WO2013136825A1 - 反射型光センサ - Google Patents

反射型光センサ Download PDF

Info

Publication number
WO2013136825A1
WO2013136825A1 PCT/JP2013/050272 JP2013050272W WO2013136825A1 WO 2013136825 A1 WO2013136825 A1 WO 2013136825A1 JP 2013050272 W JP2013050272 W JP 2013050272W WO 2013136825 A1 WO2013136825 A1 WO 2013136825A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
receiving element
reflected light
optical sensor
Prior art date
Application number
PCT/JP2013/050272
Other languages
English (en)
French (fr)
Inventor
康人 上辻
基晴 奥濃
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2013136825A1 publication Critical patent/WO2013136825A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone

Definitions

  • the present invention is based on the principle of triangulation using a light receiving element that projects light from a light projecting element, receives light reflected from an object to be detected by the light receiving element, and uses received light amount data generated by the light reception.
  • the present invention relates to a reflective optical sensor that performs measurement.
  • this type of optical sensor for example, using a two-divided light receiving element or PSD as the light receiving element, a difference calculation of a pair of received light amount signals output from the light receiving element is executed, and this difference level is determined in advance.
  • a distance setting type optical sensor that detects an object located at a reference point by comparing with a value.
  • FIG. 11 shows the basic configuration of an optical system common to these reflection type photosensors together with the principle of detection.
  • reference numeral 1 denotes a light receiving element
  • reference numeral 2 denotes a light projecting element incorporated in the light projecting unit.
  • the light receiving element 1 has a long light receiving surface in one direction (vertical direction in FIG. 11).
  • the light emitted from the light projecting element 2 is emitted to the outside through the light projecting lens L2, and a part of the light reflected by the detection target SB enters the light receiving element 1 through the light receiving lens L1. To do.
  • the light receiving element 1 Since the imaging position of the reflected light changes depending on the distance from the light receiving lens L1 to the detection target SB, the light receiving element 1 is in a state where the length direction is aligned with the direction of change of the imaging position of the reflected light. In addition, the position and posture are adjusted.
  • the reflected light from the detection object SB is at the center position in the length direction of the light receiving element 1 (position indicated by the dotted line in the light receiving element 1 in the figure).
  • An image is formed.
  • the imaging position of the reflected light moves downward from the center position in the figure, and as the detection object moves rearward from the point A, reflection occurs.
  • the light incident position moves upward from the center position in the figure.
  • point A is referred to as a reference point.
  • the direction in which the imaging position of the reflected light moves when the detection object SB approaches the sensor on the light receiving surface of the light receiving element 1 is referred to as “Near side”, and when the detection object SB moves away from the sensor, the reflected light
  • the direction in which the imaging position moves is called “Far side”.
  • the light receiving element positioned on the Near side is referred to as “Near side element”
  • the light receiving element positioned on the Far side is referred to as “Far side element”.
  • Patent Document 1 includes a light projecting unit including a light projecting element and a light projecting lens, and a light receiving unit configured to incorporate a two-part light receiving element and a lens in the same holder unit.
  • a sensor having a configuration housed in the same casing is disclosed (see paragraphs 0026 to 0027, FIG. 2, etc.).
  • this patent document 1 describes that the distance or displacement to the detection target (workpiece) is detected using the difference signal of the received light amount of each light receiving element together with the detection principle described above (paragraph). 0048-0051, see FIGS. 6-8, etc.)
  • Patent Document 2 is cited as a document related to the features of the present invention described below.
  • This patent document 2 discloses a position detection sensor using PSD.
  • a light receiving element It is described that a plate-shaped light-shielding body is slidably provided on the front side of the PSD), and all the light-receiving surfaces other than the moving range of the imaging light are blocked by this light-shielding body (paragraphs 0013, 0015, 0026 to (See FIG. 1, FIG. 1, FIG. 7, FIG. 8, FIG. 10, etc.)
  • the light receiving element generates noise called shot noise when strong light enters.
  • shot noise When shot noise is processed by the light receiving circuit, it is superimposed on the received light amount signal as white noise.
  • reflective optical sensors that use triangulation require the use of a light-receiving element with a wide light-receiving surface because it is necessary to support the range of reflected light movement, so the influence of noise components on the light-receiving amount signal is strong, making detection easier. There is a risk of adverse effects.
  • FIG. 12 shows the received light amount signal obtained when only the reflected light SL to be detected is incident on the light receiving element 1 and the received light amount signal when the noise light NL is incident side by side.
  • FIG. 12 (1) (2) As shown in the lower graph, when noise light NL due to white light enters along with reflected light SL, fine vibrations are generated in the received light amount signal due to white noise. If this vibration becomes large, there is a risk of malfunction in the detection operation of the sensor.
  • FIG. 13 exemplifies signal processing in a photoelectric sensor using a two-divided light receiving element as the light receiving element 1, and schematically shows an example of a malfunction caused by the influence of noise light.
  • a received light amount signal by the Near side elements and P N the received light amount signal by Far side elements and P F.
  • the received light amount difference signal P N -P F and the addition signal P N + P F are compared with two threshold values having different values.
  • the threshold value having a higher value is referred to as an on threshold value
  • the threshold value having a lower value is referred to as an off threshold value.
  • the result of the comparison for the sum signal P N + P F is output as the addition control output.
  • the differential control signal In the signal processing for the differential signal, the differential control signal is turned on when the differential signal is higher than the on threshold, and the differential control signal is turned off when the differential signal is lower than the off threshold. Similarly, in the signal processing for the addition signal, the addition control signal is turned on when the addition signal is higher than the on threshold, and the addition control signal is turned off when the addition signal is lower than the off threshold.
  • the difference control signal While both the difference control signal and the addition control signal are in the on state, it is determined that the detection object SB is positioned before the reference point.
  • the difference signal changes from a state higher than the ON threshold value to a state lower than the OFF threshold value, and accordingly, the difference control signal is changed from the ON state to the OFF state. Change to state.
  • the addition signal changes from a state higher than the ON threshold value to a state lower than the OFF threshold value, and accordingly, the addition control signal changes from the ON state to the OFF state.
  • the addition control signal first changes from the off state to the on state, and then the difference control signal changes from the off state to the on state. To do.
  • the influence of white noise is not limited to the two-divided light receiving element, and may similarly cause false detection in a reflection type optical sensor using other types of light receiving elements.
  • the dynamic range is determined. When light exceeding the maximum value of the range enters, the received light amount indicated by the received light amount signal is saturated. Therefore, if very strong noise light enters and the received light amount signal is saturated, a signal reflecting the incident position of the reflected light cannot be obtained, and a detection error occurs.
  • a lens with a function to cut light in the near infrared band or an optical filter that cuts light in the near infrared band is used as a light receiving lens. Measures to take are taken.
  • the optical member of the type that selects the wavelength is expensive, the cost increases.
  • FIG. 14B shows a difference signal based on a received light amount signal (a signal in FIG. 14A-1) and a gain lowering in a state where the gain of the received light amount is not lowered in a sensor using a two-divided light receiving element.
  • the change in the vicinity of the threshold value is shown in an enlarged manner with respect to the difference signal based on the received light amount signal (signal in FIG. 14A-2).
  • the gain when the gain is lowered, the degree of change in the signal becomes gradual, so the range for obtaining a signal having a level that falls between the on threshold value and the off threshold value is expanded. As a result, the distance of the hysteresis becomes longer and the responsiveness decreases.
  • the present invention pays attention to the above problem, and in a reflective optical sensor that performs measurement based on the principle of triangulation, the influence of noise light on the light receiving element can be easily reduced without increasing the cost, and detection accuracy can be improved. Is an issue.
  • a light projecting element that projects light and a light receiving element that receives reflected light from an object that has received light from the light projecting element by a light receiving surface that is long in one direction are arranged in the length direction of the light receiving surface.
  • the present invention is applied to a reflection type optical sensor provided with a relationship in which the imaging position of reflected light changes according to the distance from the object that caused the reflection.
  • a feature of the first invention is that the light receiving element has a light receiving area that becomes narrower as the imaging position of the reflected light moves in the direction in which the object that reflects the light from the light projecting element approaches the sensor. Is configured to receive light.
  • this feature will be described with reference to FIG.
  • FIG. 15 shows the states of the light receiving spots (images of reflected light) SP A , SP B , and SP C formed on the light receiving element 1 by the reflected light from the points A, B, and C shown in FIG. Show.
  • the center substantially corresponds to the center line L that divides the length direction of the light receiving element, so that it is bisected by the center line L of the light receiving surface.
  • the received light amounts in the left and right regions are almost equal.
  • the detection target SB moves away from the sensor.
  • the degree of movement of the light receiving spot is larger than that, and the spot diameter is also greatly increased.
  • the area of the light receiving spot increases as the imaging position of the reflected light moves toward the near side.
  • the intensity of the reflected light that enters is increased as the detection object SB is closer to the sensor, all reflected light that can enter the area near the center line L (the left-hand area in the figure). Even without receiving light, it is possible to secure the amount of received light necessary for detection.
  • noise light may enter the entire light receiving surface regardless of the location, so if the near light receiving area is reduced, the noise light will be incident by an amount corresponding to the area of the removed light receiving area. The amount of light can be reduced.
  • the first invention pays attention to the above characteristics, and the light receiving area becomes narrower toward the near side where strong reflected light enters.
  • the area of the surface that receives the reflected light from a location close to the sensor is greatly reduced, but the reflected light from a short distance is irradiated over a wide area, so light reception leaks even in a narrow light receiving area. Is unlikely to occur.
  • the amount of reflected light is increased, the amount of received light necessary for detection can be ensured even if the ratio of light to be blocked increases.
  • the incident light amount of noise light greatly decreases with the reduction of the light receiving area, so that it is possible to greatly reduce the noise component in the light receiving signal and prevent malfunction.
  • a shielding member having a portion is provided, and a part of light that can enter the light receiving surface is shielded by the shielding member. That is, not the size and shape of the light receiving surface itself, but the light receiving area is reduced by shielding a part of the light receiving surface by the front shielding member and the opening.
  • Patent Document 2 a technical idea of preventing incident light of noise by blocking a part of the light receiving surface is shown.
  • the specular reflection light from the object is the noise light
  • the assumed range is shielded on the assumption that the light incident range of the noise light can be assumed. Just do it.
  • the present invention cannot determine the light incident range and reduces the influence of disturbance light that is highly likely to be incident on the entire light receiving surface. A part of the light is shielded. Therefore, the technical idea is significantly different from Patent Document 2.
  • the degree of movement of the light receiving spot toward the Far side is smaller than the degree of movement toward the Near side on the light receiving surface of the light receiving element. From a point farther than the point, the light receiving spot hardly moves. In the example of FIG. 15, outside the positions of the limit light spot SP C occurs, wasted area reflected light can not be incident.
  • the length of the light receiving surface is set so that the vicinity of the Far side edge of the light receiving surface of the light receiving element is the limit position of the light receiving spot on the Far side, the waste area on the Far side is reduced.
  • the incident light amount of the noise light can be reduced by the shielding member, and the noise component can be greatly reduced.
  • the shielding member is opposed to the entire light receiving surface, and the opening is made to face the Far side region. Is preferably set in a range not including the outside of the limit position where the reflected light forms an image. In this way, the waste area on the Far side is shielded by the shielding member, and there is no possibility that noise components increase due to the incident noise light into the waste area.
  • the surface of the holder portion in which the light receiving element is incorporated is positioned in front of the light receiving element so as to function as a shielding member, and the reflected light is passed through to the light receiving element.
  • the light receiving window formed on the surface functions as an opening. That is, by devising the shape of the light receiving window of the optical holder, the area of the light receiving area can be easily adjusted.
  • a shielding member is provided between the light receiving element and a surface of the holder portion positioned in front of the light receiving element.
  • a light receiving window larger than the opening portion of the shielding member is formed on the surface positioned in front of the light receiving element.
  • the light receiving surface of the light receiving element is divided into a region covered with a light-shielding resin and a region not covered with a light-blocking resin.
  • the shape of the reflected light is set so as to become narrower as it moves in the moving direction.
  • the area of the light receiving area can be adjusted by processing the light receiving element itself.
  • the length of the light receiving surface so that the limit position of the Far side light receiving spot is in the vicinity of the edge on the Far side.
  • the outside of the limit position where the reflected light forms an image may be covered with a light-blocking resin. In this way, it is possible to prevent noise light from entering a useless area where reflected light does not enter, and it is possible to further reduce the amount of incident noise light.
  • the light receiving surface of the light receiving element has a shape that becomes narrower in the direction in which the imaging position of the reflected light moves when an object that reflects light from the light projecting element approaches the sensor. . That is, the light receiving area is reduced depending on the shape of the light receiving element itself.
  • the length of the light receiving surface so that the vicinity of the edge of the Far region is the limit position where the reflected light is imaged.
  • the reflection type optical sensor uses a two-divided light receiving element as the light receiving element, and outputs a detection signal based on the difference value of the amount of light received between the two light receiving elements.
  • the near-side element that receives reflected light from a location relatively close to the sensor becomes narrower as it moves away from the boundary with the far-side element that receives reflected light from a location relatively far from the sensor. Light is received in the light receiving area.
  • the light incident range of the reflected light to the near side element is increased and the intensity is increased, so that it is necessary for detection without receiving all the reflected light that can enter the near side element 1N. It is possible to secure a sufficient amount of received light.
  • noise light since noise light may enter the entire surface of each light receiving element regardless of location, if the light receiving area of the near side element is reduced, the noise light is an amount corresponding to the area of the removed light receiving area. The amount of incident light can be reduced.
  • the light receiving area of the near side element that receives strong reflected light among the two-divided light receiving elements is narrowed as the distance from the boundary with the far side element increases.
  • the area of the surface that receives the reflected light from a position close to the sensor is greatly reduced, but since the reflected light from a short distance is irradiated over a wide range, the light reception leakage is also observed in a narrow light receiving area. Is unlikely to occur.
  • the amount of reflected light is increased, the amount of received light necessary for detection can be ensured even if the ratio of light to be blocked increases.
  • the incident light amount of noise light greatly decreases with the reduction of the light receiving area, so that it is possible to greatly reduce the noise component in the light receiving signal and prevent malfunction.
  • a shielding member having an opening having a shape that becomes narrower with increasing distance from the boundary with the Far-side element is disposed in front of the Near-side element.
  • part of the reflected light that can enter the near-side element is blocked. That is, although the light receiving surface of the near-side element itself is not changed, the light receiving area is reduced by blocking a part of the light receiving surface by the front shielding member and the opening.
  • the above-described shielding member is disposed at least in a range facing the near side element, but may be opposed to the entire front surface of the two-divided light receiving element.
  • the opening extends to a partial range of the Far-side element across the boundary position between the light-receiving elements, and reflected light that forms an image on the Near-side element through the opening for the Far-side element.
  • the reflected light from far away forms an image on the Far-side element.
  • the useless area where the reflected light of the Far-side element does not enter is blocked by the shielding member, so that the incident light quantity of the noise light can be greatly reduced.
  • a surface located in front of the two-divided light receiving element in the holder portion in which the two-divided light receiving element is incorporated functions as a shielding member, and the reflected light is transmitted to the two-divided light receiving element Therefore, the light receiving window formed on the surface functions as an opening. That is, by devising the shape of the light receiving window of the optical holder, the area of the light receiving area can be easily adjusted.
  • a shielding member is provided between a face located in front of the two-divided light receiving element in the holder portion and the two-divided light receiving element.
  • a light receiving window larger than the opening of the shielding member is formed on the surface positioned in front of the two-divided light receiving element.
  • the type of the light receiving element is not limited, and the optical filter is designed so that the transmittance decreases in the front side of the near side area of the light receiving surface of the light receiving element as the distance from the far side area increases.
  • the third invention is based on the idea that the amount of incident light of noise light is reduced by stepwise reducing the amount of light incident on the Near side region. In the Near side area, the incident light of the reflected light to a place away from the Far side is greatly limited, but the intensity of the reflected light from a short distance is strong, so the ratio of the light blocked by the optical filter is increased. The amount of received light necessary for detection can be ensured. On the other hand, since the incident light amount of noise light is greatly reduced, malfunction due to noise light can be prevented. In addition, since an optical filter that does not select wavelengths is relatively inexpensive, an increase in cost can be suppressed.
  • the above optical filter has at least the front surface of the Near side region. What is necessary is just to deploy in the range which opposes. However, if the length of the light-receiving surface cannot be adjusted and the waste area outside the limit position of the light-receiving spot becomes large, the limit of reflected light entering with the optical filter facing the entire light-receiving surface of the light-receiving element It is preferable to set the range outside the position to the non-transparent state. In this way, it is possible to prevent noise light from entering a portion where the reflected light in the Far-side region does not enter, and to suppress a noise component superimposed on the received light amount signal.
  • the incident light amount of noise light can be reduced by limiting the amount of light received in the near-side region where the diameter and intensity of the incident reflected light are sufficiently large within a range that does not hinder detection. It can be greatly reduced. Therefore, it is possible to prevent malfunction due to noise light.
  • noise components are reduced, there is no need to lower the gain of amplification processing for the received light signal, and stable detection processing can be performed.
  • FIG. 1 shows an application example of the present invention to a two-divided light receiving element used in a distance setting type reflective optical sensor.
  • the entire two-divided light receiving element is denoted by reference numeral 1
  • the near-side element is denoted by reference numeral 1N
  • the far-side element is denoted by reference numeral 1F.
  • the direction in which the near-side element 1N and the far-side element 1F are arranged is the x direction
  • the direction orthogonal to the x direction is the y direction.
  • the width in the x direction may be referred to as a horizontal width
  • the width in the y direction may be referred to as a vertical width.
  • the two-divided light receiving element 1 of this embodiment is disposed with respect to the light projecting element 2 with the same relationship as shown in FIG. Since the principle of detection is the same as that described in the section of the prior art, each light receiving spot is indicated by the same reference numerals SP A , SP B and SP C as those in FIG.
  • a shielding member 11 having an opening 10 is provided in front of the two-divided light receiving element 1 of this embodiment.
  • the opening 10 extends in the x direction over the entire width of the near-side element 1N, and further extends to a partial range of the far-side element 1F across the boundary between the elements 1N and 1F.
  • the range in the y direction of the opening 10 is set to a range including the entire vertical width of the Far side element 1F and the Near side element 1N from the Far side, but the y side with respect to the Near side element 1N is set.
  • the opening width in the direction gradually decreases as the distance from the boundary with the Far-side element 1F increases.
  • the reflected light from the position in front of the reference point light that is blocked by the shielding member 11 from entering the near-side element 1N is generated.
  • the opening part 10 becomes narrow as it approaches the outer edge on the near side, the ratio of light to be shielded increases.
  • the incident range of the reflected light increases as the detection object approaches the sensor, the range of the reflected light passing through the narrow portion of the opening 10 is considerably widened.
  • the reflected light from a short distance is high in intensity, a sufficient amount of received light can be obtained even if the ratio of incident light is reduced.
  • the distance in the sensor of the conventional type shielding member 11 is not deployed, from the level sensor of the sum signal of the light receiving quantity P F according to the received light quantity P N and Far side device 1F according Near side device 1N to the detection object It is the graph which expressed the relationship between and with the model based on the actual measurement value.
  • the level of the sum signal corresponds to the amount of light received P N by Near side element 1N.
  • the detection object SB is positioned in the immediate vicinity of the sensor and cannot receive the reflected light, the received light amount PN is reduced, but the reflection from the detection object SB located at a position far enough to receive the reflected light.
  • received light amount P N by light, as indicated by the arrow F in the graph shows a very high value.
  • the intensity of reflected light from a short distance is very high.
  • the light receiving spot SP B by the reflected light from the B point which is a short distance is considerably smaller than the originally formed range (indicated by a dotted line), but other light receiving spots SP are still present. Since it is formed in a wider range than A 1 and SP C , a sufficient amount of received light can be obtained.
  • FIG. 3 is a graph showing the relationship between the position of the center point of the light receiving spot in the two-divided light receiving element 1 and the distance from the sensor to the detection target (the detection target SB is directed from the Near side to the Far side).
  • the result of measuring the position of the light receiving spot while moving is schematically shown).
  • the detection target SB when the detection target SB is near the sensor, the light receiving spot also moves greatly following the change in the position of the detection target SB.
  • the degree of change in the position of the light receiving spot becomes moderate. In particular, when the detection object SB moves backward by a predetermined distance or more from the reference point, the light receiving spot is hardly moved.
  • Far side opening edge of the opening 10 shown in FIG. 1, based on the characteristics shown in FIG. 3, is set according to the vicinity of the limit position of the range in which the light receiving spot SP C is formed.
  • the opening width in the y direction from the edge of the Far side to the vicinity of locations receiving spot SP A is formed, the light receiving element 1N, because it is slightly set wider than the vertical width of 1F, reference point and reference Nearly all of the reflected light from behind the point passes through the opening 10 and enters the split light-receiving element 1.
  • the shielding member 11 outside the range where the light receiving spot SP C of the Far side device 1N is formed it is shielded by the shielding member 11.
  • noise light due to sunlight, illumination light, etc., as well as reflected light from the detection object SB may enter.
  • noise light may enter the entire range of the two-divided light receiving element 1, in this embodiment, since a considerable amount of noise light is shielded by the shielding member 11, noise superimposed on the received light amount signal Ingredients are greatly reduced.
  • the near-side element 1N is narrowed in the light receiving area at a location where strong reflected light from a short distance is received, and the far-side element 1F does not receive reflected light for detection. Since the range is shielded, the incident light quantity of noise light can be reduced without causing any trouble in detection.
  • the noise component superimposed on the received light amount signal becomes small, it is possible to prevent the malfunction as shown in FIG.
  • the slope indicating the change of the difference signal or the addition signal can be made steep, and the decrease in responsiveness can be prevented.
  • the entire vertical width is within the opening 10 with respect to the range in which the light receiving spots SP A and SP C are formed by the reflected light from the vicinity of the reference point and the reflected light from the rear of the reference point.
  • the light receiving spots SP A and SP C can be used as long as the reflected light quantity necessary for detection can be secured. You may make the vertical width of the opening part 10 with respect to a formation range shorter than the vertical width of the light receiving element 1F.
  • the opening edge of the opening 10 with respect to the near-side element 1N is not necessarily changed linearly, and may be changed in a curved line as shown in FIG. Moreover, in the example of FIG.1 and FIG.4 (1) (2), although the opening edge of the opening part 10 is inclined gently, not only this but an opening edge may be changed in step shape. . In that case, the step may be increased toward the Near side.
  • the opening 10 having a shape in which the upper and lower opening edges are symmetrical with respect to the center line that bisects the vertical direction is formed. However, the upper and lower opening edges have an asymmetric shape. It may be provided. Moreover, you may change the width
  • a plurality of slit-like openings are formed instead of one opening, and the width of each opening and the number of openings in the y direction are changed from the Far side to the Near side. The degree of light shielding may be changed.
  • the light shielding range is limited to a range where the reflected light of the Far-side element 1F is not incident, and the reflected light is incident. You may form the opening part 10 corresponding to the whole range to perform. On the contrary, the opening width with respect to the near-side element 1N may be reduced to form the opening 10 having an opening in the range facing the entire far-side element 1F.
  • FIG. 5 shows an example in which the configuration shown in FIG. 1 is applied to a holder portion incorporated in a photoelectric sensor.
  • the holder portion 3 of this embodiment has a configuration in which a pair of light guide paths 31 and 32 are formed inside a substantially cylindrical holder main body 30 for supporting an optical system, and a light projecting unit is provided at the rear end thereof.
  • a substrate 36 on which a CSP (Chip Size Package) 14 including 20 and the two-divided light receiving element 1 is mounted is mounted.
  • FIG. 5 (1) is a front view of the holder portion 3
  • FIG. 5 (2) is a perspective view showing the configuration of the back side of the holder portion.
  • a light projecting window 200 is formed on the rear end surface of the light guide 32 located on the right hand in FIG. 5A, and a light receiving window is disposed on the rear end surface of the light guide 31 located on the left hand (a surface located in front of the CSP 14). 100 is formed. Further, the lenses L1 and L2 shown in FIG. 11 are fitted into the open end faces in front of the light guide paths 31 and 32, respectively.
  • the light projecting unit 20 is supported in a state of being housed in a housing portion 35 provided on the back side of the light guide path 32. Under this state, the light projecting element 2 is positioned at the center of the light projecting window 200.
  • the CSP 14 has a configuration in which the two-divided light receiving element 1 is mounted on the relay substrate 15 (interposer) and the front surfaces thereof are sealed with the transparent resin 16 and is accommodated in the accommodating portion 37 on the back surface side of the light guide path 31. Supported by In this supporting state, the two-divided light receiving element 1 is in a state of facing the light receiving window 100.
  • the rear end surface of the light guide 31 of the holder body 30 and the light receiving window 100 function as the shielding member 11 and the opening 10 shown in FIG. That is, the vertical width of the light receiving window 100 with respect to the near-side element 1N gradually decreases as the distance from the boundary with the far-side element 1F increases. Range of the light receiving window 100 for Far side element 1F is received but the spot SP C is limited to up to the vicinity of the limits of the range to be formed, a vertical width is slightly larger set than the height of Far side device 1F. Also in the near-side element 1N, the vertical width of the range in which the reflected light from the reference point enters is slightly larger than the near-side element 1N.
  • the area of the light receiving area of each of the light receiving elements 1N and 1F can be reduced by the rear end face of the light guide path 31 of the holder body 30 and the light receiving window 100, thereby reducing noise components. . Moreover, since the function of the shielding part 11 is provided in the holder part 3, the number of parts does not increase and an increase in cost can be suppressed.
  • FIG. 6 is a front view and a side view showing another example of the holder portion 3 to which the configuration shown in FIG. 1 is applied. Note that the same reference numerals as those in FIG. 5 are given to components common to those in FIG.
  • the shielding plate 4 having the opening 40 is provided between the back surface of the light guide 31 of the holder main body 30 and the CSP 14 including the two-divided light receiving element 1.
  • the light receiving window 100 of this embodiment is formed in a size that exposes the CSP 14 almost completely, but the shielding plate 4 and its opening 40 function as the shielding member 11 and the opening 10 shown in FIG. Therefore, similarly to the example of FIG. 5, the light receiving area of each of the light receiving elements 1N and 1F is reduced, and the noise component can be reduced.
  • the number of components is increased by one point compared to the example of FIG. 5, but the added component (shielding plate 4) has a simple configuration, and the holder portion of the existing configuration 3 can be used, so there is no risk of high costs.
  • this shield plate may function as the shield plate 4.
  • FIG. 7 shows another example in which the configuration of FIG. 1 is applied.
  • the two-divided light receiving element 1 is arranged in the holder unit 3 in a state of being incorporated in the CSP 14.
  • FIG. 7A shows a state where the CSP 14 is viewed from the front. Since the resin 16 on the front surface is transparent, the entire two-divided light receiving element 1 can be visually recognized.
  • the shielding of FIG. 1 is performed on the near-side element 1N and the far-side element 1F, respectively.
  • the same range of light shielding as that by the member 11 is realized. That is, the transparent resin 16 is disposed in a range corresponding to the opening 10 in FIG. 1 and the light-shielding resin 16a is disposed in other places, so that the light receiving area of the Near side element 1N becomes the Far side element 1F. As the distance from the boundary increases, the width becomes narrower.
  • the light receiving area of the Far side element 1F becomes a range from the boundary between the Near-side device 1N to the vicinity of the limit position of the range where the light receiving spot SP C is formed, it from outside the range is shielded.
  • the resin 16a having a light shielding property is applied to each of the light receiving elements 1N and 1F in the same manner as the rear end face of the light guide 31 in the example of FIG. 5 and the shielding plate 4 shown in FIG. It functions as a means for reducing the amount of incident light, thereby reducing noise components.
  • the resin sealing process when manufacturing the CSP 14 is slightly complicated, but it is not necessary to change the number of components or the configuration of the holder unit 3, thereby preventing an increase in cost.
  • the respective light receiving areas are reduced by the method of partially shielding the light receiving elements 1N and 1F.
  • the present invention is not limited to this, and as shown in FIG. 8, the light receiving elements 1N and 1F themselves.
  • the light receiving area can also be adjusted by changing the shape of the light receiving area.
  • FIG. 8 (1) and 8 (2) respectively show the two-part light receiving element 1 in the CSP 14 (for the sake of clarity, the inner light receiving elements 1N and 1F are patterned).
  • the front surface is sealed with the transparent resin 16.
  • the two-divided light receiving element 1 shown in FIG. 8 (1) has a general shape (Near-side element 1N and Far-side element 1F are rectangular in size), whereas FIG. 8 (2).
  • the lateral width of the Far-side element 1F is reduced to a length up to a range where the reflected light enters.
  • the near-side element 1N is also formed in a shape in which the lateral width is gradually narrowed away from the boundary with the far-side element 1F.
  • each light receiving element can also be reduced by changing the shape of the light receiving elements 1N and 1F itself. Therefore, it is possible to reduce the light receiving area and reduce the incident light amount of noise light on condition that the reflected light having the intensity required for detection can be secured.
  • the amount of noise light can be reduced also by a method of adjusting the amount of light incident on each light receiving element by providing an optical filter divided into various transmittance regions in front of the two-divided light receiving element 1. An example is shown in FIG.
  • an optical filter 5 having a size including the entire two-divided light receiving element 1 is disposed in front of the two-shaped light receiving element 1 having a general shape.
  • the optical filter 5 is disposed between the back surface of the concave portion 31 of the holder body 30 and the CSP 14 including the two-divided light receiving element 1, similarly to the shielding plate 4 in the example of FIG.
  • the optical filter 5 is not of a type that selects a wavelength, but the light transmittance varies depending on the position in the x direction. Specifically, the range from the outer edge on the Far side to the center (corresponding to the boundary between the light receiving elements 1N and 1F) slightly before is set to a completely light-shielded state (transmittance 0%), A range including a part on the Near side across the center is set to a complete transmission state (transmittance 100%). Furthermore, the outer side (the left side in the figure) of the near side transmittance is divided into a plurality of band regions 50 having different transmittances. The transmittance of each band region 50 decreases in order according to the distance from the center, but a transmittance greater than 0 is also set in the outermost band region 50.
  • the transmittance in the range where the transmittance is set to 100%, the reflected light from the reference point and the reflected light from a point far from the reference point are incident, but the transmittance is set to 0%. No light other than noise light enters the range. Therefore, for the Far-side element 1F, as in the previous embodiments, the light receiving area is reduced within a range where there is no problem in receiving the reflected light.
  • the ratio of light entering the near-side element 1N is reduced by reducing the transmittance of the optical filter 5 stepwise.
  • the distance from the boundary with the element 1F is reduced. Therefore, the same effect as that in which the width direction of the light receiving area is gradually narrowed can be obtained.
  • each band region 50 is adjusted within a range in which the amount of light received necessary for detection by the near-side element 1N is secured, the adjustment and the light-receiving area of the far-side element 1F are adjusted. As a result of the reduction, the incident light amount of noise light can be greatly reduced, and the detection operation can be stabilized.
  • the diameter of the light receiving spot is substantially the same regardless of the position of the detection target SB.
  • the method using the optical filter 5 can be introduced regardless of the size of the diameter of the light receiving spot.
  • the light receiving spot SP B generated on the Near side has a high intensity even if the diameter is small, so that the amount of received light necessary for detection can be secured even through an optical filter having a low transmittance.
  • the optical filter 5 Since the optical filter 5 is not of a type that selects a wavelength to transmit, it can be manufactured at a relatively low cost. Therefore, it is possible to reduce noise components to the same extent as other embodiments without increasing the cost.
  • the optical filter 5 is disposed in front of the two-divided light receiving element 1 as in the case of the shielding plate 4 in the example of FIG. 6, but not limited thereto, the two-divided light receiving element 1 is sealed.
  • a method of attaching the optical filter 5 to the surface of the resin 16 to be performed may be employed.
  • Each embodiment described above is not limited to a two-part light receiving element, but a light receiving element used for a reflective optical sensor that performs measurement based on the principle of triangulation, such as PSD, one-dimensional or two-dimensional CMOS, and CCD.
  • a light receiving element used for a reflective optical sensor that performs measurement based on the principle of triangulation, such as PSD, one-dimensional or two-dimensional CMOS, and CCD.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 投光素子と、一方向に長い受光面によって投光素子からの光を受けた検出対象物からの反射光を受光する受光素子(1)とが、受光面の長さ方向における反射光の結像位置が前記検出対象物との距離に応じて変化する関係をもって配備された反射型光センサであって、受光素子は、当該素子へのノイズ光の入光量を減らすために、検出対象物がセンサに近づく場合に反射光の結像位置が移動する方向に向かうにつれて幅狭になる受光エリアにおいて光を受け付ける。一実施形態では、受光素子は二分割受光素子であって、その前方に開口部(10)を有する遮蔽部材(11)が配備される。開口部のうち、センサに対して相対的に近い場所からの強い反射光を受けるNear側の受光素子(1N)に対応する開口部分は、他方のFar側の受光素子(1F)との境界から遠ざかるにつれて幅狭になる。

Description

反射型光センサ
 本発明は、投光素子より光を投光すると共にその光に対する検出対象物からの反射光を受光素子により受光し、その受光により生成された受光量データを用いて三角測距の原理に基づく計測を行う反射型の光センサに関する。
 この種の光センサとして、たとえば、二分割受光素子やPSDを受光素子として用いて、その受光素子から出力される一対の受光量信号の差分演算を実行し、この差分レベルをあらかじめ定めたしきい値と比較することによって、基準点に位置する物体を検出する距離設定型の光センサがある。また、あらかじめ定めた基準位置に到達した物体を検出したり、物体の変位を計測するものもある。また、CMOSやCCDなどの電荷蓄積型の受光素子を用いて、受光面全域における受光量分布データを生成し、この分布中のピークの位置に基づき物体までの距離を計測するタイプのセンサもある。
 図11は、これら反射型光センサに共通する光学系の基本構成を検出の原理と共に示したものである。
 同図において、符号1が受光素子であり、符号2は投光部に組み込まれる投光素子である。受光素子1は、一方向(図11では上下方向)に長い受光面を有する。投光素子2から発せられた光は、投光用のレンズL2を介して外部に出射され、検出対象物SBで反射した光の一部が受光用レンズL1を介して受光素子1に入光する。受光用レンズL1から検出対象物SBまでの距離によって反射光の結像位置が変化するので、受光素子1は、反射光の結像位置の変化の方向に長さ方向を合わせた状態になるように、位置や姿勢が調整される。
 検出対象物SBが図中のA点に位置するとき、検出対象物SBからの反射光は、受光素子1の長さ方向の中心位置(図中の受光素子1内の点線が示す位置)に結像する状態になる。検出対象物SBがA点より前方へと移動するにつれて、反射光の結像位置は、中心位置から図中の下方に向かって移動し、検出対象物がA点より後方に移動するにつれて、反射光の入光位置は中心位置から図中の上方に向かって移動する。
 以下、A点を基準点と呼ぶ。また受光素子1の受光面において、検出対象物SBがセンサに近づく場合に反射光の結像位置が移動する方角を「Near側」と呼び、検出対象物SBがセンサから遠ざかる場合に反射光の結像位置が移動する方角を「Far側」と呼ぶ。また、二分割受光素子においては、Near側に位置する受光素子を「Near側素子」と呼び、Far側に位置する受光素子を「Far側素子」と呼ぶ。
 反射型光センサの従来例として、特許文献1には、投光素子および投光レンズを含む投光部と、二分割受光素子とレンズとを同一のホルダ部に組み込んだ構成の受光部とが同じ筐体内に収容された構成のセンサが開示されている(段落0026~0027,図2等を参照。)。また、この特許文献1には、前述した検出の原理と共に、各受光素子の受光量の差分信号を用いて検出対象物(ワーク)までの距離又は変位を検出することが記載されている(段落0048~0051,図6~8等を参照。)。
 つぎに、以下に述べる本発明の特徴に関連する文献として、特許文献2をあげる。
 この特許文献2に開示されているのは、PSDを用いた位置検出センサである。同文献には、測距には関係のない光(投光ビームの裾に広がった光に対する正反射光など)の受光により検出の精度が低下する、という問題を解決するために、受光素子(PSD)の前面側に板状の遮光体をスライド自在に配備し、この遮光体によって結像光の移動範囲以外の受光面の全てを塞ぐことが記載されている(段落0013,0015,0026~0031,図1,図7,図8,図10等を参照。)
日本国 特開2007-33162号公報 日本国 特許第3677868号公報
 一般に、受光素子は、強い光が入光すると、ショットノイズと呼ばれるノイズを発生する。ショットノイズは、受光回路で処理されると、ホワイトノイズとして受光量信号に重畳される。特に、三角測距を用いる反射型光センサでは、反射光の移動範囲に対応する必要から、広い受光面を持つ受光素子を使用するので、受光量信号に対するノイズ成分の影響が強くなり、検出に悪影響が生じるおそれがある。
 図12は、受光素子1に検出対象の反射光SLのみが入光した場合に得られる受光量信号と、ノイズ光NLが入光した状態下での受光量信号とを、上下に並べて示す(図12(1)(2))。下段のグラフに示すように、反射光SLと共に白色光によるノイズ光NLが入光すると、ホワイトノイズによって受光量信号に細かい振動が生じてしまう。この振動が大きくなると、センサの検出動作に誤動作が生じるおそれがある。
 図13は、受光素子1として二分割受光素子を用いる光電センサにおける信号処理を例示すると共に、ノイズ光の影響により生じる誤動作の例を模式的に示す。なお、図13では、Near側素子による受光量信号をPとし、Far側素子による受光量信号をPとする。
 先に、左手の図13(1)を参照して信号処理の方法を説明する。この例では、受光量の差分信号P-Pおよび加算信号P+Pを、それぞれ値が異なる2つのしきい値と比較する。以下、値が高い方のしきい値をオンしきい値と呼び、値が低い方のしきい値をオフしきい値と呼ぶ。差分信号P-Pに対する比較の結果は差分制御信号として出力され、加算信号P+Pに対する比較の結果は加算制御出力として出力される。
 差分信号に対する信号処理では、差分信号がオンしきい値より高い場合に差分制御信号をオン状態とし、差分信号がオフしきい値より低い場合には差分制御信号をオフ状態とする。加算信号に対する信号処理でも同様に、加算信号がオンしきい値より高い場合に加算制御信号をオン状態とし、加算信号がオフしきい値より低い場合には加算制御信号をオフ状態とする。
 差分制御信号および加算制御信号が共にオン状態となる間は検出対象物SBが基準点より前に位置していると判定される。検出対象物SBが基準点より前の位置から遠ざかる方向に移動すると、差分信号がオンしきい値より高い状態からオフしきい値より低い状態になり、それに伴い、差分制御信号はオン状態からオフ状態に変化する。さらに検出対象物SBが基準点からかなり離れた位置まで移動すると、加算信号がオンしきい値より高い状態からオフしきい値より低い状態になり、それに伴い、加算制御信号がオン状態からオフ状態に変化する。
 上記とは反対に、検出対象物SBが遠方から基準点に近づく方向に移動すると、まず、加算制御信号がオフ状態からオン状態に変化し、次に差分制御信号がオフ状態からオン状態に変化する。
 図12(2)に示したようなノイズ成分が載った受光量信号が生成されると、差分信号や加算信号にも同様の振動が生じる。差分信号や加算信号におけるノイズ成分の振幅がオンしきい値とオフしきい値との差より大きくなると、図13(2)に示すように、差分制御信号や加算制御信号に、オンとオフとが小刻みに切り替わる現象(チャタリング)が生じてしまう。
 ホワイトノイズによる影響は、二分割受光素子に限らず、他の種類の受光素子を用いた反射型光センサでも、同様に、誤検出を引き起こすおそれがある。
 また、受光素子では、ダイナミックレンジが決まっており、そのレンジの最大値を上回る光が入光すると、受光量信号が示す受光量が飽和する。したがって、非常に強いノイズ光が入光して受光量信号が飽和すると、反射光の入光位置を反映した信号を得ることができなくなり、検出エラーが生じてしまう。
 このようなノイズ光の影響を避けるために、従来は、受光用レンズとして近赤外帯域の光をカットする機能を持つレンズを使用したり、近赤外帯域の光をカットする光学フィルタを使用する対策がとられている。しかし、波長を選択するタイプの光学部材は高価であるため、コストが増加してしまう。
 コストをかけない方法として、検出に支障がない範囲で受光量信号の増幅のゲインを下げることにより、ノイズ成分の振幅を小さくする方法がある(図14の(A-1)(A―2)を参照。)。しかしながら、ゲインを下げると、受光量信号全体の振幅も抑えられ、信号の変化の度合いが緩やかになるので、応答性が悪くなる、という問題がある。
 図14(B)は、二分割受光素子を用いたセンサにおいて、受光量のゲインを下げない状態下での受光量信号(図14(A-1)の信号)による差分信号と、ゲインを下げた場合の受光量信号(図14(A-2)の信号)による差分信号を対象に、しきい値付近での変化を拡大して示したものである。この図14(B)に示すように、ゲインを下げると、信号の変化の度合いが緩やかになるので、オンしきい値とオフしきい値との間に入るレベルの信号を得る範囲が拡大して、応差の距離が長くなり、応答性が低下する。
 本発明は上記の問題に着目し、三角測距の原理による計測を行う反射型光センサにおいて、受光素子に対するノイズ光の影響をコストをかけることなく容易に削減して、検出の精度を高めることを課題とする。
 本発明は、光を投光する投光素子と、一方向に長い受光面によって投光素子からの光を受けた物体からの反射光を受光する受光素子とが、受光面の長さ方向における反射光の結像位置がその反射を生じさせた物体との距離に応じて変化する関係をもって配備された反射型光センサに適用される。
 第1の発明が特徴とするところは、受光素子を、投光素子からの光を反射させる物体がセンサに近づく場合に反射光の結像位置が移動する方向に向かうにつれて幅狭になる受光エリアにおいて光を受け付けるように構成した点にある。
 以下、この特徴について、図15を用いて説明する。
 図15は、先の図11に示したA,B,Cの各点からの反射光によって受光素子1に形成される受光スポット(反射光の像)SP,SP、SPの状態を示す。
 基準点であるA点付近に検出対象物がある場合の受光スポットSPでは、その中心が受光素子の長さ方向を分ける中心線Lにほぼ対応するので、受光面の中心線Lにより二分される左右の領域における受光量は、ほぼ均等になる。
 また、図中の受光スポットSP,SPと先の図11のB点、C点の関係からわかるように、検出対象物SBがセンサに近づく場合には、検出対象物SBがセンサから遠ざかるよりも、受光スポットの移動の度合いが大きく、スポット径も大幅に拡大する。
 上記のとおり、反射光の結像位置がNear側に移動するほど受光スポットの面積は大きくなる。また、入光する反射光の強度も検出対象物SBがセンサに近づくほど強くなるから、中心線LよりもNear側の領域(図中の左手の領域)では、入光可能な全ての反射光を受光しなくとも、検出に必要な受光量を確保することが可能になる。一方、ノイズ光は場所を選ばずに、受光面全体に入光する可能性があるので、Near側の受光エリアを削減すれば、取り除かれた受光エリアの面積に応じた量だけノイズ光の入光量を削減することができる。
 第1発明は上記の特性に着目し、強い反射光が入光するNear側に向かうにつれて受光エリアが幅狭になるようにしたのである。この構成によれば、センサに近い場所からの反射光を受光する面の面積が大きく縮小されるが、近距離からの反射光は広い範囲に照射されるので、幅狭の受光エリアでも受光漏れが生じる可能性は低い。また反射光量が強くなるので、遮光される光の割合が大きくなっても検出に必要な受光量を確保することができる。一方、ノイズ光の入光量は、受光エリアの削減に伴って大幅に減少するので、受光信号中のノイズ成分を大きく削減して誤動作を防ぐことが可能になる。
 第1発明の実施形態として、以下のようなものが考えられる。
 まず第1の実施形態では、受光素子の前方に、投光素子からの光を反射させる物体がセンサに近づく場合に反射光の結像位置が移動する方向に向かうにつれて幅狭になる形状の開口部を有する遮蔽部材が配備され、この遮蔽部材によって、受光面に入光可能な光の一部が遮蔽される。すなわち、受光面自体の大きさや形状ではなく、その前方の遮蔽部材と開口部とによって受光面の一部が遮光されることによって、受光エリアが縮小される。
 なお、前出の特許文献2には、受光面の一部を遮光することによりノイズ光の入光を防ぐという技術思想が示されている。しかし、この特許文献2に記載された発明では、対象物からの正反射光をノイズ光とし、そのノイズ光の入光範囲を想定することができるという前提の下で、想定された範囲を遮光するだけである。これに対し、本発明は、入光範囲を特定できず、受光面全体に広く入光する可能性が高い外乱光による影響を削減することを課題として、検出に必要な光が入光する範囲の一部を遮光するものである。よって、特許文献2とは技術思想が大きく相違する。
 ここで、再び図15を参照すると、反射型センサの光学系の特性により、受光素子の受光面では、Far側への受光スポットの移動の度合いはNear側への移動の度合いより小さくなり、ある地点より以遠からは、受光スポットが殆ど動かない状態となる。図15の例では、受光スポットSPが生じる限界の位置より外側は、反射光が入光し得ない無駄領域となる。
 したがって、受光素子の受光面のFar側の端縁の近傍がこのFar側の受光スポットの限界位置となるように、受光面の長さを設定しておけば、Far側の無駄領域を削減すると共に、上記の遮蔽部材によってもノイズ光の入光量を削減でき、ノイズ成分を大幅に減らすことができる。
 しかし、受光面の長さを調整するのが困難で、Far側にどうしても無駄領域ができる場合には、遮蔽部材を受光面の全体に対向させると共に、開口部を、Far側の領域に対しては反射光が結像する限界位置より外側を含まない範囲に設定するとよい。このようにすれば、Far側の無駄領域が遮蔽部材によって遮光され、無駄領域へのノイズ光の入光によってノイズ成分が増えるおそれがなくなる。
 上記第1の実施形態の下位概念となる一形態では、受光素子が組み込まれるホルダ部において受光素子の前方に位置する面を遮蔽部材として機能させ、反射光を通過させて受光素子へと導くために当該面に形成された受光窓を開口部として機能させる。すなわち光学ホルダの受光窓の形状を工夫することによって、受光エリアの面積を容易に調整することが可能になる。
 第1の実施形態の下位概念となる他の形態では、ホルダ部において受光素子の前方に位置する面と受光素子との間に遮蔽部材を配備する。また、受光素子の前方に位置する面には、遮蔽部材の開口部分より大きい受光窓が形成される。この実施形態によれば、反射光は、受光素子の前方の面の受光窓を通過した後に、当該前方の面と受光素子との間に配備された遮蔽部材によって一部が遮光され、これにより受光素子の受光エリアの面積が調整される。
 つぎに、第2の実施形態による反射型光センサでは、受光素子の受光面が、遮光性を有する樹脂で被覆される領域と被覆されない領域とに二分されると共に、この樹脂で被覆されない領域が、投光素子からの光を反射させる物体がセンサに近づく場合に反射光の結像位置が移動する方向に向かうにつれて幅狭になる形状に設定される。このように、受光素子自体に加工を施すことによっても、受光エリアの面積を調整することが可能になる。
 この第2の実施形態でも、Far側の受光スポットの限界位置がFar側の端縁の付近になるように、受光面の長さを調整するのが望ましいが、それができない場合には、Far側の領域のうち、反射光が結像する限界位置より外側を遮光性を有する樹脂により被覆するとよい。
 このようにすれば、反射光が入光することのない無駄領域にノイズ光が入光するのを防ぐことができ、ノイズ光の入光量をより多く削減することが可能になる。
 第3の実施形態では、受光素子の受光面が、投光素子からの光を反射させる物体がセンサに近づく場合に反射光の結像位置が移動する方向に向かうにつれて幅狭になる形状を有する。すなわち、受光素子自体の形状によって受光エリアが縮小されるようにする。
 第3の実施形態においては、Farの領域の端縁の近傍が反射光が結像する限界位置となるように、受光面の長さを設定するのが望ましい。このようにFarの領域の幅を短くすれば、反射光が入光しない範囲の無駄領域を大きく削減することができ、ノイズ光の入光量をさらに削減することができる。
 つぎに、第2の発明にかかる反射型光センサは、受光素子として二分割受光素子を使用し、2つの受光素子間における受光量の差分値に基づく検出信号を出力するもので、二分割受光素子のうち、センサに対して相対的に近い場所からの反射光を受けるNear側素子が、センサに対して相対的に遠い場所からの反射光を受けるFar側素子との境界から遠ざかるにつれて幅狭になる受光エリアにおいて光を受け付ける。
 二分割受光素子では、Near側素子への反射光の入光範囲は大きくなり、かつ強度も強くなるから、Near側素子1Nに入光可能な全ての反射光を受光しなくとも、検出に必要な受光量を確保することが可能になる。また、ノイズ光は場所を選ばずに各受光素子の全面に入光する可能性があるので、Near側素子の受光エリアを削減すれば、取り除かれた受光エリアの面積に応じた量だけノイズ光の入光量を削減することができる。
 第2発明は上記の特性に着目して、二分割受光素子のうち、強い反射光が入光するNear側素子における受光エリアを、Far側素子との境界から遠ざかるにつれて幅狭にしたのである。この構成によれば、センサに近い位置からの反射光を受光する面の面積が大きく縮小されるが、近距離からの反射光は広い範囲に照射されるので、幅狭の受光エリアでも受光漏れが生じる可能性は低い。また反射光量が強くなるので、遮光される光の割合が大きくなっても検出に必要な受光量を確保することができる。一方、ノイズ光の入光量は、受光エリアの削減に伴って大幅に減少するので、受光信号中のノイズ成分を大きく削減して誤動作を防ぐことが可能になる。
 第2発明の一実施形態にかかる反射型光センサでは、Near側素子の前方に、Far側素子との境界から遠ざかるにつれて幅狭になる形状の開口部を有する遮蔽部材が配備され、この遮蔽部材によって、Near側素子に入光可能な反射光の一部が遮蔽される。すなわち、Near側素子自体の受光面は変更されないが、その前方の遮蔽部材と開口部とで受光面の一部が遮光されることによって、受光エリアが縮小される。
 上記の遮蔽部材は、少なくともNear側素子に対向する範囲に配備されるが、二分割受光素子の前面全体に対向させることもできる。この場合には、開口部は、受光素子間の境界位置を跨いでFar側素子の一部範囲にまで広がり、このFar側素子に対する開口部を介して、Near側素子に結像する反射光よりも遠方からの反射光がFar側素子に結像する状態となる。こうすれば、Far側素子の反射光が入光することがない無駄領域が遮蔽部材により塞がれるので、ノイズ光の入光量を大幅に削減することができる。
 上記実施形態の下位概念となる一形態では、二分割受光素子が組み込まれるホルダ部において二分割受光素子の前方に位置する面を遮蔽部材として機能させ、反射光を通過させて二分割受光素子へと導くために当該面に形成された受光窓を開口部として機能させる。すなわち光学ホルダの受光窓の形状を工夫することによって、受光エリアの面積を容易に調整することが可能になる。
 第1の実施形態の下位概念となる他の形態では、ホルダ部において二分割受光素子の前方に位置する面と二分割受光素子との間に遮蔽部材を配備する。また、二分割受光素子の前方に位置する面には、遮蔽部材の開口部分より大きい受光窓が形成される。この実施形態によれば、反射光は、二分割受光素子の前方の面の受光窓を通過した後に、当該前方の面と受光素子との間に配備された遮蔽部材によって一部が遮光され、これにより二分割受光素子の受光エリアの面積が調整される。
 第3発明では、受光素子の種別を限定せずに、受光素子の受光面のうちのNear側の領域の前方に、Far側の領域から遠ざかるにつれて透過率が小さくなるように設計された光学フィルタを配備する。すなわち、第3発明は、Near側の領域に入光する光量を段階的に削減することによって、ノイズ光の入光量を減らす、という発想によるものである。Near側の領域では、Far側から離れた場所への反射光の入光が大幅に制限されるが、近距離からの反射光は強度が強いので、光学フィルタにより遮光される光の割合が高められても、検出に必要な受光量を確保することができる。
 その一方で、ノイズ光の入光量が大幅に削減されるので、ノイズ光による誤動作を防ぐことができる。また、波長を選別しない光学フィルタは比較的安価であるので、コストの上昇も抑えることができる。
 Far側への受光スポットの限界位置がFar側の端縁の付近になるように、受光面の長さが調整されている場合には、上記の光学フィルタは、少なくとも、Near側の領域の前面に対向する範囲に配備すれば良い。しかし、受光面の長さを調整できず、受光スポットの限界位置より外側の無駄領域が大きくなる場合には、光学フィルタを受光素子の受光面全体に対向させて、反射光が入光する限界位置より外側に対する範囲を非透過状態に設定するとよい。このようにすれば、Far側の領域内の反射光が入光することのない箇所にノイズ光が入光するのを防ぎ、受光量信号に重畳されるノイズ成分を抑えることができる。
 本発明によれば、検出に支障のない範囲で、入光する反射光の径や強度が十分に大きくなるNear側の領域で受光する光の量を制限することによって、ノイズ光の入光量を大幅に削減することができる。
 よって、ノイズ光による誤動作が生じるのを防ぐことができる。また、ノイズ成分が削減されるので、受光信号に対する増幅処理のゲインを下げる必要がなく、安定した検出処理を実施することが可能になる。
光電センサに導入される二分割受光素子と遮光部材との関係を説明する図である。 2つの受光素子からの受光量信号の加算信号とセンサから検出対象物までの距離との関係を示すグラフである。 二分割受光素子に生じる受光スポットの位置とセンサから検出対象物までの距離との関係を示すグラフである。 遮光部材の開口部の変形例を示す図である。 図1の構成が適用された二分割受光素子が組み込まれるホルダ部の正面図および斜視図である。 図1の構成が適用された他の形態のホルダ部の正面図および側面図である。 図1の構成を応用して二分割受光素子を含むCSPの構成を変更した例を示す図である。 図1の構成を応用して二分割受光素子の形状を変更した例を示す図である。 二分割受光素子に入光する光量を光学フィルタを用いて調整する例を示す図である。 シャインプルーフ条件を満たす光学系の構成と、この光学系の受光素子に形成される受光スポットの例とを示す図である。 反射型光センサの光学系の基本構成および検出の原理を示す図である。 ノイズ光の入光が受光量信号に及ぼす影響をグラフにより説明した図である。 距離設定型の光電センサにおける信号処理にノイズに起因する誤動作が生じる様子を模式的なグラフにより説明した図である。 受光量信号の増幅ゲインとノイズとの関係を模式的なグラフにより説明した図である。 図11のA,B,Cの各点からの反射光により二分割受光素子に形成される受光スポットの例を示す図である。
 図1は、距離設定型の反射型光センサに使用される二分割受光素子に対する本発明の適用例を示す。なお、以下では、二分割受光素子の全体を符号1により示し、Near側素子を符号1Nにより、Far側素子を符号1Fにより、それぞれ示す。また、以下の説明では、Near側素子1NとFar側素子1Fとが並ぶ方向をx方向とし、x方向に直交する方向をy方向とする。また、x方向の幅を横幅と言い、y方向の幅を縦幅と言う場合もある。
 この実施例の二分割受光素子1は、投光素子2に対し、図11に示したのと同様の関係をもって配置される。検出の原理は従来技術の欄で述べたのと同様であるので、各受光スポットを、それぞれ図15と同じ参照符号SP,SP,SPにより示すことによって、説明を省略する。
 この実施例の二分割受光素子1の前方には、開口部10を有する遮蔽部材11が配備される。開口部10は、x方向においてはNear側素子1Nの全幅に広がり、さらに各素子1N,1F間の境界を跨いでFar側素子1Fの一部範囲にまで広がる。開口部10のy方向の範囲は、Far側素子1FおよびNear側素子1NのFar側よりの箇所に対しては、素子の縦幅全体を含む範囲に設定されるが、Near側素子1Nに対するy方向の開口幅は、Far側素子1Fとの境界から遠ざかるにつれてしだいに狭くなる。
 図1の各受光スポットSP,SP,SPと開口部10との関係からわかるように、基準点(A点)からの反射光および基準点より遠い位置からの反射光は、ほぼ全てが開口部10を通過して、受光スポットSP,SPとして結像する。
 一方、基準点より前方の位置からの反射光の中には、遮蔽部材11によってNear側素子1Nへの入光が阻まれる光が生じる。また、Near側の外端縁に近づくにつれて開口部10が幅狭になるので、遮光される光の割合が大きくなる。
 ただし、検出対象物がセンサに近づくにつれて反射光の入光範囲が大きくなるので、開口部10の幅狭部分に対する反射光の通過の範囲はかなり広くなる。加えて、近距離からの反射光は強度が高いので、入光する光の割合が減少しても、十分な受光量を得ることができる。
 図2は、遮蔽部材11が配備されない従来タイプのセンサにおいて、Near側素子1Nによる受光量PとFar側素子1Fによる受光量Pとの加算信号のレベルとセンサから検出対象物までの距離との関係を、実測値に基づき模式化して表したグラフである。
 検出対象物SBが基準点より前方に移動してNear側素子1Nのみに反射光が入光する状態になると、加算信号のレベルは、Near側素子1Nによる受光量Pに一致する。検出対象物SBがセンサの直近に位置して反射光を入光できない場合には、受光量Pは低下するが、反射光を受光できる程度に離れた位置にある検出対象物SBからの反射光による受光量Pは、グラフ中に矢印Fで示すように、非常に高い値を示す。
 図2のグラフに示すとおり、近距離からの反射光の強度は非常に高い。図1の例によれば、近距離であるB点からの反射光による受光スポットSPは、本来形成される範囲(点線で示す。)よりかなり小さくはなるが、なお、他の受光スポットSP,SPよりも広い範囲に形成されるので、十分な強度の受光量を得ることができる。
 つぎに、図3は、二分割受光素子1における受光スポットの中心点の位置とセンサから検出対象物までの距離との関係を表したグラフ(検出対象物SBをNear側からFar側に向けて動かしながら受光スポットの位置を計測した結果を模式的に示したもの)である。このグラフに示すように、検出対象物SBがセンサの近くにある場合には、検出対象物SBの位置の変化に追随して受光スポットも大きく動く。しかし、検出対象物SBがセンサから遠ざかるにつれて、受光スポットの位置の変化の度合いは緩やかになる。特に、検出対象物SBが基準点より所定距離以上後方に移動すると、受光スポットは殆ど動かない状態となる。
 図1に示した開口部10のFar側の開口端縁は、図3に示した特性に基づき、受光スポットSPが形成される範囲の限界位置の付近に合わせて設定される。また、このFar側の端縁から受光スポットSPが形成される箇所付近までのy方向の開口幅は、受光素子1N,1Fの縦幅よりやや広めに設定されているので、基準点および基準点より後方からの反射光のほぼ全てが開口部10を通過して二分割受光素子1に入光する。
 一方、Far側素子1Nの受光スポットSPが形成される範囲より外側は、遮蔽部材11により遮光される。
 開口部10からは、検出対象物SBからの反射光のほか太陽光や照明光などによるノイズ光も入光する可能性がある。ノイズ光は、二分割受光素子1の全範囲に入光する可能性があるが、この実施例では遮蔽部材11によってかなりの量のノイズ光が遮光されるので、受光量信号に重畳されるノイズ成分は大幅に削減される。またNear側素子1Nに対しては、近距離からの強い反射光を受光する箇所における受光エリアが狭められ、Far側素子1Fに対しては、検出のための反射光が入光することのない範囲が遮光されるので、検出に支障が生じることなく、ノイズ光の入光量を減らすことができる。
 このように受光量信号に重畳されるノイズ成分が小さくなるので、図13(2)に示したような誤動作が生じるのを防止することができる。また、受光量の増幅のゲインを下げる必要もなくなるので、差分信号や加算信号の変化を示す傾きを急峻にすることができ、応答性の低下を防ぐこともできる。
 なお、図1の例では、基準点付近からの反射光や基準点より後方からの反射光による受光スポットSP,SPが形成される範囲に対しては、縦幅全体が開口部10内に含まれるように、開口部10の縦幅を広くしているが、検出に必要な反射光量が確保できるのであれば、図4(1)に示すように、受光スポットSP,SPの形成範囲に対する開口部10の縦幅を受光素子1Fの縦幅より短くしても構わない。また、検出に必要な強さの受光量が確保できるのであれば、基準点からの反射光による受光スポットSPの形成範囲に対する開口部10の縦幅をさらに狭くして、基準点からの反射光の一部が遮光されるようにしてもよい。
 Near側素子1Nに対する開口部10の開口端縁は、必ずしも直線状に変化させる必要はなく、図4(2)に示すように、曲線状に変化させてもよい。また、図1や図4(1)(2)の例では、開口部10の開口端縁を緩やかに傾斜させているが、これに限らず、開口端縁を階段状に変化させてもよい。その場合には、Near側に向かうにつれて段差が大きくなるようにしてもよい。また、各例では、上下の開口端縁が縦方向を二分する中心線に対して対称になるような形状の開口部10を形成したが、上下の開口端縁が非対称の形状の開口部を設けてもよい。また、上下の一方の開口端縁の傾きのみを変化させることによって開口部の幅を変更してもよい。
 また、開口部を1つとせずに、複数のスリット状の開口部を形成することとし、各開口部の幅やy方向における開口部の数をFar側からNear側に向かうにつれて変動させる方法により、遮光の度合いを変化させてもよい。
 また、ノイズ成分を十分に削減できることが条件となるが、図4(3)に示すように、遮光される範囲をFar側素子1Fの反射光が入光しない範囲のみとし、反射光が入光する範囲全体に対応する開口部10を形成してもよい。反対に、Near側素子1Nに対する開口幅を縮小し、Far側素子1Fの全体に対向する範囲が開口された開口部10を形成してもよい。
 図5は、光電センサに組み込まれるホルダ部に図1に示した構成を応用した例を示す。
 この実施例のホルダ部3は、光学系を支持するための略筒型のホルダ本体30の内部に一対の導光路31,32が形成された構成のもので、その後端部に、投光ユニット20や二分割受光素子1を含むCSP(Chip Size Package)14が搭載された基板36が装着される。図5(1)は、ホルダ部3の前面の図であり、図5(2)は、ホルダ部の背面側の構成を示す斜視図である。
 図5(1)中の右手に位置する導光路32の後端面には投光窓200が形成され、左手に位置する導光路31の後端面(CSP14の前方に位置する面)には受光窓100が形成される。また各導光路31,32の前方の開放端面には、それぞれ図11に示したレンズL1,L2が嵌め込まれる。
 投光ユニット20は、導光路32の背面側に設けられた収容部35内に収容される状態で支持される。この状態下において、投光素子2は、投光窓200の中央部に位置する状態となる。
 CSP14は、二分割受光素子1を中継基板15(インタポーザ)に搭載し、これらの前面を透明樹脂16により封止した構成のもので、導光路31の背面側の収容部37に収容される状態で支持される。この支持状態において、二分割受光素子1は、受光窓100に対向する状態になる。
 この実施例では、ホルダ本体30の導光路31の後端面および受光窓100が、それぞれ図1に示した遮蔽部材11および開口部10として機能する。すなわち、Near側素子1Nに対する受光窓100の縦幅は、Far側素子1Fとの境界から遠ざかるに従って徐々に狭くなる。Far側素子1Fに対する受光窓100の範囲は、受光スポットSPが形成される範囲の限界付近までに限定されるが、縦幅はFar側素子1Fの縦幅よりやや大きめに設定される。Near側素子1Nに対しても、基準点からの反射光が入光する範囲の縦幅はNear側素子1Nよりやや大きく形成されている。
 図5の実施例によれば、ホルダ本体30の導光路31の後端面と受光窓100とによって、各受光素子1N,1Fの受光エリアの面積を削減して、ノイズ成分を削減することができる。また、ホルダ部3に遮蔽部11の機能が設けられるので、部品点数が増えることがなく、コストの増加が抑えられる。
 図6は、図1に示した構成を応用したホルダ部3の他の例を、正面図および側面図により示す。なお、図5と共通する構成には図5と同じ参照符号を付すことにより、細部の説明を省略する。
 この例では、ホルダ本体30の導光路31の裏面と二分割受光素子1を含むCSP14との間に、開口部40を有する遮蔽プレート4が配備される。この実施例の受光窓100は、CSP14をほぼ完全に露出させる大きさに形成されているが、遮蔽プレート4およびその開口部40が図1に示す遮蔽部材11および開口部10として機能する。よって、図5の例と同様に、各受光素子1N,1Fの受光エリアが縮小されて、ノイズ成分を削減することが可能になる。
 図6の構成によれば、図5の例よりも部品が1点増えることにはなるが、追加される部品(遮蔽プレート4)は簡易な構成のものであり、また既存の構成のホルダ部3を使用することができるので、コスト高になるおそれはない。なお、回路基板36への電磁ノイズを防ぐためにシールドプレートが配備される光電センサでは、このシールドプレートを遮蔽プレート4として機能させてもよい。
 図7は、図1の構成を応用した他の例を示す。
 先の図5,図6に示したように、二分割受光素子1は、CSP14内に組み込まれた状態でホルダ部3内に配置される。図7(1)は、CSP14を前方から見た状態を示す。前面の樹脂16は透明であるので、二分割受光素子1の全体を視認することができる。
 図7(2)の例では、樹脂16の一部を、遮光性を有する顔料が混入された樹脂16aに変更することによって、Near側素子1NおよびFar側素子1Fに対し、それぞれ図1の遮蔽部材11によるのと同様の範囲の遮光を実現している。すなわち、図1の開口部10に対応する範囲に透明の樹脂16が配置され、その他の箇所に遮光性を有する樹脂16aが配置されることにより、Near側素子1Nの受光エリアはFar側素子1Fとの境界から遠ざかるにつれて幅狭となる。またFar側素子1Fの受光エリアは、Near側素子1Nとの境界から受光スポットSPが形成される範囲の限界位置付近までの範囲となり、それより外側の範囲は遮光される。
 図7(2)の例においては、遮光性を有する樹脂16aが、図5の例の導光路31の後端面や図6に示した遮蔽プレート4と同様に、各受光素子1N,1Fへの入光量を削減する手段として機能し、これによりノイズ成分が削減される。この構成例では、CSP14を製作する際の樹脂封止の工程が若干複雑にはなるが、部品点数やホルダ部3の構成を変更する必要がないので、コストの増加を防ぐことができる。
 ここまでに述べた実施例では、各受光素子1N,1Fを部分的に遮光する方法によってそれぞれの受光エリアを削減したが、これに限らず、図8に示すように、受光素子1N,1F自体の形状を変更する方法によって受光エリアを調整することもできる。
 図8(1)(2)は、それぞれCSP14内の二分割受光素子1を示す(わかりやすくするために、内部の受光素子1N、1Fにパターン塗りを施している。)。いずれの例でも前面は透明樹脂16により封止される。
 図8(1)に示す二分割受光素子1は、一般的な形状(Near側素子1NおよびFar側素子1Fが同じ大きさの矩形状となる。)であるのに対し、図8(2)の例では、Far側素子1Fの横幅が、反射光が入光する範囲までの長さに縮小される。また、Near側素子1Nも、Far側素子1Fとの境界から遠ざかるにつれて横幅が徐々に狭くなる形状に形成される。
 このように受光素子1N,1F自体の形状を変更することによっても、各受光素子の受光エリアを縮小することができる。よって、検出に必要な強度の反射光を確保できることを条件に受光エリアを縮小し、ノイズ光の入光量を削減することができる。
 つぎに、二分割受光素子1の前方に様々な透過率の領域に分かれる光学フィルタを設けて各受光素子に入光する光量を調整する方法によっても、ノイズ光の光量を削減することができる。その例を図9により示す。
 図9の例では、一般的な形状の二分割受光素子1の前方に、二分割受光素子1の全体を包含する大きさの光学フィルタ5が配備される。この光学フィルタ5は、先の図6の例における遮蔽プレート4と同様に、ホルダ本体30の凹部31の裏面と二分割受光素子1を含むCSP14との間に配備される。
 光学フィルタ5は、波長を選択するタイプのものではないが、x方向における位置によって光透過率が変動する。具体的には、Far側の外端縁から中心部(受光素子1N,1F間の境界に対応)よりやや手前までの範囲が完全な遮光状態(透過率0%)に設定され、その隣から中心部を挟んでNear側の一部までを含む範囲が完全な透過状態(透過率100%)に設定される。さらに、Near側の透過率が100%の範囲より外側(図中の左側)は、透過率がそれぞれ異なる複数の帯領域50に分割される。各帯領域50の透過率は、中心部からの距離に応じて順に小さくなるが、一番外側の帯領域50にも、0より大きい透過率が設定される。
 図9の例で、透過率が100%に設定される範囲には、基準点からの反射光および基準点より遠い地点からの反射光が入光するが、透過率が0%に設定される範囲には、ノイズ光以外の光は入光しない。よって、Far側素子1Fに対しては、先の各実施例と同様に、反射光を受光することに支障がない範囲で受光エリアが縮小されることになる。
 一方、Near側素子1Nに対しては、受光エリアが縮小されることはないが、光学フィルタ5の透過率を段階的に下げることによって、Near側素子1Nに入光する光の割合はFar側素子1Fとの境界から遠ざかるほど削減される。よって、受光エリアの幅方向がしだいに狭められるのと同様の効果を得ることができる。
 よって、図9の例でも、Near側素子1Nで検出に必要な強さの受光量が確保される範囲で各帯領域50の透過率を調整すれば、その調整とFar側素子1Fの受光エリアの縮小とによって、ノイズ光の入光量を大幅に削減して、検出動作を安定させることができる。
 また、図10(1)(2)に示すように、センサの光学系を、シャインプルーフ条件を満たす構成にした場合には、検出対象物SBの位置に関わらず、受光スポットの径がほぼ同じで、しかも小さくなるので、図1や図7等に示したような受光面を遮蔽する方法を採用するのは困難になる。しかし、上記の光学フィルタ5による方法は、受光スポットの径の大きさに関係なく、導入することができる。Near側に生じる受光スポットSPは、径は小さくとも強度は強くなるので、透過率の低い光学フィルタを介しても、検出に必要な受光量を確保することができる。
 上記の光学フィルタ5は、透過する波長を選択するタイプのものではないので、比較的安価に製作することができる。よって、コストを上昇させることなく、他の実施例と同程度にまでノイズ成分を削減することが可能になる。
 なお、図9の例では、図6の例の遮蔽プレート4と同様に、二分割受光素子1の前方に光学フィルタ5を配置するとしたが、これに限らず、二分割受光素子1を封止する樹脂16の表面に光学フィルタ5を貼り合わせる方法を採用してもよい。
 上記に示した各実施例は、二分割受光素子に限らず、PSDや、一次元または二次元のCMOS,CCDなど、三角測距の原理に基づく計測を行う反射型光センサに用いられる受光素子全般に適用することにより、ノイズ光の入光量を大幅に減らし、検出動作を安定させることができる。
 1  受光素子
 1N Near側素子
 1F Far側素子
 2  投光素子
 3  ホルダ部
 4  遮蔽プレート
 5  光学フィルタ
 10,40 開口部
 11 遮蔽部材
 16 封止樹脂
 30 ホルダ本体
 31 凹部
 100 窓部

Claims (16)

  1.  光を投光する投光素子と、一方向に長い受光面によって投光素子からの光を受けた物体からの反射光を受光する受光素子とが、受光面の長さ方向における前記反射光の結像位置がその反射を生じさせた物体との距離に応じて変化する関係をもって配備された反射型光センサであって、
     前記受光素子は、投光素子からの光を反射させる物体がセンサに近づく場合に反射光の結像位置が移動する方向に向かうにつれて幅狭になる受光エリアにおいて光を受け付けることを、特徴とする反射型光センサ。
  2.  前記受光素子の前方に、前記投光素子からの光を反射させる物体がセンサに近づく場合に反射光の結像位置が移動する方向に沿ってしだいに幅狭になる形状の開口部を有する遮蔽部材が配備され、この遮蔽部材によって、受光面に入光可能な反射光の一部が遮蔽される、請求項1に記載された反射型光センサ。
  3.  前記遮蔽部材は、前記受光素子の受光面全体に対向すると共に、前記開口部は、センサに対して相対的に遠い場所からの反射光を受けるFar側の領域に対しては、反射光が結像する限界位置より外側を含まない範囲に設定される、請求項2に記載された反射型光センサ。
  4.  前記受光素子が組み込まれるホルダ部において受光素子の前方に位置する面が前記遮蔽部材として機能し、前記反射光を通過させて受光素子へと導くために当該面に形成された受光窓が前記開口部として機能する、請求項2または3に記載された反射型光センサ。
  5.  前記遮蔽部材は、前記受光素子が組み込まれるホルダ部において受光素子の前方に位置する面と受光素子との間に配備され、前記受光素子の前方に位置する面には、前記反射光を通過させて受光素子へと導くために、前記遮蔽部材の開口部より大きい受光窓が形成される、請求項2または3に記載された反射型光センサ。
  6.  前記受光素子の受光面は、遮光性を有する樹脂で被覆される領域と被覆されない領域とに二分されると共に、この樹脂で被覆されない領域が、前記投光素子からの光を反射させる物体がセンサに近づく場合に反射光の結像位置が移動する方向に向かうにつれて幅狭になる形状に設定される、請求項1に記載された反射型光センサ。
  7.  前記受光素子の受光面のセンサに対して相対的に遠い場所からの反射光を受けるFar側の領域のうち、反射光が結像する限界位置より外側が前記遮光性を有する樹脂により被覆される、請求項6に記載された反射型光センサ。
  8.  前記受光素子の受光面は、前記投光素子からの光を反射させる物体がセンサに近づく場合に反射光の結像位置が移動する方向に向かうにつれて幅狭になる形状を有する、請求項1に記載された反射型光センサ。
  9.  前記受光面のセンサに対して相対的に遠い場所からの反射光を受けるFar側の領域の端縁の近傍が反射光が結像する限界位置となるように、前記受光面の長さが設定される、請求項8に記載された反射型光センサ。
  10.  光を投光する投光素子と、投光素子からの光を受けた物体からの反射光を受光する二分割受光素子とが、各受光素子の並び方向における前記反射光の結像位置がその反射を生じさせた物体との距離に応じて変化する関係をもって配備され、各受光素子間における受光量の差分値に基づく検出信号を出力する反射型光センサであって、
     前記二分割受光素子のうち、センサに対して相対的に近い場所からの反射光を受けるNear側の受光素子は、センサに対して相対的に遠い場所からの反射光を受けるFar側の受光素子との境界から遠ざかるにつれて幅狭になる受光エリアにおいて光を受け付けることを、特徴とする反射型光センサ。
  11.  前記Near側の受光素子の前方に、Far側の受光素子との境界から遠ざかるにつれて幅狭になる形状の開口部を有する遮蔽部材が配備され、この遮蔽部材によって、Near側の受光素子に入光可能な反射光の一部が遮蔽される、請求項10に記載された反射型光センサ。
  12.  前記遮蔽部材は、前記二分割受光素子の前面全体に対向すると共に、前記開口部は、受光素子間の境界を跨いでFar側の受光素子の一部範囲にまで広がり、このFar側の受光素子に対する開口部分を介して、前記Near側の受光素子に結像する反射光よりも遠方からの反射光が前記Far側の受光素子に結像する、請求項11に記載された反射型光センサ。
  13.  前記二分割受光素子が組み込まれるホルダ部において二分割受光素子の前方に位置する面が前記遮蔽部材として機能し、前記反射光を通過させて二分割受光素子へと導くために当該面に形成された受光窓が前記開口部として機能する、請求項11または12に記載された反射型光センサ。
  14.  前記遮蔽部材は、前記二分割受光素子が組み込まれるホルダ部において二分割受光素子の前方に位置する面と二分割受光素子との間に配備され、前記二分割受光素子の前方に位置する面には、前記反射光を通過させて二分割受光素子へと導くために、前記遮蔽部材の開口部より大きい受光窓が形成される、請求項11または12に記載された反射型光センサ。
  15.  光を投光する投光素子と、一方向に長い受光面によって投光素子からの光を受けた物体からの反射光を受光する受光素子とが、受光面の長さ方向における前記反射光の結像位置がその反射を生じさせた物体との距離に応じて変化する関係をもって配備された反射型光センサであって、
     前記受光素子の受光面のうちセンサに対して相対的に近い場所からの反射光を受けるNear側の領域の前方に、センサに対して相対的に遠い場所からの反射光を受けるFar側の領域から遠ざかるにつれて透過率が小さくなるように設計された光学フィルタが配備される、ことを特徴とする反射型光センサ。
  16.  前記光学フィルタは、前記受光素子の受光面全体に対向すると共に、前記Far側の領域に対向する部分のうち、反射光が結像する限界位置より外側に対する範囲が非透過状態に設定されている、請求項15に記載された反射型光センサ。
PCT/JP2013/050272 2012-03-15 2013-01-10 反射型光センサ WO2013136825A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012059326A JP2013195079A (ja) 2012-03-15 2012-03-15 反射型光センサ
JP2012-059326 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013136825A1 true WO2013136825A1 (ja) 2013-09-19

Family

ID=49160747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050272 WO2013136825A1 (ja) 2012-03-15 2013-01-10 反射型光センサ

Country Status (3)

Country Link
JP (1) JP2013195079A (ja)
TW (1) TW201341832A (ja)
WO (1) WO2013136825A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010077B2 (ja) * 2014-08-28 2016-10-19 シャープ株式会社 表面プラズモン検出装置および表面プラズモン検出方法
JP6767072B2 (ja) * 2015-10-06 2020-10-14 アズビル株式会社 距離設定型光電センサ
JP6967955B2 (ja) * 2017-12-07 2021-11-17 アズビル株式会社 距離設定形光電センサ
JP6819635B2 (ja) * 2018-03-14 2021-01-27 オムロン株式会社 光電センサ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280511A (ja) * 1985-10-04 1987-04-14 Asahi Optical Co Ltd 測距用光学系
JPS6262908U (ja) * 1985-10-09 1987-04-18
JPS62191712A (ja) * 1986-02-18 1987-08-22 Matsushita Electronics Corp 半導体装置
JPH0325106U (ja) * 1989-07-21 1991-03-14
JPH0534584A (ja) * 1991-07-25 1993-02-12 Minolta Camera Co Ltd カメラ用距離検出装置
JPH08255536A (ja) * 1995-03-15 1996-10-01 Omron Corp 反射型光電センサ
JP2000081563A (ja) * 1998-09-04 2000-03-21 Olympus Optical Co Ltd 測距装置
JP2004521355A (ja) * 2001-06-26 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 光学的距離測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280511A (ja) * 1985-10-04 1987-04-14 Asahi Optical Co Ltd 測距用光学系
JPS6262908U (ja) * 1985-10-09 1987-04-18
JPS62191712A (ja) * 1986-02-18 1987-08-22 Matsushita Electronics Corp 半導体装置
JPH0325106U (ja) * 1989-07-21 1991-03-14
JPH0534584A (ja) * 1991-07-25 1993-02-12 Minolta Camera Co Ltd カメラ用距離検出装置
JPH08255536A (ja) * 1995-03-15 1996-10-01 Omron Corp 反射型光電センサ
JP2000081563A (ja) * 1998-09-04 2000-03-21 Olympus Optical Co Ltd 測距装置
JP2004521355A (ja) * 2001-06-26 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 光学的距離測定装置

Also Published As

Publication number Publication date
JP2013195079A (ja) 2013-09-30
TW201341832A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
US10288736B2 (en) Multi-wavelength array lidar
US11041753B2 (en) Light detection using an aperture
US9423536B2 (en) Measuring device with a reduced share of stray light
JP6347079B2 (ja) レーザレンジファインダ
JP6003121B2 (ja) 反射型光電センサ
KR20160132963A (ko) 의사 반사들을 인식하고 의사 반사들에 의해 야기되는 오차들을 보상하도록 동작 가능한 광전자 모듈들
WO2013136825A1 (ja) 反射型光センサ
KR20190077625A (ko) 애퍼쳐를 사용하는 광 검출을 위한 도파관 확산기들의 어레이
EP2230537B1 (en) Photoelectric sensor for sensing a target
CN105066953A (zh) 光学距离测量装置
JP6186913B2 (ja) 計測装置
JP2014182028A (ja) 限定領域反射型光電センサ
CN107014408B (zh) 距离设定型光电传感器
KR20110031272A (ko) 물체 검출을 위한 광 배리어 및 방법
US20190022948A1 (en) Method of manufacturing an optoelectronic sensor
JP6552052B2 (ja) トナー付着量センサ
JP4793786B2 (ja) ポインティングデバイス
JP2011141142A (ja) 測距センサおよび電子機器
JP2017037041A (ja) 計測装置
JP5595360B2 (ja) 光学式変位測定装置
JP5278845B2 (ja) 感度調整部付き能動型物体検知装置
JP4906626B2 (ja) 光電センサ
JP6925216B2 (ja) 光電センサ
JP7311718B2 (ja) 測距装置
JP7136209B2 (ja) クロマトグラフィー用検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761995

Country of ref document: EP

Kind code of ref document: A1