WO2018025442A1 - パウダースラッシュ成形機及びパウダースラッシュ成形方法 - Google Patents

パウダースラッシュ成形機及びパウダースラッシュ成形方法 Download PDF

Info

Publication number
WO2018025442A1
WO2018025442A1 PCT/JP2017/010604 JP2017010604W WO2018025442A1 WO 2018025442 A1 WO2018025442 A1 WO 2018025442A1 JP 2017010604 W JP2017010604 W JP 2017010604W WO 2018025442 A1 WO2018025442 A1 WO 2018025442A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
temperature
powder slush
heating
slush molding
Prior art date
Application number
PCT/JP2017/010604
Other languages
English (en)
French (fr)
Inventor
竹己 松野
Original Assignee
株式会社仲田コーティング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社仲田コーティング filed Critical 株式会社仲田コーティング
Priority to JP2018531737A priority Critical patent/JP6644893B2/ja
Publication of WO2018025442A1 publication Critical patent/WO2018025442A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/18Slush casting, i.e. pouring moulding material into a hollow mould with excess material being poured off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/38Moulds, cores or other substrates
    • B29C41/40Cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling

Definitions

  • the present invention relates to a powder slush molding machine and a powder slush molding method.
  • a powder slush molding machine capable of stably forming a sheet-like material having a predetermined thickness by measuring and controlling in consideration of factors affecting the mold temperature, and such a powder slush molding method About.
  • each of the provisional heating step and the preliminary heating step controlled to a predetermined temperature is provided to uniformly heat the mold, and after using the mold, immerse it in water at a predetermined temperature and gradually cool it.
  • a powder slush molding method is disclosed as a method for forming leather characterized by (see, for example, Patent Document 1).
  • the slush molding die is a porous die, the opening of the hot air supply duct is brought into contact with the material inlet of the die, and the hot air is pumped from the duct into the die.
  • a method for heating a molding die is disclosed (for example, see Patent Document 2).
  • any of the above-described slush molding methods basically focus only on the mold temperature and attempt to form a sheet-like material by the powder slush molding method.
  • the thickness of the sheet-like material varied depending on the environmental temperature based on the difference and the molding resin temperature.
  • the variation in the temperature of the inner surface portion that was curved or recessed became large, and the thickness of the sheet-like material was likely to vary.
  • the inventor of the present invention has provided a plurality of temperature measurement means, a predetermined temperature control means, a preheating device, and the like so that the mold temperature (T1) before heating and the environmental temperature ( T2) and mold temperature (T4) before powdering, and mold temperature before powdering based on temperature information such as mold temperature (T1) and environmental temperature (T2) before heating. It has been found that by setting the variation in (T4) to a value within a predetermined range, the variation in the thickness of the obtained sheet-like material is reduced, and the present invention has been completed.
  • the present invention by providing a plurality of temperature measuring means and controlling the variation in the mold temperature (T4) before powdering, the variation in the thickness of the obtained sheet-like material is small. It is an object of the present invention to provide a powder slush molding machine and a powder slush molding method for obtaining such a sheet.
  • a mold heating part for heating a mold
  • a powder slash part for spraying a molding resin while powdering and molding a sheet-like material of a predetermined thickness on the inner surface of the heated mold
  • a powder slush molding machine including a mold cooling unit that cools a mold and a mold processing unit that demolds the cooled sheet-like material from the mold.
  • the first temperature measuring means for measuring the mold temperature (T1) before heating
  • the second temperature measuring means for measuring the environmental temperature (T2)
  • the mold temperature (T4) for measuring the mold temperature before powdering.
  • a powder slush molding machine having a temperature control means for setting the variation to a value within ⁇ 20% of a predetermined temperature.
  • temperature control means provided in the mold heating unit, for example, gas
  • the temperature control mechanism air volume, gas temperature, electric power, louver, etc. of the heating furnace, which is a furnace or electric furnace, controls the variation of the mold temperature (T4) before powdering. It is possible to provide a powder slush molding machine capable of obtaining a sheet-like material having the same.
  • the mold temperature (T1) before heating is measured by using a non-contact infrared thermometer or the like as the first temperature measuring means when the mold 60 is mounted in the mold exchanging section (D section).
  • the surface temperature of the mold is typical.
  • the ambient temperature (T2) is the ambient temperature where the powder slush molding machine is installed. Similarly, the ambient temperature is measured using a non-contact infrared thermometer or the like as the second temperature measuring means. Typical.
  • the mold temperature (T4) before powdering corresponds to a predetermined temperature of the heating furnace in the mold heating section.
  • the mold surface temperature measured using a non-contact infrared thermometer or the like as the third temperature measuring means immediately before the powder slash is typical, and usually the mold surface temperature (equivalent to T4). Is a value within the range of 220 to 300 ° C.
  • the powder slush molding machine of the present invention when configuring the powder slush molding machine of the present invention, it further includes a fourth temperature measuring means for measuring the molding resin temperature (T3) of the molding resin, and the temperature control means is a temperature of the molding resin temperature (T3). Further, based on the information, it is preferable that the variation of the mold temperature (T4) before powdering is a value within ⁇ 15% of the predetermined temperature. By configuring in this way, it is possible to provide a powder slush molding machine that can stably obtain a sheet-like material having a desired thickness even when the molding resin temperature (T3) varies. it can.
  • the molding resin temperature (T3) is typically the surface temperature of the molding resin contained in the powder box, which is measured using a temperature sensor or the like as the fourth temperature measuring means, and is usually 40 to It is a value within the range of 80 ° C.
  • a conveying device for moving the mold between the mold heating unit, the powder slush unit, the mold cooling unit, and the mold processing unit is provided in a part of the transport device.
  • a preheating device for heating the mold is provided in a part of the transport device.
  • the heating conditions of the main heating furnace and the temperature difference between the front and back surfaces of the mold can be relaxed, so that the life of the mold is extended and the post-heating furnace is eliminated.
  • the size of the powder slush molding machine as a whole can be reduced in size and space.
  • a coating portion based on either the heat-absorbing paint or the infrared-absorbing paint or one of them is formed.
  • a coating portion (coating film) based on a so-called heat-absorbing paint or infrared-absorbing paint containing a heat-absorbing agent or infrared-absorbing material such as carbon, carbon black, chromium material, or nickel material is used as a mold.
  • the temperature of the mold can be measured accurately and quickly using a non-contact infrared thermometer or the like.
  • the formation of a coating portion made of such a heat-absorbing paint improves the heat insulation effect, and thus can significantly improve the effect of preheating treatment on the mold.
  • Another aspect of the present invention is to use a powder slush molding machine including a mold heating unit, a powder slush unit, a mold cooling unit, and a mold processing unit, to form a sheet from a molded resin.
  • This is a powder slush molding method.
  • the process of measuring the mold temperature (T1) and environmental temperature (T2) before a heating, the process of heating a mold in a mold heating part, and the mold temperature (T4) before powdering are measured.
  • the molding resin is sprayed while powdering to mold a sheet-like material of a predetermined thickness on the inner surface of the heated mold, and in the mold cooling part, the mold is cooled.
  • a step of removing the cooled sheet-like material from the mold in the mold processing section, and in the step of heating the mold, the mold temperature (T1) and environment before heating A powder slash characterized in that, based on temperature information of at least one of the temperatures (T2), the variation of the mold temperature (T4) before powdering is set to a value within ⁇ 20% of the predetermined temperature by the temperature control means. Molding method It is. By carrying out in this way, even if the mold temperature (T1) and environmental temperature (T2) before heating vary, the variation of the mold temperature (T4) before powdering is controlled. Thus, a powder slush molding machine can be obtained from which a sheet-like material within ⁇ 10% of the predetermined thickness can be obtained.
  • the predetermined temperature corresponding to the mold temperature (T4) before powdering is usually a value in the range of 220 to 300 ° C. as described above.
  • the molding resin temperature (T3) of the molding resin is further measured, and temperature control is performed. It is preferable that the variation of the mold temperature (T4) before powdering is set to a value within ⁇ 15% of the predetermined temperature in consideration of temperature information of the molding resin temperature (T3).
  • the molding resin accommodated in the powder box is subjected to a fluidized bed as a kind of fluidized dipping method, thereby being subjected to powder slush treatment (powdering) and heated molds. A sheet-like material is formed on the inner surface.
  • powder slush treatment powder slush treatment
  • T3 molding resin temperature
  • the molding resin temperature (T3) in the powder box increases, and depending on the type of molding resin, environmental temperature, etc., initially What is 20 ° C. or lower is, for example, a value within the range of 40 to 80 ° C.
  • the temperature control means limits the variation of the mold temperature (T4) before powdering to a predetermined range, thereby further increasing the thickness.
  • the sheet-like material can be obtained stably.
  • a mold is provided with a transfer device for moving the mold between a mold heating unit, a powder slash unit, a mold cooling unit, and a mold processing unit.
  • a preheating device for heating the mold is provided in a part of the transfer device, and the mold is preheated to a predetermined temperature.
  • the heating conditions of the main heating furnace can be relaxed to reduce the temperature difference between the front and back surfaces.
  • the life of the mold can be extended.
  • the post-heating treatment (such as a post-heating furnace) can be eliminated by the preheating treatment, the powder slush molding machine can be reduced in size or space-saving as a whole.
  • the mold temperature (T1) before heating and the mold temperature (T4) before powdering are formed on a part or all of the mold and contain a heat absorbent. It is possible to measure using at least one of a non-contact infrared thermometer, a thermography thermometer, or a contact thermocouple through a paint and / or a material containing an infrared absorber, or a paint location based on one of the paints. preferable. In this way, a coating part (coating film) based on a so-called heat-absorbing paint or infrared-absorbing paint containing a heat-absorbing agent or infrared-absorbing material such as carbon black or nickel is formed on the back part of the mold.
  • the temperature of the mold can be measured accurately and quickly using a predetermined thermometer.
  • the formation of a coating portion made of such a heat-absorbing paint improves the heat insulation effect, and thus can significantly improve the effect of preheating treatment on the mold.
  • FIG. 1 is an example of an algorithm for operating the powder slush molding machine of the present invention.
  • FIG. 2 is a side view for explaining an example of the powder slush molding machine of the present invention.
  • FIGS. 3A and 3B are a side view and a plan view for explaining another powder slush molding machine of the present invention.
  • FIGS. 4A and 4B are a plan view and a front view for explaining a transport device provided with a preheating unit.
  • FIG. 5 is a side view provided for explaining a transport apparatus including a preheating unit.
  • FIG. 6A is a diagram (photograph) provided to explain a far-infrared heating type heater of the preheating unit, and FIG.
  • FIG. 6B shows a far-infrared heating type heater of another preheating unit. It is the schematic provided for demonstrating.
  • Drawing 7 is a figure offered in order to explain an example of a metallic mold heating part.
  • FIGS. 8A to 8B are views for explaining another mold heating unit.
  • FIGS. 9A to 9C are views for explaining the powder slush molding method of the present invention (part 1).
  • FIGS. 10 (a) to 10 (b) are views for explaining the powder slush molding method of the present invention (part 2).
  • FIG. 11 is a diagram provided for explaining the drying apparatus.
  • FIGS. 12 (a) to 12 (b) are diagrams for explaining the heating device.
  • the first embodiment is a powder slush molding machine 10 operated in accordance with the algorithm illustrated in FIG. 1, and a mold heating unit (A part) for heating the mold 60 shown in FIG.
  • a powder slash part (B part) for spraying a molding resin while powdering and molding a sheet-like material having a predetermined thickness on the inner surface of the heated mold 60, and a mold cooling part for cooling the mold 60
  • This is a powder slush molding machine 10 provided with (C part) and a die processing part (E part) for removing the cooled sheet-like material from the mold 60.
  • the 1st temperature measurement means which measures the mold temperature (T1) before a heating
  • the 2nd temperature measurement means which measures environmental temperature (T2)
  • Third temperature measuring means for measuring the mold temperature (T4), and temperature information of at least one of the mold temperature (T1) and the environmental temperature (T2) before heating.
  • a temperature control means for setting the variation of the mold temperature (T4) before powdering to a value within ⁇ 20% of the predetermined temperature based on 10, 10a can be provided to solve the above-mentioned problems.
  • an example of an algorithm for operating a powder slush molding machine with reference to FIG. 1 as appropriate, and an ordinary powder slash molding machine 10 and a downsizing type powder slush molding machine with reference to FIGS. The configuration of 10a will be specifically described.
  • Algorithm Example (1) As shown by S1 in FIG. 1, the powder slush molding machine of the first embodiment is turned on, and these operations are started including a control device (not shown). That is, for the mold at a predetermined position of the powder slush molding machine, preheating of the mold by the preheating device is started as indicated by S2. At that time, the preheating temperature of the mold is set to 95 ° C., for example.
  • the mold temperature (T4) before powdering corresponds to the mold temperature (T4) before powdering.
  • the predetermined temperature (corresponding to T4, the same applies hereinafter) of the heating furnace main body of the mold is maintained as it is. Further, as shown in S7, when it is determined that the temperature (T1) of the preheated mold is 100 ° C. or higher, a predetermined set temperature of the heating furnace body is provided in the heating furnace body. Reduce by 5 ° C. by temperature control means.
  • the mold is conveyed to the heating mold part (A part), and heat treatment is performed for a predetermined time under a predetermined set temperature condition of the heating furnace body.
  • the mold is taken out from the heating mold part, conveyed to the powder slash part (B part), and subjected to powder slush treatment under predetermined conditions.
  • the mold is taken out from the powder slash part, transported to the mold cooling part (C part), and subjected to a cooling process under predetermined conditions.
  • FIG. 2 shows a basic configuration of a normal powder slush molding machine 10
  • FIG. 3 shows a basic configuration of a downsizing type powder slush molding machine 10a.
  • the process for completing a series of powder slush molding is performed in parallel, and finally, the sheet-like product 94 which is a resin molded product is quickly and stably. Obtainable.
  • the mold processing section (E section) shown in FIG. 2 or FIG. 3 is a demolding operation for taking out the powdered slush molded sheet 94 from the mold 60, and an optional process. This is a part for performing a coating operation or the like on the mold 60 by a coating apparatus (not shown) for creating a two-color sheet.
  • the mold 60 is attached to a frame member 61, and together with the frame member 61, a transfer device (for example, a crane) 62 performs a mold processing section (E section). As a starting point, it can be arbitrarily moved between predetermined parts.
  • one mold 60 can be formed by one transfer device 62.
  • the other molds 60 can be simultaneously transported while preheating treatment or the like.
  • a plurality of molds 60 can be transported for separate processing at the same time.
  • another mold 60 is simultaneously transferred to a predetermined place for heating, powdering, cooling, or the like.
  • the tact time at the time of manufacturing the sheet-like article 94 in the powder slush molding machine 10, 10a can be greatly shortened.
  • the mold 60 is transferred from the mold processing section (E section) to the mold heating section (A section) by the transfer device 62 shown in FIGS. 4 (a) to 4 (b).
  • a preheating device 63 for heating at least the outer surface is preferably provided at a predetermined place of the conveying device 62. That is, for example, an outer surface (A) that is a non-formation surface of the sheet-like object 94 in the mold 60 by using the time during the conveyance of the mold 60 by the preheating device 63 provided on the upper part of the conveyance device 62.
  • the entire mold 60 is heated to a predetermined temperature uniformly and at high speed during the main heating in combination with the preliminary heating. be able to.
  • the temperature difference between the inner surface and the outer surface of the mold 60 is reduced by the preheating process of the preheating device 63, so that the overall metal fatigue of the mold 60 and the molding of the inner surface of the mold 60 are performed.
  • the entire mold 60 or a predetermined location can be uniformly and rapidly heated while effectively suppressing the occurrence of a resin baking phenomenon or the like.
  • a post-heating furnace or the like for further heating and curing the once-formed sheet 94 can be substantially omitted. . Therefore, downsizing can be performed correspondingly, and a powder slush molding machine that is reduced in size and space as a whole can be provided.
  • the preheating device 63 is preferably provided with a far-infrared heating type heater (including some blower fans) 63a as shown in FIGS. 6 (a) to 6 (b).
  • FIG. 6A is a diagram (photograph) showing an appearance of a far infrared heating type heater (ceramic heater) 63a as an example.
  • a rectangular ceramic heater 63a having an irradiation area of 250 ⁇ 250 mm 2 is shown.
  • heat generation of 1 to 6 kW / piece is possible using a three-phase, 200 V, 30 A rated power supply. Therefore, a predetermined preheating temperature (T5) can be achieved by using a plurality of far infrared heating type heaters 63a and the like.
  • FIG. 6B is a cross-sectional view of another far-infrared heating type heater (ceramic heater) 63a.
  • the blower 153, the hose 154, the hose connection port 151a, the rectifying plate member 155, the vent hole are provided.
  • Far infrared rays 160 can be emitted toward the predetermined preheating temperature (T5).
  • the far-infrared heating type heaters 63a by using any one of the far-infrared heating type heaters 63a, the far-infrared (not only the inner surface and outer surface of the mold 60 but also the arbitrary position of the mold 60 can be selectively used. Heat ray) can penetrate. Therefore, regardless of the inner surface shape of the mold 60, the entire mold 60 or only a predetermined portion can be preheated more uniformly and rapidly to a predetermined preheating temperature (T 5).
  • T 5 predetermined preheating temperature
  • the preheating device 63 since the far-infrared heating type ceramic heater 63a is relatively light and thin, the preheating device 63 can be reduced in weight, thickness, and space.
  • the preheating temperature (T5) is continuously or intermittently used as the first temperature measuring means, for example, using at least one of a thermocouple, an infrared thermometer, a thermography, a temperature sensor, a power consumption meter, and the like. Can be measured. At that time, a heat-absorbing paint containing a heat-absorbing agent or an infrared-absorbing agent (carbon black, chromium material, nickel material, etc.) is applied to all or part of the back surface of the mold to form a predetermined coating film It is preferable. The reason for this is that with this configuration, the mold temperature can be measured more accurately and quickly using the above-described non-contact infrared thermometer or the like.
  • the thickness is usually preferably in the range of 1 to 200 ⁇ m, more preferably in the range of 5 to 100 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the value is within the range.
  • the thickness thereof is usually preferably in the range of 0.5 to 15 mm, more preferably in the range of 1 to 10 mm. More preferably, the value is in the range of ⁇ 8 mm.
  • the obtained hot air 14 is preferably supplied from the hot air outlet 16 through the pipe 45 and the main pipe 43 by an air supply fan 46 provided below the hot air outlet 16. That is, the hot air 14 obtained by the hot air generator 40 and the hot air recovered from the furnace through the energy recovery unit 54 described later and sent to the mixing chamber 44 by the air circulation fan 42 are appropriately mixed in the mixing chamber 44. After that, it is preferable that the air supply fan 46 supplies a large amount of hot air having a predetermined wind speed to the hot air outlet 16 through the main pipe 43.
  • the side surface is formed as a flat rectangular box having a shutter 58a that can be opened and closed in the vertical direction. More specifically, as shown in FIG. 7, in a shutter 58a with a weight 58b as a balancer, the mold 60 (in the figure, 60c in a state where the weight 58b is raised, that is, the shutter 58a is opened). The same applies hereinafter.) And the frame member 61 are carried into the furnace from the side.
  • the weight 58b is lowered and the shutter 58a is closed.
  • hot air having a predetermined temperature generated in the heating furnace 58 is blown from below by a hot air generator 58c, 58d such as a gas furnace or an electric heating furnace through a louver 58f swinging left and right.
  • the mold 60 can be heated uniformly and quickly while circulating hot air by a louver 58e provided above the mold 60. That is, in the case of the downsizing type powder slush molding machine 10a shown in FIG.
  • the mold heating unit (A part) is configured in this manner, so that the mold 60 and the like are carried into the heating furnace 58. Becomes easier. In addition, it becomes easy to supply thermal energy from the outlet 58c 'of the heating furnace, and consequently, space saving and efficient recovery of thermal energy are also facilitated. Therefore, it can be said that the hot air generators 58c and 58d are the main elements of the temperature control means of the heating furnace 58.
  • the heating furnace shown in FIG. It is preferable that the mold temperature (equivalent to T4) is normally set to a value within a range of 220 to 300 ° C. using 58 and 58 ′.
  • the mold temperature (corresponding to T4) which is the inner surface temperature, is preferably set to a predetermined temperature.
  • the mold temperature (equivalent to T4) is less than 220 ° C.
  • the type of molding resin that can be used for powder slush molding may be excessively limited.
  • the mold temperature exceeds 300 ° C.
  • the gloss phenomenon due to the baking phenomenon of the molding resin frequently occurs or the mold may be cracked during cooling due to metal fatigue of the mold. It is. Therefore, it is more preferable to set the mold temperature (equivalent to T4, average value) before powdering to a value within the range of 230 to 280 ° C., for example, within the range of 240 to 260 ° C. More preferably.
  • the variation of the mold temperature is a value within ⁇ 20% of the predetermined temperature, for example, if the predetermined temperature (average temperature) of the mold in the heating furnace is 230 ° C., the variation is taken into consideration.
  • the mold temperature (equivalent to T4) before powdering is set to a value within the range of 184 to 276 ° C.
  • the mold temperature (T4) before powdering is set to the mold temperature (T1) and environmental temperature before heating. (T2) or the like, or based on the molding resin temperature (T3) in the powder slush part, it is also controlled by the temperature control means in the mold heating part, the preheating device 63 attached to the transfer device 62, etc.
  • T4 before powdering varies due to the mold temperature (T1), environmental temperature (T2), etc. before heating, and the thickness of the sheet-like material It may vary.
  • the variation in the mold temperature (T4) before powdering is controlled to a value within ⁇ 20% of the predetermined temperature. A value within ⁇ 10% can be stably obtained.
  • the variation in the mold temperature (T4) before powdering is a value within ⁇ 20% of a predetermined temperature (for example, 230 ° C.), the predetermined thickness (for example, 1 .. 2 mm) within ⁇ 10%. Further, if the variation in mold temperature (T4) before powdering is a value within ⁇ 15% of a predetermined temperature (for example, 230 ° C.), the predetermined thickness (for example, 1.2 mm) of the sheet-like material The variation can be controlled to a value within ⁇ 8%.
  • the sheet thickness has a predetermined thickness (for example, 1.2 mm).
  • the variation can be controlled to a value within ⁇ 5%.
  • the variation in mold temperature (T4) before powdering is a value within ⁇ 6% of a predetermined temperature (for example, 230 ° C.)
  • the predetermined thickness (for example, 1.2 mm) of the sheet-like material Can be controlled to a value within ⁇ 2%.
  • Powder slash part (B part) is sprayed with a flowable molding resin 92 against a heated mold, and melts the molding resin to form a film, and a predetermined sheet. It is a part for making it into a shape. That is, when the ordinary powder slush molding machine 10 shown in FIG. 2 is used, the mold 60 is heated to a predetermined temperature by the hot air 14 in the heating furnace as shown in FIG. Hot air 14 is blown onto the surface and heated to a predetermined temperature. Next, as shown in FIG. 9B, the mold 60 is placed after being positioned above the reservoir tank 88. Next, as shown in FIG. 9C, the mold 60 is rotated together with the reservoir tank 88.
  • the stirring chamber 88a is composed of a perforated member, for example, a mesh member, and has a structure in which the molded resin 92 is wound up by the introduced air.
  • the vibration provided in the frame member 61 so that the flow state of the molding resin 92 is activated and the sheet-like material 94 having a uniform thickness is formed when rotating. It is preferable to hit the member repeatedly with the tip end portion 108 a of the hammer 108.
  • the molding resin 92 is allowed to settle for a predetermined time, and the molding resin 92 is allowed to settle at a predetermined location. At that time, it is preferable to depressurize the air so that the molding resin 92 is in a non-flowing state at an early stage.
  • FIG.10 (b) using the cooling device (cooling booth) 55, with the sheet-like thing 94 formed in the inner surface A of a metal mold
  • the surface B is preferably cooled by spraying a shower or the like.
  • the powder slash part (B part) and the mold cooling part (C part) are integrated, and the combined part is powder.
  • the slash part / mold cooling part (B / C part) is characteristic. That is, in the case of such a downsizing type powder slush molding machine 10a, the powder slush device retreats at the same place to cool the mold after powder slushing, and the cooling device etc. moves there. It will be. Therefore, in the case of the powder slash part / mold cooling part (B / C part), the mold cooling part (C part) is also used as the powder slash part (B part) and the mold cooling part (C part). ) And the like are mobile.
  • the mold cooling part (C part) is a component part composed of a cooling device 55 as shown in FIG. 10 (b) in the case of the ordinary powder slush molding machine 10 shown in FIG. is there. More specifically, the cooling device 55 includes the frame member 61 and is cooled to, for example, about 50 ° C. by a cooling device 55 such as water cooling or air cooling. That is, the cooling device 55 cools the cooling water to a predetermined temperature by spraying cooling water on the outer surface (surface B) of the mold 60 on which the sheet 94 is formed, by spraying cooling water. .
  • the mold cooling part is also used as the powder slush part, and therefore the mold cooling part and the like may be mobile. preferable. That is, as shown in FIG. 3 (b), when the mold 60 (60b) is cooled, the powder box 64 after the powder slash is finished has a powder slash portion / mold cooling as indicated by an arrow C. It moves horizontally from the part (B / C part) to the box exchange position (D part).
  • the mold 60 (60b) engaged with the rotating device 89 and the powder box 64 are separated and moved in the vertical direction as indicated by an arrow E. . Accordingly, only the mold 60 (60b) engaged with the rotating device 89 is raised, and the separated powder box 64 is moved from the powder slash part / mold cooling part (B / C part) to the box replacement position.
  • the location of the box exchange position (D section) is not particularly limited. However, since only a horizontal movement is sufficient in practice, as shown in FIG. It is preferably provided in an outer region (on the left side in the drawing) adjacent to the mold cooling part (B / C part).
  • a cooling device 55 provided in the mold cooling section (C section) has a powder slash section as shown by an arrow A. It moves horizontally just below the rotating device 89 in (B part) and engages with a frame member (not shown) that holds the mold 60 (60b). More specifically, the cooling device 55 provided in the powder slash portion / die cooling portion (B / C portion) moves along the drive rail 55a and engages with the rotating device 89. Move directly below (60b).
  • the mold 60 (60b) is inverted by the rotating device 89, and the inner surface (A surface) of the mold 60 (60b) on which the sheet-like material is formed is opened upward, In the state where the cooling device 55 and the outer surface (B surface) of the mold 60 (60b) face each other, both engage. And by this cooling device 55, a shower or cooling mist can be sprayed on the outer surface (B surface) of the metal mold
  • the mold 60 rotates in the direction of the arrow A along the assumed circle described with a two-dot chain line, and the B surface that is the sheet forming surface faces downward.
  • the drying device 99 is mainly composed of a plurality of air outlets 99a and a blower 99b, and the tip of these air outlets 99a is swung to change the spray angle within a range of about 180 ° as a whole.
  • a mechanism is provided. More specifically, a plurality of air outlets 99a provided along the lower wall of the drying device 99 and a plurality of air outlets located directly below the mold in order to directly dry the formed sheet-like material and the like. It is preferable that an outlet 99a ′ is provided. Then, for example, air of 1 to 100 m / sec can be blown against the sheet-like material 94 or the like while changing the blowing angle to the left or right or fixed at a fixed angle.
  • 100 ' is preferably used to heat the formed sheet 94 and a predetermined temperature. That is, instead of the cooling device or drying device in the mold cooling section (C section) or the like, or together with the drying device, the heating device 100, 100 'is provided, and a sheet-like material formed by a far infrared type ceramic heater or the like. 94 is preferably heated.
  • the formed sheet-like material 94 is provided above a part of the frame members 100a, and heat treatment is performed from below. Therefore, in the sheet-like material 94, the resin component or the like that has been insufficiently melted can be more uniformly melted, or the drying of the sheet-like material 94 can be accelerated.
  • the mold 60 having the sheet-like material 94 formed below the far-infrared ceramic heater 63a or the like is placed on the predetermined frame 100b. It is mounted and heat-treated from above. Also by this, in the sheet-like material 94, the resin component that has not been sufficiently melted can be melted, or the drying of the sheet-like material 94 can be accelerated.
  • Mold exchange part In any of the powder slush molding machines 10, 10a, it is preferable to further include a mold exchange part (D part). That is, by using such a mold exchanging part (D part), in the middle of powder slush molding, it is changed to a mold for molding two-color molded sheet-like material, or during powder slush molding This is to cope with the case where the mold is damaged. More specifically, even in such a case, the mold can be replaced while the powder slush molding machine is operating.
  • a mold exchange part D part
  • the mold exchanging part (D part) is a downsizing type powder slush molding machine 10a shown in FIG. 3A, the mold cooling part (C part) is movable, and the powder.
  • the cooling device (for example, a cooling booth) 55 is also a place (temporary table) on which the cooling device (for example, a cooling booth) is temporarily placed. Therefore, as shown in FIG. 2, the mold exchanging section (D section) includes a support base 66 for placing the mold 60, and the position of the support base 66 can be moved by external control. It is preferable that
  • the mold changing part (D part) is provided with a cooling device 55, and after the powder slush molding, It is also preferable that the cooling device 55 is configured to move. And when replacing
  • the predetermined thickness (average value) is usually 1.1 to 1.6 mm.
  • the value is preferably in the range of 1.2 to 1.4 mm. This is because, for example, a sheet 94 having a value of ⁇ 10% or less of the predetermined thickness can be manufactured relatively easily by controlling to such a thickness.
  • the thickness variation exceeds ⁇ 10% of the predetermined thickness, the usage of the sheet-like material 94 is extremely limited. For example, it is used as an automobile interior material having an airbag door portion. It may be difficult.
  • constituent material of a sheet-like thing is not restrict
  • a mold heating section (A section)
  • a powder slash section / mold cooling section (B / C section)
  • a mold A powder slush molding method for molding a sheet-like material from a molding resin using a powder slush molding machine 10a equipped with a mold processing section (E section), which includes the following steps.
  • Step of measuring mold temperature (T1) and environmental temperature (T2) before heating (2) Step of heating the mold in the mold heating section (A section) (3) Mold before powdering Step of measuring temperature (T4) (4) Powder slush part / Die cooling part (B / C part) In powder slush part (B part), while molding powder is sprayed while powdering, A step of forming a sheet material having a predetermined thickness on the inner surface (5) A step of cooling the mold in the mold cooling section (C section) of the powder slush section / mold cooling section (B / C section) ( 6) In the mold processing section (E section), the step of removing the cooled sheet-like material from the mold (7) In the process of heating the mold, in the mold temperature (T1) and environmental temperature ( Die before powdering based on temperature information of at least one of T2) The process of setting the variation in degree (T4) to a value within ⁇ 20% of the predetermined temperature by the temperature control means
  • a downsizing type comprising a transfer device 62 including
  • the powder slush molding method of the second embodiment will be specifically described.
  • the mold temperature T4 before powdering
  • the sheet-like material can be molded from the molding resin while controlling the temperature.
  • the measuring process such as mold temperature (T1) and environmental temperature (T2) before heating is performed by a predetermined temperature measuring means.
  • the mold temperature (T1), the environmental temperature (T2), and the molding resin temperature (T3) in the powder slush portion are measured. That is, by measuring these temperatures (T1 to T2) and further the molding resin temperature (T3) and controlling the mold temperature (T4) before powdering based on at least one of them, Even when the mold temperature (T1), the environmental temperature (T2), etc. vary, a sheet-like material within ⁇ 10% of the predetermined thickness can be obtained with respect to thickness variations.
  • the predetermined temperature measurement means includes a non-contact infrared thermometer, a thermography thermometer, a contact thermocouple, a temperature sensor (semiconductor temperature sensor), or the like.
  • the mold preparation process is a mold processing section (E section) shown in FIG. Therefore, this is a step of preparing the mold 60. And it is preferable to implement a preheating process with respect to the metal mold
  • a preheating treatment hereinafter sometimes referred to as a preheating step
  • the temperature of the mold becomes the predetermined temperature (T5) during the movement from the mold processing section (E section) to the mold heating section (A section).
  • preliminary heat treatment can be performed to adjust the variation in the heating temperature, the temperature rise time, and the like in the main heating furnace.
  • the transport device 62 grips the mold 60 and at the same time the preheating device 63 is switched on to preheat the mold 60. This is because the conveyance time of the mold 60 can be sufficiently effectively used by preheating the mold 60 in synchronization with the gripping operation of the mold 60 as described above. However, even if the preheating device 63 is switched on at the same time when the mold 60 is gripped, it does not necessarily have to be 0 seconds later, depending on the situation of the powder slush molding, etc. It may be after 2 seconds.
  • the preheating process in order to prevent a temperature drop during the conveyance of the mold 60, the preheating process is performed while the other mold 60 is clamped to the conveyance device 62 during the heat treatment for another mold. It is also preferable to apply.
  • the reason for this is that the sheet 94 is formed more quickly and more stably on the heat-treated mold 60 at an integral part of the powder slash part / mold cooling part (B / C part) by a predetermined preheating process. This is because the forming time (tact time) per sheet can be further shortened.
  • the pre-heating device 63 performs heating for maintaining the temperature of the mold 60.
  • the temperature of (60c) can be maintained at a value in the desired temperature range.
  • the sheet The product 94 can be formed more stably.
  • the heating step is a step of heating in the mold heating part (A part) so that the mold temperature (equivalent to T4) is, for example, 220 to 300 ° C., more preferably 230 to 270 ° C. ( Hereinafter, it may be referred to as a heating step). Therefore, the predetermined mold 60 is moved to the mold heating section (A section) and is carried into the heating furnace 58 shown in FIG. 3A, where the temperature of the mold 60 becomes a predetermined temperature. In addition, it is preferable to heat quickly.
  • the temperature of the mold 60 (60c) is set to a predetermined uniform temperature so that the sheet 94 having a uniform thickness can be formed in the powder slush process, which is a subsequent process. It is preferable to perform convection heating with hot air so that.
  • the powder slash process is a process of forming a predetermined sheet 94 on the mold 60 in the powder slash part / mold cooling part (B / C part).
  • the heated mold 60 (60c) is moved from the mold heating part (A part) to the powder slash part / mold cooling part (B / C part), and as shown in FIG. 9 (c).
  • T4 metal mold temperature
  • the thickness of the sheet-like material can be a value within ⁇ 10% of the predetermined value.
  • the mold cooling step is a step of cooling the mold 60 on which the sheet 94 is formed to a predetermined temperature (hereinafter, sometimes referred to as a mold cooling step). That is, in the case of the powder slush molding machine 10a shown in FIG. 3A, after the cooling device 55 is moved to the powder slush part / mold cooling part (B / C part), the sheet 94 is thereby moved.
  • This is a process in which the mold 60 in a molded state is cooled to 40 to 50 ° C. usually in a three-stage step by a combination of at least a first air blow, a mist / shower, and a second air blow.
  • the powder slash part (B part) and the mold cooling part (C) are used for downsizing.
  • Part) is integrated (B / C part), so that powder slush molding and mold cooling are performed at the same location. That is, when the mold 60 is cooled, a powder box (not shown) after the powder slash is moved from the powder slash part to the box replacement position, and a cooling device provided in the mold cooling part is provided. , Move directly under the powder slash part rotating device. Next, a shower or cooling mist is blown against the outer surface of the mold 60 in a state where the mold 60 is engaged with the frame member 61 or the like that holds the mold 60 and the inner surface of the mold 60 is released to the outside. It will be.
  • the demolding process is a process of demolding the formed sheet-like material from the mold in the mold processing section (E section) (hereinafter sometimes referred to as demolding process). . That is, it is a step of removing the sheet-like material 94 which has been lowered to about 40 to 60 ° C. through the cooling step from the mold 60. Such a demolding step can be performed automatically using a robot, or a sheet-like material can be demolded as a human work.
  • Operation example 1 An example of operation using a plurality of molds 60a, 60b, 60c, and another mold 60 at the same time when performing a series of predetermined processes related to powder slush molding will be described. That is, by performing a predetermined process on each of the molds 60a to 60c in parallel, the tact time per sheet 94 is 150 seconds or less, more preferably 120 seconds or less. Compared to the takt time in the case of the apparatus (for example, 240 seconds), it can be made extremely short.
  • the powder slush molding machine 10a shown in FIGS. 3 (a) to 3 (b) the operation of shortening the tact time by using the three molds 60a to 60c and another mold 60 simultaneously. An example will be described.
  • the transfer device 62 including the preheating device 63 clamps the mold 60a and moves up to a predetermined location, and the preheating device 63 starts preheating the mold 60a for a predetermined time.
  • the conveying device 62 descends from a predetermined position while preheating the mold 60a, and moves from the mold processing section (E section) to the powder slash section / cooling section (B / C section).
  • the mold 60b for which the powder slush molding / cooling processing has already been completed is transported from the powder slush / cooling section (B / C section) to the mold processing section (E section), and demolding processing is performed. I do.
  • the transfer device 62 transfers the mold 60a that is being simultaneously transferred from the mold processing section (E section) to the mold heating section (A section), and also the mold heating section. It is placed at a predetermined place in the heating furnace 58 of (A part), and heat treatment is performed under predetermined conditions. Further, in the mold heating section (A section), during the heat treatment for the mold 60a, the transfer device 62 clamps the mold 60b after the demolding and starts preheating.
  • the transfer device 62 takes out the mold 60a after the heat treatment from the mold heating part (A part) and transports it to the integrated part (B / C part) of the powder slush / cooling part, followed by powder slush molding. / Cooling process is performed sequentially.
  • the heat-treated mold 60a is cooled, the powder box after the powder slash is moved from the powder slash part to the box replacement position, and a cooling device provided in the mold cooling part Move directly under the slash rotation device.
  • a shower or cooling mist is sprayed on the outer surface with the frame member 61 that grips the heat-treated mold 60a and the inner surface is released to the outside.
  • the conveying device 62 clamps another mold 60 and performs preheating, and moves to the mold heating section (A section) to start the heating process. . That is, the conveying device 62 conveys another mold 60 from the powder slash part / cooling part (B / C part) to the mold heating part (A part) and performs heat treatment for a predetermined time. preferable.
  • the conveying device 62 conveys the die 60 in which the powder slash part / cooling part (B / C part) has been finished to the die processing part (E part), and the resulting sheet member 94 is removed.
  • Perform mold processing As described above, in the powder slush molding machine 10a shown in FIGS. 3A to 3B, when the molds 60a to 60c are used, according to the predetermined operation example, including the preheating process, Independent processing can be performed concurrently.
  • the processing time is not always constant, or physical simultaneous processing may not be possible.
  • the transfer device 62 is located above a predetermined location, for example, the heating furnace 58.
  • the mold 60 may be preheated by the preheating device 63 provided in the transfer device 62 while waiting.
  • the mold heating part (A part), the powder slash / cooling part (B / C part), the mold exchange part (D part), and the mold processing part ( The powder slush molding machine 10a is assumed in the order of E part).
  • the powder slush molding machine 10a may be arranged in the order of (B / C part) and mold processing part (E part).
  • Operation example 2 In the operation example 2, the ordinary powder slush molding machine 10 shown in FIG. 2, that is, the powder slash part (B part) and the mold cooling part (C part) are provided independently, and the powder slush Various processes can be described for a plurality of molds 60 assuming a powder slush molding machine 10 that performs molding and cooling processes separately at different locations.
  • one mold 60 is taken out from the mold heating unit (A part) by the conveying device 62 and conveyed to the powder slash part (B part), and then powder slush molding for a predetermined time. I do.
  • this operation example 2 for example, while performing powder slush molding for a predetermined time in a powder slash part (B part) for one mold 60, for another mold 60 Another process can be performed. Therefore, while powder slush molding is being performed on one mold 60, another mold 60 (powder slush treated) is transferred to a mold cooling section (C section) using the transfer device 62. Then, the cooling process can be performed at the same time.
  • the mold cooling part (C) After performing powder slush molding for a predetermined time in the powder slash part (B part) for one mold 60, the mold cooling part (C It is also possible to carry out a cooling process there. Therefore, in the second operation example, the powder slush molding is performed on the mold 60 as compared with the first operation example on the premise that the powder slush molding / cooling process is performed in an integrated part (B / C portion).
  • the waiting time for the next process when performing, or the time for moving the cooling device to the powder slash part (B part) can be omitted. Therefore, one sheet-like product can be formed with a tact time of up to 100 seconds.
  • the point that the plurality of molds 60 can be simultaneously transported by using the transport device with the preheating device or by using the hook 62c provided below by one transport device is the operation. Similar to Example 1.
  • the mold temperature (T1) and environmental temperature (T2) before heating, as influential factors on the mold temperature (T4) before powdering In consideration of the molding resin temperature (T3), etc., by providing a temperature control means for controlling the temperature of the mold temperature (T4) before powdering to a predetermined range, a sheet material having a desired thickness can be stably formed. It became possible to form.
  • a preheating device for heating the mold being transferred is provided in a part of the transfer apparatus.
  • the time until the mold is heated to a predetermined temperature can be remarkably shortened and made uniform.
  • the temperature distribution inside the mold is also reduced, and the occurrence of metal fatigue (crack generation) in the mold can be effectively prevented.
  • a heat-absorbing paint containing a heat absorbing agent or an infrared absorbing agent is applied to all or part of the back surface of the mold to form a predetermined coating film.
  • a heat-absorbing agent or an infrared absorbing agent carbon, carbon black, chromium material, nickel material, etc.
  • the mold temperature can be measured more accurately and quickly using a non-contact infrared thermometer or the like.
  • preheating without hindering the cooling process of the mold by covering the back of the mold with a coating film made of a heat-absorbing paint containing such a heat absorber or infrared absorber. A tendency to significantly improve the effect of the treatment was obtained.
  • the sheet-like product obtained by the powder slush molding machine and the powder slush molding method of the present invention is used as a powder slush molding product for automotive interior materials (especially tear lines) that require extremely strict thickness uniformity. It is expected to be suitably used as an interior material for the skin of the airbag door part to be formed), a bumper or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

金型温度への影響因子を考慮して、それらを測定して制御することにより、所定厚さのシート状物を安定的に形成できるパウダースラッシュ成形機及びパウダースラッシュ成形方法を提供する。 パウダースラッシュ成形機及びパウダースラッシュ成形方法であって、加熱前の金型温度(T1)を測定する第1温度測定手段と、環境温度(T2)を測定する第2温度測定手段と、パウダリング前の金型温度(T4)を測定する第3温度測定手段と、を備えており、かつ、加熱前の金型温度(T1)、及び環境温度(T2)の少なくとも一方の温度情報に基づいて、パウダリング前の金型温度(T4)のばらつきを、所定温度の±20%以内の値とするための温度制御手段を有する。

Description

パウダースラッシュ成形機及びパウダースラッシュ成形方法
 本発明は、パウダースラッシュ成形機及びパウダースラッシュ成形方法に関する。特に、金型温度への影響因子を考慮して、それらを測定して制御することにより、所定厚さのシート状物を安定的に形成できるパウダースラッシュ成形機、及びそのようなパウダースラッシュ成形方法に関する。
 従来、自動車の内装材等の大型で、複雑形状を有するシート状物を製造するにあたり、パウダースラッシュ部と、金型冷却部と、を備えたパウダースラッシュ成形機を用いて、パウダー(粉末樹脂)をスラッシュ成形するパウダースラッシュ成形方法が広く実施されている。
 ここで、パウダーからなる内装材の厚さを均一化するために、各種金型を均一に加熱することが望まれている。
 そこで、例えば、所定温度に制御された仮加熱工程及び予備加熱工程をそれぞれ備えて、金型を均一に加熱するとともに、金型を使用した後、所定温度の水中に浸漬して徐冷することを特徴とした皮革の形成方法としての、パウダースラッシュ成形方法が開示されている(例えば、特許文献1参照)。
 また、スラッシュ成形金型を多孔性金型として、該金型の材料投入口に熱風供給用ダクトの開口部を当接させ、該ダクトから熱風を金型内に圧送することを特徴とするスラッシュ成形金型の加熱方法が開示されている(例えば、特許文献2参照)。
特開平3-202329号公報 特開平4-191018号公報
 しかしながら、上述したいずれのスラッシュ成形方法も、基本的に金型温度のみに着目して、パウダースラッシュ成形方法により、シート状物を形成しようとするものであって、夏冬や、朝晩等の温度差に基づく環境温度や、成形樹脂温度によっても、シート状物の厚さがばらつくといった問題が見られた。
 特に、金型の大型化や異形化に伴い、湾曲したり、窪んだりした内表面部分の温度のばらつきが大きくなって、シート状物の厚さがばらつきやすいという問題が見られた。
 そこで、かかる金型の大型化や異形化に対して、高速加熱や均一加熱を意図して、加熱炉のみならず、後加熱炉を設けることも提案されている。
 しかしながら、このように後加熱炉を設けた場合、パウダースラッシュ成形機が大型化し、あるいは、シート状物の製造工程時間が過度に長くなりやすく、さらに言えば、環境温度や、成形樹脂温度の影響が、未だ避けられないという問題が見られた。
 そこで、本発明の発明者は、鋭意検討した結果、複数の温度測定手段、及び、所定の温度制御手段や予備加熱装置等を設けて、加熱前の金型温度(T1)と、環境温度(T2)と、パウダリング前の金型温度(T4)と、を測定し、加熱前の金型温度(T1)及び環境温度(T2)等の温度情報に基づいて、パウダリング前の金型温度(T4)のばらつきを所定範囲内の値とすることによって、得られるシート状物の厚さのばらつきも小さくなることを見出し、本発明を完成させたものである。
 すなわち、本発明によれば、複数の温度測定手段等を設けて、パウダリング前の金型温度(T4)のばらつきを制御することにより、ひいては、得られるシート状物の厚さのばらつきが少ないパウダースラッシュ成形機、及び、そのようなシート状物が得られるパウダースラッシュ成形方法を提供することを目的としている。
 本発明によれば、金型を加熱する金型加熱部と、成形樹脂をパウダリングしながら吹き付けて、加熱した金型の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部と、金型を冷却する金型冷却部と、冷却したシート状物を、金型から脱型する金型加工部と、を備えたパウダースラッシュ成形機である。
 そして、加熱前の金型温度(T1)を測定する第1温度測定手段と、環境温度(T2)を測定する第2温度測定手段と、パウダリング前の金型温度(T4)を測定する第3温度測定手段と、を備えており、かつ、加熱前の金型温度(T1)、及び環境温度(T2)の少なくとも一方の温度情報に基づいて、パウダリング前の金型温度(T4)のばらつきを、所定温度の±20%以内の値とするための温度制御手段を有することを特徴とするパウダースラッシュ成形機である。
 このように構成することにより、加熱前の金型温度(T1)や環境温度(T2)が、ばらついたような場合であっても、金型加熱部に設けてある温度制御手段、例えば、ガス炉や電熱炉である加熱炉の温度制御機構(風量、ガス温度、電力、ルーバー等)が、パウダリング前の金型温度(T4)のばらつきを制御し、ひいては、所望厚さ及び所定ばらつきを有するシート状物が得られるパウダースラッシュ成形機を提供することができる。
 なお、加熱前の金型温度(T1)は、金型交換部(D部)において、金型60を搭載した際に、第1温度測定手段として、非接触赤外線温度計等を用いて測定される、金型の表面温度が典型的である。
 また、環境温度(T2)は、パウダースラッシュ成形機が設置されている周囲温度であって、同様に、第2温度測定手段として、非接触赤外線温度計等を用いて測定される、周囲温度が典型的である。
 さらに、パウダリング前の金型温度(T4)は、金型加熱部における加熱炉の所定温度に相当する。
 したがって、パウダースラッシュ直前において、第3温度測定手段として、非接触赤外線温度計等を用いて測定される、金型の表面温度が典型的であり、通常、かかる金型の表面温度(T4相当)としては、220~300℃の範囲内の値である。
 また、本発明のパウダースラッシュ成形機を構成するにあたり、成形樹脂の成形樹脂温度(T3)を測定する第4温度測定手段をさらに備えており、温度制御手段が、成形樹脂温度(T3)の温度情報にさらに基づいて、パウダリング前の金型温度(T4)のばらつきを、所定温度の±15%以内の値とすることが好ましい。
 このように構成することにより、成形樹脂温度(T3)が、ばらついたような場合であっても、所望の厚さを有するシート状物が安定的に得られるパウダースラッシュ成形機を提供することができる。
 なお、成形樹脂温度(T3)は、第4温度測定手段として、温度センサー等を用いて測定される、粉体ボックスに収容されている成形樹脂の表面温度が典型的であり、通常、40~80℃の範囲内の値である。
 また、本発明のパウダースラッシュ成形機を構成するにあたり、金型を、金型加熱部と、パウダースラッシュ部と、金型冷却部と、金型加工部の間で、相互移動させるための搬送装置を備えるとともに、当該搬送装置の一部に、金型を加熱するための予備加熱装置が設けてあることが好ましい。
 このように構成することにより、金型の移送時間を利用して、金型全体についても、予備加熱処理することができるため、金型の内表面形状(湾曲、窪み、オフセット等)によらず、本加熱の際に、金型全体を、均一かつ高速に、所定温度に加熱することができる。
 したがって、加熱前の金型温度(T1)等がばらついたような場合であっても、均一厚さのシート状物を安定的に得ることができる。
 その上、所定の予備加熱装置を設けることにより、本加熱炉の加熱条件や、金型表面/裏面の温度差を緩やかにできることから、金型の寿命が延びるとともに、後加熱炉等を排除し、パウダースラッシュ成形機のサイズを、全体として、小型化や省スペース化することができる。
 また、本発明のパウダースラッシュ成形機を構成するにあたり、加熱前の金型温度(T1)及びパウダリング前の金型温度(T4)の温度情報を測定するために、金型の一部又は全部に、熱吸収性塗料及び赤外線吸収性塗料、あるいはいずれか一方を基にした塗装箇所が形成してあることが好ましい。
 このように、カーボン、カーボンブラック、クロム材料、ニッケル材料等の熱吸収剤や赤外線吸収材料を含む、いわゆる熱吸収性塗料や赤外線吸収性塗料を基にした塗装箇所(塗膜)を、金型の背面箇所に形成することにより、非接触赤外線温度計等を用いて、金型の温度測定を、正確かつ迅速に行うことができる。
 その上、このような熱吸収性塗料からなる塗装箇所が形成してあることにより、断熱効果が向上し、ひいては、金型に対する予備加熱処理等の効果を著しく向上させることができる。
 また、本発明の別の態様は、金型加熱部と、パウダースラッシュ部と、金型冷却部と、金型加工部と、を備えたパウダースラッシュ成形機を用いて、成形樹脂からシート状物を成形するパウダースラッシュ成形方法である。
 そして、加熱前の金型温度(T1)及び環境温度(T2)を測定する工程と、金型加熱部において、金型を加熱する工程と、パウダリング前の金型温度(T4)を測定する工程と、パウダースラッシュ部において、成形樹脂をパウダリングしながら吹き付けて、加熱した金型の内表面に、所定厚さのシート状物を成形する工程と、金型冷却部において、金型を冷却する工程と、金型加工部において、冷却したシート状物を、金型から脱型する工程と、を含み、かつ、金型を加熱する工程において、加熱前の金型温度(T1)及び環境温度(T2)の少なくとも一方の温度情報に基づき、パウダリング前の金型温度(T4)のばらつきを、温度制御手段によって、所定温度の±20%以内の値とすることを特徴とするパウダースラッシュ成形方法である。
 このように実施することにより、加熱前の金型温度(T1)や環境温度(T2)が、ばらついたような場合であっても、パウダリング前の金型温度(T4)のばらつきを制御して、所定厚さの±10%以内のシート状物が得られるパウダースラッシュ成形機を得ることができる。
 なお、パウダリング前の金型温度(T4)に相当する所定温度は、上述したように、通常、220~300℃の範囲内の値である。
 本発明のパウダースラッシュ成形方法を実施するにあたり、加熱前の金型温度(T1)及び環境温度(T2)を測定する工程において、成形樹脂の成形樹脂温度(T3)をさらに測定するとともに、温度制御手段によって、当該成形樹脂温度(T3)の温度情報を考慮して、パウダリング前の金型温度(T4)のばらつきを、所定温度の±15%以内の値とすることが好ましい。
 このように実施することにより、成形樹脂温度(T3)が、ばらついたような場合であっても、パウダリング前の金型温度(T4)のばらつきをさらに制御して、さらに均一厚さのシート状物を安定的に得ることができる。
 より具体的には、基本的に、粉体ボックスに収容された成形樹脂は、流動浸漬法の一種として流動床下され、それによってパウダースラッシュ処理(パウダリング化)されて、加熱された金型の内面に、シート状物を形成することになる。
 そして、パウダースラッシュ処理の回数が増えるにつれ、粉体ボックス内の成形樹脂温度(T3)が高くなることが知られており、成形樹脂の種類や、環境温度等にもよるが、初期的には、20℃以下であったものが、例えば、40~80℃の範囲内の値となる。
 したがって、パウダースラッシュ処理される成形樹脂の温度(T3)を考慮して、温度制御手段によって、パウダリング前の金型温度(T4)のばらつきを、所定範囲に制限することにより、さらに均一厚さのシート状物を安定的に得ることができる。
 本発明のパウダースラッシュ成形方法を実施するにあたり、金型を、金型加熱部と、パウダースラッシュ部と、金型冷却部と、金型加工部の間で、相互移動させるための搬送装置を備えるとともに、当該搬送装置の一部に、金型を加熱するための予備加熱装置が設けてあって、金型を所定温度に予備加熱処理することが好ましい。
 このように実施することにより、金型の移送時間を利用して、金型全体についても、予備加熱処理することができるため、金型の内表面形状(湾曲、窪み、オフセット等)によらず、本加熱の際に、金型全体を、均一かつ高速に、所定温度に加熱することができ、ひいては、本加熱炉の加熱条件を緩やかにして、表面と裏面との間の温度差が小さくなって、金型の寿命等を延ばすことができる。
 その上、予備加熱処理によって、後加熱処理(後加熱炉等)を排除できることから、パウダースラッシュ成形機を、全体として、小型化したり、省スペース化したりすることができる。
 本発明のパウダースラッシュ成形方法を実施するにあたり、加熱前の金型温度(T1)及びパウダリング前の金型温度(T4)を、金型の一部又は全部に形成された、熱吸収剤入り塗料及び赤外線吸収剤入り材料、あるいはいずれか一方の塗料を基にした塗装箇所を介して、非接触赤外線温度計、サーモグラフィ温度計、又は接触式熱電対の少なくとも1つを用いて測定することが好ましい。
 このように、カーボンブラックやニッケル等の熱吸収剤や赤外線吸収材料を含む、いわゆる熱吸収性塗料や赤外線吸収性塗料を基にした塗装箇所(塗膜)を、金型の背面箇所に形成することにより、所定温度計を用いて、金型の温度測定を、正確かつ迅速に行うことができる。
 その上、このような熱吸収性塗料からなる塗装箇所が形成してあることにより、断熱効果が向上し、ひいては、金型に対する予備加熱処理等の効果を著しく向上させることができる。
図1は、本発明のパウダースラッシュ成形機を動作させる際のアルゴリズムの一例である。 図2は、本発明のパウダースラッシュ成形機の一例を説明するために供する側面図である。 図3(a)~(b)は、本発明の別のパウダースラッシュ成形機を説明するために供する側面図及び平面図である。 図4(a)~(b)は、予備加熱部を備えた搬送装置を説明するために供する平面図及び正面図である。 図5は、予備加熱部を備えた搬送装置を説明するために供する側面図である。 図6(a)は、予備加熱部の遠赤外線加熱方式のヒータを説明するために供する図(写真)であり、図6(b)は、別の予備加熱部の遠赤外線加熱方式のヒータを説明するために供する概略図である。 図7は、金型加熱部の一例を説明するために供する図である。 図8(a)~(b)は、別の金型加熱部を説明するために供する図である。 図9(a)~(c)は、本発明のパウダースラッシュ成形方法を説明するために供する図である(その1)。 図10(a)~(b)は、本発明のパウダースラッシュ成形方法を説明するために供する図である(その2)。 図11は、乾燥装置を説明するために供する図である。 図12(a)~(b)は、それぞれ加熱装置を説明するために供する図である。
[第1の実施形態]
 第1の実施形態は、図1に例示されるアルゴリズムに準じて動作されるパウダースラッシュ成形機10であって、図2等に示される金型60を加熱する金型加熱部(A部)と、成形樹脂をパウダリングしながら吹き付けて、加熱した金型60の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部(B部)と、金型60を冷却する金型冷却部(C部)と、冷却したシート状物を、金型60から脱型する金型加工部(E部)と、を備えたパウダースラッシュ成形機10である。
 そして、加熱前の金型温度(T1)を測定する第1温度測定手段(図示せず)と、環境温度(T2)を測定する第2温度測定手段(図示せず)と、パウダリング前の金型温度(T4)を測定する第3温度測定手段(図示せず)と、を備えており、かつ、加熱前の金型温度(T1)、及び環境温度(T2)の少なくとも一方の温度情報に基づいて、パウダリング前の金型温度(T4)のばらつきを、所定温度の±20%以内の値とするための温度制御手段(図示せず)を有することを特徴とするパウダースラッシュ成形機10、10aが提供され、上述した問題点を解決することができる。
 以下、図1を適宜参照して、パウダースラッシュ成形機を動作させるためのアルゴリズム例、及び、図2~図12を参照して、通常のパウダースラッシュ成形機10及びダウンサイジング型のパウダースラッシュ成形機10aの構成を具体的に説明する。
1.アルゴリズム例
(1)図1中、S1で示されるように、第1の実施形態のパウダースラッシュ成形機のスイッチを入れ、制御装置(図示せず)を含めて、これらの動作を開始する。
 すなわち、パウダースラッシュ成形機の所定位置にある金型につき、S2で示されるように、予備加熱装置による、当該金型の予備加熱を開始する。
 その際、金型の予備加熱温度を、例えば、95℃と設定する。
(2)次いで、S3で示されるように、所定の温度測定手段として、非接触赤外線温度計、サーモグラフィ温度計、又は接触式熱電対、あるいは、温度センサー(半導体温度センサー)等を用いることにより、金型温度(T1)、環境温度(T2)、及び、成形樹脂温度(T3)をそれぞれ測定する。
 次いで、S4で示されるように、予備加熱された金型の温度(T1)が、90℃未満であると判断した場合には、S5で示されるように、金型の加熱炉本体の所定設定温度(T4)を5℃上げる。
 一方、S6で示されるように、予備加熱された金型の温度(T1)が、90℃以上、100℃未満であると判断した場合には、パウダリング前の金型温度(T4)に相当する、金型の加熱炉本体の所定温度(T4相当、以下同様である。)を変えずに、そのまま維持する。
 さらに、S7で示されるように、予備加熱された金型の温度(T1)が、100℃以上であると判断した場合には、加熱炉本体の所定設定温度を、加熱炉本体に設けてある温度制御手段によって、5℃下げる。
(3)次いで、S8で示されるように、所定の温度測定手段により測定された環境温度(T2)が、15℃未満であると判断した場合には、S9で示されるように、金型の加熱炉本体の所定設定温度を、加熱炉本体に設けてある温度制御手段によって、5℃上げる。
 一方、S10で示されるように、環境温度(T2)が、15℃以上、25℃未満であると判断した場合には、金型の加熱炉本体の所定温度を変えることなく、そのまま維持する。
 さらに、S11で示されるように、環境温度(T2)が、25℃以上であると判断した場合には、加熱炉本体に設けてある温度制御手段によって、金型の加熱炉本体の所定温度を5℃下げる。
(4)次いで、S12で示されるように、所定の温度測定手段、例えば、温度センサーにより測定された成形樹脂温度(T3)が、20℃未満であると判断した場合には、S13で示されるように、加熱炉本体に設けてある温度制御手段によって、金型の加熱炉本体の所定設定温度を5℃上げる。
 一方、S14で示されるように、成形樹脂温度(T3)が、20℃以上、30℃未満であると判断した場合には、金型の加熱炉本体の所定温度を変えることなく、そのまま維持する。
 さらに、S15で示されるように、成形樹脂温度(T3)が、30℃以上であると判断した場合には、加熱炉本体に設けてある温度制御手段によって、金型の加熱炉本体の所定温度を5℃下げる。
(5)次いで、S16で示されるように、加熱金型部(A部)に、金型を搬送し、加熱炉本体の所定設定温度条件下に、所定時間、加熱処理を行う。
(6)次いで、S17で示されるように、加熱金型部から、金型を取り出し、パウダースラッシュ部(B部)に搬送して、所定条件にて、パウダースラッシュ処理を行う。
(7)次いで、S18で示されるように、パウダースラッシュ部から、金型を取り出し、金型冷却部(C部)に搬送して、所定条件にて、冷却処理を行う。
(8)最後に、S19で示されるように、金型冷却部(C部)から、金型加工部(E部)に金型を搬送して、シート状物の脱型処理を行う。
 よって、S20で示されるように、パウダースラッシュ成形機による、シート状物の作成が終了する。
2.基本構成
 図2に、通常のパウダースラッシュ成形機10の基本構成を示し、図3に、ダウンサイジング型のパウダースラッシュ成形機10aの基本構成を示す。
 そして、それぞれのパウダースラッシュ成形機10、10aにおいて、一連のパウダースラッシュ成形を完結するための処理が並行的に行われ、最終的に、樹脂成形品であるシート状物94を迅速かつ安定的に得ることができる。
(1)金型加工部
 図2あるいは図3に示される金型加工部(E部)は、パウダースラッシュ成形したシート状物94を、金型60から取り出す脱型作業と、任意工程ではあるものの、二色シートを作成するための塗布装置(図示せず)による、金型60に対する塗布作業等を行うための部位である。
 そして、移動及び迅速処理を容易にするため、金型60は、フレーム部材61に取りつけられており、当該フレーム部材61とともに、搬送装置(例えば、クレーン)62によって、金型加工部(E部)をスタート地点として、所定部の間を、任意に移動できるように構成されている。
 なお、図4(b)や、図5に示すように、搬送装置(例えば、クレーン)62の下方には、フック62cが設けてあることから、一つの搬送装置62で、一つの金型60を予備加熱処理等しながら、別の金型60を同時搬送することができる。
 言い換えれば、複数の金型60を、同時期に、それぞれ別処理するために、搬送することができる。
 したがって、一つの搬送装置62において、一つの金型60を予備加熱処理等しながら、別な金型60を、加熱処理、パウダリング処理、あるいは、冷却処理等のために、所定場所まで同時搬送することができ、ひいては、パウダースラッシュ成形機10、10aにおけるシート状物94の製造時のタクト時間を、大幅に短縮することができる。
(2)予備加熱装置
 また、図4(a)~(b)に示す搬送装置62によって、金型60は、金型加工部(E部)から金型加熱部(A部)に移送されるが、その際、搬送装置62の所定場所には、図5に示すように、少なくとも外表面を加熱するための予備加熱装置63が、設けてあることが好ましい。
 すなわち、例えば、搬送装置62の上部に設けてなる予備加熱装置63によって、金型60の搬送中の時間を利用して、金型60におけるシート状物94の非形成面である外表面(A面)のみならず、シート状物94の形成面である内表面(B面)についても、所定温度に予備加熱処理することができる。
 そのため、金型60の内表面形状(湾曲、窪み、オフセット等)によらず、予備加熱と併せて、本加熱の際に、金型60の全体を、均一かつ高速に、所定温度に加熱することができる。
 さらに、かかる予備加熱装置63の予備加熱処理によって、金型60の内表面と外表面との温度差が小さくなって、金型60の全体的な金属疲労や、金型60の内表面に対する成形樹脂の焼き付け現象の発生等を効果的に抑制しつつ、金型60の全体あるいは所定箇所を、均一かつ迅速に加熱することができる。
 その上、予備加熱装置63によって、金型60を補助的にも加熱できるため、一旦成形したシート状物94をさらに加熱して、硬化させるための後加熱炉等を事実上省略することができる。
 したがって、その分、ダウンサイジングが可能であって、全体として、小型化や省スペース化されたパウダースラッシュ成形機を提供することができる。
 また、予備加熱装置63としては、図6(a)~(b)に示すような、遠赤外線加熱方式のヒータ(一部送風ファンも含む)63aを備えることが好ましい。
 ここで、図6(a)は、一例の遠赤外線加熱方式のヒータ(セラミックヒータ)63aの外観を示す図(写真)であるが、例えば、照射面積が250×250mm2の矩形状のセラミックヒータ63aであって、3相、200V、30Aの定格電源を用いて、1~6kW/個の発熱が可能である。
 したがって、遠赤外線加熱方式のヒータ63a等を、複数枚使用することにより、所定の予備加熱温度(T5)とすることができる。
 また、図6(b)は、別の遠赤外線加熱方式のヒータ(セラミックヒータ)63aの断面図であるが、後方から、送風機153、ホース154、ホース接続口151a、整流板部材155、通気孔が設けてある排出調整部材158、遠赤外線放射発熱体159、及び、筐体151とから、構成されている。
 したがって、遠赤外線放射発熱体159は、例えば、薄い帯状の通電材料を基板として、その表面にセラミックス材料が溶射被覆されており、基板に通電することにより、発熱し、セラミックス材料表面から、前方に向かって遠赤外線160を放射して、所定の予備加熱温度(T5)とすることができる。
 すなわち、このような遠赤外線加熱方式のヒータ63aのいずれかを用いることによって、金型60の内表面や外表面はもちろんのこと、金型60の任意場所に対して、選択的に遠赤外線(熱線)を浸透させることができる。したがって、金型60の内表面形状によらず、金型60の全体又は所定部分のみを、より均一かつ迅速に予備加熱処理して、所定の予備加熱温度(T5)とすることができる。
 また、このような遠赤外線加熱方式のセラミックヒータ63aであれば、比較的軽量かつ薄型であることから、予備加熱装置63としても、軽量化、薄型化、省スペース化等を図ることができる。
 なお、かかる予備加熱温度(T5)は、予備加熱されてなる金型の温度を意味することから、広い意味で、本加熱炉による加熱前の金型温度(T1=T5)と同温度を表す場合もあるが、搬送中に、比較的大きく金型温度が変化することから、本加熱炉に入る直前の金型温度を、予備加熱温度(T5)の代表値とすることができる。
 そして、かかる予備加熱温度(T5)は、第1温度測定手段として、例えば、熱電対、赤外線温度計、サーモグラフィ、温度センサー、消費電力計等の少なくとも一つを用いて、連続的又は断続的に測定することができる。
 その際、金型の背面の全部又は一部に、熱吸収剤や赤外線吸収剤(カーボンブラック、クロム材料、ニッケル材料等)を含む熱吸収性塗料を塗布し、所定塗膜を形成してあることが好ましい。
 この理由は、このように構成することにより、上述した非接触赤外線温度計等を用いて、より正確かつ迅速に、金型温度を測定することができるためである。
 更に言えば、このような熱吸収剤や赤外線吸収剤入りの熱吸収性塗料からなる塗膜や、あるいは、軽量カルシウム板等の遮熱板で金型の背面を被覆したりすることにより、予備加熱処理の効果が著しく向上するためである。
 したがって、予備加熱処理する際に、同じ電気容量のセラミックヒータを同条件で用いたとしても、塗膜等を形成しなかった場合と比較して、10~20℃/分の遅い温度上昇となる傾向が得られた。
 なお、所定塗膜を形成する場合、その厚さを、通常、1~200μmの範囲内の値とすることが好ましく、5~100μmの範囲内の値とすることがより好ましく、10~50μmの範囲内の値とすることがさらに好ましい。
 更に言えば、遮熱板を用いる場合、その厚さを、通常、0.5~15mmの範囲内の値とすることが好ましく、1~10mmの範囲内の値とすることがより好ましく、3~8mmの範囲内の値とすることがさらに好ましい。
(3)金型加熱部
 また、図2に示す通常のパウダースラッシュ成形機10の場合、金型加熱部(A部)に関して言えば、図8に示すように、プロパンガス由来の火炎装置等により得られた熱風14を、熱風吹出口16の下方に設けた空気供給ファン46により、配管45や主配管43を通じて、熱風吹出口16から供給する構成であることが好ましい。
 すなわち、かかる熱風発生装置40により得られた熱風14と、後述するエネルギ回収部54を通じて炉内から回収され、空気循環ファン42により混合室44に送り込まれた熱風とを、混合室44において適宜混合した後、空気供給ファン46により、所定風速を有する大量の熱風として、主配管43を通じて、熱風吹出口16に供給する構成であることが好ましい。
 一方、図3に示すダウンサイジング型のパウダースラッシュ成形機10aの場合、金型加熱部(A部)として、図7に示すように、温度制御手段として、縦型の加熱炉58の炉本体を含んでおり、側面に、上下方向に開閉可能なシャッター58aを有する平面長方形の箱状体として形成されていることが好ましい。
 より具体的には、図7に示すように、バランサーとしての錘58bが付いたシャッター58aにおいて、錘58bを上げた状態、すなわち、シャッター58aを開いた状態で、金型60(図中、60c、以下同様である。)及びそのフレーム部材61を、炉内に側方より搬入する。
 次いで、金型60及びそのフレーム部材61を、加熱炉58の搬入箇所の上方の所定箇所に固定配置した後、錘58bを下げた状態にして、シャッター58aを閉じる。
 次いで、ガス炉や電熱炉等の熱風発生装置58c、58dによって、加熱炉58において発生させた所定温度の熱風を、下方から、左右に首を振るルーバー58fを介して吹き込む。
 そして、金型60の上方に設けてあるルーバー58eによって、熱風を循環させながら、金型60を、均一かつ迅速に加熱できるように構成されている。
 すなわち、図3に示すダウンサイジング型のパウダースラッシュ成形機10aの場合、金型加熱部(A部)を、このように構成することにより、金型60等の、加熱炉58の内部への搬入が容易になる。
 そればかりか、加熱炉の吹出口58c´からの熱エネルギの供給が容易になり、ひいては、省スペース化や熱エネルギの効率的回収についても容易になる。
 よって、加熱炉58の温度制御手段の主要素としては、かかる熱風発生装置58c、58dと言える。
 また、図2に示す通常のパウダースラッシュ成形機10の場合も、図3に示すダウンサイジング型のパウダースラッシュ成形機10aの場合も、金型加熱部(A部)において、図7に示す加熱炉58、58´を用いて、金型温度(T4相当)を、通常、所定温度として、220~300℃の範囲内の値とすることが好ましい。
 例えば、金型60として、厚さ3.5mmのニッケル鋳造合金製金型を加熱する際に、当該の内表面温度である金型温度(T4相当)を、所定温度とすることが好ましい。
 この理由は、かかる金型温度(T4相当)が、220℃未満の値になると、パウダースラッシュ成形に使用可能な成形樹脂の種類が過度に制限される場合があるためである。
 一方、かかる金型温度が300℃を超えると、成形樹脂の焼き付け現象に起因したグロス現象が頻繁に生じたり、金型の金属疲労により、冷却時に金型にクラックが生じたりする場合があるためである。
 したがって、パウダリング前の、加熱した段階の金型温度(T4相当、平均値)を、例えば、230~280℃の範囲内の値とすることがより好ましく、240~260℃の範囲内の値とすることがさらに好ましい。
 そして、金型温度のばらつきを、所定温度の±20%以内の値とするといった場合、例えば、加熱炉における金型の所定温度(平均温度)が230℃とすれば、ばらつきを考慮して、パウダリング前の金型温度(T4相当)を184~276℃の範囲内の値とすることを意味する。
 また、第1の実施形態で詳述したように、いずれのパウダースラッシュ成形機10、10aにおいても、パウダリング前の金型温度(T4)を、加熱前の金型温度(T1)及び環境温度(T2)等、あるいは、パウダースラッシュ部における成形樹脂温度(T3)をもとに、金型加熱部における温度制御手段や、搬送装置62に取り付けられた予備加熱装置63等によって、併せて制御することにより、所定厚さのシート状物94が安定的に得られることが判明している。
 すなわち、何もしなければ、加熱前の金型温度(T1)や環境温度(T2)等に起因して、パウダリング前の金型温度(T4)がばらつき、ひいては、シート状物の厚さがばらつくような場合がある。
 しかしながら、本発明によれば、パウダリング前の金型温度(T4)のばらつきが所定温度の±20%以内の値に制御されることから、シート状物の厚さのばらつきに関しても、所定厚さの±10%以内の値を安定的に得ることができる。
 より具体的には、パウダリング前の金型温度(T4)のばらつきが、所定温度(例えば、230℃)の±20%以内の値であれば、シート状物の所定厚さ(例えば、1.2mm)の±10%以内の値に制御することができる。
 また、パウダリング前の金型温度(T4)のばらつきが、所定温度(例えば、230℃)の±15%以内の値であれば、シート状物の所定厚さ(例えば、1.2mm)のばらつきを±8%以内の値に制御することができる。
 さらに、パウダリング前の金型温度(T4)のばらつきが、所定温度(例えば、230℃)の±10%以内の値であれば、シート状物の所定厚さ(例えば、1.2mm)のばらつきを±5%以内の値に制御することができる。
 その上、パウダリング前の金型温度(T4)のばらつきが、所定温度(例えば、230℃)の±6%以内の値であれば、シート状物の所定厚さ(例えば、1.2mm)のばらつきを±2%以内の値に制御することができる。
(3)パウダースラッシュ部
 また、パウダースラッシュ部(B部)は、加熱された金型に対して、流動状態の成形樹脂92を吹き付け、当該成形樹脂を溶融させて被膜を形成し、所定のシート状物とするための部位である。
 すなわち、図2に示す、通常のパウダースラッシュ成形機10を用いた場合、図9(a)に示すように、加熱炉における熱風14によって、金型60を所定温度に加熱、特に、金型内表面に対して熱風14を吹き付けて、所定温度に加熱することになる。
 次いで、図9(b)に示すように、金型60を、リザーバタンク88の上方に位置合わせした上で、載置する。
 次いで、図9(c)に示すように、金型60を、リザーバタンク88と一緒に、回転させる。
 そして、これらを回転させる際に、リザーバタンク88の内部に収容された成形樹脂92の分散性を向上させ、均一な厚さのシート状物94を形成するために、リザーバタンク88の下方に設けた攪拌室88aに空気を導入して、パウダー状の成形樹脂92を流動状態とすることが好ましい。
 すなわち、攪拌室88aの上方は、穴開き部材、例えば、メッシュ部材から構成してあり、導入された空気によって、成形樹脂92を巻き上げる構造であることが好ましい。
 さらに、回転させる際に、成形樹脂92の流動状態を活性化させ、均一な厚さのシート状物94ができるように、図9(c)に示すように、フレーム部材61に設けてある振動部材を、ハンマー108の先端部108aで繰り返し叩くことが好ましい。
 次いで、図10(a)に示すように、所定時間静置して、成形樹脂92を所定個所に沈降させる。その際、成形樹脂92が早期に非流動状態となるように、空気を脱気して、減圧操作を行うことが好ましい。
 そして、最後に、図10(b)に示すように、冷却装置(冷却ブース)55を用いて、金型の内表面Aに形成されたシート状物94とともに、金型60の背面側の外表面Bに対して、シャワー等を吹きつけて冷却する構成であることが好ましい。
 なお、図3に示す、ダウンサイジング型のパウダースラッシュ成形機10aの場合には、パウダースラッシュ部(B部)と、金型冷却部(C部)とが一体化しており、兼用部として、パウダースラッシュ部/金型冷却部(B/C部)を構成しているという特徴がある。
 すなわち、かかるダウンサイジング型のパウダースラッシュ成形機10aの場合、パウダースラッシュした後に、金型を冷却するため、同一場所において、パウダースラッシュ装置が退却するとともに、そこに、冷却装置等が移動してくることになる。
 よって、パウダースラッシュ部/金型冷却部(B/C部)の場合、金型冷却部(C部)が、パウダースラッシュ部(B部)と兼用されているとともに、金型冷却部(C部)等が移動式であることが特徴である。
(4)金型冷却部
 金型冷却部(C部)は、図2に示す、通常のパウダースラッシュ成形機10の場合、図10(b)に示すように、冷却装置55からなる構成部位である。
 より具体的には、フレーム部材61を含む、水冷あるいは空冷等の冷却装置55により、例えば、50℃程度まで冷却させるための冷却装置55である。
 すなわち、かかる冷却装置55により、シート状物94を形成した、金型60の外表面(B面)に対して、冷却水をシャワー又は冷却ミストを吹き付けることにより、所定温度まで冷却することになる。
 一方、図3(a)に示す、ダウンサイジング型のパウダースラッシュ成形機10aの場合、金型冷却部が、パウダースラッシュ部と兼用されているため、金型冷却部等が移動式であることが好ましい。
 すなわち、図3(b)に示すように、金型60(60b)を冷却する際には、パウダースラッシュ終了後の粉体ボックス64が、矢印Cに示すように、パウダースラッシュ部/金型冷却部(B/C部)からボックス交換位置(D部)に、水平的に移動する。
 より具体的には、パウダースラッシュ成形後、回転装置89と係合した状態の金型60(60b)と、粉体ボックス64とが、矢印Eで示されるように、上下方向に、分離移動する。
 したがって、回転装置89と係合した状態の金型60(60b)のみが上昇するとともに、分離後の粉体ボックス64は、パウダースラッシュ部/金型冷却部(B/C部)からボックス交換位置(D)に向かって、水平的に移動する。
 すなわち、図3(b)中、金型60(60b)は、矢印Cに沿って、上方に水平移動し、その後、適宜、矢印Dに沿って、右横方向、あるいは、場合によっては、左横方向に水平移動する。
 なお、ボックス交換位置(D部)の配置場所については、特に制限されるものではないが、事実上、水平移動のみで足りることから、図3(b)に示すように、パウダースラッシュ部/金型冷却部(B/C部)に隣接した外側領域(図面上、左側)に設けてあることが好ましい。
 次いで、図3(a)~(b)に示すように、金型冷却部(C部)に設けてある冷却装置(例えば、冷却ブース)55が、矢印Aに示されるように、パウダースラッシュ部(B部)の回転装置89の直下に水平移動し、金型60(60b)を把持するフレーム部材(図示せず。)と係合する。
 より具体的には、パウダースラッシュ部/金型冷却部(B/C部)に設けてある冷却装置55が、駆動レール55aに沿って移動し、回転装置89と係合した状態の金型60(60b)の直下に移動する。
 それに対応して、回転装置89によって、金型60(60b)は、反転されて、シート状物が形成された金型60(60b)の内表面(A面)を上側に開放した状態となり、冷却装置55と、金型60(60b)の外表面(B面)とが向き合う状態で、両者が、係合する。
 そして、かかる冷却装置55により、金型60(60b)の外表面(B面)に対して、冷却水をシャワー又は冷却ミストを吹き付け、所定温度に冷却することができる。
 その他、図2に示す、通常のパウダースラッシュ成形機10の場合、及び、図3(a)に示す、ダウンサイジング型のパウダースラッシュ成形機10aの場合の、それぞれにおいて、金型60の背面(B面)を所定温度に冷却した後、図11に示すように、乾燥装置99を用いて、金型60やシート状物94等に対して、乾燥空気を吹き付けることも好ましい。
 より具体的には、二点鎖線で記載された想定円に沿って、矢印Aの方向に、金型60が回転し、シート成形面であるB面が下方を向く。
 次いで、形成したシート状物94及び金型60等に、乾燥空気を吹き付けて、これらの温度をさらに冷却するとともに、シート状物94の表面等に付着した水分等を除去することが好ましい。
 したがって、かかる乾燥処理を行うことによって、冷却装置55の駆動時間を短縮化することができるとともに、シート状物94の吸水率を制御して、より高品質のシート状物94とすることができる。
 なお、かかる乾燥装置99は、複数の吹出口99a及び送風機99bから主として構成されており、これら吹出口99aの先端部が、全体として、約180°の範囲で、吹き付け角度を変えるための首振り機構が設けてある。
 より具体的には、乾燥装置99の下方壁に沿って設けてある、複数の吹出口99aと、形成したシート状物等を直接的に乾燥させるべく、金型の直下に位置する複数の吹出口99a´とが、それぞれ設けてあることが好ましい。
 そして、例えば、1~100m/秒の空気等を、吹き付け角度を左右に変えながら、あるいは、一定角度に固定して、シート状物94等に対して吹き付けることができる。
 その上、図2に示す、通常のパウダースラッシュ成形機10の金型冷却部(C部)、あるいは、図3(a)に示す、ダウンサイジング型のパウダースラッシュ成形機10aのパウダースラッシュ部/金型冷却部(B/C部)において、金型60の所定温度に冷却した後、あるいは、金型60を冷却する前に、図12(a)~(b)に示すように、加熱装置100、100´を用いて、形成したシート状物94及びを所定温度に加熱することも好ましい。
 すなわち、金型冷却部(C部)等における冷却装置や乾燥装置にかえて、あるいは、乾燥装置とともに、加熱装置100、100´を備え、遠赤外線方式のセラミックヒータ等によって、形成したシート状物94を加熱することが好ましい。
 したがって、図12(a)に示す加熱装置100の場合、一部のフレーム部材100aの上方に、形成したシート状物94を備えた状態とし、下方から加熱処理することになる。よって、シート状物94において、溶融が不十分だった樹脂成分等をより均一に溶融させたり、シート状物94の乾燥を速めたりすることができる。
 一方、図12(b)に示す加熱装置100´の場合、遠赤外線方式のセラミックヒータ63a等の下方に、形成したシート状物94を備えた状態の金型60を、所定フレーム100bの上に載置し、上方から加熱処理することになる。
 これによっても、シート状物94において、溶融が不十分だった樹脂成分を溶融させたり、シート状物94の乾燥を速めたりすることができる。
(5)金型交換部
 また、いずれのパウダースラッシュ成形機10、10aにおいても、それぞれ金型交換部(D部)をさらに備えることが好ましい。
 すなわち、かかる金型交換部(D部)を利用して、パウダースラッシュ成形の途中で、種類の異なる二色成形されたシート状物を成形するための金型に変更したり、パウダースラッシュ成形中に、金型損傷が生じたりする場合に対応するためである。
 より具体的には、そのような場合であっても、パウダースラッシュ成形機を動作させたまま、金型を交換できるためである。
 一方、かかる金型交換部(D部)が、図3(a)に示す、ダウンサイジング型のパウダースラッシュ成形機10aにおいて、金型冷却部(C部)が移動式であって、かつ、パウダリングしている最中には、冷却装置(例えば、冷却ブース)55を一時的に載置する箇所(仮台)ともなる。
 したがって、図2に示すように、かかる金型交換部(D部)には、金型60を載置するための支持台66を備えるとともに、支持台66の位置が、外部制御によって、移動可能であることが好ましい。
 さらに言えば、図3(b)に示す、ダウンサイジング型のパウダースラッシュ成形機10aの場合、かかる金型交換部(D部)には、冷却装置55が設けてあり、パウダースラッシュ成形後に、当該冷却装置55が、移動する構成であることも好ましい。
 そして、かかる冷却装置55や、金型60自体を交換する場合には、図3(b)に示す金型交換部(D部)を含む所定領域(D1)を利用して、これら等を適宜水平移動させ、新規の冷却装置55や、金型60と交換することができる。
 すなわち、図3(b)中、矢印Bに沿って、金型60等は、図面上、上方方向に水平移動し、その後、適宜、矢印Dに沿って、右横方向、あるいは、場合によっては、左横方向に水平移動する。
(6)シート状物
 いずれのパウダースラッシュ成形機10、10aにおいて、パウダースラッシュ成形して得られるシート状物94の形態に関し、所定厚さ(平均値)を、通常、1.1~1.6mmの範囲内の値とし、より好ましくは、1.2~1.4mmの範囲内の値とすることが好ましい。
 この理由は、このような厚さに制御することにより、例えば、所定厚さの±10%以下の値を有するシート状物94を、比較的容易に製造できるためである。
 逆に、厚さのばらつきが、所定厚さの±10%を超えると、シート状物94の使用用途が極めて制限され、例えば、エアバッグドア部を有する自動車内装材として、使用することが事実上、困難となる場合がある。
 なお、シート状物の構成材料は特に制限されるものでないが、例えば、エポキシ樹脂、塩化ビニル樹脂、アクリル樹脂、オレフィン樹脂(熱可塑性オレフィン樹脂を含む。)、ウレタン樹脂(熱可塑性ウレタン樹脂を含む。)、ポリカーボネート樹脂、又はポリエステル樹脂(熱可塑性ポリエステル樹脂を含む。)の少なくとも一つの樹脂から構成してあることが好ましい。
[第2の実施形態]
 第2の実施形態は、図3(a)~(b)に例示されるように、金型加熱部(A部)と、パウダースラッシュ部/金型冷却部(B/C部)と、金型加工部(E部)と、を備えたパウダースラッシュ成形機10aを用いて、成形樹脂からシート状物を成形するパウダースラッシュ成形方法であって、下記工程を含んでいる。
(1)加熱前の金型温度(T1)及び環境温度(T2)を測定する工程
(2)金型加熱部(A部)において、金型を加熱する工程
(3)パウダリング前の金型温度(T4)を測定する工程
(4)パウダースラッシュ部/金型冷却部(B/C部)のパウダースラッシュ部(B部)において、成形樹脂をパウダリングしながら吹き付けて、加熱した金型の内表面に、所定厚さのシート状物を成形する工程
(5)パウダースラッシュ部/金型冷却部(B/C部)の金型冷却部(C部)において、金型を冷却する工程
(6)金型加工部(E部)において、冷却したシート状物を、金型から脱型する工程
(7)金型を加熱する工程において、加熱前の金型温度(T1)及び環境温度(T2)の少なくとも一方の温度情報に基づき、パウダリング前の金型温度(T4)のばらつきを、温度制御手段によって、所定温度の±20%以内の値とする工程
 以下、図3に示す、予備加熱装置63を含む搬送装置62を備えてなる、ダウンサイジング型のパウダースラッシュ成形機10aを想定して、第2の実施形態のパウダースラッシュ成形方法について具体的に説明する。
 但し、言うまでもなく、図2に示す、通常のパウダースラッシュ成形機10においても、あるいは、それ以外のパウダースラッシュ成形機の態様においても、所定のアルゴリズムに沿って、パウダリング前の金型温度(T4)のばらつきを、温度制御しながら、成形樹脂からシート状物を成形することができる。
1.加熱前の金型温度(T1)及び環境温度(T2)等の測定工程
 加熱前の金型温度(T1)及び環境温度(T2)等の測定工程は、所定の温度測定手段により、加熱前の金型温度(T1)、環境温度(T2)、さらには、パウダースラッシュ部における成形樹脂温度(T3)をそれぞれ測定する工程である。
 すなわち、これらの温度(T1~T2)、さらには成形樹脂温度(T3)を測定して、それらの少なくとも一つに基づき、パウダリング前の金型温度(T4)を制御することにより、加熱前の金型温度(T1)や環境温度(T2)等がばらついたような場合であっても、厚さのばらつきに関し、所定厚さの±10%以内のシート状物を得ることができる。
 なお、所定の温度測定手段としては、上述したように、非接触赤外線温度計、サーモグラフィ温度計、又は接触式熱電対、あるいは、温度センサー(半導体温度センサー)等が挙げられる。
2.金型準備工程
 金型準備工程は、図3に示される金型加工部(E部)において、パウダースラッシュ成形したシート状物94を、金型60から取り出す脱型作業を行って、次工程のために、金型60を準備する工程である。
 そして、金型準備工程の一部として、金型60に対して、予備加熱工程を実施することが好ましい。
 すなわち、金型加工部(E部)において搭載した金型60を、搬送装置(クレーン等)62の一部に備えてなる予備加熱装置63を用いて、例えば、予備加熱した金型温度(T5)が、80~200℃の範囲内の値(例えば、外表面温度)となるように、予備加熱処理をする工程(以下、予備加熱工程と称する場合がある。)である。
 よって、かかる予備加熱工程は、任意工程ではあるが、金型加工部(E部)から金型加熱部(A部)に移動させる途中に、金型の温度が所定温度(T5)となるように、予備的に加熱処理して、本加熱炉における加熱温度のばらつきや温度上昇時間等を調整することができる。
 その上、金型60の金属疲労や、成形樹脂の内表面に対する焼き付け現象の発生を効果的に抑制したり、パウダースラッシュ成形機のダウンサイジング化に寄与したりすることができる。
 また、予備加熱工程において、搬送装置62が、金型60を把持すると同時に、予備加熱装置63にスイッチが入って、金型60を予備加熱処理することが好ましい。
 この理由は、このように金型60の把持動作と同期して、金型60を予備加熱処理することにより、金型60の搬送時間を十分に有効利用できるためである。
 但し、金型60を把持すると同時に、予備加熱装置63にスイッチが入ると言っても、必ずしも0秒後である必要はなく、パウダースラッシュ成形の状況等に応じて、0.1秒後や1秒後であっても良い。
 その他、予備加熱工程において、金型60の搬送時の温度低下を防止すべく、別の金型に対する加熱処理の間に、さらに別の金型60を搬送装置62にクランプしながら、予備加熱処理を施すことも好ましい。
 この理由は、所定の予備加熱処理によって、パウダースラッシュ部/金型冷却部(B/C部)の一体箇所において、加熱処理された金型60に対するシート状物94の形成を、より迅速かつ安定的に行うことができ、ひいては、シート状物一つ当たりの成形時間(タクトタイム)をより短期化できるためである。
 なお、図3(a)に示される、加熱炉58における金型60(60c)の温度が、例えば、260℃になるまで、加熱炉58の熱風を循環利用して、加熱処理した後、加熱炉58から金型60(60c)が取り出される、さらには、パウダースラッシュ部/金型冷却部(B/C部)に移送されることになる。
 その際、かかる金型60(60c)をパウダースラッシュ部/金型冷却部(B/C部)に移送するまでの間も、予備加熱装置63によって、温度維持のための加熱として、金型60(60c)の温度を、所望温度範囲の値に維持することができる。
 すなわち、予備加熱装置63によって、金型60(60c)の温度を、加熱炉58の温度と同等に維持することもできるので、パウダースラッシュ部/金型冷却部(B/C部)において、シート状物94をさらに安定的に成形することができる。
3.加熱工程
 次いで、加熱工程は、金型加熱部(A部)において、例えば、220~300℃、より好ましくは、230~270℃の金型温度(T4相当)となるように、加熱する工程(以下、加熱工程と称する場合がある。)である。
 したがって、所定の金型60を金型加熱部(A部)に移動させて、図3(a)に示される加熱炉58内に搬入し、そこで、金型60の温度が所定温度となるように、迅速に加熱することが好ましい。
 なお、上述したように、加熱工程を実施するに際して、後工程であるパウダースラッシュ工程で均一な厚さのシート状物94を成形できるように、金型60(60c)の温度が所定の均一温度になるように、熱風による対流加熱を行うことが好ましい。
 また、図3(a)に示される、加熱炉58中で金型60(60c)を加熱する工程において、加熱前の金型温度(T1)、環境温度(T2)、及び成形樹脂温度(T3)等の温度情報に基づき、パウダリング前の金型温度(T4)を、金型の加熱炉における温度制御手段、さらには、予備加熱装置63によって、併せて制御することが好ましい。
 すなわち、図1に示すアルゴリズム等にしたがって、均一な厚さのシート状物94を安定的に成形することができる。
4.パウダースラッシュ工程
 次いで、パウダースラッシュ工程は、図3に示すように、パウダースラッシュ部/金型冷却部(B/C部)において、金型60に対して、所定のシート状物94を成形する工程(以下、単に、スラッシュ工程と称する場合がある。)である。
 すなわち、加熱状態の金型60(60c)を、金型加熱部(A部)から、パウダースラッシュ部/金型冷却部(B/C部)に移動させ、そこで、図9(c)に示すように、成形樹脂92からなるシート状物94を形成する工程であり、さらには、かかるパウダリング前の金型温度(T4)を測定する工程を含んでいる。
 なお、一部上述したように、図1に示すアルゴリズム例にしたがって、加熱前の金型温度(T1)及び環境温度(T2)のみならず、パウダースラッシュ工程における成形樹脂温度(T3)等の温度情報に基づき、パウダリング前の金型温度(T4)等を調整することにより、シート状物の厚さを、所定値の±10%以内の値とできることが判明している。
5.金型冷却工程
 次いで、金型冷却工程は、シート状物94を形成した金型60を、所定温度まで冷却する工程(以下、金型冷却工程と称する場合がある。)である。
 すなわち、図3(a)に示すパウダースラッシュ成形機10aの場合、パウダースラッシュ部/金型冷却部(B/C部)に、冷却装置55を移動させた後、それにより、シート状物94を成形した状態の金型60を、少なくとも第1のエアブロー、ミスト/シャワー、及び第2のエアブローの組み合わせによる三段階ステップで、通常、40~50℃に冷却する工程である。
 ここで、一部上述したように、図3(a)に示すパウダースラッシュ成形機10aの場合には、ダウンサイジング化等のために、パウダースラッシュ部(B部)と、金型冷却部(C部)とが一体化(B/C部)されていることから、同一箇所で、パウダースラッシュ成形と、金型冷却を行うという特徴がある。
 すなわち、金型60を冷却する際には、パウダースラッシュ終了後の粉体ボックス(図示せず)が、パウダースラッシュ部からボックス交換位置に移動するとともに、金型冷却部に設けてある冷却装置が、パウダースラッシュ部の回転装置の直下に移動する。
 次いで、金型60を把持するフレーム部材61等と係合し、金型60の内表面を外部に解放した状態で、金型60の外表面に対して、冷却水をシャワー又は冷却ミストを吹き付けることになる。
6.脱型工程
 最後に、脱型工程は、金型加工部(E部)において、形成したシート状物を、金型から脱型する工程(以下、脱型工程と称する場合がある。)である。
 すなわち、冷却工程を経て、約40~60℃に低下したシート状物94を、金型60から脱型する工程である。
 なお、かかる脱型工程は、ロボットを用いて自動的に行うこともできるし、あるいは人的作業として、シート状物を脱型することもできる。
7.動作例1
 このパウダースラッシュ成形に関する一連の所定処理を実施するにあたり、複数の金型である金型60a、金型60b、金型60c、及び別の金型60を同時使用した動作例を説明する。
 すなわち、それぞれの金型60a~60c等につき、同時並行して所定処理が行うことによって、シート状物94の一つ当たりのタクトタイムを、150秒以下、より好ましくは、120秒以下と、従来装置の場合のタクトタイム(例えば、240秒)と比較して、極めて短くすることができる。
 以下、図3(a)~(b)に示すパウダースラッシュ成形機10aを参照しながら、3個の金型60a~60c、及び別の金型60を同時使用して、タクトタイムが短くなる動作例を説明する。
 まずは、予備加熱装置63を備えた搬送装置62が、金型60aをクランプして、所定場所まで上昇し、予備加熱装置63によって、所定時間にわたる金型60aの予備加熱を開始する。
 次いで、金型60aの予備加熱をしながら搬送装置62が、所定位置から下降し、金型加工部(E部)から、パウダースラッシュ部/冷却部(B/C部)に移動する。
 次いで、パウダースラッシュ成形/冷却処理が既に終了した金型60bを、搬送装置62が、パウダースラッシュ/冷却部(B/C部)から、金型加工部(E部)に搬送し、脱型処理を行う。
 この脱型処理の間に、搬送装置62が、金型加工部(E部)から、金型加熱部(A部)に、同時搬送している金型60aを移送するとともに、金型加熱部(A部)の加熱炉58の所定場所に載置し、所定条件の加熱処理を行う。
 また、金型加熱部(A部)において、金型60aに対する加熱処理の間に、搬送装置62が、脱型が終了した金型60bをクランプして、予備加熱を開始する。
 次いで、搬送装置62が、加熱処理が完了した金型60aを、金型加熱部(A部)から取り出し、パウダースラッシュ/冷却部の一体箇所(B/C部)に搬送した後、パウダースラッシュ成形/冷却処理が順次行われる。
 そして、加熱処理した金型60aを冷却する際には、パウダースラッシュ終了後の粉体ボックスが、パウダースラッシュ部からボックス交換位置に移動するとともに、金型冷却部に設けてある冷却装置が、パウダースラッシュ部の回転装置の直下に移動する。
 次いで、加熱処理した金型60aを把持するフレーム部材61と係合し、内表面を外部に解放した状態で、外表面に対して、冷却水をシャワー又は冷却ミストを吹き付ける。
 そして、このパウダースラッシュ成形/冷却処理の間に、搬送装置62が、別の金型60をクランプして予備加熱を行うとともに、金型加熱部(A部)に移動させ、加熱処理を開始する。
 すなわち、搬送装置62が、パウダースラッシュ部/冷却部(B/C部)から、金型加熱部(A部)に、別の金型60を搬送して、所定時間の加熱処理を行うことが好ましい。
 最後に、搬送装置62が、パウダースラッシュ部/冷却部(B/C部)が終了した金型60を、そこから金型加工部(E部)に搬送し、得られたシート部材94の脱型処理を行う。
 以上の説明の通り、図3(a)~(b)に示すパウダースラッシュ成形機10aにおいて、金型60a~60c等を用いた場合、所定動作例によれば、予備加熱処理を含めて、それぞれ独立した処理を同時並行で行うことができる。
 また、各工程において、必ずしも処理時間が一定とならない場合や、物理的に同時処理ができない場合があるが、そのような場合には、搬送装置62が、所定場所、例えば、加熱炉58の上方で待機しつつ、搬送装置62に備えた予備加熱装置63によって、金型60を予備加熱すればよい。
 その他、動作例1の場合、右から左に向かって、金型加熱部(A部)、パウダースラッシュ/冷却部(B/C部)、金型交換部(D部)及び金型加工部(E部)の順に、配置してあるパウダースラッシュ成形機10aを想定したが、右から左に向かって、金型加熱部(A部)、金型交換部(D部)、パウダースラッシュ/冷却部(B/C部)、及び金型加工部(E部)の順に、配置してあるパウダースラッシュ成形機10aであっても良い。
8.動作例2
 動作例2では、図2に示す、通常のパウダースラッシュ成形機10、すなわち、パウダースラッシュ部(B部)と、金型冷却部(C部)とが独立的に設けてあり、かつ、パウダースラッシュ成形及び冷却処理を別々な箇所で、それぞれ別個に行うパウダースラッシュ成形機10を想定して、複数個の金型60に対して、各種処理を説明することができる。
 すなわち、動作例2では、例えば、一つの金型60を、搬送装置62によって、金型加熱部(A部)から取り出し、パウダースラッシュ部(B部)に搬送した後、所定時間のパウダースラッシュ成形を行う。
 そして、かかる動作例2では、例えば、一つの金型60に対して、パウダースラッシュ部(B部)において、所定時間のパウダースラッシュ成形を行っている最中に、別の金型60に対して、別の処理を行うことができる。
 したがって、一つの金型60に対して、パウダースラッシュ成形を行っている最中に、搬送装置62を用いて、別の金型60(パウダースラッシュ処理済)を、金型冷却部(C部)に移動させて、そこで同時期に冷却処理を行うことができる。
 一方、かかる動作例2では、一つの金型60に対して、パウダースラッシュ部(B部)において、所定時間のパウダースラッシュ成形を行った後、搬送装置62を用いて、金型冷却部(C部)に移動させて、そこで冷却処理を行うことも可能である。
 したがって、かかる動作例2では、パウダースラッシュ成形/冷却処理が一体箇所(B/C部)で行われる装置を前提とした動作例1と比較して、金型60に対して、パウダースラッシュ成形を行っている際の次工程への待ち時間や、あるいは、パウダースラッシュ部(B部)への冷却装置の移動等の時間を、省略することができる。
 よって、最大100秒以下のタクトタイムで、一つのシート状物を成形することができる。
 なお、動作例2においても、予備加熱装置付き搬送装置を用いることや、一つの搬送装置で、下方に設けたフック62c等を利用して、複数の金型60を同時搬送できる点は、動作例1と同様である。
 本発明のパウダースラッシュ成形機及びパウダースラッシュ成形方法によれば、パウダリング前の金型温度(T4)への影響因子として、加熱前の金型温度(T1)や環境温度(T2)、さらには、成形樹脂温度(T3)等を考慮し、パウダリング前の金型温度(T4)の温度を所定範囲に制御する温度制御手段等を設けることにより、所望厚さのシート状物を安定的に形成できるようになった。
 また、本来、金型の内表面を主として加熱する加熱炉のほかに、搬送中の金型を加熱するための予備加熱装置を、搬送装置の一部に設けたことにより、本加熱炉において、金型を所定温度に加熱するまでの時間等を著しく短縮化かつ均一化できるようになった。
 また、金型の予備加熱によって、金型内部の温度分布も小さくなり、金型の金属疲労(クラック発生)の発生を有効に防止できるようになった。
 その上、金型の背面の全部又は一部に、熱吸収剤や赤外線吸収剤(カーボン、カーボンブラック、クロム材料、ニッケル材料等)を含む熱吸収性塗料を塗布し、所定塗膜を形成することにより、非接触赤外線温度計等を用いて、より正確かつ迅速に、金型温度を測定することができるようになった。
 更に言えば、このような熱吸収剤や赤外線吸収剤入りの熱吸収性塗料からなる塗膜等で金型の背面を被覆したりすることにより、金型の冷却処理を妨げることなく、予備加熱処理の効果が著しく向上する傾向が得られた。
 よって、本発明のパウダースラッシュ成形機及びパウダースラッシュ成形方法によって得られたシート状物は、パウダースラッシュ成形品として、厚さの均一性が極めて厳しく要求される自動車の内装材(特に、ティアラインを形成するエアバッグドア部の表皮用内装材)やバンパー等として、好適に使用されることが期待される。
10、10a:パウダースラッシュ成形機、14:熱風、16:熱風吹出口、40:熱風発生装置、43:主配管、54:エネルギ回収部、55:冷却装置、58:加熱炉、58a:シャッター、58b:錘、58c:熱風発生装置、58d:回収装置、58e、58f:撹拌装置、60、60a、60b、60c:金型、61:金型のフレーム部材、62:搬送装置、62c:フック、63:予備加熱装置、63a:遠赤外線加熱方式のヒータ(セラミックヒータ)、63d:被覆部材、64:粉体ボックス、88:リザーバタンク、88a:攪拌室、92:成形樹脂、94:シート状物、99:乾燥装置、99a、99a´:吹出口、99b:送風機、100、100´:加熱装置

 

Claims (8)

  1.  金型を加熱する金型加熱部と、成形樹脂をパウダリングしながら吹き付けて、加熱した金型の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部と、金型を冷却する金型冷却部と、冷却したシート状物を、金型から脱型する金型加工部と、を備えたパウダースラッシュ成形機であって、
     加熱前の金型温度(T1)を測定する第1温度測定手段と、環境温度(T2)を測定する第2温度測定手段と、パウダリング前の金型温度(T4)を測定する第3温度測定手段と、を備えており、かつ、
     前記加熱前の金型温度(T1)、及び前記環境温度(T2)の少なくとも一方の温度情報に基づいて、前記パウダリング前の金型温度(T4)のばらつきを、所定温度の±20%以内の値とするための温度制御手段を有することを特徴とするパウダースラッシュ成形機。
  2.  前記成形樹脂の成形樹脂温度(T3)を測定する第4温度測定手段をさらに備えており、前記温度制御手段が、前記成形樹脂温度(T3)の温度情報にさらに基づいて、前記金型温度(T4)のばらつきを、所定温度の±15%以内の値とすることを特徴とする請求項1に記載のパウダースラッシュ成形機。
  3.  前記金型を、前記金型加熱部と、前記パウダースラッシュ部と、前記金型冷却部と、前記金型加工部の間で、相互移動させるための搬送装置を備えるとともに、当該搬送装置の一部に、前記金型を予備加熱処理するための予備加熱装置が設けてあることを特徴とする請求項1又は2に記載のパウダースラッシュ成形機。
  4.  前記加熱前の金型温度(T1)及びパウダリング前の金型温度(T4)の温度情報を測定するために、前記金型の一部又は全部に、熱吸収性塗料及び赤外線吸収性塗料、あるいはいずれか一方を基にした塗装箇所が形成してあることを特徴とする請求項1~3のいずれか一項に記載のパウダースラッシュ成形機。
  5.  金型加熱部と、パウダースラッシュ部と、金型冷却部と、金型加工部と、を備えたパウダースラッシュ成形機を用いて、成形樹脂からシート状物を成形するパウダースラッシュ成形方法であって、
     加熱前の金型温度(T1)及び環境温度(T2)を測定する工程と、
     前記金型加熱部において、金型を加熱する工程と、
     パウダリング前の金型温度(T4)を測定する工程と、
     前記パウダースラッシュ部において、前記成形樹脂をパウダリングしながら吹き付けて、加熱した金型の内表面に、所定厚さのシート状物を成形する工程と、
     前記金型冷却部において、前記金型を冷却する工程と、
     前記金型加工部において、冷却したシート状物を、前記金型から脱型する工程と、を含み、かつ、
     前記金型を加熱する工程において、加熱前の金型温度(T1)及び環境温度(T2)の少なくとも一方の温度情報に基づき、前記金型加熱部に設けてある温度制御手段によって、前記パウダリング前の金型温度(T4)のばらつきを、所定温度の±20%以内の値とすることを特徴とするパウダースラッシュ成形方法。
  6.  前記加熱前の金型温度(T1)及び環境温度(T2)を測定する工程において、前記成形樹脂の成形樹脂温度(T3)をさらに測定するとともに、前記温度制御手段によって、前記成形樹脂温度(T3)の温度情報を考慮して、パウダリング前の金型温度(T4)のばらつきを、所定温度の±15%以内の値とすることを特徴とする請求項5に記載のパウダースラッシュ成形方法。
  7.  前記金型を、前記金型加熱部と、前記パウダースラッシュ部と、前記金型冷却部と、前記金型加工部の間で、相互移動させるための搬送装置を備えるとともに、当該搬送装置の一部に、前記金型を予備加熱処理するための予備加熱装置が設けてあって、前記金型を、搬送中に、所定温度に予備加熱処理することを特徴とする請求項5又は6に記載のパウダースラッシュ成形方法。
  8.  前記加熱前の金型温度(T1)及びパウダリング前の金型温度(T4)を、前記金型の一部又は全部に形成された、熱吸収剤入り塗料及び赤外線吸収剤入り材料、あるいはいずれか一方の塗料を基にした塗装箇所を介して、非接触赤外線温度計、サーモグラフィ温度計、又は接触式熱電対の少なくとも1つを用いて測定することを特徴とする請求項5~7のいずれか一項に記載のパウダースラッシュ成形方法。
PCT/JP2017/010604 2016-08-02 2017-03-16 パウダースラッシュ成形機及びパウダースラッシュ成形方法 WO2018025442A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531737A JP6644893B2 (ja) 2016-08-02 2017-03-16 パウダースラッシュ成形機及びパウダースラッシュ成形方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-151792 2016-08-02
JP2016151792 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018025442A1 true WO2018025442A1 (ja) 2018-02-08

Family

ID=61073623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010604 WO2018025442A1 (ja) 2016-08-02 2017-03-16 パウダースラッシュ成形機及びパウダースラッシュ成形方法

Country Status (2)

Country Link
JP (1) JP6644893B2 (ja)
WO (1) WO2018025442A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193903A (zh) * 2018-02-27 2019-09-03 丰田自动车株式会社 粉末搪塑成型系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788864A (ja) * 1993-09-21 1995-04-04 Mitsuboshi Belting Ltd パウダスラッシュ成形方法
JPH0839589A (ja) * 1994-07-29 1996-02-13 Mitsuboshi Belting Ltd パウダスラッシュ成形方法
JPH1128744A (ja) * 1997-07-11 1999-02-02 Canon Inc ホットランナー金型およびホットランナー金型の温度分布補正方法
WO2016031531A1 (ja) * 2014-08-25 2016-03-03 株式会社仲田コーティング 低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060630A1 (ja) * 2002-12-26 2004-07-22 Nakata Coating Co.,Ltd. パウダースラッシュ成形機およびパウダースラッシュ成形方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788864A (ja) * 1993-09-21 1995-04-04 Mitsuboshi Belting Ltd パウダスラッシュ成形方法
JPH0839589A (ja) * 1994-07-29 1996-02-13 Mitsuboshi Belting Ltd パウダスラッシュ成形方法
JPH1128744A (ja) * 1997-07-11 1999-02-02 Canon Inc ホットランナー金型およびホットランナー金型の温度分布補正方法
WO2016031531A1 (ja) * 2014-08-25 2016-03-03 株式会社仲田コーティング 低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193903A (zh) * 2018-02-27 2019-09-03 丰田自动车株式会社 粉末搪塑成型系统
JP2019147313A (ja) * 2018-02-27 2019-09-05 トヨタ自動車株式会社 パウダースラッシュ成形システム
CN110193903B (zh) * 2018-02-27 2021-06-11 丰田自动车株式会社 粉末搪塑成型系统

Also Published As

Publication number Publication date
JP6644893B2 (ja) 2020-02-12
JPWO2018025442A1 (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2017018240A1 (ja) パウダースラッシュ成形機及びパウダースラッシュ成形法
US4979888A (en) Apparatus for molding an article from a fusible synthetic resin
WO2018025442A1 (ja) パウダースラッシュ成形機及びパウダースラッシュ成形方法
JP5905653B1 (ja) 低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法
US20070022624A1 (en) Paint-drying system and method
JP3696875B2 (ja) パウダースラッシュ成形機およびパウダースラッシュ成形方法
JP6034544B1 (ja) パウダースラッシュ成形機及びパウダースラッシュ成形法
JP2007502721A (ja) プラスチック表皮の形成方法
EP0247744A2 (en) Powder slush process and apparatus for making plastic articles
CA2431054C (en) Plastic skin forming process
JP3625819B2 (ja) パウダースラッシュ成形機およびパウダースラッシュ成形方法
JP2020029018A (ja) パウダースラッシュ成形機及びパウダースラッシュ成形法
JP5771794B2 (ja) 熱成形用の装置と成形方法
JPH04164610A (ja) スラッシュ成形型の加熱方法
JP6274448B2 (ja) 焼成炉及びコーティング方法
JP4760575B2 (ja) スラッシュ成形における加熱制御方法
JPH04355108A (ja) 成形型の温度制御方法
JPH01275108A (ja) プラスチツク成形シートの製法及び製造装置
JPH03202329A (ja) 皮革の形成方法
JPH07323257A (ja) 有機被覆の短時間熱処理法
JP6952589B2 (ja) パウダースラッシュ成形機
JP2836913B2 (ja) 成形型の温度制御方法
JP2003211054A (ja) 塗装用フラッシュオフ装置
JP2883725B2 (ja) スラッシュ成形型の加熱方法
JPH0425418A (ja) 樹脂製成形体の成形装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018531737

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836549

Country of ref document: EP

Kind code of ref document: A1