WO2013133064A1 - 光学位相差板用ポリエステルフィルムロールおよびその製造方法 - Google Patents

光学位相差板用ポリエステルフィルムロールおよびその製造方法 Download PDF

Info

Publication number
WO2013133064A1
WO2013133064A1 PCT/JP2013/054712 JP2013054712W WO2013133064A1 WO 2013133064 A1 WO2013133064 A1 WO 2013133064A1 JP 2013054712 W JP2013054712 W JP 2013054712W WO 2013133064 A1 WO2013133064 A1 WO 2013133064A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
retardation
phase difference
less
width
Prior art date
Application number
PCT/JP2013/054712
Other languages
English (en)
French (fr)
Inventor
原健治
田中和典
原俊幸
佐々木良平
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020147026532A priority Critical patent/KR20140143370A/ko
Priority to CN201380012301.XA priority patent/CN104160306A/zh
Publication of WO2013133064A1 publication Critical patent/WO2013133064A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a polyester film roll for an optical phase difference plate that is suitably used in combination with a polarizing plate in a member such as a liquid crystal display.
  • Patent Documents 2 and 3 show examples of films used for ⁇ / 4 retardation plates, but the resins used are polycarbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene. And polyolefins such as polyarylates, polyamides, and cyclic polyolefins using cyclic olefins such as norbornene as monomers.
  • films made of polyester resins such as polyethylene terephthalate, especially biaxially oriented polyester films have excellent dimensional stability and rigidity, but their contribution to birefringence due to orientation is greater than other resins.
  • the ⁇ / 4 retardation plate and the ⁇ / 2 retardation plate can be made thinner than the retardation plates described in Patent Documents 2 and 3, and the liquid crystal device can be reduced in weight. So far, no technology with specific examples has been disclosed.
  • the center part of the film to be produced is pulled and drooped in the direction of gravity or the direction of progress of the production process by its own weight or heat shrinkage stress by heat stretching in the state of gripping the end part.
  • a phenomenon called bowing occurs due to the fact that the film in the process constitutes a catenary curve (catenary curve), variation in birefringence in the film width direction, inclination of the orientation main axis in the film width direction (hereinafter referred to as orientation) (Indicated as corners).
  • This variation in orientation angle due to bowing increases as a quadratic function corresponding to the distance from the center of the film being formed, so it suppresses the variation in orientation angle at a wide width and at a position away from the film center. Doing it has been a major challenge.
  • Patent Document 4 discloses a film in which bowing is suppressed by relaxing the stretched film in the longitudinal direction.
  • the film described in Patent Document 4 is a film having a thickness of 30 ⁇ m. When the film is thinned, the thickness unevenness is large, and the in-plane retardation is nonuniform for each position, so that the application is difficult.
  • examples of the thinned film in the biaxially oriented polyester film include polyester films for magnetic materials as described in Patent Document 5, but these techniques are suitable for in-plane retardation for ⁇ / 4 retardation plates. It was not enough to meet the conditions.
  • Display devices are strongly demanded to be resistant to color unevenness and contrast unevenness due to the above-mentioned non-uniformity of the orientation angle and in-plane retardation, but in devices such as smartphones and tablets that have become popular in recent years Since the distance between the display device and the viewer is very close, local color unevenness can be easily identified, which is a problem.
  • a technique that improves the stretching method of the thermoplastic resin film as in Patent Document 6 to suppress the phase difference unevenness between two points 1 cm apart in the film surface is known.
  • the local retardation unevenness in a range narrower than 1 cm is a problem in practice, it has not been possible to obtain a retardation plate that is still satisfactory in practical use.
  • An object of the present invention is to provide a polyester film roll that can be applied suitably for an optical phase difference plate by solving the problems of the background art described above.
  • the inclination angle (orientation angle) of the orientation main axis with respect to the film width direction is within 6 °, the width is 1,200 mm or more and less than 2,000 mm, and the in-plane retardation value retardation is 50 to 200 nm.
  • a polyester film for an optical phase difference plate comprising a film having a variation in in-plane retardation value retardation in the film width direction of 20 nm or less and a thickness of 2 ⁇ m or more and 10 ⁇ m or less. roll.
  • the tilt angle (orientation angle) variation of the orientation main axis with respect to the film width direction is within 10 °, the width is 2,000 mm or more, the in-plane retardation value retardation is 50 to 200 nm, and the film A polyester film roll for an optical phase difference plate, comprising a film having a variation in in-plane retardation value retardation in the width direction of 20 nm or less and a thickness of 2 ⁇ m or more and 10 ⁇ m or less.
  • the variation of the tilt angle of the alignment main axis (alignment angle) and in-plane retardation value retardation is suppressed, and the range of the retardation value including local in-plane retardation unevenness is defined. It becomes possible to provide a polyester film roll for an optical phase difference plate that can improve production yield.
  • the polyester that can be suitably used in the present embodiment is not particularly limited as long as it is a polyester that becomes a high-strength film by molecular orientation, but preferably mainly includes polyethylene terephthalate and polyethylene-2,6-naphthalate. Particularly preferred is polyethylene terephthalate which is superior in price.
  • polyester copolymer components other than ethylene terephthalate include diol components such as diethylene glycol, propylene glycol, neopentyl glycol, polyethylene glycol, p-xylylene glycol, and 1,4-cyclohexanedimethanol, adipine Film properties intended for dicarboxylic components such as acid, sebacic acid, phthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, polyfunctional dicarboxylic acid components such as trimellitic acid and pyromellitic acid, and p-oxyethoxybenzoic acid Can be used as long as they are not hindered.
  • diol components such as diethylene glycol, propylene glycol, neopentyl glycol, polyethylene glycol, p-xylylene glycol, and 1,4-cyclohexanedimethanol
  • adipine Film properties intended for dicarboxylic components such as acid, sebacic acid, phthal
  • Such a polyester can be produced, for example, by the following method. For example, a method in which an acid component is directly esterified with a diol component and then the product of this reaction is heated under reduced pressure to perform polycondensation while removing excess diol component, or a dialkyl as an acid component There is a method of producing an ester by transesterifying it with a diol component, followed by polycondensation in the same manner as described above.
  • an alkali metal, an alkaline earth metal, manganese, cobalt, zinc, antimony, germanium, or a titanium compound can be used as a reaction catalyst as necessary.
  • the polyester has an intrinsic viscosity of 0.4 to 0.9, preferably 0.5 to 0.7, and more preferably 0.55 to 0.65.
  • the polyester film applied to the polyester film roll for optical retardation plate of the present embodiment includes polyester (polymer 1) and polyimide (polymer 2).
  • the polymer alloy film may be included.
  • the polymer alloy here refers to a polymer multi-component system, which may be a block copolymer by copolymerization or a polymer blend by mixing or the like. From the viewpoint of stretchability and productivity, a polymer blend having no molecular bond such as copolymerization is more preferable.
  • the polymer 2 used in this embodiment is a polyimide having an imide group in the molecular chain.
  • Polyimide has an interaction considered to be derived from an interaction between an imide ring and a benzene ring or the like with respect to polyester, and generally has a glass transition temperature higher than that of polyester. For this reason, when the film is stretched at a temperature close to the glass transition temperature of polymer 1 as the main component in the production process, the polyimide having low molecular mobility near the stretching temperature has a stretchability due to orientation crystallization of polymer 1. It is presumed that high magnification stretching is made possible by acting to inhibit the decrease to some extent.
  • R 1 in the formula represents one or more groups selected from an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group represented by the following chemical formula.
  • R 2 in the formula represents one or more groups selected from an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group represented by the following chemical formula.
  • Such polyimide dehydrates one or more compounds selected from the group consisting of tetracarboxylic acid and / or its anhydride and an aliphatic primary monoamine, aromatic primary monoamine, aliphatic primary diamine and aromatic primary diamine. It can be obtained by condensation.
  • a polyetherimide containing an ether bond in the polyimide component as shown by the following general formula is particularly preferable.
  • R 3 is a divalent aromatic or aliphatic residue having 6 to 30 carbon atoms
  • R 4 is a divalent aromatic residue having 6 to 30 carbon atoms, From the group consisting of an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 2 to 20 carbon atoms, and a polydiorganosiloxane group chain-terminated with an alkylene group having 2 to 8 carbon atoms Selected divalent organic group.
  • 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane dianhydride and m-phenylenediamine are used from the viewpoint of affinity with polyester, cost, melt moldability, and the like.
  • N is an integer of 2 or more, preferably 20 to 50
  • This polyetherimide is available from GE Plastics under the trade name “Ultem” (registered trademark).
  • the polymer 2 used in this embodiment preferably has good affinity with the polymer 1 among the above.
  • having good affinity means, for example, using a polymer alloy composed of polymer 1 and polymer 2, and melt-mixing at a predetermined mixing ratio to create an unstretched or biaxially stretched film
  • equivalent circle diameter the projected area equivalent circle diameter that does not originate from additives such as organic particles and inorganic particles
  • equivalent circle diameter a structure of 50 nm or more (for example, a polymer domain having poor dispersion) is not observed.
  • the method for determining affinity is not particularly limited to this, and if necessary, there is good affinity by observing a single glass transition point by a temperature modulation type DSC (MDSC). May be determined.
  • MDSC temperature modulation type DSC
  • the polyester film applied to the polyester film roll for optical phase difference plate of the present embodiment preferably has a haze value of 3% or less. Preferably it is 2% or less, More preferably, it is 1% or less. This is because if the haze value is larger than 3%, the scattered light from the film is large when used as a retardation film in a circularly polarizing plate, causing light leakage in the crossed Nicol state.
  • the film applied to the present embodiment may be a single layer or a composite film composed of two or more layers.
  • C in which the particle types or particle contents of the laminated parts on both surface layers are different may be used, but the structure of A
  • the lamination thickness on one side is preferably 0.5 to 2.5 ⁇ m, particularly preferably 0.8 to 1.5 ⁇ m.
  • inorganic particles such as spherical silica, aluminum silicate, titanium dioxide, calcium carbonate, and other organic polymer particles include crosslinked polystyrene resin particles, crosslinked silicone resin particles, crosslinked acrylic resin particles, Cross-linked styrene-acrylic resin particles, cross-linked polyester particles, polyimide particles, melamine resin particles and the like are preferable. These 1 type (s) or 2 or more types can also be selected and used.
  • inert particles can be added at the stage of the polyester polymerization process to prepare an inert particle-containing polymer.
  • an inert particle-containing polymer For example, by making a slurry of ethylene glycol, which is a glycol component of polyester, adding an inert particle-containing slurry after transesterification before polycondensation or at the oligomer stage after esterification, and subsequently performing a polycondensation reaction, An inert particle-containing polymer can be obtained.
  • the slurry of inert particles before addition can be dispersed by a sand grinder or the like, separated by coarse particles by centrifugal sedimentation, or subjected to high-precision filtration to make the particle size distribution uniform and coarse particles. Can be effectively removed to reduce the coarse protrusions of the film.
  • inert particles having an average particle size of 0.3 to 1.5 ⁇ m, preferably 0.8 to 1.3 ⁇ m, more preferably 0.3 It is preferable that the content is ⁇ 0.8% by mass.
  • the transportability of the film, the smoothness of the surface, and the haze value can be improved by adding 0.01 to 0.1% by mass of the same kind of inert particles in the base layer part, and adjusting the particle content of the base layer part. Can be optimized.
  • the film applied to the polyester film roll for optical retardation plate of this embodiment has an in-plane retardation value retardation (in-plane retardation value Re) of 50 to 200 nm, preferably 70 to 180 nm.
  • in-plane retardation value retardation is less than 50 nm or more than 200 nm, it does not correspond to 1 ⁇ 4 of the visible light wavelength range (360 to 750 nm), and thus cannot function as a ⁇ / 4 retardation film. .
  • the in-plane retardation Re (nm) can be defined by the following formula (1) from the refractive index nx in the film longitudinal direction, the refractive index ny in the width direction, and the film thickness d ( ⁇ m).
  • the difference in the refractive index and the thickness in the longitudinal direction and the width direction can be controlled.
  • the film thickness applied to this embodiment is 2 ⁇ m or more and 10 ⁇ m or less. is there. Preferably they are 3 micrometers or more and 8 micrometers or less.
  • the film thickness is larger than 10 ⁇ m, it is difficult to achieve the in-plane retardation value retardation required for the polyester film applied to this embodiment.
  • the thickness is less than 2 ⁇ m, the processability of the film is poor and application for an optical phase difference plate becomes difficult.
  • the surface with respect to the film width direction Variation in internal retardation value retardation is 20 nm or less, preferably 10 nm or less, and local retardation unevenness (arbitrary adjacent 1 cm The difference in in-plane retardation between two points is less than 10 nm.
  • the local phase difference unevenness is 10 nm or more, the viewer of the display device recognizes the local color unevenness, and a practically satisfactory retardation plate cannot be obtained.
  • KOBRA-WPR manufactured by Oji Scientific Instruments
  • the in-plane retardation value retardation with respect to the width direction in the present specification is measured using such a measuring apparatus, and the variation in the in-plane retardation value retardation within the width direction in the present embodiment is the total film width. It is defined as the difference between the maximum value and the minimum value when measured for.
  • KOBRA-CCD manufactured by Oji Scientific Instruments
  • the local phase difference unevenness referred to in the present specification is measured using such a measuring apparatus, and the local phase difference unevenness in the present embodiment is between two adjacent points within 1 cm of the measurement site. Is defined as the difference between the maximum value and the minimum value of the in-plane retardation value retardation.
  • the polyester film applied to this embodiment has any of the following properties a to b.
  • the inclination angle (orientation angle) variation of the orientation main axis with respect to the width direction is within 6 °, and the width is not less than 1,200 mm and less than 2,000 mm.
  • the variation is within 10 °, and the width is 2,000 mm or more.
  • the tilt of the orientation main axis can be defined as the direction of the slow axis, but the orientation is evaluated by transmitting the ultrasonic pulse through the film in all directions and measuring its propagation speed, and the tilt of the orientation main axis.
  • Orientation angle can be measured.
  • the inclination of the orientation main axis is expressed as 0 degree when the orientation angle is parallel to the film width direction, + as the clockwise inclination and-as the counterclockwise direction with respect to the film surface.
  • the variation in the orientation angle may be within the specified range in each of the widths described above, but it is also preferable that the orientation angle has the same sign of inclination.
  • the phrase “same inclination sign” means a state where the inclination shows the same sign in the above measurement at both ends of the widened film.
  • the orientation angle variation is defined as the absolute value of the difference between the maximum value and the minimum value of the orientation angle at an arbitrary position in the film measured as described above, but when the orientation angle variation exceeds 6 ° (the width is 1). , 200 mm or more and less than 2,000 mm) or when the variation exceeds 10 ° (width is 2,000 mm or more), the absorption axis of the polarizing plate and the retardation of the optical retardation film when bonded to the polarizing plate There may be a portion where light is not transmitted due to the fact that the angular relationship of the axes is not maintained.
  • the bowing phenomenon causing the orientation angle is a phenomenon caused by the film in the process forming a catenary line (catenary curve), so the orientation angle increases as the distance from the center of the formed film increases.
  • This behavior is often approximated by a quadratic function, and in order to make the film having the smallest variation in the orientation angle, the film roll of the present embodiment is formed by chamfering the center of the formed intermediate product roll as the center in the width direction. And is best.
  • the product can be collected only in the central part by this width.
  • the width of the optical retardation film has been increasing with the increase in the screen size of liquid crystal devices.
  • the width depends on the screen size of the liquid crystal device, but if the orientation angle variation is large, the angular relationship between the absorption axis of the polarizing plate and the slow axis of the optical retardation film is maintained when bonded to the polarizing plate as described above. Because it is not done, the width is limited. Specifically, when combined with a polarizing plate from above the optical retardation film roll, the longitudinal direction when it is made into a sheet (sheet) is determined according to the angle (orientation angle) of the slow axis, When the orientation angle variation is large, it is necessary to change the angle depending on the width position when the optical retardation film is formed.
  • the film width and the orientation angle variation in this embodiment are the same when the width is 1,200 mm or more and less than 2,000 mm, the orientation angle variation is within 6 °, preferably within 5 °, or the width is 2,000 mm or more. If the variation is within 10 °, preferably within 8 °, it can contribute to the solution of the above problem.
  • the upper limit of the width is preferably 3,000 mm or less in consideration of film processability and productivity after processing, although it is affected by the width as described above.
  • polyester film production method applied to this embodiment will be described in more detail.
  • the above-described polyester is dried as necessary, and supplied to an extruder, and the polymer is filtered through a filter. Since even a very small foreign matter becomes a film defect, it is effective to use a high-precision filter that collects 95% or more of a foreign matter of 5 ⁇ m or more, for example. Subsequently, it is melt-extruded into a sheet shape using a T-type die or the like, and cooled and solidified on a casting roll to obtain an unstretched film.
  • the melt-extruded polymer sheet is grounded and cooled on the casting roll, but the amount of heat of the polymer that can be cooled is limited by the thermal conductivity of the members of the cast roll, and if it is not completely cooled to the inside of the polymer sheet Orientation unevenness (amorphous unevenness) occurs in the obtained unstretched film. Since this alignment unevenness (amorphous unevenness) causes local phase difference unevenness, it is effective to reduce the casting roll speed and elongate the cooling time of the polymer sheet, for example.
  • the cast roll speed is preferably in a range in which the film transport speed in the step of winding the stretched film in the subsequent steps is 50 m / min or more and less than 200 m / min, more preferably 50 m / min or more and 150 m / min. This is the range.
  • the biaxially oriented polyester film for an optical retardation plate of this embodiment is obtained by stretching this unstretched film at a stretching temperature of 90 to 130 ° C.
  • the stretching step may be sequential stretching or simultaneous biaxial stretching.
  • a simultaneous biaxial stretching process is preferred.
  • the stretching in the longitudinal direction is carried out by 2.5 to 5 times in one step or divided into multiple steps, and then or simultaneously in the simultaneous biaxial stretching process. Stretch 3 to 6 times in the width direction.
  • the ratio of the stretching ratio performed in each step is a process in which the stretching ratio in the longitudinal direction / the stretching ratio in the width direction is less than 1.0. This is because bowing in the stretching process can be suppressed by increasing the alignment in the width direction.
  • the polyester film applied to this embodiment when manufacturing the polyester film applied to this embodiment, it is preferable not to include a relaxation step in the longitudinal direction during stretching in the width direction.
  • the relaxation process in the longitudinal direction is an effective method for suppressing bowing as described in Patent Document 4, the polyester film applied to the present embodiment is a film having a thickness of 10 ⁇ m or less. This is because the thickness unevenness is large and the in-plane retardation is non-uniform for each position.
  • the stretching temperature in the stretching step is less than 90 ° C. and the stretching ratio is more than 6 times, so that the film is easily broken.
  • the magnification is preferably less than 6 times.
  • the stretching temperature at the time of stretching in the first width direction is preferably 90 ° C. or more and less than 100 ° C.
  • the temperature increase rate during the stretching process after starting stretching is preferably less than 10 ° C./second.
  • the polyester film for magnetic material as described in Patent Document 5
  • a cooling process is provided before entering the heat treatment process as a method for suppressing the quality variation caused by the bowing, but this method has a strong lateral orientation. This is because it is necessary to make the film thin in order to make the in-plane retardation within the range suitable for the optical retardation plate, and it becomes difficult to satisfy the workability.
  • a polyester film applied to this embodiment is manufactured through a heat treatment step.
  • the atmospheric temperature of the heat treatment is such that the temperature difference between the top and bottom of the film is 1 to 20 ° C., preferably 1 to 10 ° C., more preferably 1 to 5 ° C. in order to stabilize the film properties.
  • the temperature difference between the upper and lower sides of the film is larger than 20 ° C., the physical properties in the width direction of the film, particularly the mechanical properties or the heat shrinkage rate, may become non-uniform.
  • a relaxation treatment may be performed as necessary. At this time, either the lateral direction or the longitudinal direction may be used, but the lateral direction and the longitudinal direction may be performed simultaneously or in combination.
  • the relaxation rate is preferably 1 to 20%, more preferably 1 to 10%, based on the total width of the film, and is effective for obtaining a film having excellent thermal dimensional stability.
  • intermediate product roll obtained by winding the above-described film that has undergone the heat treatment step is obtained, and finally slit according to the required sampling width to obtain the polyester film roll of this embodiment.
  • the orientation angle variation is the key as described above. Since the orientation angle variation occurs due to the bowing, it is the sampling method that minimizes the orientation angle variation to collect symmetrically so that the center in the width direction of the intermediate product roll coincides with the center of the film roll. On the other hand, if the film roll is sampled asymmetrically so as to include one end of the intermediate product roll without including the center position, the orientation angle variation is maximized (in this case, the sign of the orientation angle). Are the same). Since the polyester film applied to this embodiment has a small orientation angle variation, the ratio of the width that can be used in the film width of the formed intermediate product roll is large, and the productivity becomes high when the film roll is formed.
  • the polyester film obtained from the polyester film roll of this embodiment becomes a retardation film with a much thinner thickness than before by thinning and strengthening by biaxial stretching, saving space when incorporated into various liquid crystal display devices. Can be realized. Furthermore, the polarized light emitted from the liquid crystal display is made elliptical or circularly polarized, so even if the liquid crystal display device is used with polarized glasses, the direction of rotation of the device (use in vertical or horizontal) Therefore, it is possible to suppress unevenness in the amount of light and change in hue, and to keep visibility during device operation.
  • the measurement method of characteristic values in the examples and comparative examples is as follows.
  • the absolute value of the difference between the maximum value and the minimum value was taken as the measurement result in the target sampling width.
  • the variation of the retardation value in the plane was determined by measuring the difference between the maximum value and the minimum value in the target sampling width.
  • Haze value of film According to JIS K7105 (1981), a sample cut into a dimension of 4 cm in the longitudinal direction of the film and 3.5 cm in the width direction of the film was used as a sample, and a haze meter (HGM-2DP manufactured by Suga Test Instruments (for C light)) It measured using. Three points were measured uniformly in the film width direction, and the average value was taken as the measurement result.
  • HGM-2DP manufactured by Suga Test Instruments (for C light)
  • Heat shrinkage rate (%) ⁇ (L0 ⁇ L1) / L0 ⁇ ⁇ 100
  • the film was measured at three points for the longitudinal direction and the width direction, and the average value was obtained.
  • Example 1 46.4 parts by mass of bis- ⁇ -hydroxyethyl terephthalate (hereinafter referred to as BHT), which is a reaction product of 41.1 parts by mass of terephthalic acid and ethylene glycol, was previously stored in a molten state at 255 ° C., and 45. While the slurry consisting of 3 parts by mass and 19.5 parts by mass of ethylene glycol was quantitatively supplied while maintaining the temperature of the reaction vessel, water was distilled off to cause esterification. Esterification was completed 4 hours and 40 minutes after the start of the reaction, and BHT as this reaction product was transferred to a polycondensation reaction tank, and 0.02 part by mass of trimethyl phosphate was added.
  • BHT bis- ⁇ -hydroxyethyl terephthalate
  • PET polyethylene terephthalate
  • Tg 80 ° C. polyethylene terephthalate pellets having an intrinsic viscosity of 0.85 (dl / g) obtained by solid-phase polymerization of the homopolyester pellets 1 and a specific product of General Electric (GE) 50 parts by weight of “Ultem” 1010 (Tg 216 ° C.) (PEI) having a viscosity of 0.68 (dl / g) is supplied to a bent-type twin-screw kneading extruder of the same direction rotation type heated to 290 ° C.
  • a PET / PEI blend chip containing 50% by mass of PEI was prepared.
  • magnesium acetate tetrahydrate was added to 100 parts by mass of dimethyl terephthalate and 70 parts by mass of ethylene glycol as a transesterification reaction catalyst so as to be 40 ppm in terms of the number of magnesium atoms, and gradually increased from 150 ° C. to 225 ° C. The reaction was conducted while warming, and then 10 ppm of ethyl diethylphosphonoacetate was added in terms of the number of phosphorus atoms.
  • a spherical silica particle EG slurry having an average particle size of 0.06 ⁇ m filtered in advance with a filter having an absolute filtration accuracy of 1.0 ⁇ m as a main filter and an absolute filtration accuracy of 3.0 ⁇ m as a pre-filter of the particle EG solution. It added over 15 minutes so that it might become 1.0 mass% with respect to the reaction composition. Further, 0.05 parts by mass of antimony trioxide was added after 5 minutes, transferred to a polycondensation reaction vessel, heated to 290 ° C., and finally subjected to a polycondensation reaction under a high vacuum of 25 Pa. Pellets 2 were obtained.
  • Extruder A heated to 270 ° C., 6 parts by mass of the PET / PEI blend chip prepared by the above pelletizing operation, 74 parts by mass of the above-mentioned homopolyester pellet 1 and 20 parts by mass of the above-mentioned polyester pellet 2 were obtained.
  • the mixed raw materials were supplied after drying under reduced pressure at 160 ° C. for 3 hours.
  • the spherical silica particles described above were prepared by adding sodium water glass and water to prepare a sodium silicate aqueous solution, adding a sulfuric acid aqueous solution under reflux, and subsequently aging under reflux to obtain a silica sol as an ultrafiltration membrane. After concentration by use, ethylene glycol was added, and solvent substitution was performed at 100 ° C. with a rotary evaporator to obtain a silica sol.
  • the above-mentioned spherical crosslinked polystyrene particles were produced by a method in which seed particles were synthesized by soap-free emulsion polymerization, swollen with a swelling aid, and absorbed and polymerized.
  • a method for absorbing the polymerizable monomer a method of collectively adding these to the water-soluble dispersion synthesized with the seed particles was adopted.
  • the extruder B is similarly heated to 270 ° C., and 6 parts by mass of the PET / PEI blend chip prepared by the above pelletizing operation, 78 parts by mass of the above-mentioned homopolyester pellet 1 and 20 parts by mass of the above-mentioned polyester pellet 3
  • the mixed raw materials were supplied after drying under reduced pressure at 160 ° C. for 3 hours.
  • each of the extruders A and B after filtering with a high-precision filter having a collection efficiency of 95% of 5 ⁇ m or more, the layers are merged and stacked in a rectangular two-layer merge block, and the polyester supplied from the aforementioned extruder A: Two layers were laminated so that the polyester supplied from the extruder B had a thickness ratio of 6: 1. Thereafter, the film was cooled and solidified on a casting roll having a surface temperature of 25 ° C. using an electrostatic application casting method through a slit die maintained at 285 ° C. to obtain an unstretched film. This unstretched film was led to a simultaneous biaxial stretching tenter, and stretched at a temperature of 95 ° C.
  • the film was re-stretched at a temperature of 190 ° C. in the longitudinal direction and the width direction simultaneously at 1.20 times ⁇ 1.35 times without passing through a cooling step. Thereafter, after heat treatment at a temperature of 215 ° C. for 5.5 seconds, 1.75% relaxation treatment was performed in the width direction. Then, it wound up with the film conveyance speed of 130 m / min, and created the intermediate product roll of 5 m width.
  • Example 2 Comparative Example 1: The same procedure as in Example 1 was performed except that the film forming conditions such as stretching conditions, cooling conditions, and heat treatment temperature were changed as shown in Table 1. The properties of the obtained film are shown in Table 1.
  • Comparative Example 2 A mixed raw material of 99 parts by mass of the above-described homopolyester pellets 1 and 20 parts by mass of the above-described polyester pellets 2 is supplied to the extruder A after being dried under reduced pressure at 160 ° C. for 3 hours, and successively in a biaxial manner.
  • the film forming conditions such as stretching conditions, cooling conditions, and heat treatment temperature were changed according to the same procedures as in Example 1 to obtain a biaxially oriented polyester film.
  • the properties of the obtained film are shown in Table 1.
  • Evaluation as films for retardation films of Examples and Comparative Examples Put one polarizing plate of a size that fits the light emitting surface of a flat illuminator (HF-SL-100WLCG; manufactured by Dentsu Sangyo) and put the film of the same size example and comparative example as the object of observation in a laminated state.
  • the illuminator was turned on and the linearly polarized light passed through the target film.
  • another polarizing plate of the same size was placed, and only the polarizing plate placed on the target film was observed by rotating it by 0 to 360 °, and the film to be evaluated was passed through while rotating. The light was observed for unevenness and color change at each position.
  • the polyester film roll for an optical retardation plate according to the present invention can be widely used as a material constituting a liquid crystal display member or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 フィルム幅方向に対する配向主軸の傾きの角度(配向角)バラツキが6°以内であり、幅が1,200mm以上2,000mm未満であり、面内位相差値レターデーションが50~200nmであって、フィルム幅方向に対する面内位相差値レターデーションのバラツキが20nm以下であり、局所的な位相差ムラが10nm未満であり、厚みが2μm以上10μm以下であるフィルムを巻き取った光学位相差板用ポリエステルフィルムロール。光学位相差板用として好適に適用できるポリエステルフィルムロールを提供する。

Description

光学位相差板用ポリエステルフィルムロールおよびその製造方法
 本発明は、液晶表示用途等の部材において、偏光板と組み合わせて好適に用いられる光学位相差板用ポリエステルフィルムロールに関するものである。
 近年、偏光板を利用した表示デバイスの普及が進んでいるが、これらのデバイスにおいては、偏光眼鏡をかけると見る角度によって画面が暗くなるという問題が着目されている。 
 これは、偏光眼鏡にある偏光膜の偏光軸と表示デバイスの視認者側に配置されている偏光板の偏光軸の方向とのズレによる透過率の差が原因となっている。
 この問題は偏光眼鏡をかけて観察する機会が多いカーナビゲーション、PND、航空機コックピット、PDA、携帯電話、魚群探知機等において発生しうるが、近年は画面の角度を回転させて操作させるスマートフォンやタブレットなどのデバイスにおいて特に発生しうる問題である。さらにまた、これらのデバイスでは、従来の厚いフィルムを適用すると、軽量化のニーズに応えきれないという問題もあった。
 これらの問題に対し、表示デバイスの視認者側偏光板の外側(視認者側)に、複屈折性を有する光学位相差板(λ/4位相板、λ/2位相差板)を設けることで表示デバイスからの光を直線偏光から円偏光にする方法が提案されている(例えば特許文献1参照)。
 特許文献2,3にはλ/4位相差板に使用されるフィルムの例が示されているが、用いられている樹脂は、ポリカーボネート系、ポリビニルアルコール系、ポリスチレン系、ポリメチルメタクリレート系、ポリプロピレンの如きポリオレフィン系、ポリアリレート系、ポリアミド系、ノルボルネンの如き環状オレフィンをモノマーとする環状ポリオレフィン系等が挙げられている。
 一方、ポリエチレンテレフタレートなどのポリエステル樹脂からなるフィルム、特に二軸配向ポリエステルフィルムは優れた寸法安定性、剛性を有しているものの、配向による複屈折への寄与が他の樹脂に比較して大きいため、λ/4位相差板、λ/2位相差板として適用させる際に特許文献2,3に記載の位相差板よりも薄膜化することが可能で液晶デバイスの軽量化が可能となるが、これまで具体的な実施例を伴う技術が公開されてこなかった。
 二軸配向ポリエステルフィルムにおいては、端部を把持した状態での加熱延伸により、製造されるフィルムの中央部が自重や熱収縮応力によって重力方向や製造工程の進行方向に対して引っ張られ垂れ下がることにより、工程内のフィルムが懸垂線(カテナリー曲線)を構成することに起因するボーイング(bowing)という現象が生じ、フィルム幅方向での複屈折のバラツキ、フィルム幅方向での配向主軸の傾き(以下 配向角と記す)のバラツキが発生する。
 このため、光学位相差板として使用すると、面内位相差が位置毎に不均一となるため、色あいが不均一になる問題があるほか、フィルムの光軸が幅位置毎に角度がばらつくため、偏光板の軸との角度関係も一定にならなくなることから、λ/4位相差板として使用することができないという問題があった。
 このボーイングによる配向角のバラツキは、製膜しているフィルムの中心からの距離に対応して2次関数的に大きくなるため、広い幅及びフィルム中心から離れた位置での配向角のバラツキを抑制することは大きな課題とされてきた。
 このような課題に対して、二軸配向ポリエステルフィルムでは次のような技術で従来対策を講じてきている。特許文献4では延伸後のフィルムを長手方向に弛緩することでボーイングを抑制したフィルムが開示されている。しかしながら、特許文献4に記載されているフィルムは厚み30μmレベルのフィルムであり、薄膜化すると厚みムラが大きく、面内位相差が位置毎に不均一となるため適用が困難であった。
 また二軸配向ポリエステルフィルムにおける薄膜化されたフィルムとしては特許文献5に挙げたような磁気材料用途のポリエステルフィルムが挙げられるが、これらの技術では面内位相差をλ/4位相差板に適した条件とするには不十分であった。
 これらの問題に対応するため、製膜したフィルムの中心部分のみを使用する方法が従来は偏光板離型用フィルムなどの用途ではなされているが、生産性が悪くなる上に液晶デバイスのサイズが大きくなるにつれ、対応する幅の広いフィルムを採取することは困難であった。
 表示デバイスには上述した配向角や面内位相差の不均一によって発生する色ムラやコントラストのムラが生じ難いことが強く求められているが、近年普及しているスマートフォンやタブレットなどのデバイスにおいては、表示デバイスと視認者の距離が非常に近いため、局所的な色ムラが判別しやすくなり問題となっている。この局所的な色ムラを抑制するため、特許文献6のような熱可塑性樹脂フィルムの延伸方法を改良してフィルム面内の1cm離れた2点間の位相差ムラを抑制した技術が知られているが、実用上1cmよりも狭い範囲の局所的な位相差ムラが問題となるため、未だ実用上満足できる位相差板を得ることはできなかった。
特開平10-10523号公報 特開2010-262155号公報 特開2007-171978号公報 特開2004-358742号公報 特開2005-163020号公報 特開平09-138307号公報
 本発明における課題は、上記した背景技術の問題を解消し、光学位相差板用として好適に適用できるポリエステルフィルムロールを提供することにある。
 上記課題を解決するために鋭意検討した結果、次の特性を有することで上記課題が解決できることを見いだし、本発明に至った。
(1)フィルム幅方向に対する配向主軸の傾きの角度(配向角)バラツキが6°以内であり、幅が1,200mm以上かつ2,000mm未満であり、面内位相差値レターデーションが50~200nmであって、フィルム幅方向に対する面内位相差値レターデーションのバラツキが20nm以下であり、厚みが2μm以上かつ10μm以下であるフィルムを巻き取ってなることを特徴とする光学位相差板用ポリエステルフィルムロール。
(2)フィルム幅方向に対する配向主軸の傾きの角度(配向角)バラツキが10°以内であり、幅が2,000mm以上であり、面内位相差値レターデーションが50~200nmであって、フィルム幅方向に対する面内位相差値レターデーションのバラツキが20nm以下であり、厚みが2μm以上かつ10μm以下であるフィルムを巻き取ってなることを特徴とする光学位相差板用ポリエステルフィルムロール。
(3)フィルムロール全幅及び長手方向1,200mm以上の範囲について、局所的な位相差ムラが10nm未満である(1)または(2)に記載する光学位相差板用ポリエステルフィルムロール。
(4)フィルムロールを巻き取る工程におけるフィルムの搬送速度が50m/min以上かつ200m/min未満である(1)~(3)のいずれかに記載する光学位相差板用ポリエステルフィルムロールの製造方法。
 本発明によれば、配向主軸の傾きの角度(配向角)、面内位相差値レターデーションのバラツキを抑え、局所的な面内位相差ムラを含めた位相差値の範囲を規定することで、生産収率性を向上できる光学位相差板用ポリエステルフィルムロールを提供することが可能となる。
 以下、本発明の実施態様に係る光学位相差板用ポリエステルフィルムロールについてさらに詳細に説明する。本実施態様において好適に用いることのできるポリエステルは、分子配向により高強度フィルムとなるポリエステルであれば特に限定しないが、主としてポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレートを含むことが好ましい。特に好ましくは価格的にも優位なポリエチレンテレフタレートである。ポリエチレンテレフタレートを用いる場合、エチレンテレフタレート以外のポリエステル共重合体成分としては、例えばジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ポリエチレングリコール、p-キシリレングリコール、1,4-シクロヘキサンジメタノールなどのジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸、5-ナトリウムスルホイソフタル酸などのジカルボン成分、トリメリット酸、ピロメリット酸などの多官能ジカルボン酸成分、p-オキシエトキシ安息香酸などが目的とするフィルム物性を阻害しない範囲で使用できる。
 かかるポリエステルは、例えば以下に示す方法で製造することができる。たとえば、酸成分をジオール成分と直接エステル化反応させた後、この反応の生成物を減圧下で加熱して余剰のジオール成分を除去しつつ重縮合させることによって製造する方法や、酸成分としてジアルキルエステルを用い、これとジオール成分とでエステル交換反応させた後、上記と同様にして重縮合させることによって製造する方法等がある。この際、必要に応じて、反応触媒として例えばアルカリ金属、アルカリ土類金属、マンガン、コバルト、亜鉛、アンチモン、ゲルマニウム、チタン化合物を用いることもできる。上記ポリエステルは、固有粘度が0.4~0.9、好ましくは0.5~0.7、さらに好ましくは0.55~0.65である。
 本実施態様の光学位相差板用ポリエステルフィルムロール(以下、ポリエステルフィルムロール、または単にフィルムロールということがある)に適用されるポリエステルフィルムには、ポリエステル(ポリマー1)とポリイミド(ポリマー2)とを含んでいるポリマーアロイフィルムであってもよい。ここでいうポリマーアロイとは、高分子多成分系のことであり、共重合によるブロックコポリマーであってもよいし、混合などによるポリマーブレンドであってもよい。延伸性、生産性の観点からは、共重合など分子的な結合を有さないポリマーブレンドの方がより好ましい。
 本実施態様に用いられるポリマー2は、分子鎖中にイミド基を有するポリイミドである。ポリイミドはポリエステルに対して、イミド環とベンゼン環の相互作用などに由来すると考えられる相互作用を有し、また、一般的にポリエステルよりも高いガラス転移温度を有する。このため、フィルムは製造工程において、主成分であるポリマー1のガラス転移温度に近い温度で延伸される場合に、延伸温度付近では分子運動性が低いポリイミドがポリマー1の配向結晶化による延伸性の低下をある程度阻害する働きをすることによって高倍率延伸を可能ならしめているものと推定される。
 上記のポリイミドとしては、例えば、下記一般式で示されるような構造単位を含有するものが好ましい。
Figure JPOXMLDOC01-appb-C000001
 ただし、式中のRは、下記化学式で示されるような脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基から選ばれた一種もしくは二種以上の基を表す。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 また、式中のRは、下記化学式で示されるような脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基から選ばれた一種もしくは二種以上の基を表す。
Figure JPOXMLDOC01-appb-C000004
 かかるポリイミドは、テトラカルボン酸および/またはその酸無水物と、脂肪族一級モノアミン、芳香族一級モノアミン、脂肪族一級ジアミンおよび芳香族一級ジアミンよりなる群から選ばれる一種もしくは二種以上の化合物を脱水縮合することにより得ることができる。
 溶融成形性やポリエステルとの親和性などの点から、下記一般式で示されるような、ポリイミド構成成分にエーテル結合を含有するポリエーテルイミドが特に好ましい。
Figure JPOXMLDOC01-appb-C000005
(ただし、上記式中Rは、6~30個の炭素原子を有する2価の芳香族または脂肪族残基、Rは6~30個の炭素原子を有する2価の芳香族残基、2~20個の炭素原子を有するアルキレン基、2~20個の炭素原子を有するシクロアルキレン基、および2~8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。)
 上記R、Rとしては、例えば、下記式群に示される芳香族残基を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
 本実施態様では、ポリエステルとの親和性、コスト、溶融成形性等の観点から、2,2-ビス[4-(2,3-ジカルボキシフェノキシ)フェニル]プロパン二無水物とm-フェニレンジアミン、またはp-フェニレンジアミンとの縮合物である、下記2つの式のいずれかで示される繰り返し単位を有するポリマーが好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 (nは2以上の整数、好ましくは20~50の整数)
 このポリエーテルイミドは、“ウルテム”(登録商標)の商品名で、ジーイープラスチックス社より入手可能である。
 本実施態様で用いるポリマー2は、上記のなかでも、ポリマー1と良好な親和性を有することが好ましい。なお、ここでいう良好な親和性(相溶性)を有するとは、例えば、ポリマー1とポリマー2とからなるポリマーアロイを用い、所定の混合比で溶融混合し未延伸または2軸延伸フィルムを作成し、該フィルム断面を透過型電子顕微鏡で3万~50万倍の倍率で観察した場合、有機粒子や無機粒子などの添加物に起因しない投影面積円相当径(以下、単に円相当径という)が50nm以上の構造(例えば、分散不良のポリマードメインなど)が観察されないことをいう。ただし、親和性を判定する方法は特にこれに限定されるものではなく、必要に応じて、温度変調型DSC(MDSC)によって単一のガラス転移点が観察されることによって良好な親和性があると判定してもよい。
 本実施態様の光学位相差板用ポリエステルフィルムロールに適用されるポリエステルフィルムは、ヘイズ値が3%以下であることが好ましい。好ましくは2%以下、さらに好ましくは1%以下である。ヘイズ値が3%より大きいと円偏光板における位相差フィルムとして使用した場合にフィルムからの散乱光が大きく、クロスニコル状態で光りモレの原因となるためである。
 本実施態様に適用されるフィルムは単層であっても、2層以上からなる複合フィルムであってもよいが、フィルムのヘイズ値を上記範囲にするには、3層複合フィルムからなる場合特に好適である。この場合、両表面層側の積層部の粒子種あるいは粒子含有量が異なる、A|B|Cの構成でもよいが、同一の組成とするA|B|Aの構成が設備的に簡易であり、生産性の面からも好ましい。さらに、両層の積層厚さを実質的に同一にした場合、品質の設計が容易である。また、片面における積層厚さは、0.5~2.5μmが好ましく、特に0.8~1.5μmが好ましい。
 さらに、積層面に不活性粒子を含有し、基層部(中心層)に含有する粒子を適正化することでフィルムの搬送性・表面の平滑性及びヘイズ値を所望の範囲とすることができる。含有させる粒子の種類としては、球状シリカ、ケイ酸アルミニウム、二酸化チタン、炭酸カルシウムなどの無機粒子、またその他有機系高分子粒子としては、架橋ポリスチレン樹脂粒子、架橋シリコーン樹脂粒子、架橋アクリル樹脂粒子、架橋スチレン-アクリル樹脂粒子、架橋ポリエステル粒子、ポリイミド粒子、メラミン樹脂粒子等が好ましい。これらの1種もしくは2種以上を選択して用いることもできる。
 これらの不活性粒子は、ポリエステル重合工程の段階で添加することにより、不活性粒子含有ポリマーを準備することができる。例えば、ポリエステルのグリコール成分であるエチレングリコールのスラリーとし、重縮合前のエステル交換後、あるいはエステル化後のオリゴマーの段階で不活性粒子含有スラリーを添加し、引き続き、重縮合反応を行うことで、不活性粒子含有ポリマーを得ることができる。
 また、添加前の不活性粒子のスラリーは必要に応じ、サンドグラインダー等による分散処理、遠心沈降処理による粗大粒子の分離あるいは、高精度濾過を行うことが、粒径分布を均一化でき、粗大粒子を除去することができ、フィルムの粗大突起の減少に効果的に採用できる。
 本実施態様に適用されるフィルムでは平均粒子径0.3~1.5μm、好ましく0.8~1.3μmの不活性粒子を0.2~1.0質量%、さらに好ましくは、0.3~0.8質量%含有させることが好適である。併せて、基層部に同種の不活性粒子を0.01~0.1質量%含有させる、基層部の粒子含有量を調整する、などにより、フィルムの搬送性・表面の平滑性及びヘイズ値を適正化することができる。
 本実施態様の光学位相差板用ポリエステルフィルムロールに適用されるフィルムは、面内位相差値レターデーション(面内位相差値Re)が50~200nm、好ましくは70~180nmである。面内位相差値レターデーションが50nm未満、または200nmを超える場合、可視光の波長範囲(360~750nm)の1/4に相当しないため、λ/4位相差フィルムとしての機能を果たすことができない。
 面内位相差Re(nm)はフィルム長手方向の屈折率nxと幅方向の屈折率ny及びフィルム厚みd(μm)から、以下の式(1)で定義することができる。
 Re=|nx-ny|/d ・・・ (1)
 式(1)から明らかなように、本実施態様に適用されるポリエステルフィルムにおいて面内位相差を所定の範囲内となるようにするためには、長手方向・幅方向の屈折率の差分及び厚みを制御できればよい。
 上述のことと、ポリエチレンテレフタレートなどのポリエステル樹脂からなるフィルム、特に二軸配向ポリエステルフィルムの屈折率の差分の観点から、本実施態様に適用されるフィルム厚みは2μm以上10μm以下であることが重要である。好ましくは3μm以上8μm以下である。フィルム厚みが10μmより大きいと、本実施態様に適用されるポリエステルフィルムで求める面内位相差値レターデーションを達成することが困難となる。また、2μm未満ではフィルムの加工性が悪く、光学位相差板用としての適用が困難となる。
 また、屈折率差及び厚みにバラツキがあるフィルムでは位相差板として使用したときに部位毎に見える色が異なる現象の原因となるため、本実施態様に適用されるポリエステルフィルムではフィルム幅方向に対する面内位相差値レターデーションのバラツキ(フィルム全幅での面内位相差レターデーション最大値と最小値の差分)が20nm以下、好ましくは10nm以下であり、局所的な位相差ムラ(任意の隣り合う1cm以内の2点間の面内位相差レターデーションの差)が10nm未満である。局所的な位相差ムラが10nm以上の場合、表示デバイスの視認者が局所的な色ムラを認識してしまい、実用上満足できる位相差板を得ることができない。
 本実施態様に適用されるポリエステルフィルムの幅方向に対する面内位相差を測定する装置の例として、後述する実施例で用いたKOBRA-WPR(王子計測機器社製)を挙げることができる。本明細書でいう幅方向に対する面内位相差値レターデーションは、かかる測定装置を用いて測定したものであり、本実施態様における幅方向内の面内位相差値レターデーションのバラツキは、フィルム全幅について測定したときの最大値と最小値の差分として定義されたものである。
 また、本実施態様に適用されるポリエステルフィルムの居所的な位相差ムラを測定する装置として、後述するKOBRA-CCD(王子計測機器社製)を挙げることができる。本明細書でいう局所的な位相差ムラは、かかる測定装置を用いて測定したものであり、本実施態様における局所的な位相差ムラは、測定部位の任意の隣り合う1cm以内の2点間の面内位相差値レタデーションの最大値と最小値の差分として定義されたものである。
 本実施態様に適用されるポリエステルフィルムは、下記a~bのいずれかの性質を有している。
a.幅方向に対する配向主軸の傾きの角度(配向角)バラツキが6°以内であり、かつ幅が1,200mm以上2,000mm未満である。
b.同バラツキが10°以内であり、かつ幅が2,000mm以上である。
 ここで配向主軸の傾きは遅相軸の方向と定義することができるが、全方位にわたってフィルムに超音波パルスを透過させ、その伝播速度を測定することによって配向性を評価し、配向主軸の傾き(配向角)を測定することができる。また、配向主軸の傾きはフィルム幅方向と平行であるときを配向角0度とし、フィルム面について時計回りの傾きを+、反時計回りを-として表す。この配向角のバラツキは上記した各幅において上記規定の範囲内であればよいが、この配向角は傾きの符号が同一であることも好ましい。なお、この「傾きの符号が同一」とは、幅取りしたフィルム両端において、上記測定で傾きが同符号を示す状態のことをいう。
 配向角バラツキとは、前述の通り測定したフィルム内の任意の位置の配向角の最大値と最小値の差分の絶対値と定義されるが、配向角バラツキが6°を超える場合(幅が1,200mm以上2,000mm未満)または同バラツキが10°を超える場合(幅が2,000mm以上)には、偏光板と貼り合わせたときに偏光板の吸収軸と光学位相差用フィルムの遅相軸の角度関係が維持されないことにより光が透過しない箇所が発生する場合がある。
 また、配向角を生じさせるボーイング現象は、工程内のフィルムが懸垂線(カテナリー曲線)を構成することに起因する現象であるため、製膜したフィルム中心からの距離が離れるほど配向角は増加する挙動をとる。この挙動は通常2次関数で近似されることが多く、配向角バラツキを最も小さいフィルムとするには製膜した中間製品ロールの中心が幅方向中心となる幅取りを行い本実施態様のフィルムロールとすることが最も良い。しかしながら、この幅取りでは中心部分のみしか、製品採取できないこととなる。さらに、近年は液晶デバイスの大画面化に伴い、光学位相差用フィルムの幅取りも大きくなってきている。幅取りは液晶デバイスの画面サイズに依存するが、配向角バラツキが大きいと前述の通り偏光板と貼り合わせたときに偏光板の吸収軸と光学位相差用フィルムの遅相軸の角度関係が維持されないことから幅取りにおいて制約を受けることになる。具体的には光学位相差用フィルムロール上から偏光板と組み合わされるに際し、枚葉(シート)とされるときの長手方向は、遅相軸の角度(配向角)に合わせて決められるが、その角度は配向角バラツキが大きいと光学位相差用フィルムを製膜したときの幅位置によって変える必要が発生する。そのため、切り出す角度の変動が大きいとロールから切り出したときに余白となり光学用位相差フィルムとして使用できない面積の割合が大きくなるため、生産性が悪くなる問題が発生する。このことから、一定の幅以上における配向角のバラツキは一定の範囲に収めることが重要となる。本実施態様におけるフィルム幅とその配向角バラツキは前述の通り、幅が1,200mm以上2,000mm未満で配向角バラツキが6°以内、好ましくは5°以内、または幅が2,000mm以上で同バラツキが10°以内、好ましくは8°以内、であれば、上記問題の解決に寄与できる。幅の上限については、上述のとおり幅取りの影響を受けるものの、フィルム加工性及び加工後の生産性を考慮すると3,000mm以下が好ましい。
 次に本実施態様に適用されるポリエステルフィルムの製造方法に関してさらに詳しく説明する。上述したポリエステルを必要に応じて乾燥し、押出機に供給して、ポリマーをフィルターにより濾過する。ごく小さな異物もフィルム欠陥となるため、このフィルターには例えば5μm以上の異物を95%以上捕集する高精度のものを用いることが有効である。続いてT型口金等を用いてシート状に溶融押出し、キャスティングロール上で冷却固化せしめて未延伸フィルムとする。
 溶融押出しされたポリマーシートはキャスティングロール上に接地し冷却されるが、冷却できるポリマーの熱量はキャストロールの部材の熱伝導度のために制約があり、ポリマーシート内部まで完全に冷却されない場合には得られた未延伸フィルムに配向ムラ(非晶ムラ)が発生する。この配向ムラ(非晶ムラ)が局所的な位相差ムラの原因となるため、例えばキャスティングロール速度を低速にし、ポリマーシートの冷却時間を長くすることが有効である。キャストロール速度は、次工程以降で延伸されたフィルムを巻き取る工程のフィルムの搬送速度が50m/min以上200m/min未満となる範囲であることが好ましく、さらに好ましくは50m/min以上150m/minとなる範囲である。
 この未延伸フィルムを90~130℃の延伸温度で延伸することで本実施態様の光学位相差板用二軸配向ポリエステルフィルムを得る。延伸工程においては逐次延伸でも同時2軸延伸でもよい。本実施態様に適用されるポリエステルフィルムの製造においては、面内位相差値のバラツキの要因となる厚みムラを抑制することが求められるため、特に低い縦延伸倍率での長手方向における厚みムラを抑制することができる同時2軸延伸プロセスが好ましい。
 本実施態様に適用されるポリエステルフィルムの製造に際しては、長手方向の延伸は1段階的に、もしくは多段階的に分けて2.5~5倍で実施し、次いで又は同時2軸延伸プロセスでは同時に幅方向に3~6倍に延伸する。ここで、各ステップ毎に実施される延伸工程の倍率の比率について、長手方向延伸倍率/幅方向延伸倍率が1.0未満となる工程であることが好ましい。この理由としては、幅方向の配向を高くすることによって延伸工程におけるボーイングを抑制することができるためである。
 また、本実施態様に適用されるポリエステルフィルムを製造する際には、幅方向延伸中の長手方向への弛緩工程を含まないことが好ましい。長手方向への弛緩工程は特許文献4に記載されているようにボーイングを抑制するために有効な方法であるものの、本実施態様に適用されるポリエステルフィルムは厚み10μm以下のフィルムであるため、適用すると厚みムラが大きく面内位相差が位置毎に不均一となるためである。
 本実施態様に適用されるポリエステルフィルムの製造に際しては、延伸工程における延伸温度が90℃よりも低く延伸倍率が6倍よりも大きくなるとフィルムが破断しやすくなるため、延伸温度は90℃以上、延伸倍率は6倍未満が好ましい。
 更に、1回目の幅方向に延伸する際の延伸温度は90℃以上100℃未満、延伸開始後の延伸工程中における昇温速度は10℃/秒未満であることが好ましい。この理由として横配向を形成し始める初期の段階で過剰な熱を与えると熱による配向が進行してしまい、十分に横配向を進行させることができなくなるため、幅方向の配向を高くすることによって延伸工程におけるボーイングを抑制する製造プロセスを取れなくなるためである。
 また、本実施態様に適用されるポリエステルフィルムの製造に際しては、1回目の延伸後から熱処理工程に入るまでには冷却工程を設けないことが好ましい。特許文献5に挙げたような磁気材料用途のポリエステルフィルムではボーイングに起因する品質バラツキを抑制する方法として、熱処理工程に入る前に冷却工程を設けているが、この方法では横方向の配向が強くなり過ぎ、面内位相差を光学位相差板用に適した範囲とさせるにはフィルムを薄くさせる必要があり、加工性を満たすことが困難になるためである。
 次いで熱処理工程を経て本実施態様に適用されるポリエステルフィルムを製造する。熱処理の雰囲気温度はフィルム物性を安定させるため、フィルム上下の温度差が1~20℃、好ましくは1~10℃、さらに好ましくは1~5℃である。フィルム上下での温度差が20℃よりも大きいと、フィルムの幅方向の物性、特に機械的特性あるいは熱収縮率が不均一になる場合がある。上記熱処理においては、必要に応じて弛緩処理を行ってもよい。この際、横方向・長手方向いずれの方向でも良いが、横方向・長手方向を同時に行っても、これらを組み合わせておこなってもよい。弛緩率はフィルムの全幅に対して好ましくは1~20%、さらに好ましくは1~10%が熱寸法安定性の優れたフィルムを得るのに有効である。
 その後、熱処理工程を経た前述のフィルムを巻き取った中間製品(中間製品ロール)を得て、最後に必要とする採取幅に合わせてスリットし、本実施態様のポリエステルフィルムロールを得る。
 本実施態様に適用されるポリエステルフィルムでは、上述したように配向角バラツキがポイントとなる。ボーイングにより配向角バラツキが発生するため、中間製品ロールの幅方向中心をフィルムロールの中心と一致させるようにして対称的に採取することが、最も配向角バラツキを小さくした採取方法となる。一方、中心位置を含まず、中間製品ロールのどちらかの端部を含むように非対称的にフィルムロールを採取すれば、最も配向角バラツキを大きくした取り方となる(この場合、配向角の符号は同一となる)。本実施態様に適用されるポリエステルフィルムは配向角バラツキが小さいため、製膜した中間製品ロールのフィルム幅において使用可能となる幅の割合が大きく、フィルムロールとしたときに生産性が高くなる。
 本実施態様のポリエステルフィルムロールから得られるポリエステルフィルムは、二軸延伸による薄膜化と強力化により、従来よりもはるかに薄い厚みの位相差板となり、各種液晶ディスプレイ機器への組み込み時の省スペース化を実現できる。さらには、液晶ディスプレイから放出される偏光を楕円偏光または円偏光にすることにより、偏光眼鏡をかけた状態で液晶ディスプレイ機器を用いても、その機器の回転方向(縦型や横型での使用)の変化に対しても、光量のムラや色合いの変化を抑えることができ、機器操作時の視認性を確保し続けることができる。
 実施例および比較例における特性値の測定方法は次の通りである。
(1)採取幅
 採取した測定対象のフィルムを台に広げ、幅を金尺(JIS1級)で測定した。
(2)配向主軸の傾き(配向角)、配向角バラツキ
 野村商事製SONIC SHEET TESTER(SST-250)を用いて測定を行った。試料となるフィルムの幅に対して同じ位置になるように30枚重ねで両端部からA4サイズに切り出したサンプルの中点(105mm)を測定した。サンプル切り出し時の角度誤差を補正するため、測定は表裏で行い、表裏での測定結果の絶対値を平均した値を測定値とし、配向主軸がフィルム幅方向と平行である時を配向角0度とし、フィルム面に対して時計回りの傾きを+、反時計回りを-として評価した。
 配向角バラツキは対象となる採取幅取りにおいて、最大値と最小値の差分の絶対値を測定結果とした。
(3)フィルム厚み
 JIS C2151(1990)に準じ、マイクロメーター(ミツトヨOMM-25)を用いて測定をした。試料となるフィルムの幅方向に対して均等に3点測定し、その平均値を測定結果とした。
(4)フィルム幅方向に対する面内位相差値レターデーション(nm)
 王子計測機器社製KOBRA-WPRを用いて測定を行った。対象となる採取幅取りにおいて、試料となるフィルムを切り出し、装置にセットした。位相差測定ソフトKOBRA-REを起動し、“測定法”を“標準”として、波長586.9nmの光にて測定を実施し、入力するフィルム厚みは上述の(3)で測定した値を入力して算出させたRe(nm)を測定値とした。測定は対象となる採取幅取りにおいて、両端及び中央より切り出したサンプルで行い、その測定値の変動範囲を確認した。
 面内位相差値レターデーションのバラツキは対象となる採取幅取りにおいて、最大値と最小値の差分を測定結果とした。
(5)局所的な面内位相差値レターデーション(nm)
 王子計測機器社製KOBRA-CCDを用いて測定を行った。対象となる採取幅取りにおいて、フィルムロール全幅から採取したサンプルをクロスニコル状態及びパラニコル状態に対峙させた2枚の偏光板の間に配置し、一方の側からフィルムに直角に光をあて、光の投射方向の反対側から目視で観察し、色ムラの有無を確認した。色ムラが確認された部位のフィルムを切り出し、KOBRA-CCDを用いて色ムラ部分と正常部分の面内位相差値レターデーションを測定した。
局所的な位相差ムラは、測定部位の任意の隣り合う1cm以内の2点間の面内位相差値レターデーションの最大値と最小値の差分とした。
(6)フィルム長手方向の厚みむら
 安立電気製フィルム厚み連続測定器を用いて、長手方向に15m測定し、記録されたフィルム厚さチャートから、最大厚みと最小厚みの差を厚みむら(μm)として測定した。測定条件は下記の通り。
 構成:K-306C広範囲電子マイクロメータ、K-310Cレコーダー、フィルム送り装置
 検出器:3Rルビー端子、測定力:15g±5g
 フィルム幅:45mm、測定長:15m、フィルム送り速度:3m/分
(7)フィルムのヘイズ値
 JIS K7105(1981)に準じ、フィルム長手方向4cm×フィルム幅方向3.5cmの寸法に切り出したものをサンプルとし、ヘイズメータ(スガ試験機製HGM-2DP(C光用))を用いて測定した。フィルム幅方向に対して均等に3点測定し、その平均値を測定結果とした。
(8)熱収縮率
 フィルム表面に、幅10mm、測定長約100mmとなるように2本のラインを引き、この2本のライン間の距離を23℃で測定しこれをL0とする。このフィルムサンプルを100℃のオーブン中に30分間、1.5gの荷重下で放置した後、再び2本のライン間の距離を23℃で測定しこれをL1とし、下式により熱収縮率を求めた。
 熱収縮率(%)={(L0-L1)/L0}×100
 フィルムの長手方法および幅方向についてそれぞれ3カ所の測定を行い、平均値を求めた。
実施例1:
 テレフタル酸41.1質量部とエチレングリコールの反応物であるビス-β-ヒドロキシエチルテレフタレート(以下、BHTという)46.4質量部を、予め255℃の溶融状態で貯留させ、さらにテレフタル酸45.3質量部とエチレングリコール19.5質量部からなるスラリーを、反応槽の温度を保ち定量供給しながら、水を留出させ、エステル化反応をさせた。反応を開始してから4時間40分後にエステル化を終了し、この反応生成物であるBHTを重縮合反応槽に移し、トリメチルフォスフェート0.02質量部添加した。次いで、酢酸マグネシウム0.06質量部、酢酸リチウム0.001質量部、三酸化アンチモン0.02質量部を添加して、40分で25Paになるまで減圧するとともに290℃まで加熱、昇温して重縮合反応を行い、固有粘度0.62に到達まで実施した。反応終了後、重縮合反応槽底部にある口金より冷水中にストランド状に吐出し、押し出しカッターによって円柱状にペレット化したホモポリエステルペレット1を得た。
 このホモポリエステルペレット1を固相重合することで得られた固有粘度0.85(dl/g)のポリエチレンテレフタレート(PET)のペレット(Tg80℃)50質量部とGeneral Electric(GE)社製の固有粘度0.68(dl/g)の”ウルテム”1010(Tg216℃)(PEI)50質量部とを、290℃に加熱された同方向回転タイプのベント式2軸混練押出機に供給して、PEIを50質量%含有したPET/PEIブレンドチップを作製した。
 また、ジメチルテレフタレート100質量部とエチレングリコール70質量部とに、エステル交換反応触媒として、酢酸マグネシウム4水塩をマグネシウム原子数換算として40ppmとなるように添加し、150℃から225℃に徐々に昇温しながら反応させ、その後、ジエチルホスホノ酢酸エチルをリン原子数換算で10ppm添加した。更に、5分後に平均粒径が0.06μmで、あらかじめ粒子のEG溶液をプレフィルターとして絶対濾過精度3.0μm、メインフィルターとして絶対濾過精度1.0μmのフィルターで濾過した球状シリカ粒子EGスラリーを反応組成物に対して1.0質量%となるように15分かけて添加した。更に、5分後に三酸化アンチモン0.03質量部を加え、重縮合反応容器に移し、290℃まで昇温し最終的に25Paの高減圧下にて重縮合反応を行い、IV0.61のポリエステルペレット2を得た。
 また、280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のホモポリエステルペレット1を98質量部と平均径0.3μmの球状架橋ポリスチレン粒子の10質量%水スラリーを20質量部(球状架橋ポリスチレンとして2質量部)供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、平均径0.3μmの球状架橋ポリスチレン粒子を2質量部含有する固有粘度0.61のポリエステルペレット3を得た。
 次いで、270℃に加熱された押出機Aには、上記ペレタイズ操作により作製したPET/PEIブレンドチップ6質量部と上述のホモポリエステルペレット1を74質量部と上述のポリエステルペレット2を20質量部との混合原料を、160℃で3時間減圧乾燥した後に供給した。
 なお、上記した球状シリカ粒子は、ナトリウム水ガラスと水とを投入して珪酸ナトリウム水溶液を調製した後に還流下硫酸水溶液を加え、引き続還流下熟成することにより得たシリカゾルを限外濾過膜を使用して濃縮後、エチレングリコールを加えロータリーエバポレーターにて100℃で溶媒置換を行いシリカゾルとして得たものを使用した。
 また、上述の球状架橋ポリスチレン粒子はソープフリー乳化重合によりシード粒子を合成し、膨潤助剤を用いて膨潤させ、重合性モノマーを吸収して重合させる方法で製造した。重合性モノマーを吸収させる方法としては、シード粒子を合成した水溶性分散体に対してこれらを一括添加する方法を採用した。
 一方、押出機Bも同様に270℃に加熱し、上記ペレタイズ操作により作製したPET/PEIブレンドチップ6質量部と上述のホモポリエステルペレット1を78質量部と上述のポリエステルペレット3を20質量部との混合原料を、160℃で3時間減圧乾燥した後に供給した。
 押出機A、Bではそれぞれ、5μm以上の捕集効率95%の高精度フィルターで濾過した後、矩形の2層用合流ブロックで合流積層し、前述の押出機Aから供給されたポリエステル:前述の押出機Bから供給されたポリエステルが厚み比で6:1となるように2層積層とした。その後、285℃に保ったスリットダイを介し静電印加キャスト法を用いて表面温度25℃のキャスティングロール上に冷却固化し、未延伸フィルムを得た。この未延伸フィルムを同時2軸延伸テンターに導き、長手方向および幅方向に同時に、温度95℃、3.50倍×3.65倍延伸した。この延伸工程における昇温速度は1℃/秒以下であった。続いて、冷却工程を経ることなく温度190℃で長手方向および幅方向に同時に1.20倍×1.35倍に再延伸した。その後、温度215℃で5.5秒間熱処理後、幅方向に1.75%の弛緩処理を行った。その後、130m/minのフィルム搬送速度で巻き取って5m幅の中間製品ロールを作成した。中間製品ロールから、表1に記載の評価ロール採取幅にスリットして巻き取り、厚さ5μmのポリエステルフィルムロールを評価用に作製した。作製した評価ロール(本実施態様のポリエステルフィルムロール)の特性評価を行うに際しては5m幅の中間製品ロールからその端部を含むように表1に記載の幅で評価ロールを採取し、サンプルフィルムを切り出して採取して特性値の測定や評価を行い、得られた結果を表1に示した。
Figure JPOXMLDOC01-appb-T000009
実施例2,比較例1:
 延伸条件、冷却条件、熱処理温度などの製膜条件を表1記載の通りに変更したほかは実施例1と同様に実施した。得られたフィルムの特性を表1に示した。
実施例3~4,比較例2:
 押出機Aに上述のホモポリエステルペレット1を99質量部と上述のポリエステルペレット2を20質量部との混合原料を、160℃で3時間減圧乾燥した後に供給し、逐次2軸方式にて表1に従って延伸条件、冷却条件、熱処理温度などの製膜条件を変え、その他は実施例1と同様に実施し、二軸配向ポリエステルフィルムを得た。得られたフィルムの特性を表1に示した。
実施例、比較例におけるフィルムの位相差板用としての評価:
 フラットイルミネーター(HF-SL-100WLCG;電通産業製)の発光面に合う大きさの偏光板1枚を乗せ、観察対象とした同じサイズの実施例及び比較例のフィルムを積層した状態とし、フラットイルミネーターの電源を入れ、直線偏光が対象フィルムを通過した状態を作った。この状態で更に別の同じ大きさの偏光板を乗せ、対象フィルムの上に乗せた偏光板だけを0~360°回転させて観察し、回転させている最中に評価対象のフィルムを通した光について位置毎のムラ及び色合いの変化を観察した。
 実施例1~4のフィルムでは位置毎のムラや色合いの変化が少なく、光学位相差用フィルムとして好適に利用できることを確認した。一方で比較例1、2のフィルムでは位置毎のムラや色合いの変化が大きいため、光学位相差用フィルムとして利用するには不適であることを確認した。
 本発明に係る光学位相差板用ポリエステルフィルムロールは、液晶表示用部材等を構成する材料として広く利用可能である。

Claims (4)

  1.  フィルム幅方向に対する配向主軸の傾きの角度(配向角)バラツキが6°以内であり、幅が1,200mm以上かつ2,000mm未満であり、面内位相差値レターデーションが50~200nmであって、フィルム幅方向に対する面内位相差値レターデーションのバラツキが20nm以下であり、厚みが2μm以上かつ10μm以下であるフィルムを巻き取ってなることを特徴とする光学位相差板用ポリエステルフィルムロール。
  2.  フィルム幅方向に対する配向主軸の傾きの角度(配向角)バラツキが10°以内であり、幅が2,000mm以上であり、面内位相差値レターデーションが50~200nmであって、フィルム幅方向に対する面内位相差値レターデーションのバラツキが20nm以下であり、厚みが2μm以上かつ10μm以下であるフィルムを巻き取ってなることを特徴とする光学位相差板用ポリエステルフィルムロール。
  3.  フィルムロール全幅及び長手方向1,200mm以上の範囲について、局所的な位相差ムラが10nm未満である、請求項1または2に記載の光学位相差板用ポリエステルフィルムロール。
  4.  フィルムロールを巻き取る工程におけるフィルムの搬送速度が50m/min以上かつ200m/min未満である、請求項1~3のいずれかに記載の光学位相差板用ポリエステルフィルムロールの製造方法。
PCT/JP2013/054712 2012-03-07 2013-02-25 光学位相差板用ポリエステルフィルムロールおよびその製造方法 WO2013133064A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147026532A KR20140143370A (ko) 2012-03-07 2013-02-25 광학 위상차판용 폴리에스테르 필름 롤 및 그의 제조 방법
CN201380012301.XA CN104160306A (zh) 2012-03-07 2013-02-25 光学相位差板用聚酯膜卷及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012050095 2012-03-07
JP2012-050095 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013133064A1 true WO2013133064A1 (ja) 2013-09-12

Family

ID=49116545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054712 WO2013133064A1 (ja) 2012-03-07 2013-02-25 光学位相差板用ポリエステルフィルムロールおよびその製造方法

Country Status (5)

Country Link
JP (1) JPWO2013133064A1 (ja)
KR (1) KR20140143370A (ja)
CN (1) CN104160306A (ja)
TW (1) TW201347963A (ja)
WO (1) WO2013133064A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227430A (ja) * 2013-05-18 2014-12-08 三菱樹脂株式会社 光学用ポリエステルフィルム
JP2015217654A (ja) * 2014-05-21 2015-12-07 大日本印刷株式会社 ハードコートフィルム、並びにこれを用いた表示素子の前面板及び表示装置、並びに薄型ハードコートフィルムの塗膜の耐剥離性の改良方法
JP2017102442A (ja) * 2015-11-20 2017-06-08 東レ株式会社 二軸配向ポリエステルフィルム
JP2017227899A (ja) * 2016-06-20 2017-12-28 エスケイシー・カンパニー・リミテッド 偏光子保護フィルム、これを含む偏光板、及びこれを備えた表示装置
JP2017227900A (ja) * 2016-06-20 2017-12-28 エスケイシー・カンパニー・リミテッド 偏光子保護フィルム、これを含む偏光板、及びこれを備えた表示装置
JP2018124367A (ja) * 2017-01-31 2018-08-09 東レ株式会社 有機エレクトロルミネッセンス表示装置用フィルムおよび積層シート
JP2019518241A (ja) * 2016-05-31 2019-06-27 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 偏光子用保護フィルム、それを含む偏光板、およびそれらを用いて提供される表示

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732407B2 (ja) * 2015-03-20 2020-07-29 日東電工株式会社 光学積層体およびその製造方法、ならびに該光学積層体を用いた画像表示装置
CN108292091A (zh) 2015-12-01 2018-07-17 旭硝子株式会社 透明屏幕片、透明屏幕以及影像显示系统
KR102438415B1 (ko) * 2020-09-03 2022-08-30 도레이첨단소재 주식회사 광학용 폴리에스테르 보호필름

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023929A1 (ja) * 2005-08-26 2007-03-01 Konica Minolta Opto, Inc. フィルム及びその製造方法と、それを用いた偏光板及び液晶表示装置
JP2009139753A (ja) * 2007-12-07 2009-06-25 Nitto Denko Corp 偏光板、光学フィルムおよび画像表示装置
WO2010082620A1 (ja) * 2009-01-19 2010-07-22 株式会社カネカ 位相差フィルムの製造方法、光学フィルム、画像表示装置、液晶表示装置、並びに、位相差フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023929A1 (ja) * 2005-08-26 2007-03-01 Konica Minolta Opto, Inc. フィルム及びその製造方法と、それを用いた偏光板及び液晶表示装置
JP2009139753A (ja) * 2007-12-07 2009-06-25 Nitto Denko Corp 偏光板、光学フィルムおよび画像表示装置
WO2010082620A1 (ja) * 2009-01-19 2010-07-22 株式会社カネカ 位相差フィルムの製造方法、光学フィルム、画像表示装置、液晶表示装置、並びに、位相差フィルム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227430A (ja) * 2013-05-18 2014-12-08 三菱樹脂株式会社 光学用ポリエステルフィルム
JP2015217654A (ja) * 2014-05-21 2015-12-07 大日本印刷株式会社 ハードコートフィルム、並びにこれを用いた表示素子の前面板及び表示装置、並びに薄型ハードコートフィルムの塗膜の耐剥離性の改良方法
JP2017102442A (ja) * 2015-11-20 2017-06-08 東レ株式会社 二軸配向ポリエステルフィルム
JP7086519B2 (ja) 2015-11-20 2022-06-20 東レ株式会社 二軸配向ポリエステルフィルム
JP2019518241A (ja) * 2016-05-31 2019-06-27 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 偏光子用保護フィルム、それを含む偏光板、およびそれらを用いて提供される表示
US11008430B2 (en) 2016-05-31 2021-05-18 Skc Co., Ltd. Polarizer protection film, polarizing plate comprising same, and display provided with same
JP2017227899A (ja) * 2016-06-20 2017-12-28 エスケイシー・カンパニー・リミテッド 偏光子保護フィルム、これを含む偏光板、及びこれを備えた表示装置
JP2017227900A (ja) * 2016-06-20 2017-12-28 エスケイシー・カンパニー・リミテッド 偏光子保護フィルム、これを含む偏光板、及びこれを備えた表示装置
US10088606B2 (en) 2016-06-20 2018-10-02 Skc Co., Ltd. Protective film for a polarizer, a polarizing plate comprising the same, and a display device with the polarizing plate
US10088607B2 (en) 2016-06-20 2018-10-02 Skc Co., Ltd Protective film for a polarizer, a polarizing plate comprising the same, and a display device with the polarizing plate
JP2018124367A (ja) * 2017-01-31 2018-08-09 東レ株式会社 有機エレクトロルミネッセンス表示装置用フィルムおよび積層シート

Also Published As

Publication number Publication date
CN104160306A (zh) 2014-11-19
TW201347963A (zh) 2013-12-01
KR20140143370A (ko) 2014-12-16
JPWO2013133064A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
WO2013133064A1 (ja) 光学位相差板用ポリエステルフィルムロールおよびその製造方法
JP5292814B2 (ja) ポリエステル系積層フィルムおよび偏光板
JP5519217B2 (ja) 偏光子支持基材用フィルム
JP6205089B1 (ja) 液晶表示装置
JP5451186B2 (ja) 偏光子支持基材用一軸配向芳香族ポリエステルフィルム
WO2012173170A1 (ja) 反射偏光フィルム、それからなる液晶表示装置用光学部材および液晶表示装置
JP2009235231A (ja) 離型用ポリエステルフィルム
JP7000677B2 (ja) ポリエステルフィルム
JP6926617B2 (ja) 二軸配向積層ポリエステルフィルムおよび磁気記録媒体
JP2009029879A (ja) 光学用樹脂及びこれを含有したフィルム
JP2016141058A (ja) 二軸配向ポリエステルフィルムおよびその製造方法
JP2004277524A (ja) 二軸配向ポリエステルフィルム
JP2008155435A (ja) 二軸延伸樹脂フィルム
JP2009098648A (ja) 位相差フィルム、円偏光板、およびこれを用いた表示装置
JP2018162435A (ja) 二軸配向ポリエステルフィルムおよびその製造方法
JP2013003408A (ja) 反射偏光フィルム、それからなる液晶表示装置用光学部材および液晶表示装置
JP6701666B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP4687565B2 (ja) 位相差フィルム
JP2007224281A (ja) 光学用ポリエステルフィルム
JP5028997B2 (ja) 離型フィルム用二軸延伸樹脂フィルム
JP2007253619A (ja) 二軸延伸樹脂フィルム
JP2009282140A (ja) 画像表示パネル及びその製造方法
US10589497B2 (en) Biaxially oriented polyester film
JP5554752B2 (ja) Vaモード液晶ディスプレイ用反射偏光フィルム、それからなる光学部材およびvaモード液晶ディスプレイ
JP2008013747A (ja) 樹脂、フィルム、これを用いた位相差フィルムおよび表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544954

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147026532

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13758393

Country of ref document: EP

Kind code of ref document: A1