用受到限制。
近期中波红外辐照技术在 MDF板粉末静电涂装中取得了成功应用。 采用中波红外加热 技术的优点是可以把提供给 MDF人造木板的热量进行合理分配, 尽量提高木板表面涂膜获 取热量的比例和加快涂膜吸热速度。 即在最短时间内把热量传递给涂膜, 使它快速固化, 缩 短固化时间, 木板基体则因受热时间缩短而大大减少热量的吸收, 使其在走出烘道时的温度 低于 100°C。这既保证了涂膜固化质量,还可大幅度降低能耗(与传统的循环热风烘道相比), 且缩短了烘道的长度。
但是在中波红外辐照技术中, 为解决在有效加热区域内使工件各部位受热均匀的问题, 设备中的中波红外管与工件仍然必须保持足够远的距离, 因而设备中加热区域的内腔空间比 较大。 目前在中波红外辐照技术上, 比较有代表意义的是著名的德国贺利士公司制造的中波 红外辐照加热烘道。 烘道中红外灯管的排布, 采用与烘道长度方向平行的卧式排布方式, 其 加热理念是力求烘道加热区内提供均匀辐照和工件处于一个均匀的温度场内, 所以烘道内中 波红外灯管上、 中、 下卧式的排布需要精确计算, 排布要求较髙, 中波红外管与工件距离较 远, 烘道内腔空间距离较大。
2011年 1月 21 日, 广州电器科学研究院在广东创新方法网上发表的 "提高 MDF板材粉 末涂料喷涂的均匀度"一文中指出: 粉末涂料应用于木板涂装还存在一些困难。 目前关键设备 是固化炉, 最大的问题是固化不均匀, 特别是侧面固化不充分, 表面有些地方也有固化不完 全。 解决这个问题在国内尚属于前沿技术。 该院 ΪΗ通过创新方法 MPV工具分析, 选择红外
确 认 本 管对板材固化的均匀性这个方面展开研究。应用创新方法的预先作用原理、周期性作用原理、 物场模型等, 提出 5个解决方向, 并认为采用"灯管或反射板周期性运动"为最佳的候选方案。 通过验证测试尚未达到预期效果, 还需进行后续研究工作。 这种动态固化烘道从设计、 制造 和使用安全可靠的角度来考虑, 都存在诸多技术难点, 因此目前还不能成为 MDF板理想的 实用型固化设备。
从现有技术中可以看出, 釆用连续近距离辐照加热方式对 MDF人造板来说是不可行的。 因为人造木板的导热性远低于金属, 其表面接受的热量只能缓慢地向板材深处传递。 所以人 造木板表面不能长时间承受高温, 否则其表层就会受到热损伤或分解释放挥发性气体破坏涂 膜。 因此当采用常规的中波红外辐照烘道固化 MDF木板表面的涂膜时, 就需要较大的加热 区域空间, 这无疑会降低其节能效果。 这一难点正是本发明 "中波红外脉冲辐照加热技术"要 解决的关键技术之一。
传统的悬挂输送链结构的中波红外辐照烘道要解决工件上下部位受热一致的要求, 就要 求精确设计上下的卧式灯管合理排布, 以保证工件上下部位受到相同的辐照强度 (包括辐照 的叠加效应)。要实现这一目标,正如广州电科院发表的"提高 MDF板粉末涂料喷涂的均匀度" 一文中指出的, 这是当前 MDF人造板红外辐照加热烘道需要研究突破的前沿科学研究的课 题。 本发明采用中波红外管立式排布方式以及运用"等概率的不均匀获得均匀"的理念, 可以 实现这个技术难点的突破。
发明内容
本发明所要解决的技术问题是提供一种木板表面粉末固化的红外脉冲辐照加热方法及其 设备, 该方法使涂膜获得均匀固化, 保证自动涂装生产线中的木板表面处于相同的受热状态; 本发明同时提供了实现这种方法的设备。
本发明所述的木板表面粉末固化的红外脉冲辐照加热方法,包括依次进行的熔平和固化, 固化是将粉末涂料快速熔平成膜的木板通过中波红外脉冲辐照区域进行加热, 加热是高温和 低温的交替加热, 所述中波红外脉冲辐照区域由连续的单个中波脉冲辐照加热单元组成, 中 波红外脉冲辐照区域中的中波红外加热管采用立式排布的方式。
所述单个中波红外脉冲辐照加热单元的工作曲线是: 升温→高温→降温, 即涂膜表面 升温至 150〜180°C, 在此温度下固化后, 接着降温至 120〜140°C, 完成一次中波红外脉冲辐 照加热。
所述单个中波红外脉冲辐照加热单元的工作曲线中, 各个阶段的时问一般根据烘道中输 送链的运行速度来确定, 输送链为匀速直线运动, 速度一般为 1~2米 /分钟, 这时候的工作曲 线如下: 在第 1秒钟涂膜表面升温至 150〜180'C, 再在此温度下固化 3〜5秒钟, 接着降温 至 120〜140°C历时 14^18秒钟, 总时间为 18~24秒钟完成一次中波红外脉冲辐照加热。 所述熔平是将涂有粉末涂料的木板通过中波红外辐照区域进行加热, 获得平整光滑的涂 膜, 中波红外辐照区域中的中波红外加热管采用立式密集排布的方式。
实现上述加热方法的设备, 采用烘道形式, 包括熔平段和固化段, 熔平段分为加热段和 冷却段, 加热段两侧对称设置中波红外辐照加热装置, 该装置由多根中波红外加热管采用立 式密集排布方式组成, 其与外侧的辐照距离调节器固定连接; 固化段的两侧对称设置中波红 外脉冲辐照加热装置, 该装置是由间隔均布设置的脉冲辐照加热器组成, 脉冲辐照加热器由 单根或双根中波红外加热管采用立式排布方式组成, 中波红外脉冲辐照加热装置与外侧辐照 距离调节器固定连接。
所述中波红外辐照加热装置与外侧的相应的辐照距离调节器通过设置在加热装置上的支 架固定连接。
所述中波红外脉冲辐照加热装置与外侧的相应的辐照距离调节器通过设置在加热装置上 的支架固定连接, 固定销的作用是定位。
所述辐照距离调节器中的调节杆的一端与支架相连, 调节杆上均布设置通孔, 调节杆的 另一端套装在带有通孔的导向管内, 导向管与烘道壁固定连接, 导向管和调节杆由烘道壁外 侧固定销连接。
所述中波红外辐照加热装置与熔平段电压调节器相连。
所述中波红外脉冲辐照加热装置与固化段电压调节器相连。
所述烘道内腔顶部设置吹风管, 烘道内腔底部设置吸风管, 吹风管、 吸风管与风机分别 相连。
所述中波红外加热管到被加热木板的单侧最小垂直距离为 120〜200mm。
无论是中波红外辐照加热装置还是中波红外脉冲辐照加热装置所用的辐照距离调节器的 构造和使用方法都是相同的, 可以根据支架的长度设置合适数量的调节杆。
本发明的技术特点是-
1、运用等概率的不均匀辐照和中波红外管采用立式排布方式, 使工件表面涂膜获得均匀 固化。
中波红外管的辐照功率密度是沿着灯管长度方向均勾分布的。 中波红外脉冲辐照烘道的 设计不着眼于烘道长度方向温度的均匀性, 而要求保证工件表面接受的所有辐照能量均等, 因此沿烘道的垂直方向得到均匀的辐照是关键所在。 所以中波红外管必须采取立式 (垂直于 烘道底部的 Z轴方向) 排布于供道内壁的两侧, 如图 1所示。
烘道内釆用自上向下的对流循环热风调节上下区域空气温度的均匀性, 吹风管、 吸风管 与风机分别相连, 风机与电机相连。 如图 5所示。 工作时, 吹风管向外吹风, 吸风管吸入后, 由循环风机将吸风管吸入的风由吹风管吹出, 形成一个循环。
工件在输送运行中每个瞬间接受 Z轴方向的辐照热量是均勾的,但在运动方向 X轴上各 点接受到的红外辐照热量是脉冲波浪式变化的, 也就是说供道沿长度方向的温度分布是一个 变化很大的温度场。 但只要保证每个工件在烘道运行过程中, 接受的这种不均匀辐照的概率 相等, 就能使每个工件各部位的受热固化状态完全一致了。这就是 "等概率的不均匀辐照解决 涂膜获得均匀固化"的理念。所以, 中波红外管在洪道中布设的位置和方向以及生产线输送链 运行的稳定性是保证工件涂膜均匀固化的重要因素。
2、 采用中波红外脉冲辐照加热单元技术, 可以解决 MDF木板表层不受高温热损伤。 单 个中波红外脉冲辐照加热单元是由升温→高温→降温三个温度过程组成的, 如图 2所示, 即涂膜表面升温至 150〜180°C, 在此温度下固化后, 接着降温至 120〜140°C, 完成一次中波 红外脉冲辐照加热。
这种脉冲式红外辐照加热是一种断续式小剂量的辐照加热方法, 它使木板表层有充裕时 间将热量传递给木板深处, 避免了木板表层产生热损伤。 红外辐照的热量首先由涂膜吸热升 温, 再通过木板表层传递给木板基体。 因此, 只要表层有充分向深处散热的时间, 其温度就 不会快速积累升高。
这种红外脉冲辐照加热单元技术使涂膜获得能量分配的比例大大提高, 使涂膜处于高温 固化状态得到保持, 而总的固化时间则相应减少。 木板接受的辐照总能量减少, 木板基材的 热容量又远大于覆盖其表面的涂膜。 所以当涂膜已达到充分固化时, 木板基材仍可处于较低 的温度状态。
3、 藉助脉冲高温固化的积累效应, 缩短涂膜固化时间。
阿累尼乌斯定律中, 化学反应速度与温度呈指数曲线关系, 可近似用 10°C规律描述。 即 固化温度每增高 10°C, 其化学反应速度加快一倍, 也就是完成固化所需的时间缩短一半。 以 固化条件为 130°C/20min的粉末涂料为例, 其固化温度与固化时间的相应关系如表 1所示。
表 1 固化温度与固化时间的相应关系
Figure imgf000006_0001
实践得知 MDF木板处于 160~180°C瞬时髙温, 表面不会出现热损伤。 因而加热过程中, 只要全部脉冲加热中上述的高温固化时间的总和达到 150~40秒钟, 涂膜就能完成固化。 从 安全裕度考虑,设计脉冲烘道选用的高温为 160°C,则相应的固化时间应为 150秒钟。同 130'C 温度的固化吋间相比要缩短 8倍。 所以脉冲瞬间高温作用的累积效果, 可有效加快涂膜的固 化速度。
本发明的操作步骤如下:
( 1 )将涂有粉末涂料的 MDF木板通过按中波脉冲辐照加热单元要求且中波红外管立式 排布的脉冲辐照烘道;
(2) 通过熔平段时, 粉末涂料快速熔融流平, 随即降温至 120~140°C ;
(3 )通过固化段时, 每个中波红外脉冲辐照加热单元区域, 对涂膜进行短时高温强辐照 和降温 (低温) 的交替固化;
每个中波红外脉冲辐照加热单元的工作曲线是涂膜表面升温至 150〜180°C, 在此温度下 固化后, 接着降温至 120〜140Ό, 完成一次中波红外脉冲辐照加热。
MDF木板通过固化段全部的中波红外脉冲辐照单元加热的积累固化效果,快速完成涂膜 固化, 并使木板保持在安全的低温状态。
本发明的有益效果如下- 本发明所述的加热方法运用中波红外脉冲辐照加热单元的新概念, 釆取短时脉冲高温对 MDF木板表面粉末涂料进行脉冲式高温固化的方法, 避免了木板表面产生热损伤。藉助脉冲 高温固化的累积效应, 不仅大大缩短涂膜的固化时间, 同时使木材基体的吸热量大幅度减少, 保证 MDF人造木板出炉时能处于低于 100°C的低温状态。
本发明依据等概率的不均匀辐照理念, 在供道中采取立式排布中波红外管方式, 使生产 线中运行的每个工件表面涂膜获得等同的均匀固化。这种脉冲波浪式不均匀的福照加热烘道, 与传统的追求烘道温度均匀同一性的理念有着根本区别。
实现该技术的设备可以缩小有效的加热空间和长度, 不仅保证了自动涂装生产线中的 MDF木板表面处于相同的受热状态, 使涂膜获得均匀固化, 而且节能效果非常显著。 该方法 特别适合作为 MDF木板、 塑料制品等平板产品进行粉末涂料快速熔平固化的热处理方法。 附图说明
图 1是中波红外管在烘道内的立式排布图。
图 2是本发明中波红外脉冲辐照单元的时间曲线图。
图 3是本发明中波红外脉冲辐照烘道结构示意图。
图 4是本发明辐照距离调节器结构示意图。
图 5是本发明烘道内风管排布结构示意图。 图中: 1、 烘道; 2、 中波红外加热管: 3、 支架; 4、 中波红外脉冲辐照加热装置; 5、 脉 冲辐照加热器; 6、 中波红外辐照加热装置; 7、 MDF木板; 8、 熔平段电压调节器; 9、 通道; 10、 固化段电压调节器; 11、 调节杆; 12、 导向管; 13、 固定销; 14、 烘道壁; 15、 循环风 机; 16、 电机; 17、 吹风管; 18、 吸风管; A、 单个中波红外脉冲辐照加热时间单元; B、 熔 平段; C、 固化段; D、 熔平段中的冷却段; E、 中波红外脉冲辐照加热单元中的的辐照区域; F、 中波红外脉冲辐照加热单元中的降温段; S!、 熔平段与板材之间的距离; S2、 固化段与板 材之间的距离。
具体实施方式
以下结合实施例对本发明做进一步描述。
实施例 1
如图 1~5所示, 实施例中以 MDF木板为例:
1、本发明所述的木板表面粉末固化的红外脉冲辐照加热方法, 包括依次进行的熔平和固 化, 固化是将涂有粉末涂料的 MDF木板 7通过中波红外脉冲辐照区域进行加热, 加热是高 温和低温的交替加热,所述中波红外脉冲辐照区域由连续的单个中波脉冲辐照加热单元组成, 中波红外脉冲辐照区域中的中波红外加热管 2采用立式排布的方式。
所述单个中波红外脉冲辐照加热单元的工作曲线是: 升温一►高温一►降温, 涂膜表面升 温至 160°C, 在此温度下固化后, 接着降温至 120〜140°C, 完成一次中波红外脉冲辐照加热。
所述单个中波红外脉冲辐照加热单元的工作曲线中, 各个阶段的时间一般根据烘道中输 送链的运行速度来确定, 输送链为匀速直线运动, 速度为 1.5米 /分钟, 这时候的工作曲线如 下: 在第 1秒钟涂膜表面升温至 160'C, 再在此温度下固化 4秒钟, 接着降温至 130°C历时 15秒钟, 总时间为 20秒钟完成一次中波红外脉冲辐照加热。
所述熔平是将涂有粉末涂料的 MDF木板 7通过中波红外辐照区域进行加热, 获得平整 光滑的涂膜, 中波红外辐照区域中的中波红外加热管 2采用立式密集排布的方式。
2、 烘道结构- 实现上述加热方法的烘道,包括熔平段 B和固化段 C,熔平段 B分为加热段和冷却段 D, 加热段两侧对称设置中波红外辐照加热装置 6, 该装置由多根中波红外加热管 2采用立式密 集排布方式组成, 其与外侧相应的辐照距离调节器固定连接; 固化段 C的两侧对称设置中波 红外脉冲辐照加热装置 4, 该装置是由间隔均布设置的脉冲辐照加热器 5组成, 脉沖辐照加 热器 5由单根或双根中波红外加热管 2采用立式排布方式组成, 中波红外脉冲辐照加热装置 4与外侧相应的辐照距离调节器固定连接。
所述中波红外辐照加热装置 6与外侧的相应的辐照距离调节器通过设置在加热装置上的 支架 3固定连接。
所述中波红外脉冲辐照加热装置 4与外侧的相应的辐照距离调节器通过设置在加热装置 上的支架 3固定连接。
所述辐照距离调节器中的调节杆 11的一端与支架 3相连, 调节杆 11上均布设置通孔, 调节杆 11的另一端套装在带有通孔的导向管 12内, 导向管 12与烘道壁 14固定连接, 导向 管 12和调节杆 11由烘道壁 14外侧固定销 13连接。 固定销 13的作用是定位。
所述中波红外辐照加热装置 6与熔平段电压调节器 8相连。
所述中波红外脉冲辐照加热装置 4与固化段电压调节器 10相连。
所述中波红外加热管 2到被加热 MDF木板 7的单侧最小垂直距离为 120mm。
具体结构和操作如下:
( 1 ) 熔平段的中波红外辐照加热装置 6是由 12根中波红外加热管 2采用立式密集排布 组成。 它与辐照距离调节器固定连接。 进入熔平段的 MDF木板 7表面的粉末涂膜快速由室 温升至 160Ό,并随之熔化流平。 MDF木板 7的一侧与中波红外加热管 2的垂直距离为 100mm。
(2) 区域 D为涂膜熔平后的冷却段, 粉末涂膜很快冷却至 130°C。
(3 ) 固化段 C的中波红外脉冲辐照加热器 5由双根中波红外加热管 2组成。 MDF人造 板的涂膜通过辐照区域 E, 即完成一次中波红外脉冲辐照加热单元中的升温和高温辐照加热 过程, 该段时间为 5秒钟, 中波红外脉冲辐照加热装置 4与辐照距离调节器固定连接。
(4) 区域 F为红外脉冲辐照加热单元中的降温段, 这阶段中涂膜仍处在 130Ό温度下继 续进行固化。 只是固化速度逐渐下降至 130°C温度下的固化速度水平, 该段时间为 15秒钟。
(5 ) 辐照距离 S的调节是通过辐照距离调节器来完成的。 如图 4所示, 调节杆 11在导 向管 12内移动可改变辐照距离 S的大小。 调节杆 11上均布通孔, 导向管 12在烘道壁 14外 侧的管段上有一个通孔, 将固定销 13穿过导向管 12和调节杆 11的通孔, 就可把辐照距离调 节器锁定于所需的位置。
(6)烘道 1内腔顶部与底部均设置与烘道 1长度方向一致的中波红外管 2, 作为固化木 板上边和底边的顶灯和底灯, 并配置相应的电压调节器。
(7)烘道 1内采用自上向下的对流循环热风调节上下区域空气温度的均匀性, 烘道 1内 腔顶部设置吹风管 17, 烘道内腔底部设置吸风管 18, 吹风管 17、 吸风管 18与循环风机 15 分别相连, 循环风机 15上设置电机 16。 如图 5所示。 工作时, 吹风管 17向外吹风, 吸风管 18吸入后, 由循环风机 15将吸风管 18吸入的风由吹风管 17吹出, 形成一个循环。
3、烘道固化段 C两侧配置脉冲辐照加热器 5数量 m的计算, 以固化条件为 130eC/20min 的粉末涂料为例: 由图 2知涂膜在烘道固化段中每通过一个脉冲辐照加热单元, 就经受 1次时间为 5秒的 高温固化和 15秒 130Ό的较低温度的固化。 由表一知涂膜在 Tx温度下固化 1 秒钟, 与在 T130'C温度下固化 η 秒钟的固化效果是等同的。 所以一个脉冲辐照加热的固化效果与在 T130°C温度下经历 (5n+15) 秒钟固化产生的固化效果是等同的。 从安全裕度考虑, 烘道设 计取 Tx=160'C, 由表 1可知 n=8。
为使涂膜达到相当于 13(TC下固化 1200秒的等同固化程度, 需要承受的红外辐照脉冲次 数 m可由下式求取。
(5n+15 ) m=1200, m=21.8次
取整数, 则烘道中两侧应各自配置 22个脉冲辐照加热器。
4、 烘道固化段 C长度的确定
烘道输送链运行速度 V=1.5米 /分 =0.025米 /秒
工件经过一次脉冲辐照加热单元所运行的距离为
E+F=(5+15) V-0.5米
则烘道固化段总长 L=22 (E+F) =11米
由于降温段的最低温度为 130'C, 所以涂膜实际固化速度还会快一些。 因此烘道固化段 的长度可短于 11米。 如果采用循环热风传统烘道固化同一种粉末所需要时间大于 20分钟, 其烘道的长度需大于 30米。
由以上可知, 本发明的烘道可以缩小有效的加热空间和长度, 不仅保证了自动涂装生产 线中的 MDF人造木板表面处于相同的受热状态, 使涂膜获得均匀固化, 而且节能效果非常 显著。
按本发明研制的中波红外脉冲辐照烘道的生产型试验线, 通过涂装生产实践已经证实该 项新颖加热技术的可行性和实用性。 已涂装成功尺寸为: 长 X宽 X厚 =1400x800x30mm的医疗 设备用的刨花板工作台面以及儿童桌椅等多种规格的家具。 并己小批量涂装生产餐厅用的长 桌和衣帽柜等。

Claims

权 利 要 求 书
1、 一种木板表面粉末固化的红外脉冲辐照加热方法, 包括依次进行的熔平和固化, 其特 征在于: 固化是将粉末涂料快速熔平成膜的木板通过中波红外脉冲辐照区域进行加热, 加热 是高温和低温的交替加热, 所述中波红外脉冲辐照区域由连续的单个中波红外脉冲辐照加热 单元组成, 中波红外脉冲辐照区域中的中波红外加热管采用立式排布方式。
2、根据权利要求 1所述的加热方法, 其特征在于所述单个中波红外脉冲辐照加热单元的 工作曲线是: 升温→高温→降温, 即涂膜表面升温至 150〜180°C, 在此温度下固化后, 接 着降温至 120〜140°C, 完成一次中波红外脉冲辐照加热。
3、根据权利要求 1所述的加热方法, 其特征在于所述熔平是将涂有粉末涂料的木板通过 中波红外辐照区域进行加热,中波红外辐照区域中的中波红外加热管采用立式密集排布方式。
4、 一种实现权利要求 1所述加热方法的设备, 包括熔平段和固化段, 其特征在于: 熔平 段分为加热段和冷却段, 加热段两侧对称设置中波红外辐照加热装置, 该装置由中波红外加 热管采用立式密集排布方式组成, 中波红外辐照加热装置与外侧的相应的辐照距离调节器固 定连接; 固化段的两侧对称设置中波红外脉冲辐照加热装置, 该装置是由间隔均布设置的脉 冲辐照加热器组成, 脉冲辐照加热器由单根或双根中波红外加热管采用立式排布方式组成, 中波红外脉冲辐照加热装置与外侧的相应的辐照距离调节器固定连接。
5、根据权利要求 4所述实现加热方法的设备, 其特征在于所述中波红外辐照加热装置与 外侧的相应的辐照距离调节器通过设置在加热装置上的支架固定连接。
6、根据权利要求 4所述实现加热方法的设备, 其特征在于所述中波红外脉冲辐照加热装 置与外侧的相应的辐照距离调节器通过设置在加热装置上的支架固定连接。
7、根据权利要求 5或 6所述实现加热方法的设备, 其特征在于所述辐照距离调节器中的 调节杆的一端与支架相连, 调节杆上均布设置通孔, 调节杆的另一端套装在带有通孔的导向 管内, 导向管与烘道壁固定连接, 导向管和调节杆由烘道壁外侧固定销连接。
8、根据权利要求 4所述实现加热方法的设备, 其特征在于所述中波红外辐照加热装置与 熔平段电压调节器相连, 所述中波红外脉冲辐照加热装置与固化段电压调节器相连。
9、根据权利要求 4所述实现加热方法的设备,其特征在于所述烘道内腔顶部设置吹风管, 烘道内腔底部设置吸风管, 吹风管、 吸风管与风机分别相连。
10、 根据权利要求 4所述实现加热方法的设备, 其特征在于所述中波红外加热管到被加 热木板的单边最小垂直距离为 120~200mm。
PCT/CN2013/000238 2012-03-23 2013-03-15 木板表面粉末固化的红外脉冲辐照加热方法及其设备 WO2013139167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/387,480 US20150182994A1 (en) 2012-03-23 2013-03-15 Infrared pulse radiation heating method for curing board surface powder and device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210078997.3 2012-03-23
CN201210078997.3A CN102580902B (zh) 2012-03-23 2012-03-23 木板表面粉末固化的红外脉冲辐照加热方法及其设备

Publications (1)

Publication Number Publication Date
WO2013139167A1 true WO2013139167A1 (zh) 2013-09-26

Family

ID=46470449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000238 WO2013139167A1 (zh) 2012-03-23 2013-03-15 木板表面粉末固化的红外脉冲辐照加热方法及其设备

Country Status (3)

Country Link
US (1) US20150182994A1 (zh)
CN (1) CN102580902B (zh)
WO (1) WO2013139167A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580902B (zh) * 2012-03-23 2014-01-15 山东朗法博粉末涂装科技有限公司 木板表面粉末固化的红外脉冲辐照加热方法及其设备
CN103341583B (zh) * 2013-07-01 2015-09-16 江阴市恒业锻造有限公司 超级双相不锈钢大型管板锻件的锻造方法
CN104385642A (zh) * 2014-09-19 2015-03-04 合肥乐凯科技产业有限公司 一种聚酯薄膜的制备方法
CN104260181A (zh) * 2014-09-28 2015-01-07 殷爱华 一种板材及其制造方法
CN105881032B (zh) * 2016-04-01 2018-10-09 窦心涛 一种钢板彩涂生产方法及生产装置
CN105961473B (zh) * 2016-05-05 2018-06-29 中国农业科学院农产品加工研究所 用于面条干燥的远红外线装置
CN107670860A (zh) * 2016-08-01 2018-02-09 苏州考斯丹五金制品有限公司 Mdf板材表面粉末静电喷涂自动化生产线
CN107670938A (zh) * 2016-08-01 2018-02-09 苏州考斯丹五金制品有限公司 板材表面粉末固化的紫外加红外辐照加热设备
CN106140579A (zh) * 2016-09-21 2016-11-23 东莞市金森工业机械有限公司 一种高效节能的红外线固化装置
CN106225466A (zh) * 2016-09-27 2016-12-14 东莞市联洲知识产权运营管理有限公司 一种小型薄膜烘箱
CN106322955A (zh) * 2016-09-27 2017-01-11 东莞市联洲知识产权运营管理有限公司 一种小型薄膜烘箱用加热棒调节装置
US10247480B2 (en) * 2017-04-28 2019-04-02 General Electric Company High temperature furnace
CN108787388B (zh) * 2017-05-12 2023-10-10 佛山宜可居新材料有限公司 一种使用粉末涂料在人造板材表面形成镜面高光装饰效果的生产工艺及生产设备
CN108787378B (zh) * 2017-05-12 2023-07-28 佛山宜可居新材料有限公司 一种用于人造板材表面的粉末涂料固化的设备及方法
CN111940255A (zh) * 2019-05-15 2020-11-17 宝山钢铁股份有限公司 一种带钢涂层烘干装置及方法
CN110118486B (zh) * 2019-05-28 2024-04-02 山东威奥智能装备有限公司 薄板加热用多功能及小型化红外复合箱式加热炉调控方法
CN110815429A (zh) * 2019-11-14 2020-02-21 东北林业大学 一种红外辐射加热处理的板材复合方法
CN113909074A (zh) * 2021-09-08 2022-01-11 成洁 一种家具制造板材表面烤漆制作装置
CN116673196A (zh) * 2022-12-08 2023-09-01 天津七所高科技有限公司 一种红外热风混合节能型固化炉及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533858A1 (de) * 1995-09-13 1997-07-03 Ihd Inst Fuer Holztechnologie Verfahren zum elektrostatischen Beschichten von Holz und Holzwerkstoffen
WO2000072980A2 (en) * 1999-05-26 2000-12-07 Ppg Industries Ohio, Inc. Processes for drying topcoats and multicomponent composite coatings on metal and polymeric substrates
WO2004018114A2 (en) * 2002-08-23 2004-03-04 E.I. Du Pont De Nemours And Company Process for curing powder coatings
CN1950157A (zh) * 2004-05-12 2007-04-18 纳幕尔杜邦公司 用近红外辐射固化基材的脉冲加热方法
CN201067739Y (zh) * 2007-06-28 2008-06-04 东莞丰裕电机有限公司 中纤板涂装生产线
CN201969673U (zh) * 2010-12-10 2011-09-14 钱志斌 一种快速辐射粉体固化炉
CN102580902A (zh) * 2012-03-23 2012-07-18 山东朗法博粉末涂料有限公司 木板表面粉末固化的红外脉冲辐照加热方法及其设备
CN202621422U (zh) * 2012-03-23 2012-12-26 山东朗法博粉末涂装科技有限公司 木板表面粉末固化的红外脉冲辐照加热设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8021284V0 (it) * 1980-03-25 1980-03-25 Argon Service Ltd Forno di asciugatura a raggi infrarossi di tipo perfezionato.
CN2038815U (zh) * 1988-11-19 1989-06-07 巫清舜 烤漆炉专用光板装置
WO2007059294A2 (en) * 2005-11-16 2007-05-24 Delle Vedove Usa, Inc. Process for pulsed uv curing of coatings on wood
CN201848382U (zh) * 2010-09-15 2011-06-01 东莞丰裕电机有限公司 红外线快速固化炉
CN102032759A (zh) * 2010-12-01 2011-04-27 东莞市康徕机械设备有限公司 超短波红外光电烘烤炉
CN201969675U (zh) * 2011-01-17 2011-09-14 新乡李烨药用包装有限公司 采用碳纤维加热烘箱的涂布设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533858A1 (de) * 1995-09-13 1997-07-03 Ihd Inst Fuer Holztechnologie Verfahren zum elektrostatischen Beschichten von Holz und Holzwerkstoffen
WO2000072980A2 (en) * 1999-05-26 2000-12-07 Ppg Industries Ohio, Inc. Processes for drying topcoats and multicomponent composite coatings on metal and polymeric substrates
WO2004018114A2 (en) * 2002-08-23 2004-03-04 E.I. Du Pont De Nemours And Company Process for curing powder coatings
CN1950157A (zh) * 2004-05-12 2007-04-18 纳幕尔杜邦公司 用近红外辐射固化基材的脉冲加热方法
CN201067739Y (zh) * 2007-06-28 2008-06-04 东莞丰裕电机有限公司 中纤板涂装生产线
CN201969673U (zh) * 2010-12-10 2011-09-14 钱志斌 一种快速辐射粉体固化炉
CN102580902A (zh) * 2012-03-23 2012-07-18 山东朗法博粉末涂料有限公司 木板表面粉末固化的红外脉冲辐照加热方法及其设备
CN202621422U (zh) * 2012-03-23 2012-12-26 山东朗法博粉末涂装科技有限公司 木板表面粉末固化的红外脉冲辐照加热设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANUARY 21 '', 2011: "improve the uniformity of powder coating spraying on MDF boards", GUANGZHOU ELECTRIC APPARATUS RESEARCH INSTITUTE

Also Published As

Publication number Publication date
CN102580902A (zh) 2012-07-18
CN102580902B (zh) 2014-01-15
US20150182994A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
WO2013139167A1 (zh) 木板表面粉末固化的红外脉冲辐照加热方法及其设备
JP5568377B2 (ja) 乾燥方法
KR102615544B1 (ko) 스펙트럼 변환기를 사용하여 3d 성형품을 제조하는 방법 및 장치
RU2469851C2 (ru) Способ послойного производства трехмерного объекта
KR101852024B1 (ko) 에너지 효율적인 방식으로 박막들을 건조하는 방법
RU2403988C2 (ru) Излучатель для быстрого нагревания поверхностей объектов (варианты), устройство и установка для нанесения порошкового покрытия на объекты и способ нанесения порошковых покрытий на деревянные элементы или элементы на основе древесно-волокнистых плит средней плотности
JP2011224994A5 (ja) 下地上のインクの平滑化方法
US10150230B2 (en) Method for drying thin films in an energy efficient manner
TWI419234B (zh) 管理基材退火的熱預算
WO2012072054A1 (zh) 超短波红外光电烘烤炉
CA2787451A1 (en) Apparatus for providing transient thermal profile processing on a moving substrate
US20100028555A1 (en) Radiation appliance, method and arrangement for powder coating of timber-derived products
CN202621422U (zh) 木板表面粉末固化的红外脉冲辐照加热设备
CN104529180B (zh) 一种电热膜板的生产方法及生产设备
JP2006500547A (ja) 加工品の熱処理方法および装置
CN105627706A (zh) 一种全方位循环供热烘箱系统
CN219765912U (zh) 一种mdf粉末喷涂设备热风循环固化炉
JP2002329719A5 (zh)
JP2017176937A (ja) 塗膜乾燥方法および塗膜乾燥炉
KR101250719B1 (ko) 자외선 경화 설비를 이용한 연속 코팅 장치 및 공정
JP2007245135A (ja) 紫外線塗料硬化設備、塗料硬化方法
WO2018025442A1 (ja) パウダースラッシュ成形機及びパウダースラッシュ成形方法
JP2514179B2 (ja) 炉内気体吐出装置
JP2018124027A (ja) 高濃度塗工機用乾燥装置及び乾燥方法
CN212856489U (zh) 一种喷塑固化炉的加热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14387480

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013763533

Country of ref document: EP

122 Ep: pct application non-entry in european phase

Ref document number: 13763533

Country of ref document: EP

Kind code of ref document: A1