WO2013136850A1 - 情報処理装置、異常検出方法、プログラム、および、太陽光発電システム - Google Patents

情報処理装置、異常検出方法、プログラム、および、太陽光発電システム Download PDF

Info

Publication number
WO2013136850A1
WO2013136850A1 PCT/JP2013/051378 JP2013051378W WO2013136850A1 WO 2013136850 A1 WO2013136850 A1 WO 2013136850A1 JP 2013051378 W JP2013051378 W JP 2013051378W WO 2013136850 A1 WO2013136850 A1 WO 2013136850A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
period
parameter
state data
solar
Prior art date
Application number
PCT/JP2013/051378
Other languages
English (en)
French (fr)
Inventor
琢也 中井
浩輔 鶴田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2013136850A1 publication Critical patent/WO2013136850A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • JP 2011-216811 A Japanese Patent Application Laid-Open No. 2011-233584
  • the design characteristic value varies depending on individual differences of devices and the system configuration. For this reason, there is a difference between the theoretical power generation amount and the power generation amount that can actually be generated, which may deteriorate the accuracy of abnormality detection.
  • the system configuration includes a series-parallel configuration of solar cell modules, a cable length, performance of a power conditioner, presence / absence of a booster, and the like.
  • the present invention has been made in view of such a situation, and makes it possible to detect an abnormality of a photovoltaic power generation system easily and accurately.
  • a parameter of a model representing a relationship between state data that is data related to the state of sunlight and the amount of power generated by solar power generation is calculated, and the first parameter that serves as a reference Abnormalities in the system that performs photovoltaic power generation based on the parameters calculated based on the state data and power generation amount of the period, and the parameters calculated based on the state data and power generation amount of the second period to be determined Is detected.
  • the parameter calculation unit and the abnormality detection unit are configured by a control device such as a computer or a CPU, for example.
  • the abnormality detection unit can detect an abnormality of the system by comparing a value obtained by multiplying the parameter of the first period by a predetermined coefficient with the parameter of the second period.
  • an abnormality of the photovoltaic power generation system can be detected based on a desired standard.
  • This abnormality detection unit can set a parameter determination criterion based on the parameter confidence interval of the first period.
  • the parameter calculation unit is configured to obtain a plurality of parameters for each period shorter than the first period within the first period, and the abnormality detection unit is configured to determine a parameter criterion based on variations in the plurality of parameters. Can be set.
  • the parameter calculation unit divides state data values into a plurality of ranges, obtains a correlation coefficient between the state data of each range and the amount of power generation, and state data included in a range where the correlation coefficient is equal to or greater than a predetermined threshold.
  • the parameter can be calculated using the power generation amount corresponding to the power generation amount.
  • an abnormality is detected based on a change in power generation performance from the time of introduction, an abnormality is detected based on a change in power generation performance over a long-term span, or based on a change in power generation performance over a short-term span.
  • This abnormality detection unit can change the length of the first period and the second period to detect a system abnormality.
  • This state data can include at least one of the sunshine intensity or the sunshine condition obtained by the product of the sunshine time and the sine of the solar altitude.
  • the program according to the first aspect of the present invention includes a parameter calculation step for calculating a parameter of a model representing a relationship between state data that is data related to the state of sunlight and the amount of power generated by solar power generation, and a first reference.
  • a parameter calculation step for calculating a parameter of a model representing a relationship between state data that is data related to the state of sunlight and the amount of power generated by solar power generation, and a first reference.
  • the state data that is data related to the state of sunlight and the amount of power generated by solar power generation Parameters of the model representing the relationship are calculated, based on the parameters calculated based on the state data and power generation amount in the first period serving as a reference, and on the state data and power generation amount in the second period serving as a determination target Based on the calculated parameters, an abnormality of the system that performs solar power generation is detected.
  • This solar power generation unit is composed of, for example, a solar cell module, a power conditioner, and the like.
  • the power generation amount measuring unit is configured by a control device such as a computer or CPU, for example. Alternatively, a sensor for measuring voltage, current, etc. can be further provided.
  • the parameter calculation unit and the abnormality detection unit are configured by a control device such as a computer or a CPU, for example.
  • the solar cell module 121 generates DC power by solar power generation and supplies the generated DC power to the power conditioner 122.
  • the information processing apparatus 112 is configured to include an input unit 151, a power generation performance detection unit 152, a power generation performance parameter storage unit 153, an abnormality detection unit 154, and an output unit 155.
  • the input unit 151 includes, for example, an input device such as a keyboard, a mouse, a button, a switch, and a microphone, and is used by the user to input commands and data to the information processing apparatus 112.
  • the input unit 151 supplies the input command, data, and the like to the sunshine information collection unit 163, the power generation performance parameter calculation unit 165, and the determination condition data storage unit 171 as necessary.
  • the data and commands input by the user include, for example, data for setting a part of sunshine information, a detection condition for a power generation performance parameter (to be described later), and a determination condition for abnormality of the solar power generation unit 111 (hereinafter referred to as a determination). (Referred to as condition data).
  • the power generation amount measuring unit 161 acquires measured values such as the voltage and current of the generated power from the power conditioner 122 or a sensor provided in a power system to which the generated power is supplied from the power conditioner 122, Based on those measured values, the power generation amount of the photovoltaic power generation unit 111 is measured.
  • the power generation amount measurement unit 161 stores power generation amount measurement data indicating the measurement result in the power generation amount data storage unit 162.
  • Sunshine information includes, for example, solar radiation intensity, solar radiation amount, sunshine state, sunshine duration, solar altitude, cloud cover, and the like.
  • the sunshine condition is calculated by the following equation (1).
  • x (t) indicates the sunshine state in the time zone including the date and time t
  • s (t) indicates the sunshine time in the time zone including the date and time t
  • h ( ⁇ , L, t) indicates the solar altitude at the date and time t at the point of latitude ⁇ and longitude L. Therefore, the sunshine state x (t) at the date / time t is the product of the sunshine duration s (t) in the time zone including the date / time t and the sine (sin) of the solar altitude h ( ⁇ , L, t) at the date / time t. Desired.
  • the power generation performance parameter calculation unit 165 uses the power generation amount data stored in the power generation amount data storage unit 162 and the sunshine information data stored in the sunshine information data storage unit 164 to generate sunlight.
  • a power generation performance parameter representing the power generation performance of the power generation unit 111 is calculated.
  • the power generation performance parameter calculation unit 165 calculates a range in which the power generation performance parameter is assumed to vary (hereinafter referred to as a variation section).
  • the power generation performance parameter calculation unit 165 stores the calculated power generation performance parameter and the variation interval in the power generation performance parameter storage unit 153.
  • the abnormality detection unit 154 detects an abnormality of the solar power generation unit 111 based on the power generation performance parameter stored in the power generation performance parameter storage unit 153 and the variation interval.
  • the abnormality of the solar power generation unit 111 is mainly caused by a decrease in power generation performance regardless of whether it is an internal factor such as a failure or an external factor such as a change in the surrounding environment.
  • the abnormality detection unit 154 is configured to include a determination condition data storage unit 171 and a determination unit 172.
  • the determination unit 172 is based on the power generation performance parameter stored in the power generation performance parameter storage unit 153, the variation section thereof, and the determination condition data stored in the determination condition data storage unit 171. The presence or absence of abnormality 111 is determined. Then, the determination unit 172 supplies the determination result to the output unit 155.
  • step S1 the power generation amount measuring unit 161 measures the power generation amount.
  • the power generation amount measuring unit 161 measures the power generation amount of the solar power generation unit 111 at a predetermined interval (for example, every 30 minutes), and stores the power generation amount measurement data indicating the measurement result in the power generation amount data storage unit 162. .
  • the sunshine information collection unit 163 collects sunshine information.
  • the sunshine information collection unit 163 measures some sunshine information based on data output from sensors. Although it is desirable to synchronize the sunshine information and the measurement amount of the power generation amount, it is not always necessary to synchronize when it is difficult to synchronize.
  • the sunshine information collecting unit 163 acquires some sunshine information from the outside via the input unit 151. Then, the sunshine information collecting unit 163 accumulates the collected sunshine information data in the sunshine information data accumulating unit 164.
  • FIG. 4 shows an example in which the amount of solar radiation, the state of sunlight, the duration of sunlight, and the solar altitude are collected as the sunlight information.
  • the lack of data may be interpolated using other data, or a theoretical formula And may be calculated using various conditions.
  • the power generation performance parameter calculation unit 165 calculates a power generation performance parameter. Specifically, the power generation performance parameter calculation unit 165 constructs a model (hereinafter referred to as a power generation performance model) that represents the relationship between the sunshine information and the power generation amount, and uses the parameter representing the constructed power generation performance model as the power generation performance parameter. Ask. Therefore, the power generation performance model is a model representing the amount of power generation that can be generated by the solar power generation unit 111 with respect to given sunshine information, and the power generation performance parameter is the power generation performance of the solar power generation unit 111 on the condition of the sunshine information. It can be said that it is a parameter representing Moreover, the power generation performance parameter calculation unit 165 obtains a variation section of the power generation performance parameter. Then, the power generation performance parameter calculation unit 165 stores the calculated power generation performance parameter and the variation section in the power generation performance parameter storage unit 153.
  • a power generation performance model is a model representing the amount of power generation that can be generated by the solar power generation unit 111 with respect to given sunshine information
  • the target period for which the power generation performance parameter is obtained can be set to an arbitrary length such as one week, one month, one year, ten years, etc., with one day as the minimum unit.
  • a power generation performance parameter when obtaining a power generation performance parameter for one day, may be obtained by constructing a power generation performance model using data on the solar radiation intensity and power generation amount of the target day.
  • a power generation performance model may be obtained by building a power generation performance model using the data of solar radiation intensity and power generation amount for the target period.
  • a method of constructing one power generation performance model using all data in the target period and obtaining one power generation performance parameter can be considered.
  • a method of constructing a power generation performance model for each period shorter than the target period obtaining a plurality of power generation performance parameters, and obtaining an average value, an intermediate value, or the like as a final power generation performance parameter
  • obtaining a power generation performance parameter for one month it is conceivable to obtain a plurality of power generation performance parameters for each day or week, and to obtain an average value or an intermediate value thereof as a final power generation performance parameter.
  • the data to be used may be filtered under a predetermined condition, and the power generation performance parameter may be obtained using the remaining data. .
  • the value of solar radiation intensity is divided into a plurality of ranges, the correlation coefficient between solar radiation intensity and power generation performance is obtained for each range, the data in the range where the correlation coefficient is less than a predetermined threshold is removed, and the correlation It is conceivable to determine the power generation performance parameter using only data in a range where the number is equal to or greater than the threshold. In this case, for example, it is assumed that data in a range where the solar radiation intensity at which the operation of the solar power generation unit 111 becomes unstable is near 0 and a range near the maximum value are removed.
  • a correlation coefficient between the solar radiation intensity and the amount of power generation is obtained every period shorter than the target period (for example, every day), data in a period where the correlation coefficient is less than a predetermined threshold is removed, and the correlation coefficient is It is conceivable to determine the power generation performance parameter using only data in a period that is equal to or greater than the threshold. In this case, for example, it is assumed that data with low reliability acquired when bad weather or weather is unstable is removed.
  • the power generation performance parameter is obtained. Can be considered.
  • a confidence interval of a predetermined reliability for example, 95%) of the slope ⁇ of the power generation performance model (regression line) can be obtained as the variation interval.
  • a variation section based on the obtained variation in the power generation performance parameters.
  • the section between the maximum value and the minimum value of the determined power generation performance parameter can be determined as the variation section.
  • FIG. 6 shows an example in which a linear single regression analysis is performed using the actually measured solar radiation intensity and power generation amount, and a power generation performance model (that is, a regression line) is constructed.
  • the straight line 201 has shown the regression line in case the solar power generation part 111 is normal.
  • a straight line 202 shows a regression line when the solar panel of the solar cell module 121 is concealed and 20% of the solar panel is abnormally reproduced.
  • a straight line 203 shows a regression line when the solar panel of the solar cell module 121 is concealed and 50% of the solar panel is simulated and reproduced.
  • the slope ⁇ of the regression line is clearly different depending on the proportion of solar panels in which an abnormality has occurred. Therefore, it can be said that the abnormality of the photovoltaic power generation unit 111 can be accurately detected by using the slope ⁇ of the regression line between the solar radiation intensity and the power generation amount as the power generation performance parameter.
  • the power generation performance parameter may be obtained using sunshine information other than the solar radiation intensity.
  • the amount of solar radiation, sunshine condition, duration of sunshine, etc. that show almost the same change as the solar radiation intensity the power generation performance parameter, the variation interval, the data filtering, etc. can be obtained by the same method as the above-mentioned solar radiation intensity. It is possible to do.
  • the power generation performance parameter may be obtained using a plurality of types of sunshine information.
  • a plurality of types of power generation performance parameters may be obtained for each sunshine information, or one type of power generation performance parameters may be obtained using a plurality of types of sunshine information.
  • a plurality of types of power generation performance models may be constructed from one type of sunshine information, and a plurality of types of power generation performance parameters may be obtained.
  • FIG. 7 shows an example in which two types of power generation performance parameters ⁇ and ⁇ are obtained every month.
  • the power generation performance model to be constructed is not limited to the linear model as described above, and a non-linear model can be constructed.
  • the method for constructing the power generation performance model is not limited to the single regression analysis described above.
  • various analysis methods such as multiple regression analysis, neural network, support vector machine, model construction methods, etc. should be used. Is possible. Further, for example, it is possible to obtain an approximate straight line indicating the relationship between the sunshine information and the power generation amount using a linear approximation model other than the linear regression model, and obtain the slope as the power generation performance parameter.
  • this power generation performance parameter calculation process can be arbitrarily set. For example, it may be executed periodically during operation of the photovoltaic power generation system 101, may be executed by a user operation, or may be executed when an abnormality detection process described later is executed. Also good.
  • the determination unit 172 sets a determination condition based on the determination condition data stored in the determination condition data storage unit 171. Specifically, the determination unit 172 first sets a period for comparing the power generation performance parameters. That is, the determination unit 172 sets the timing and length of a target period (hereinafter referred to as a reference period) of a past past power generation performance parameter (hereinafter referred to as a reference parameter). Further, the determination unit 172 sets the length of a target period (hereinafter referred to as a determination period) of a current power generation performance parameter (hereinafter referred to as a determination target parameter) to be determined.
  • a target period hereinafter referred to as a target period
  • a determination target parameter a current power generation performance parameter
  • the period of the reference period can be arbitrarily set, for example, 1 day ago, 1 week ago, 1 month ago, 3 months ago, 6 months ago, 1 year ago, 3 years ago, 5 years ago, 10 years ago, Twenty years ago, it is assumed that the photovoltaic power generation system 101 is introduced.
  • the length of the reference period and the determination period can be arbitrarily set, for example, 1 day, 1 week, 1 month, 3 months, half year, 1 year, 3 years, 5 years, 10 years, 20 years, etc. Is assumed.
  • the following combinations of the reference period and the determination period can be set according to the timing of the reference period and the combination of the length of the reference period and the determination period.
  • the following combinations may be set.
  • the former represents the determination period
  • the latter represents the reference period.
  • the following combinations are set. It is possible to do.
  • the former represents the determination period, and the latter represents the reference period.
  • the following combinations may be set.
  • the former represents the determination period, and the latter represents the reference period.
  • a curve 251 in FIG. 9 and FIG. 10 shows an example in which the power generation performance is normal and the power generation performance parameter changes near the initial value (that is, the power generation performance parameter at the time of introduction).
  • a curve 252 shows an example in which the power generation performance parameter suddenly decreases.
  • a curve 253 shows an example in which the power generation performance parameter gradually decreases.
  • the reference period and the determination period are set short, for example, it becomes easy to detect a decrease in power generation performance due to a short-term or sudden event such as a change in the weather, a change in the surrounding environment, or a partial malfunction of the solar panel.
  • a short-term or sudden event such as a change in the weather, a change in the surrounding environment, or a partial malfunction of the solar panel.
  • the reference period and the determination period are set to be long, for example, a short-term or sudden event is ignored, and a long-term decrease in power generation performance such as deterioration of the solar power generation system 101 is easily detected.
  • reference period and the determination period are not necessarily set to the same length. For example, it is also possible to set to compare the power generation performance parameters of the determination target date and the previous month. It is also possible to set the reference period and the determination period to partially overlap.
  • the determination unit 172 sets a determination criterion for the power generation performance parameter. Specifically, the determination unit 172 reads out from the power generation performance parameter storage unit 153 the reference parameter of the set reference period, the variation interval, and the determination target parameter of the determination period. Then, based on the read data, the determination unit 172 sets, for example, a determination target parameter range (hereinafter referred to as a normal range) that the solar power generation unit 111 considers normal as a determination criterion.
  • a determination target parameter range hereinafter referred to as a normal range
  • a value obtained by multiplying the reference parameter by a predetermined coefficient is a lower limit value of the normal range (for example, 50% of the reference parameter).
  • a predetermined coefficient for example, 50%
  • the upper limit value is not particularly set. Note that it is also assumed that only the upper limit value of the normal range or both the upper limit value and the lower limit value are set according to the type of sunshine information used for calculating the power generation performance parameter.
  • the normal range may be changed based on the timing of the reference period, the length of the reference period and the determination period, the interval between the reference period and the determination period, the type of abnormality to be detected, and the like.
  • the longer the interval between the reference period and the determination period the wider the normal range in consideration of aging degradation.
  • the normal range can be set based on the variation interval of the reference parameter.
  • the lower limit value of the variation interval of the reference parameter is set as the lower limit value of the normal range, and the upper limit value is not particularly set.
  • the upper limit value of the normal range is set or both the upper limit value and the lower limit value are set based on the variation interval. .
  • the normal range based on this variation interval is a relatively strict judgment condition, and therefore, for example, the change in the power generation performance of the photovoltaic power generation unit 111 is monitored mainly in a short-term span (for example, daily, monthly, etc.). It is suitable for use in detecting a minor abnormality.
  • step S22 the determination unit 172 determines whether the solar power generation unit 111 is abnormal. That is, when the determination target parameter is within the normal range, the determination unit 172 determines that the solar power generation unit 111 is normal, and when the determination target parameter is not within the normal range, the solar power generation unit 111 is abnormal. Is determined. Then, the determination unit 172 supplies the determination result to the output unit 155.
  • a plurality of combinations of the reference period and the determination period may be set by changing the timing of the reference period and the length of the reference period and the determination period, and the presence / absence of an abnormality may be determined for each combination.
  • the abnormality determination of both the long-term span and the short-term span can be performed at a time.
  • a plurality of levels of determination criteria may be set for a combination of one reference period and a determination period to determine whether there is an abnormality.
  • a normal range obtained by multiplying a reference parameter by a predetermined coefficient (for example, 50%) and a normal range based on a variation interval are set, and abnormality determinations at different levels are performed. May be.
  • step S23 the output unit 155 outputs the determination result.
  • the output unit 155 displays information indicating the presence / absence of abnormality of the solar power generation unit 111 on a display or notifies the information by light or sound.
  • the abnormality level may be notified in a plurality of levels such as warning, failure, and life.
  • the abnormality of the solar power generation unit 111 can be detected easily and accurately. That is, a power generation performance model is constructed based on the sunshine information and the power generation amount, and abnormality detection is performed based on the parameters of the power generation performance model (power generation performance parameters), so various design characteristic values, individual differences between devices, system configurations, etc. Even if the information is not given, it is possible to detect an abnormality easily and accurately.
  • determination conditions such as a reference period, a determination period, and a determination criterion can be freely set, abnormality detection according to the purpose can be performed. For example, a decrease in power generation performance due to a short-term phenomenon and a life due to aging deterioration can be detected separately.
  • the series of processes described above can be executed by hardware or can be executed by software.
  • a program constituting the software is installed in the computer.
  • the computer includes, for example, a general-purpose personal computer capable of executing various functions by installing various programs by installing a computer incorporated in dedicated hardware.
  • FIG. 11 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • an input / output interface 405 is connected to the bus 404.
  • An input unit 406, an output unit 407, a storage unit 408, a communication unit 409, and a drive 410 are connected to the input / output interface 405.
  • the input unit 406 includes a keyboard, a mouse, a microphone, and the like.
  • the output unit 407 includes a display, a speaker, and the like.
  • the storage unit 408 includes a hard disk, a nonvolatile memory, and the like.
  • the communication unit 409 includes a network interface.
  • the drive 410 drives a removable medium 411 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 401 loads, for example, a program stored in the storage unit 408 to the RAM 403 via the input / output interface 405 and the bus 404 and executes the program, and the series described above. Is performed.
  • the program executed by the computer (CPU 401) can be provided by being recorded on a removable medium 411 as a package medium, for example.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 408 via the input / output interface 405 by attaching the removable medium 411 to the drive 410.
  • the program can be received by the communication unit 409 via a wired or wireless transmission medium and installed in the storage unit 408.
  • the program can be installed in the ROM 402 or the storage unit 408 in advance.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the power generation amount measurement unit 161 may be provided in another device, and the power generation amount measurement data may be acquired from the outside.
  • the present invention can adopt a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above-described flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 本発明は、簡単かつ精度よく太陽光発電システムの異常を検出することができる情報処理装置、異常検出方法、プログラム、および、太陽光発電システムに関する。発電性能パラメータ算出部165は、太陽光の状態に関わるデータである日照情報と太陽光発電の発電量との関係を表すモデルのパラメータである発電性能パラメータを算出する。判定部172は、基準となる基準期間の日照情報および発電量に基づいて算出された発電性能パラメータ、および、判定対象となる判定対象期間の日照情報および発電量に基づいて算出された発電性能パラメータに基づいて、太陽光発電システムの異常を検出する。本発明は、例えば、太陽光発電システムに適用できる。

Description

情報処理装置、異常検出方法、プログラム、および、太陽光発電システム
 本発明は、情報処理装置、検出方法、プログラム、および、太陽光発電システムに関し、特に、太陽光発電システムの異常を検出する場合に用いて好適な情報処理装置、異常検出方法、プログラム、および、太陽光発電システムに関する。
 従来、太陽光発電システムの異常を検出する方法が各種提案されている。
 例えば、太陽光発電システムの設計特性値(例えば、システム出力等)や設置位置等の情報を用いて理論発電量を算出し、実際の発電量と比較することにより、太陽光発電システムの異常を検出することが提案されている(例えば、特許文献1参照)。
 また、例えば、ニューラルネットワークや線形回帰モデル等による、日照状況から発電出力を予測することが可能な出力特性モデルを用いて、太陽光発電システムの異常を検出することが提案されている(例えば、特許文献2参照)。より具体的には、出力特性モデルと実際の発電出力データから日照状況を推定し、推定した日照状況の空間補正を行い、補正した日照状況および出力特性モデルを用いて期待出力電力を算出し、期待出力電力と実際の発電出力データを比較して、異常検出を行うことが提案されている。
特開2011-216811号公報 特開2011-233584号公報
 しかしながら、太陽光発電システムの設計特性値として、例えばメーカの公称値等を用いることが想定されるが、一般的に設計特性値は、装置の個体差やシステム構成により変動する。そのため、理論発電量と実際に発電可能な発電量との間に差が生じ、異常検出の精度が悪化する恐れがある。なお、ここで、システム構成とは、太陽電池モジュールの直並列構成、ケーブル長、パワーコンディショナの性能、昇圧器の有無等である。
 また、特許文献2に記載の発明では、実際の発電出力データから推定された日照状況を用いて期待出力電力を算出しているので、異常検出の精度が低くなることが予想される。
 本発明は、このような状況に鑑みてなされたものであり、簡単かつ精度よく太陽光発電システムの異常を検出できるようにするものである。
 本発明の第1の側面の情報処理装置は、太陽光の状態に関わるデータである状態データと太陽光発電の発電量との関係を表すモデルのパラメータを算出するパラメータ算出部と、基準となる第1の期間の状態データおよび発電量に基づいて算出されたパラメータ、並びに、判定対象となる第2の期間の状態データおよび発電量に基づいて算出されたパラメータに基づいて、太陽光発電を行うシステムの異常を検出する異常検出部とを備える。
 本発明の第1の側面の情報処理装置においては、太陽光の状態に関わるデータである状態データと太陽光発電の発電量との関係を表すモデルのパラメータが算出され、基準となる第1の期間の状態データおよび発電量に基づいて算出されたパラメータ、並びに、判定対象となる第2の期間の状態データおよび発電量に基づいて算出されたパラメータに基づいて、太陽光発電を行うシステムの異常が検出される。
 従って、簡単かつ精度よく太陽光発電システムの異常を検出することができる。
 このパラメータ算出部、異常検出部は、例えば、コンピュータ、あるいは、CPU等の制御装置により構成される。
 このパラメータ算出部には、状態データと発電量との関係を表す近似直線の傾きをパラメータとして算出させることができる。
 これにより、少ない演算量で異常検出を行うことができる。
 この異常検出部には、第1の期間のパラメータに所定の係数を乗じた値と、第2の期間のパラメータとを比較することにより、システムの異常を検出させることができる。
 これにより、例えば、所望の基準で太陽光発電システムの異常を検出することができる。
 この異常検出部には、第1の期間のパラメータの信頼区間に基づいて、パラメータの判定基準を設定させることができる。
 これにより、厳しい条件で正確に異常検出を行うことができる。
 このパラメータ算出部には、第1の期間内において、第1の期間より短い期間毎に複数のパラメータを求めさせ、この異常検出部には、複数のパラメータのばらつきに基づいて、パラメータの判定基準を設定させることができる。
 これにより、厳しい条件で正確に異常検出を行うことができる。
 このパラメータ算出部には、第1の期間または第2の期間内において、第1の期間または第2の期間より短い期間毎に状態データと発電量との相関係数を求め、相関係数が所定の閾値以上の期間の状態データおよび発電量を用いて、パラメータを算出させることができる。
 これにより、パラメータの信頼性を高め、異常の検出精度を向上させることができる。
 このパラメータ算出部には、状態データの値を複数の範囲に分割し、各範囲の状態データと発電量との相関係数を求め、相関係数が所定の閾値以上の範囲に含まれる状態データ、および、それに対応する発電量を用いて、パラメータを算出させることができる。
 これにより、パラメータの信頼性を高め、異常の検出精度を向上させることができる。
 この異常検出部には、第1の期間の時期、または、第1の期間と第2の期間との間隔の少なくとも一方に基づいて、パラメータの判定基準を変更させることができる。
 これにより、目的に応じた異常検出を行うことができる。例えば、導入時からの発電性能の変化に基づいて異常を検出したり、長期的なスパンでの発電性能の変化に基づいて異常を検出したり、短期的なスパンでの発電性能の変化に基づいて異常を検出したりすることができる。
 この異常検出部には、第1の期間および第2の期間の長さを変更して、システムの異常を検出させることができる。
 これにより、短期あるいは突発的な事象による発電性能の低下を検出したり、短期あるいは突発的な事象を無視し、システムの劣化等の長期的な発電性能の低下を検出したりすることができる。
 この異常検出部には、第1の期間および第2の期間の長さに基づいて、パラメータの判定基準を変更させることができる。
 これにより、目的に応じた異常検出を行うことができる。
 この状態データには、日射強度、または、日照時間と太陽高度の正弦との積により求められる日照状態の少なくとも一方を含ませることができる。
 このパラメータ算出部には、所定の閾値以上の日射強度または日照状態、および、それに対応する発電量を用いて、パラメータを算出させることができる。
 これにより、パラメータの信頼性を高め、異常の検出精度を向上させることができる。
 本発明の第1の側面の異常検出方法は、太陽光の状態に関わるデータである状態データと太陽光発電の発電量との関係を表すモデルのパラメータを算出するパラメータ算出ステップと、基準となる第1の期間の状態データおよび発電量に基づいて算出されたパラメータ、並びに、判定対象となる第2の期間の状態データおよび発電量に基づいて算出されたパラメータに基づいて、太陽光発電を行うシステムの異常を検出する異常検出ステップとを含む。
 本発明の第1の側面のプログラムは、太陽光の状態に関わるデータである状態データと太陽光発電の発電量との関係を表すモデルのパラメータを算出するパラメータ算出ステップと、基準となる第1の期間の状態データおよび発電量に基づいて算出されたパラメータ、並びに、判定対象となる第2の期間の状態データおよび発電量に基づいて算出されたパラメータに基づいて、太陽光発電を行うシステムの異常を検出する異常検出ステップとを含む処理をコンピュータに実行させる。
 本発明の第1の側面の情報処理方法、または、本発明の第1の側面のプログラムを実行するコンピュータにおいては、太陽光の状態に関わるデータである状態データと太陽光発電の発電量との関係を表すモデルのパラメータが算出され、基準となる第1の期間の状態データおよび発電量に基づいて算出されたパラメータ、並びに、判定対象となる第2の期間の状態データおよび発電量に基づいて算出されたパラメータに基づいて、太陽光発電を行うシステムの異常が検出される。
 従って、簡単かつ精度よく太陽光発電システムの異常を検出することができる。
 本発明の第2の側面の太陽光発電システムは、太陽光発電を行う太陽光発電部と、太陽光発電部の発電量を測定する発電量測定部と、太陽光の状態に関わるデータである状態データと太陽光発電部の発電量との関係を表すモデルのパラメータを算出するパラメータ算出部と、基準となる第1の期間の状態データおよび発電量に基づいて算出されたパラメータ、並びに、判定対象となる第2の期間の状態データおよび発電量に基づいて算出されたパラメータに基づいて、太陽光発電部の異常を検出する異常検出部とを備える。
 本発明の第2の側面の太陽光発電システムにおいては、太陽光発電が行われ、発電量が測定され、太陽光の状態に関わるデータである状態データと発電量との関係を表すモデルのパラメータが算出され、基準となる第1の期間の状態データおよび発電量に基づいて算出されたパラメータ、並びに、判定対象となる第2の期間の状態データおよび発電量に基づいて算出されたパラメータに基づいて、太陽光発電部の異常が検出される。
 従って、簡単かつ精度よく太陽光発電システムの異常を検出することができる。
 この太陽光発電部は、例えば、太陽電池モジュール、パワーコンディショナ等により構成される。この発電量測定部は、例えば、コンピュータ、あるいは、CPU等の制御装置により構成される。あるいは、さらに電圧、電流等を測定するセンサを設けることもできる。このパラメータ算出部、異常検出部は、例えば、コンピュータ、あるいは、CPU等の制御装置により構成される。
 本発明の第1の側面または第2の側面によれば、簡単かつ精度よく太陽光発電システムの異常を検出することができる。
本発明を適用した太陽光発電システムの一実施の形態を示すブロック図である。 太陽光発電システムの情報処理装置の機能の構成例を示すブロック図である。 発電性能パラメータ算出処理を説明するためのフローチャートである。 発電量と日照情報のデータの例を示す図である。 発電量と日照情報のデータのフィルタリングを説明するための図である。 実際に測定した日射強度と発電量を用いて、発電性能モデルを構築した例を示す図である。 発電性能パラメータの例を示す図である。 異常検出処理を説明するためのフローチャートである。 基準期間と判定期間の設定方法の具体例を説明するための図である。 基準期間と判定期間の設定方法の具体例を説明するための図である。 コンピュータの構成例を示すブロック図である。
 以下、本発明を実施するための形態(以下、実施の形態という)について説明する。
[太陽光発電システム101の構成例]
 図1は、本発明を適用した太陽光発電システムの一実施の形態を示すブロック図である。
 太陽光発電システム101は、太陽光発電部111および情報処理装置112を含むように構成される。また、太陽光発電部111は、太陽電池モジュール121およびパワーコンディショナ122を含むように構成される。
 太陽電池モジュール121は、太陽光発電により直流の電力を発生させ、発生させた直流電力をパワーコンディショナ122に供給する。
 パワーコンディショナ122は、太陽電池モジュール121からの直流電力を、商用電源とほぼ同じ電圧および周波数の交流電力に変換するとともに、変換した交流電力の電圧の位相を商用電源の電圧の位相と同期させる。そして、パワーコンディショナ122は、その交流電力(以下、発電電力と称する)を出力する。
 情報処理装置112は、例えば、コンピュータにより構成される。情報処理装置112は、パワーコンディショナ122、または、パワーコンディショナ122から発電電力が供給される電力系統に設けられているセンサ等から、発電電力の電圧、電流等の測定値を取得し、太陽光発電部111の発電量を測定する。また、情報処理装置112は、太陽電池モジュール121の設置場所(より正確には、太陽電池モジュール121に設けられている太陽光パネルの設置場所)(以下、発電場所と称する)付近の太陽光の状態に関わるデータである状態データ(以下、日照情報と称する)を収集する。そして、情報処理装置112は、測定した発電量と収集した日照情報に基づいて、太陽光発電部111の状態を監視し、監視結果を出力する。
[情報処理装置112の構成例]
 図2は、情報処理装置112の構成例を示すブロック図である。
 情報処理装置112は、入力部151、発電性能検出部152、発電性能パラメータ蓄積部153、異常検出部154、および、出力部155を含むように構成される。
 入力部151は、例えば、キーボード、マウス、ボタン、スイッチ、マイクロフォン等の入力デバイスにより構成され、ユーザが情報処理装置112に対する指令やデータ等を入力するのに用いられる。入力部151は、入力された指令やデータ等を、必要に応じて、日照情報収集部163、発電性能パラメータ算出部165、および、判定条件データ蓄積部171に供給する。なお、ユーザにより入力されるデータや指令には、例えば、日照情報の一部、後述する発電性能パラメータの検出条件、太陽光発電部111の異常の判定条件を設定するためのデータ(以下、判定条件データと称する)等が含まれる。
 発電性能検出部152は、太陽光発電部111の発電性能を検出し、検出した発電性能を表す発電性能パラメータを発電性能パラメータ蓄積部153に蓄積する。発電性能検出部152は、発電量測定部161、発電量データ蓄積部162、日照情報収集部163、日照情報データ蓄積部164、および、発電性能パラメータ算出部165を含むように構成される。
 発電量測定部161は、パワーコンディショナ122、または、パワーコンディショナ122から発電電力が供給される電力系統に設けられているセンサ等から、発電電力の電圧、電流等の測定値を取得し、それらの測定値に基づいて太陽光発電部111の発電量を測定する。発電量測定部161は、測定結果を示す発電量測定データを発電量データ蓄積部162に蓄積する。
 日照情報収集部163は、発電場所付近の太陽光の状態に関わる状態データである日照情報を収集する。より具体的には、日照情報収集部163は、日射計等のセンサ類から出力されるデータに基づいて日照情報の一部を測定したり、外部から入力された日照情報の一部を入力部151から取得したりする。そして、日照情報収集部163は、収集した日照情報のデータを日照情報データ蓄積部164に蓄積する。
 日照情報は、例えば、日射強度、日射量、日照状態、日照時間、太陽高度、雲量などを含む。なお、日照状態は、次式(1)により算出される。
 x(t)=s(t)・sin{h(φ,L,t)} ・・・(1)
 なお、x(t)は、日時tを含む時間帯の日照状態を示し、s(t)は、日時tを含む時間帯の日照時間を示している。また、h(φ,L,t)は、緯度φおよび経度Lの地点の日時tにおける太陽高度を示している。従って、日時tにおける日照状態x(t)は、日時tを含む時間帯の日照時間s(t)と、日時tにおける太陽高度h(φ,L,t)の正弦(sin)との積により求められる。
 なお、上述した全ての種類の日照情報を収集する必要はなく、必要に応じて、追加したり、削除したりすることが可能である。また、日照情報の種類は上述したものに限定されるものでなく、発電場所付近の太陽光の状態に関わる他の種類のデータを採用することも可能である。
 発電性能パラメータ算出部165は、後述するように、発電量データ蓄積部162に蓄積されている発電量データ、および、日照情報データ蓄積部164に蓄積されている日照情報データを用いて、太陽光発電部111の発電性能を表す発電性能パラメータを算出する。また、発電性能パラメータ算出部165は、発電性能パラメータがばらつくと想定される範囲(以下、バラツキ区間と称する)を算出する。発電性能パラメータ算出部165は、算出した発電性能パラメータ、および、そのバラツキ区間を、発電性能パラメータ蓄積部153に蓄積する。
 異常検出部154は、発電性能パラメータ蓄積部153に蓄積されている発電性能パラメータ、および、そのバラツキ区間に基づいて、太陽光発電部111の異常の検出を行う。ここで、太陽光発電部111の異常とは、故障などの内部的な要因、および、周囲の環境の変化等の外部的な要因のいずれであるかを問わず、主に発電性能の低下を意味する。異常検出部154は、判定条件データ蓄積部171および判定部172を含むように構成される。
 判定条件データ蓄積部171は、入力部151を介して外部から入力された判定条件データを蓄積する。なお、判定条件データには、例えば、判定に用いる発電性能パラメータの期間、判定基準の設定ルール、異常検出を行うタイミング等を設定するためのデータを含む。
 判定部172は、発電性能パラメータ蓄積部153に蓄積されている発電性能パラメータ、および、そのバラツキ区間、並びに、判定条件データ蓄積部171に蓄積されている判定条件データに基づいて、太陽光発電部111の異常の有無を判定する。そして、判定部172は、判定結果を出力部155に供給する。
 出力部155は、例えば、ディスプレイ、発光デバイス、スピーカ、通信装置、出力インタフェース等により構成される。出力部155は、例えば、太陽光発電部111の異常の検出結果を、画像、光、音声等によりユーザに通知したり、外部のサーバ、携帯端末、プリンタ、記憶装置等に送信したりする。
[情報処理装置112の処理]
 次に、図3乃至図10を参照して、情報処理装置112の処理について説明する。
(発電性能パラメータ算出処理)
 まず、図3のフローチャートを参照して、情報処理装置112により実行される発電性能パラメータ算出処理について説明する。
 ステップS1において、発電量測定部161は、発電量を測定する。例えば、発電量測定部161は、所定の間隔(例えば、30分毎)で太陽光発電部111の発電量を測定し、測定結果を示す発電量測定データを発電量データ蓄積部162に蓄積する。
 ステップS2において、日照情報収集部163は、日照情報を収集する。例えば、日照情報収集部163は、一部の日照情報については、センサ類から出力されるデータに基づいて測定する。なお、日照情報と発電量の測定タイミングを同期させることが望ましいが、同期させることが困難な場合には、必ずしも同期させる必要はない。また、日照情報収集部163は、一部の日照情報については、入力部151を介して外部から取得する。そして、日照情報収集部163は、収集した日照情報データを日照情報データ蓄積部164に蓄積する。
 これにより、例えば、図4に示されるように、所定の時間間隔毎の発電量と日照情報のデータが収集され蓄積される。なお、図4には、日照情報として、日射量、日照状態、日照時間、太陽高度を収集した例が示されている。
 なお、日照情報の種類によっては、必ずしも発電量と同じ時間間隔で取得することができない場合が想定されるが、この場合、例えば、不足するデータを他のデータを用いて補間したり、理論式や各種の条件等を用いて算出するようにすればよい。
 ステップS3において、発電性能パラメータ算出部165は、発電性能パラメータを算出する。具体的には、発電性能パラメータ算出部165は、日照情報と発電量との関係を表すモデル(以下、発電性能モデルと称する)を構築し、構築した発電性能モデルを表すパラメータを発電性能パラメータとして求める。従って、発電性能モデルは、与えられた日照情報に対して太陽光発電部111が発電可能な発電量を表すモデルであり、発電性能パラメータは、日照情報を条件として太陽光発電部111の発電性能を表すパラメータであると言える。また、発電性能パラメータ算出部165は、発電性能パラメータのバラツキ区間を求める。そして、発電性能パラメータ算出部165は、求めた発電性能パラメータおよびバラツキ区間を発電性能パラメータ蓄積部153に蓄積する。
 ここで、具体例として、日照情報の一例である日射強度を用いて発電性能パラメータおよびバラツキ区間を求める例について説明する。
 例えば、日射強度xと発電量yとの間の線形の単回帰分析を行い、数式y=α・x+βにより表される1次式の発電性能モデル(すなわち、回帰直線)を構築し、構築した発電性能モデルの傾きαを発電性能パラメータとして求めることが考えられる。
 なお、発電性能パラメータを求める対象とする対象期間は、1日を最小単位として、1週間、1ヶ月、1年、10年等、任意の長さに設定することが可能である。
 例えば、1日の発電性能パラメータを求める場合には、対象とする日の日射強度と発電量のデータを用いて発電性能モデルを構築して、発電性能パラメータを求めればよい。
 また、例えば、2日以上の対象期間の発電性能パラメータを求める場合も同様に、対象期間の日射強度と発電量のデータを用いて発電性能モデルを構築して、発電性能パラメータを求めればよい。この場合、第1の方法として、例えば、対象期間の全てのデータを用いて1つの発電性能モデルを構築し、1つの発電性能パラメータを求める方法が考えられる。
 あるいは、第2の方法として、例えば、対象期間より短い期間毎の発電性能モデルを構築し、複数の発電性能パラメータを求め、それらの平均値や中間値等を最終的な発電性能パラメータとして求める方法が考えられる。例えば、1ヶ月の発電性能パラメータを求める場合、1日毎あるいは1週間毎の複数の発電性能パラメータを求め、それらの平均値や中間値等を最終的な発電性能パラメータとして求めることが考えられる。
 また、発電性能パラメータの信頼性を高めるために、例えば、図5に示されるように、使用するデータを所定の条件でフィルタリングし、残ったデータを用いて発電性能パラメータを求めるようにしてもよい。
 例えば、日射強度の値を複数の範囲に分割し、各範囲毎に日射強度と発電性能との相関係数を求め、相関係数が所定の閾値未満となる範囲のデータを除去し、相関係数が閾値以上となる範囲のデータのみを用いて、発電性能パラメータを求めることが考えられる。この場合、例えば、太陽光発電部111の動作が不安定になる日射強度が0に近い範囲と最大値に近い範囲のデータが除去されることが想定される。
 また、例えば、対象期間より短い期間毎(例えば、日毎)に日射強度と発電量との相関係数を求め、相関係数が所定の閾値未満となる期間のデータを除去し、相関係数が閾値以上となる期間のデータのみを用いて、発電性能パラメータを求めることが考えられる。この場合、例えば、悪天候または天候が不安定なときに取得された信頼性が低いデータが除去されることが想定される。
 さらに、例えば、パワーコンディショナ122の動作が不安定になる日射強度が所定の閾値未満の範囲のデータを除去し、日射強度が閾値以上の範囲のデータのみを用いて、発電性能パラメータを求めることが考えられる。
 次に、発電性能パラメータのバラツキ区間の算出方法の具体例について説明する。
 例えば、発電性能モデル(回帰直線)の傾きαの所定の信頼度(例えば、95%)の信頼区間をバラツキ区間として求めることが可能である。
 また、上述した第2の方法により、対象期間内の複数の発電性能パラメータ(回帰直線の傾きα)を求める場合、求めた発電性能パラメータのバラツキに基づいて、バラツキ区間を求めることが可能である。例えば、求めた発電性能パラメータの最大値と最小値の間の区間をバラツキ区間として求めることが可能である。
 図6は、実際に測定した日射強度と発電量を用いて、線形の単回帰分析を行い、発電性能モデル(すなわち、回帰直線)を構築した例を示している。なお、直線201は、太陽光発電部111が正常な場合の回帰直線を示している。直線202は、太陽電池モジュール121の太陽光パネルを隠蔽し、太陽光パネルの20%が異常である場合を模擬的に再現した場合の回帰直線を示している。直線203は、太陽電池モジュール121の太陽光パネルを隠蔽し、太陽光パネルの50%が異常である場合を模擬的に再現した場合の回帰直線を示している。
 このように、異常が発生している太陽光パネルの割合に応じて、回帰直線の傾きαが明確に異なる。従って、日射強度と発電量との間の回帰直線の傾きαを発電性能パラメータに用いて、太陽光発電部111の異常を正確に検出することが可能であると言える。
 なお、もちろん、日射強度以外の日照情報を用いて、発電性能パラメータを求めるようにしてもよい。特に、日射強度とほぼ同様な変化を示す日射量、日照状態、日照時間等については、上述した日射強度とほぼ同様の方法により、発電性能パラメータを求めたり、バラツキ区間を求めたり、データのフィルタリングを行ったりすることが可能である。
 また、複数の種類の日照情報を用いて、発電性能パラメータを求めようにしてもよい。この場合、例えば、日照情報毎に複数の種類の発電性能パラメータを求めるようにしてもよいし、複数の種類の日照情報を用いて1種類の発電性能パラメータを求めるようにしてもよい。さらに、1種類の日照情報から、複数の種類の発電性能モデルを構築し、複数の種類の発電性能パラメータを求めるようにしてもよい。また、構築する発電性能モデルによっては、1つの発電性能モデルから複数の種類の発電性能パラメータを求めることも可能である。
 図7は、月毎に発電性能パラメータαおよびβの2種類の発電性能パラメータを求めた場合の例を示している。
 また、構築する発電性能モデルも、上述したような線形モデルに限定されるものではなく、非線形モデルを構築することも可能である。さらに、発電性能モデルを構築する手法も、上述した単回帰分析に限定されるものではなく、例えば、重回帰分析、ニューラルネットワーク、サポートベクタマシン等の各種の分析手法やモデル構築手法等を用いることが可能である。また、例えば、線形回帰モデル以外の直線近似モデルを用いて、日照情報と発電量との間の関係を示す近似直線を求め、その傾きを発電性能パラメータとして求めるようにすることも可能である。
 このようにして、任意の長さおよび時期の期間の発電性能パラメータおよびバラツキ区間を求め、蓄積することができる。
 なお、この発電性能パラメータ算出処理を実行するタイミングは、任意に設定することが可能である。例えば、太陽光発電システム101の稼働中に定期的に実行するようにしてもよいし、ユーザ操作により実行するようにしてもよいし、後述する異常検出処理を実行するときに実行するようにしてもよい。
[異常検出処理]
 次に、図8のフローチャートを参照して、情報処理装置112により実行される異常検出処理について説明する。なお、この処理は、例えば、定期的に、あるいは、ユーザが指定したときに実行される。
 ステップS21において、判定部172は、判定条件データ蓄積部171に蓄積されている判定条件データに基づいて、判定条件を設定する。具体的には、判定部172は、まず、発電性能パラメータを比較する期間を設定する。すなわち、判定部172は、基準となる過去の発電性能パラメータ(以下、基準パラメータと称する)の対象期間(以下、基準期間と称する)の時期および長さを設定する。また、判定部172は、判定対象となる現在の発電性能パラメータ(以下、判定対象パラメータと称する)の対象期間(以下、判定期間と称する)の長さを設定する。
 基準期間の時期は、任意に設定することができ、例えば、1日前、1週間前、1ヶ月前、3ヶ月前、半年前、1年前、3年前、5年前、10年前、20年前、太陽光発電システム101の導入時等が想定される。また、基準期間と判定期間の長さも、任意に設定することができ、例えば、1日、1週間、1ヶ月、3ヶ月、半年、1年、3年、5年、10年、20年等が想定される。
 この基準期間の時期、および、基準期間と判定期間の長さの組み合わせにより、例えば、以下のような基準期間と判定期間の組み合わせを設定することができる。
 例えば、太陽光発電システム101を導入時からの発電性能の変化に基づいて、太陽光発電部111の異常を検出したい場合、以下のような組み合わせを設定することが考えられる。なお、前者が判定期間を表し、後者が基準期間を表している。
・判定対象日(例えば、今日)と導入日
・判定対象週(例えば、今週)と導入週
・判定対象月(例えば、今月)と導入月
・判定対象年(例えば、今年)と導入年
・過去10年間と導入後10年間
 また、例えば、図9の期間P1のように、直近の(短期的なスパンでの)発電性能の変化に基づいて、太陽光発電部111の異常を検出したい場合、以下のような組み合わせに設定することが考えられる。なお、前者が判定期間を表し、後者が基準期間を表している。
・判定対象日(例えば、今日)とその前日
・判定対象週(例えば、今週)とその前の週
・判定対象月(例えば、今月)とその前の月
・判定対象年(例えば、今年)とその前の年
 さらに、例えば、図10の期間P2のように長期的なスパンでの発電性能の変化に基づいて、太陽光発電部111の異常を検出したい場合、以下のような組み合わせに設定することが考えられる。なお、前者が判定期間を表し、後者が基準期間を表している。
・判定対象日(例えば、今日)とn年前(nは自然数)の同じ日
・判定対象週(例えば、今週)とn年前(nは自然数)の同じ週
・判定対象月(例えば、今月)とn年前(nは自然数)の同じ月
・判定対象年(例えば、今年)とそのn年前(nは自然数)
 なお、図9および図10の曲線251は、発電性能が正常であり、発電性能パラメータが初期値(すなわち、導入時の発電性能パラメータ)付近を変化している例を示している。曲線252は、発電性能パラメータが突発的に低下している例を示している。曲線253は、発電性能パラメータが徐々に低下している例を示している。
 なお、基準期間および判定期間を短く設定すると、例えば、天候の変動や周囲の環境の変化、太陽光パネルの一部不具合等、短期あるいは突発的な事象による発電性能の低下を検出しやすくなる。一方、基準期間および判定期間を長く設定すると、例えば、短期あるいは突発的な事象を無視し、太陽光発電システム101の劣化等の長期的な発電性能の低下を検出しやすくなる。
 なお、基準期間と判定期間は、必ずしも同じ長さに設定する必要はない。例えば、判定対象日と前月の発電性能パラメータを比較するように設定することも可能である。また、基準期間と判定期間が一部重なるように設定することも可能である。
 次に、判定部172は、発電性能パラメータの判定基準を設定する。具体的には、判定部172は、設定した基準期間の基準パラメータ、および、そのバラツキ区間、並びに、判定期間の判定対象パラメータを発電性能パラメータ蓄積部153から読み出す。そして、判定部172は、読み出したデータに基づいて、例えば、太陽光発電部111が正常であるとみなす判定対象パラメータの範囲(以下、正常範囲と称する)を、判定基準として設定する。
 例えば、発電性能パラメータが日射強度に基づいて求められている場合、基準パラメータに所定の係数(例えば、50%等)を乗じた値を、正常範囲の下限値(例えば、基準パラメータの50%)に設定し、上限値を特に設定しないことが考えられる。なお、発電性能パラメータの算出に用いた日照情報の種類に応じて、正常範囲の上限値のみを設定したり、上限値と下限値の両方を設定したりすることも想定される。
 なお、正常範囲を、基準期間の時期、基準期間および判定期間の長さ、基準期間と判定期間との間隔、検出したい異常の種類等に基づいて変更するようにしてもよい。
 例えば、基準期間と判定期間との間隔が長くなるほど、経年劣化を考慮して、正常範囲を広く設定するようにすることが考えられる。また、例えば、基準期間を導入時に設定し、太陽光発電部111の寿命を検出する場合と、月々や日々の発電性能の変化を監視する場合とで、異なる正常範囲を設定することが考えられる。また、例えば、基準期間と判定期間の長さが10年、1年、1月、1日と異なるのに応じて、異なる正常範囲を設定することが考えられる。
 また、例えば、基準パラメータのバラツキ区間に基づいて、正常範囲を設定することが可能である。例えば、発電性能パラメータが日射強度に基づいて求められている場合、正常範囲の下限値として基準パラメータのバラツキ区間の下限値を設定し、上限値を特に設定しないことが考えられる。なお、発電性能パラメータの算出に用いた日照情報の種類によって、バラツキ区間に基づいて、正常範囲の上限値のみを設定したり、上限値と下限値の両方を設定したりすることも想定される。
 なお、このバラツキ区間に基づく正常範囲は、比較的厳しい判定条件であるため、例えば、主に短期間のスパン(例えば、日々、月々等)で太陽光発電部111の発電性能の変化を監視し、軽度の異常を検出する場合に用いるのに好適である。
 ステップS22において、判定部172は、太陽光発電部111の異常の有無を判定する。すなわち、判定部172は、判定対象パラメータが正常範囲内である場合、太陽光発電部111が正常であると判定し、判定対象パラメータが正常範囲内でない場合、太陽光発電部111が異常であると判定する。そして、判定部172は、判定結果を出力部155に供給する。
 なお、基準期間の時期や、基準期間および判定期間の長さを変更することにより、基準期間と判定期間の組み合わせを複数設定し、各組み合わせ毎に異常の有無を判定するようにしてもよい。これにより、例えば、長期的なスパンと短期的なスパンの両方の異常判定を一度に行うことができる。
 また、1つの基準期間と判定期間の組み合わせに対して、複数のレベルの判定基準を設定して、異常の有無を判定するようにしてもよい。例えば、基準パラメータに所定の係数(例えば、50%等)を乗じることにより求められる正常範囲と、バラツキ区間に基づく正常範囲の2種類の正常範囲を設定し、異なるレベルの異常判定を行うようにしてもよい。
 さらに、複数の種類の発電性能パラメータを用いて、異常判定を行うようにすることも可能である。
 ステップS23において、出力部155は、判定結果を出力する。例えば、出力部155は、太陽光発電部111の異常の有無を示す情報をディスプレイに表示したり、光や音などで通知したりする。なお、異常のレベルを、警告、故障、寿命等、複数のレベルに分けて通知するようにしてもよい。
 その後、異常検出処理は終了する。
 以上のようにして、簡単かつ精度よく太陽光発電部111の異常を検出することができる。すなわち、日照情報と発電量に基づいて発電性能モデルを構築し、発電性能モデルのパラメータ(発電性能パラメータ)に基づいて異常検出を行うので、各種の設計特性値、装置の個体差、システム構成等の情報を与えなくても、簡単かつ正確に異常を検出することができる。
 また、基準期間、判定期間、判定基準等の判定条件を自由に設定することができるので、目的に応じた異常検出を行うことができる。例えば、短期的な現象による発電性能の低下と、経年劣化による寿命を分けて検出することができる。
[コンピュータの構成例]
 上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
 図11は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)401,ROM(Read Only Memory)402,RAM(Random Access Memory)403は、バス404により相互に接続されている。
 バス404には、さらに、入出力インタフェース405が接続されている。入出力インタフェース405には、入力部406、出力部407、記憶部408、通信部409、及びドライブ410が接続されている。
 入力部406は、キーボード、マウス、マイクロフォンなどよりなる。出力部407は、ディスプレイ、スピーカなどよりなる。記憶部408は、ハードディスクや不揮発性のメモリなどよりなる。通信部409は、ネットワークインタフェースなどよりなる。ドライブ410は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア411を駆動する。
 以上のように構成されるコンピュータでは、CPU401が、例えば、記憶部408に記憶されているプログラムを、入出力インタフェース405及びバス404を介して、RAM403にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU401)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア411に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディア411をドライブ410に装着することにより、入出力インタフェース405を介して、記憶部408にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部409で受信し、記憶部408にインストールすることができる。その他、プログラムは、ROM402や記憶部408に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 さらに、図2の情報処理装置112を複数の装置により実現したり、情報処理装置112の構成要素の一部を他の装置に設けたりようにしてもよい。例えば、発電量測定部161を他の装置に設けて、発電量測定データを外部から取得するようにしてもよい。
 また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本発明は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 さらに、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 また、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 101 太陽光発電システム
 111 太陽光発電部
 112 情報処理装置
 121 太陽電池モジュール
 122 パワーコンディショナ
 152 発電性能検出部
 154 異常検出部
 161 発電量測定部
 163 日照情報収集部
 165 発電性能パラメータ算出部
 172 判定部

Claims (15)

  1.  太陽光の状態に関わるデータである状態データと太陽光発電の発電量との関係を表すモデルのパラメータを算出するパラメータ算出部と、
     基準となる第1の期間の前記状態データおよび前記発電量に基づいて算出された前記パラメータ、並びに、判定対象となる第2の期間の前記状態データおよび前記発電量に基づいて算出された前記パラメータに基づいて、前記太陽光発電を行うシステムの異常を検出する異常検出部と
     を備えることを特徴とする情報処理装置。
  2.  前記パラメータ算出部は、前記状態データと前記発電量との関係を表す近似直線の傾きを前記パラメータとして算出する
     ことを特徴とする請求項1に記載の情報処理装置。
  3.  前記異常検出部は、前記第1の期間の前記パラメータに所定の係数を乗じた値と、前記第2の期間の前記パラメータとを比較することにより、前記システムの異常を検出する
     ことを特徴とする請求項2に記載の情報処理装置。
  4.  前記異常検出部は、前記第1の期間の前記パラメータの信頼区間に基づいて、前記パラメータの判定基準を設定する
     ことを特徴とする請求項2に記載の情報処理装置。
  5.  前記パラメータ算出部は、前記第1の期間内において、前記第1の期間より短い期間毎に複数の前記パラメータを求め、
     前記異常検出部は、複数の前記パラメータのばらつきに基づいて、前記パラメータの判定基準を設定する
     ことを特徴とする請求項2に記載の情報処理装置。
  6.  前記パラメータ算出部は、前記第1の期間または前記第2の期間内において、前記第1の期間または前記第2の期間より短い期間毎に前記状態データと前記発電量との相関係数を求め、前記相関係数が所定の閾値以上の期間の前記状態データおよび前記発電量を用いて、前記パラメータを算出する
     ことを特徴とする請求項2に記載の情報処理装置。
  7.  前記パラメータ算出部は、前記状態データの値を複数の範囲に分割し、各範囲の前記状態データと前記発電量との相関係数を求め、前記相関係数が所定の閾値以上の範囲に含まれる前記状態データ、および、それに対応する前記発電量を用いて、前記パラメータを算出する
     ことを特徴とする請求項2に記載の情報処理装置。
  8.  前記異常検出部は、前記第1の期間の時期、または、前記第1の期間と前記第2の期間との間隔の少なくとも一方に基づいて、前記パラメータの判定基準を変更する
     ことを特徴とする請求項1に記載の情報処理装置。
  9.  前記異常検出部は、前記第1の期間および前記第2の期間の長さを変更して、前記システムの異常を検出する
     ことを特徴とする請求項1に記載の情報処理装置。
  10.  前記異常検出部は、前記第1の期間および前記第2の期間の長さに基づいて、前記パラメータの判定基準を変更する
     ことを特徴とする請求項1に記載の情報処理装置。
  11.  前記状態データは、日射強度、または、日照時間と太陽高度の正弦との積により求められる日照状態の少なくとも一方を含む
     ことを特徴とする請求項1に記載の情報処理装置。
  12.  前記パラメータ算出部は、所定の閾値以上の日射強度または前記日照状態、および、それに対応する前記発電量を用いて、前記パラメータを算出する
     ことを特徴とする請求項11に記載の情報処理装置。
  13.  太陽光の状態に関わるデータである状態データと太陽光発電の発電量との関係を表すモデルのパラメータを算出するパラメータ算出ステップと、
     基準となる第1の期間の前記状態データおよび前記発電量に基づいて算出された前記パラメータ、並びに、判定対象となる第2の期間の前記状態データおよび前記発電量に基づいて算出された前記パラメータに基づいて、前記太陽光発電を行うシステムの異常を検出する異常検出ステップと
     を含むことを特徴とする異常検出方法。
  14.  太陽光の状態に関わるデータである状態データと太陽光発電の発電量との関係を表すモデルのパラメータを算出するパラメータ算出ステップと、
     基準となる第1の期間の前記状態データおよび前記発電量に基づいて算出された前記パラメータ、並びに、判定対象となる第2の期間の前記状態データおよび前記発電量に基づいて算出された前記パラメータに基づいて、前記太陽光発電を行うシステムの異常を検出する異常検出ステップと
     を含む処理をコンピュータに実行させるためのプログラム。
  15.  太陽光発電を行う太陽光発電部と、
     前記太陽光発電部の発電量を測定する発電量測定部と、
     太陽光の状態に関わるデータである状態データと前記太陽光発電部の発電量との関係を表すモデルのパラメータを算出するパラメータ算出部と、
     基準となる第1の期間の前記状態データおよび前記発電量に基づいて算出された前記パラメータ、並びに、判定対象となる第2の期間の前記状態データおよび前記発電量に基づいて算出された前記パラメータに基づいて、前記太陽光発電部の異常を検出する異常検出部と
     を備えることを特徴とする太陽光発電システム。
PCT/JP2013/051378 2012-03-13 2013-01-24 情報処理装置、異常検出方法、プログラム、および、太陽光発電システム WO2013136850A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-055752 2012-03-13
JP2012055752A JP2013191672A (ja) 2012-03-13 2012-03-13 情報処理装置、異常検出方法、プログラム、および、太陽光発電システム

Publications (1)

Publication Number Publication Date
WO2013136850A1 true WO2013136850A1 (ja) 2013-09-19

Family

ID=49160772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051378 WO2013136850A1 (ja) 2012-03-13 2013-01-24 情報処理装置、異常検出方法、プログラム、および、太陽光発電システム

Country Status (2)

Country Link
JP (1) JP2013191672A (ja)
WO (1) WO2013136850A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149932A (ja) * 2015-02-11 2016-08-18 エルエス産電株式会社Lsis Co., Ltd. 太陽光発電システム
JP2016220491A (ja) * 2015-05-26 2016-12-22 富士電機株式会社 太陽電池モジュール診断システム及び太陽電池モジュール診断方法
EP3128635A4 (en) * 2014-03-31 2017-08-30 Tensor Consulting Co. Ltd. Power generation system analysis device and method
WO2019150816A1 (ja) * 2018-02-01 2019-08-08 住友電気工業株式会社 監視システム、解析装置および判定方法
JP2020190395A (ja) * 2019-05-23 2020-11-26 積水化学工業株式会社 温度調節システム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408280B2 (ja) * 2014-07-29 2018-10-17 京セラ株式会社 太陽電池の異常検出方法、及び電力管理装置
JP2016054632A (ja) * 2014-09-04 2016-04-14 パナソニックIpマネジメント株式会社 太陽電池の管理装置、太陽光発電システム、プログラム
JP2017093275A (ja) * 2015-11-10 2017-05-25 育雄 久保 太陽光発電装置の実績データーをベースとした劣化や異常検知システム
JP6813291B2 (ja) * 2016-06-28 2021-01-13 株式会社関電工 太陽光発電の性能評価方法
JP6733374B2 (ja) * 2016-07-05 2020-07-29 日本電気株式会社 推定システム、推定方法および推定プログラム
JP2018019555A (ja) * 2016-07-29 2018-02-01 株式会社関電工 影の影響を考慮した太陽光発電出力推定方法
JP6771421B2 (ja) * 2017-04-20 2020-10-21 三菱電機株式会社 太陽電池ストリングスの診断システム及び診断方法
JP6937227B2 (ja) * 2017-11-16 2021-09-22 株式会社東芝 発電量予測装置、発電量予測システム、発電量予測方法及び発電量予測プログラム
JP2018108025A (ja) * 2018-03-27 2018-07-05 未来工業株式会社 発電設備の診断システム
WO2020044476A1 (ja) * 2018-08-29 2020-03-05 ティー・エス・ビー株式会社 水上太陽光発電システム
JP7435073B2 (ja) * 2020-03-13 2024-02-21 オムロン株式会社 異常検知装置、異常検知方法、および異常検知プログラム
WO2023095387A1 (ja) * 2021-11-29 2023-06-01 住友電気工業株式会社 判定装置および判定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289578A (ja) * 1995-04-18 1996-11-01 Hitachi Ltd 太陽光発電システム
JP2001326375A (ja) * 2000-03-10 2001-11-22 Sanyo Electric Co Ltd 太陽光発電システムの診断方法及び診断装置
JP2001352693A (ja) * 2000-06-09 2001-12-21 Sharp Corp 太陽光発電装置およびその管理システム
WO2011089999A1 (ja) * 2010-01-19 2011-07-28 オムロン株式会社 太陽光発電システムの診断方法、診断装置、および診断プログラム
JP2011216811A (ja) * 2010-04-02 2011-10-27 Sharp Corp 太陽電池異常診断システム、太陽電池異常診断装置および太陽電池異常診断方法
JP2012186263A (ja) * 2011-03-04 2012-09-27 Daikin Ind Ltd 太陽光発電ユニットの診断装置、診断方法、及び太陽光発電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289578A (ja) * 1995-04-18 1996-11-01 Hitachi Ltd 太陽光発電システム
JP2001326375A (ja) * 2000-03-10 2001-11-22 Sanyo Electric Co Ltd 太陽光発電システムの診断方法及び診断装置
JP2001352693A (ja) * 2000-06-09 2001-12-21 Sharp Corp 太陽光発電装置およびその管理システム
WO2011089999A1 (ja) * 2010-01-19 2011-07-28 オムロン株式会社 太陽光発電システムの診断方法、診断装置、および診断プログラム
JP2011216811A (ja) * 2010-04-02 2011-10-27 Sharp Corp 太陽電池異常診断システム、太陽電池異常診断装置および太陽電池異常診断方法
JP2012186263A (ja) * 2011-03-04 2012-09-27 Daikin Ind Ltd 太陽光発電ユニットの診断装置、診断方法、及び太陽光発電システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128635A4 (en) * 2014-03-31 2017-08-30 Tensor Consulting Co. Ltd. Power generation system analysis device and method
US10418935B2 (en) 2014-03-31 2019-09-17 Tensor Consulting Co. Ltd. Apparatus and method for analyzing power generation
JP2016149932A (ja) * 2015-02-11 2016-08-18 エルエス産電株式会社Lsis Co., Ltd. 太陽光発電システム
US10243504B2 (en) 2015-02-11 2019-03-26 Lsis Co., Ltd. Photovoltaic system
JP2016220491A (ja) * 2015-05-26 2016-12-22 富士電機株式会社 太陽電池モジュール診断システム及び太陽電池モジュール診断方法
WO2019150816A1 (ja) * 2018-02-01 2019-08-08 住友電気工業株式会社 監視システム、解析装置および判定方法
JPWO2019150816A1 (ja) * 2018-02-01 2021-01-28 住友電気工業株式会社 監視システム、解析装置および判定方法
JP7056674B2 (ja) 2018-02-01 2022-04-19 住友電気工業株式会社 監視システム、解析装置および判定方法
JP2020190395A (ja) * 2019-05-23 2020-11-26 積水化学工業株式会社 温度調節システム

Also Published As

Publication number Publication date
JP2013191672A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
WO2013136850A1 (ja) 情報処理装置、異常検出方法、プログラム、および、太陽光発電システム
US8892411B2 (en) Information processor, power generation determining method, and program
JP6115764B2 (ja) 太陽光発電システム、異常判断処理装置、異常判断処理方法、およびプログラム
JP5617695B2 (ja) 太陽光発電ユニットの診断装置
JP5957372B2 (ja) 日射量計算方法及び供給電力決定方法
US20120239322A1 (en) Abnormality diagnosis device, method therefor, and computer-readable medium
JP6087200B2 (ja) 太陽光発電システムの異常検出装置、異常検出方法、及び太陽光発電システム
JP6096099B2 (ja) 太陽光発電システム及び太陽電池モジュールの診断方法
KR102352588B1 (ko) 선형회귀모델을 이용하여 태양광 발전에서의 인버터 효율 정보를 도출하는 장치 및 방법
KR101808978B1 (ko) 발전 시스템 분석 장치 및 방법
US20120197557A1 (en) String Failure Monitoring
JP5393715B2 (ja) 診断装置、太陽光発電システム及び診断方法
Ventura et al. Development of models for on-line diagnostic and energy assessment analysis of PV power plants: The study case of 1 MW Sicilian PV plant
WO2016166991A1 (ja) 太陽光発電設備の診断システムおよびプログラム
JP2016019404A (ja) 故障判定装置
JP2006067738A (ja) 太陽光発電システム
JP6252148B2 (ja) 太陽電池のi−vカーブ計測装置、i−vカーブ計測方法、太陽電池のパワーコンディショナ及び、太陽光発電システム
JP2016139270A (ja) 太陽光発電出力推定装置、太陽光発電出力推定システム及び太陽光発電出力推定方法
JP5800069B2 (ja) 太陽光発電ユニットの診断装置、診断方法、及び太陽光発電システム
JP2015231280A (ja) 太陽電池の監視装置、および太陽電池の監視システム
US20230231517A1 (en) Abnormality determination system and power generation system
KR101456122B1 (ko) 태양전지 모듈의 고장 진단 장치 및 방법
JP7163931B2 (ja) 判定装置、判定方法および判定プログラム
WO2016034931A1 (ja) 太陽電池の管理装置、太陽光発電システム、及び太陽電池の管理方法
JP2021145509A (ja) 異常検知装置、異常検知方法、および異常検知プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13762017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13762017

Country of ref document: EP

Kind code of ref document: A1