WO2013129490A1 - 変倍光学系、光学装置、変倍光学系の製造方法 - Google Patents

変倍光学系、光学装置、変倍光学系の製造方法 Download PDF

Info

Publication number
WO2013129490A1
WO2013129490A1 PCT/JP2013/055180 JP2013055180W WO2013129490A1 WO 2013129490 A1 WO2013129490 A1 WO 2013129490A1 JP 2013055180 W JP2013055180 W JP 2013055180W WO 2013129490 A1 WO2013129490 A1 WO 2013129490A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
optical system
lens
end state
variable magnification
Prior art date
Application number
PCT/JP2013/055180
Other languages
English (en)
French (fr)
Inventor
昭彦 小濱
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201380011477.3A priority Critical patent/CN104136956B/zh
Publication of WO2013129490A1 publication Critical patent/WO2013129490A1/ja
Priority to US14/469,685 priority patent/US9684154B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+--
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a variable power optical system, an optical apparatus, and a method for manufacturing a variable power optical system suitable for an interchangeable lens for a camera, a digital camera, a video camera, and the like.
  • variable-power optical systems used for interchangeable lenses for single-lens reflex cameras have been proposed in which the most object-side lens group has a positive refractive power.
  • JP-A-2002-365547 many variable-power optical systems used for interchangeable lenses for single-lens reflex cameras have been proposed in which the most object-side lens group has a positive refractive power.
  • the present invention has been made in view of the above problems, and provides a small variable power optical system, an optical device, and a method for manufacturing the variable power optical system that have high zoom ratio and high optical performance. Objective.
  • the present invention A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refractive power in order from the object side along the optical axis. And a fourth lens group having a negative refractive power, At the time of zooming from the wide angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the There is provided a variable magnification optical system characterized in that an interval between a fourth lens group and an interval between the fourth lens group and the fifth lens group are changed.
  • the present invention also provides Provided is an optical device comprising the variable magnification optical system.
  • the present invention also provides In the manufacturing method of the variable magnification optical system, A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refractive power in order from the object side along the optical axis.
  • a fourth lens group having negative refractive power and a fifth lens group having negative refractive power At the time of zooming from the wide angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the There is provided a variable magnification optical system manufacturing method characterized in that an interval between a fourth lens group and an interval between the fourth lens group and the fifth lens group are changed.
  • variable power optical system it is possible to provide a small variable power optical system, an optical device, and a method for manufacturing the variable power optical system having high zoom ratio and high optical performance.
  • FIG. 1 is a cross-sectional view of the zoom optical system according to the first example of the present application in the wide-angle end state, the first intermediate focal length state, the second intermediate focal length state, and the telephoto end state.
  • FIGS. 2A and 2B are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state and the first intermediate focal length state of the variable magnification optical system according to the first example of the present application, respectively.
  • FIGS. 3A and 3B are graphs showing various aberrations during focusing on an object at infinity in the second intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively.
  • FIG. 1 is a cross-sectional view of the zoom optical system according to the first example of the present application in the wide-angle end state, the first intermediate focal length state, the second intermediate focal length state, and the telephoto end state.
  • FIGS. 2A and 2B are graphs showing various aberrations during
  • FIG. 4 is a cross-sectional view of the zoom optical system according to the second example of the present application in the wide-angle end state, the first intermediate focal length state, the second intermediate focal length state, and the telephoto end state.
  • FIGS. 5A and 5B are graphs showing various aberrations when focusing on an object at infinity in the wide-angle end state and the first intermediate focal length state of the variable magnification optical system according to the second example of the present application, respectively.
  • FIGS. 6A and 6B are graphs showing various aberrations during focusing on an object at infinity in the second intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively.
  • FIG. 5A and 5B are graphs showing various aberrations when focusing on an object at infinity in the wide-angle end state and the first intermediate focal length state of the variable magnification optical system according to the second example of the present application, respectively.
  • FIGS. 6A and 6B are graphs showing various aberration
  • FIG. 7 is a cross-sectional view of the zoom optical system according to the third example of the present application in the wide-angle end state, the first intermediate focal length state, the second intermediate focal length state, and the telephoto end state.
  • FIGS. 8A and 8B are graphs showing various aberrations when focusing on an object at infinity in the wide-angle end state and the first intermediate focal length state of the zoom optical system according to the third example of the present application, respectively.
  • FIGS. 9A and 9B are graphs showing various aberrations when the object at infinity is in focus in the second intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the present application.
  • FIG. 10 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
  • FIG. 11 is a diagram showing an outline of the manufacturing method of the variable magnification optical system of the present application.
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power.
  • variable magnification optical system of the present application can perform variable magnification, and can suppress variations in distortion due to variable magnification.
  • the fifth lens group is a negative lens group as described above, whereby the principal point position of the variable power optical system is arranged on the object side, and from the wide-angle end state to the telephoto end state.
  • the overall length of the variable magnification optical system can be shortened in the entire variable magnification region. In addition to this, the distance from the optical axis of the peripheral luminous flux can be kept small, and the diameter of the fifth lens group can be reduced.
  • the fifth lens group is a positive lens group, when considering that the total length of the variable magnification optical system and the diameter of the fifth lens group are the same, each lens is compared with the case where the fifth lens group is a negative lens group.
  • the refractive power of the group will increase. For this reason, it becomes difficult to suppress fluctuations in spherical aberration and astigmatism during zooming from the wide-angle end state to the telephoto end state. From the above, it is possible to realize a small variable magnification optical system having high magnification and high optical performance.
  • variable magnification optical system of the present application satisfies the following conditional expression (1).
  • f5 focal length of the fifth lens group
  • fw focal length of the variable magnification optical system in the wide-angle end state
  • Conditional expression (1) defines the optimum focal length range of the fifth lens group, and is a conditional expression for suppressing aberration fluctuations accompanying zooming while ensuring a zoom ratio.
  • conditional expression (1) the variable magnification optical system of the present application can suppress variations in distortion and astigmatism due to variable magnification and achieve high optical performance. If the corresponding value of conditional expression (1) of the variable magnification optical system of the present application is less than the lower limit value, the focal length of the fifth lens group becomes too small. For this reason, it becomes difficult to suppress fluctuations in distortion and astigmatism caused by zooming, and high optical performance cannot be realized.
  • the upper limit of conditional expression (1) is preferably 10.0. Since the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application is less than the upper limit value, the fifth lens group can suppress the variation of distortion and astigmatism due to the variable magnification. Optical performance can be realized. In order to secure the effect of the present application, it is preferable to set the upper limit of conditional expression (1) to 8.50.
  • variable magnification optical system of the present application satisfies the following conditional expression (2).
  • f4 focal length of the fourth lens group
  • f5 focal length of the fifth lens group
  • Conditional expression (2) defines the optimum focal length ratio of the fourth lens group and the fifth lens group, and is a conditional expression for suppressing aberration fluctuations accompanying zooming.
  • conditional expression (2) the variable magnification optical system of the present application can suppress variations in distortion and astigmatism due to variable magnification, and can realize high optical performance. If the corresponding value of conditional expression (2) of the variable magnification optical system of the present application is less than the lower limit value, the focal length of the fifth lens group becomes too small with respect to the focal length of the fourth lens group. For this reason, it becomes difficult to suppress fluctuations in distortion and astigmatism caused by zooming, and high optical performance cannot be realized.
  • conditional expression (2) In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (2) to 0.52. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 0.66.
  • the corresponding value of conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit value, the focal length of the fourth lens group becomes relatively small. For this reason, it becomes difficult to suppress the fluctuation of astigmatism generated in the fourth lens group, and high optical performance cannot be realized.
  • variable magnification optical system of the present application satisfies the following conditional expression (3).
  • f3 focal length of the third lens group
  • f5 focal length of the fifth lens group
  • Conditional expression (3) defines the optimum focal length ratio of the third lens group and the fifth lens group, and is a conditional expression for suppressing aberration fluctuations accompanying zooming.
  • conditional expression (3) the variable magnification optical system of the present application suppresses each variation of distortion, astigmatism, spherical aberration, and coma due to variable magnification, and realizes high optical performance. Can do. If the corresponding value of conditional expression (3) of the variable magnification optical system of the present application is less than the lower limit value, the focal length of the fifth lens group becomes too small with respect to the focal length of the third lens group. For this reason, it becomes difficult to suppress fluctuations in distortion and astigmatism caused by zooming, and high optical performance cannot be realized.
  • conditional expression (3) In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (3) to 1.20. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 1.46.
  • the corresponding value of conditional expression (3) of the variable magnification optical system of the present application exceeds the upper limit value, the focal length of the third lens group becomes relatively small. For this reason, it becomes difficult to suppress variations in spherical aberration and coma that occur in the third lens group, making it impossible to achieve high optical performance.
  • variable magnification optical system of the present application satisfies the following conditional expression (4).
  • f5 focal length of the fifth lens group
  • R5 radius of curvature of the lens surface that is concave on the object side in the fifth lens group and has the smallest absolute value of curvature radius
  • Conditional expression (4) is a conditional expression for suppressing aberration fluctuations in the variable magnification optical system of the present application.
  • R5 in the conditional expression (4) has a negative sign of the radius of curvature of the concave lens surface on the object side.
  • the fifth lens group has a cemented lens, and the lens surface having a concave shape on the object side in the fifth lens group and having the smallest absolute value of the curvature radius is the cemented lens. It is desirable that the bonding surface is. With this configuration, the variable magnification optical system of the present application can suppress decentration coma generated by a manufacturing error of the lens surface and realize high optical performance.
  • the distance between the third lens group and the fourth lens group increases from the wide-angle end state to the intermediate focal length state at the time of zooming from the wide-angle end state to the telephoto end state. It is desirable to decrease from the intermediate focal length state to the telephoto end state.
  • variable magnification optical system of the present application can suppress fluctuations in astigmatism generated from the third lens group to the fourth lens group at the time of zooming from the wide-angle end state to the telephoto end state. Performance can be realized.
  • the distance between the fourth lens group and the fifth lens group is reduced from the wide-angle end state to the intermediate focal length state at the time of zooming from the wide-angle end state to the telephoto end state. It is desirable to increase from the intermediate focal length state to the telephoto end state.
  • the variable magnification optical system of the present application can suppress fluctuations in astigmatism generated from the fourth lens group to the fifth lens group at the time of zooming from the wide-angle end state to the telephoto end state. Performance can be realized.
  • the zoom optical system it is desirable that the third lens group and the fifth lens group move together when zooming from the wide-angle end state to the telephoto end state.
  • the variable magnification optical system of the present application can structurally simplify the third lens group and the fifth lens group, and can suppress mutual decentration. For this reason, decentration coma and astigmatism generated due to manufacturing errors can be suppressed, and high optical performance can be realized.
  • the distance between the first lens group and the second lens group is increased at the time of zooming from the wide-angle end state to the telephoto end state, and the second lens group and the third lens are increased. It is desirable to reduce the distance between groups.
  • variable magnification optical system of the present application suppresses spherical aberration and astigmatism that occur in each lens group, and changes in spherical aberration and astigmatism during zooming from the wide-angle end state to the telephoto end state. Can be suppressed.
  • the fifth lens group has an aspherical surface.
  • the variable magnification optical system of the present application can suppress coma and astigmatism generated in the fifth lens group, and can realize high optical performance.
  • the aspheric surface is provided on the lens surface closest to the object in the fifth lens group. With this configuration, the variable magnification optical system of the present application can efficiently suppress coma and astigmatism generated in the fifth lens group, and can realize high optical performance.
  • the variable magnification optical system of the present application preferably has an aperture stop in or near the third lens group.
  • the variable magnification optical system of the present application can suppress fluctuations in off-axis aberrations, particularly astigmatism, during zooming from the wide-angle end state to the telephoto end state.
  • the aperture stop moves integrally with the third lens group when zooming from the wide-angle end state to the telephoto end state.
  • the variable magnification optical system of the present application can suppress fluctuations in off-axis aberrations, particularly astigmatism, during zooming from the wide-angle end state to the telephoto end state.
  • the optical apparatus according to the present application includes the variable magnification optical system having the above-described configuration. Thereby, it is possible to realize a small optical device with high zoom ratio and high optical performance.
  • variable magnification optical system manufacturing method of the present application is a variable magnification optical system manufacturing method, in order from the object side along the optical axis, a first lens group having positive refractive power, and a second lens having negative refractive power.
  • the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the distance between the third lens group and the fourth lens group The distance and the distance between the fourth lens group and the fifth lens group are changed.
  • FIG. 1 is a cross-sectional view of the zoom optical system according to the first example of the present application in the wide-angle end state, the first intermediate focal length state, the second intermediate focal length state, and the telephoto end state.
  • W is a wide-angle end state
  • M1 is a first intermediate focal length state
  • M2 is a second intermediate focal length state
  • T is a telephoto end state. Is the same.
  • the variable magnification optical system includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction.
  • the third lens group G3 having power
  • the fourth lens group G4 having negative refractive power
  • the fifth lens group G5 having negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L13 facing the lens.
  • the second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, and a biconvex positive lens L23. And a negative meniscus lens L24 having a concave surface facing the object side.
  • the negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the image side.
  • the third lens group G3 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, and a positive lens having a convex surface facing the object side. It is composed of a meniscus lens L33, a cemented lens of a biconvex positive lens L34 and a negative meniscus lens L35 having a concave surface facing the object side.
  • An aperture stop S is provided near the object side of the third lens group G3.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, only a cemented lens of a biconcave negative lens L41 and a biconvex positive lens L42.
  • the negative lens L41 located closest to the object side in the fourth lens group G4 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the fifth lens group G5 includes, in order from the object side along the optical axis, only a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface directed toward the object side.
  • the lens surface that is concave on the object side and has the smallest absolute value of the radius of curvature in the fifth lens group G5 is a cemented surface between the positive lens L51 and the negative meniscus lens L52.
  • the positive lens L51 located closest to the object side in the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the first lens group G1 monotonously moves toward the object side during zooming from the wide-angle end state W to the telephoto end state T
  • G2 moves toward the image side from the wide-angle end state W to the first intermediate focal length state M1 and moves toward the object side from the first intermediate focal length state M1 to the telephoto end state T.
  • the third lens group G3 and the fourth lens group G4 , And the fifth lens group G5 monotonously moves toward the object side.
  • the aperture stop S, the third lens group G3, and the fifth lens group G5 move together.
  • the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3.
  • the distance between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state W to the first intermediate focal length state M1, and decreases from the first intermediate focal length state M1 to the telephoto end state T.
  • the distance between the fourth lens group G4 and the fifth lens group G5 decreases from the wide-angle end state W to the first intermediate focal length state M1 and increases from the first intermediate focal length state M1 to the telephoto end state T.
  • Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
  • f indicates the focal length
  • Bf indicates the back focus.
  • m is the order of the lens surfaces counted from the object side
  • r is the radius of curvature of the lens surfaces
  • d is the distance between the lens surfaces
  • OP represents the object plane
  • I represents the image plane.
  • indicates a plane
  • the refractive index of air of 1.00000 is omitted in the column of the refractive index nd.
  • the aspherical surface is marked with * as the surface number, and the paraxial radius of curvature is shown in the column of the radius of curvature r.
  • [Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
  • x (h 2 / r) / [1+ ⁇ 1- ⁇ (h / r) 2 ⁇ 1/2 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10
  • h is the height in the direction perpendicular to the optical axis
  • x is the sag amount that is the distance along the optical axis direction at the height h from the tangent plane of the apex of the aspheric surface to the aspheric surface
  • is the conic constant.
  • A4, A6, A8, and A10 are aspherical coefficients, and r is a paraxial radius of curvature which is the radius of curvature of the reference spherical surface.
  • E ⁇ n (n: integer) represents “ ⁇ 10 ⁇ n ”, for example “1.234E-05” represents “1.234 ⁇ 10 ⁇ 5 ”.
  • FNO is the F number
  • is the half field angle (unit is “°”)
  • Y is the image height
  • TL is the total length of the variable magnification optical system, that is, the first lens group at the time of focusing on an object at infinity.
  • the distance from the most object side lens surface of G1 to the image plane I, di (i: integer) is a variable surface interval of the i-th surface
  • is the aperture stop diameter.
  • W represents the wide-angle end state
  • M1 represents the first intermediate focal length state
  • M2 represents the second intermediate focal length state
  • T represents the telephoto end state.
  • ST indicates the starting surface of each lens group, that is, the most object side lens surface.
  • [Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression.
  • “mm” is generally used as a unit of the focal length f, the radius of curvature r, and other lengths listed in Table 1.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • symbol of Table 1 described above shall be similarly used also in the table
  • FIGS. 2A and 2B are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state and the first intermediate focal length state of the variable magnification optical system according to the first example of the present application, respectively.
  • FIGS. 3A and 3B are graphs showing various aberrations during focusing on an object at infinity in the second intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively.
  • FNO represents an F number
  • A represents a light incident angle (unit: “degree”).
  • variable power optical system according to the present example has excellent optical performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state.
  • FIG. 4 is a cross-sectional view of the zoom optical system according to the second example of the present application in the wide-angle end state, the first intermediate focal length state, the second intermediate focal length state, and the telephoto end state.
  • the variable magnification optical system according to the present example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction.
  • the third lens group G3 having power
  • the fourth lens group G4 having negative refractive power
  • the fifth lens group G5 having negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive lens having a convex surface facing the object side. And a meniscus lens L13.
  • the second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, and a biconvex positive lens L23. And a negative meniscus lens L24 having a concave surface facing the object side.
  • the negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the image side.
  • the third lens group G3 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, and a positive lens having a convex surface facing the object side. It is composed of a meniscus lens L33, a cemented lens of a biconvex positive lens L34 and a negative meniscus lens L35 having a concave surface facing the object side.
  • An aperture stop S is provided near the object side of the third lens group G3.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, only a cemented lens of a biconcave negative lens L41 and a biconvex positive lens L42.
  • the negative lens L41 located closest to the object side in the fourth lens group G4 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the fifth lens group G5 includes, in order from the object side along the optical axis, a positive meniscus lens L51 having a convex surface directed toward the object side, a positive lens L52 having a biconvex shape, and a negative meniscus lens L53 having a concave surface directed toward the object side. And a cemented lens.
  • the lens surface that is concave on the object side and has the smallest absolute value of the radius of curvature in the fifth lens group G5 is a cemented surface between the positive lens L52 and the negative meniscus lens L53.
  • the positive meniscus lens L51 located on the most object side in the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the first lens group G1 monotonously moves toward the object side during zooming from the wide-angle end state W to the telephoto end state T
  • G2 moves toward the image side from the wide-angle end state W to the second intermediate focal length state M2 and moves toward the object side from the second intermediate focal length state M2 to the telephoto end state T.
  • the third lens group G3 and the fourth lens group G4 , And the fifth lens group G5 monotonously moves toward the object side.
  • the aperture stop S, the third lens group G3, and the fifth lens group G5 move together.
  • the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3.
  • the distance between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state W to the second intermediate focal length state M2, and decreases from the second intermediate focal length state M2 to the telephoto end state T.
  • the distance between the fourth lens group G4 and the fifth lens group G5 decreases from the wide-angle end state W to the second intermediate focal length state M2 and increases from the second intermediate focal length state M2 to the telephoto end state T.
  • Table 2 below provides values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 5A and 5B are graphs showing various aberrations when focusing on an object at infinity in the wide-angle end state and the first intermediate focal length state of the variable magnification optical system according to the second example of the present application, respectively.
  • FIGS. 6A and 6B are graphs showing various aberrations during focusing on an object at infinity in the second intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. From each aberration diagram, it can be seen that the variable power optical system according to the present example has excellent optical performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state.
  • FIG. 7 is a cross-sectional view of the zoom optical system according to the third example of the present application in the wide-angle end state, the first intermediate focal length state, the second intermediate focal length state, and the telephoto end state.
  • the variable magnification optical system according to the present example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refraction.
  • a third lens group G3 having power, a fourth lens group G4 having negative refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having positive refractive power Has been.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive lens having a convex surface facing the object side. And a meniscus lens L13.
  • the second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, and a biconvex positive lens L23. And a negative meniscus lens L24 having a concave surface facing the object side.
  • the negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the image side.
  • the third lens group G3 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, and a positive lens having a convex surface facing the object side. It is composed of a meniscus lens L33, a cemented lens of a biconvex positive lens L34 and a negative meniscus lens L35 having a concave surface facing the object side.
  • An aperture stop S is provided between the positive lens L32 and the positive meniscus lens L33 in the third lens group G3.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, only a cemented lens of a biconcave negative lens L41 and a biconvex positive lens L42.
  • the negative lens L41 located closest to the object side in the fourth lens group G4 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the fifth lens group G5 includes, in order from the object side along the optical axis, a negative meniscus lens L51 having a convex surface facing the object side, a positive lens L52 having a biconvex shape, and a negative meniscus lens L53 having a concave surface facing the object side. And a cemented lens.
  • the lens surface that is concave on the object side and has the smallest absolute value of the radius of curvature in the fifth lens group G5 is a cemented surface between the positive lens L52 and the negative meniscus lens L53. Further, the negative meniscus lens L51 located closest to the object side in the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side.
  • the sixth lens group G6 includes solely a positive meniscus lens L61 having a convex surface directed toward the object side.
  • the first lens group G1 monotonously moves toward the object side during zooming from the wide-angle end state W to the telephoto end state T
  • G2 moves toward the image side from the wide-angle end state W to the first intermediate focal length state M1 and moves toward the object side from the first intermediate focal length state M1 to the telephoto end state T.
  • the third lens group G3 and the fourth lens group G4 The fifth lens group G5 and the sixth lens group G6 move monotonously toward the object side.
  • the aperture stop S, the third lens group G3, and the fifth lens group G5 move together.
  • the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3.
  • the distance between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state W to the second intermediate focal length state M2, and decreases from the second intermediate focal length state M2 to the telephoto end state T.
  • the distance between the fourth lens group G4 and the fifth lens group G5 decreases from the wide-angle end state W to the second intermediate focal length state M2, increases from the second intermediate focal length state M2 to the telephoto end state T, and the fifth lens group
  • the interval between G5 and the sixth lens group G6 increases. Table 3 below lists values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 8A and 8B are graphs showing various aberrations when focusing on an object at infinity in the wide-angle end state and the first intermediate focal length state of the zoom optical system according to the third example of the present application, respectively.
  • FIGS. 9A and 9B are graphs showing various aberrations when the object at infinity is in focus in the second intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the present application. From each aberration diagram, it can be seen that the variable power optical system according to the present example has excellent optical performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state.
  • each of the above-described embodiments it is possible to realize a small variable magnification optical system having high magnification and high optical performance.
  • each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.
  • the variable magnification optical system of the present application the five-group or six-group configuration is shown. it can. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from an object at infinity to a near object. It may be configured to move in the axial direction. In particular, it is preferable that at least a part of the fourth lens group is a focusing lens group.
  • a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.
  • either the entire lens group or a part thereof is moved as an anti-vibration lens group so as to include a component perpendicular to the optical axis, or rotated in an in-plane direction including the optical axis. It can also be configured to correct image blur caused by camera shake by moving, that is, swinging.
  • the lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • the aperture stop is preferably disposed between the second lens group and the third lens group, or in the third lens group. It may be configured to substitute that role. Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
  • the variable magnification optical system of the present application has a variable magnification ratio of about 3 to 20 times.
  • FIG. 10 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
  • the camera 1 is a digital single-lens reflex camera provided with the variable magnification optical system according to the first embodiment as the photographing lens 2.
  • light from an object (not shown) that is a subject is collected by the photographing lens 2 and imaged on the focusing screen 4 via the quick return mirror 3.
  • the light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6.
  • the photographer can observe the subject image as an erect image through the eyepiece 6.
  • the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • the zoom optical system according to the first embodiment mounted as the photographing lens 2 on the camera 1 is small, high zoom, and has high optical performance as described above. As a result, the camera 1 can achieve high optical performance while achieving downsizing and high zooming.
  • Step S1 In order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative A fourth lens group having a refractive power of 5 and a fifth lens group having a negative refractive power.
  • Step S2 By providing a known moving mechanism, the distance between the first lens group and the second lens group, the second lens group and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state.
  • the distance between the third lens group, the distance between the third lens group and the fourth lens group, and the distance between the fourth lens group and the fifth lens group are changed. According to the zoom lens manufacturing method of the present application, it is possible to manufacture a small variable magnification optical system having high variable power and high optical performance.

Abstract

 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とを有し、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、及び第4レンズ群G4と第5レンズ群G5との間隔がそれぞれ変化することにより、高変倍で、高い光学性能を備えた小型の変倍光学系、光学装置、及び変倍光学系の製造方法を提供する。

Description

変倍光学系、光学装置、変倍光学系の製造方法
 本発明は、カメラ用の交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系、光学装置、変倍光学系の製造方法に関する。
 従来、一眼レフカメラ用の交換レンズ等に用いられる変倍光学系として、最も物体側のレンズ群が正の屈折力を有するものが数多く提案されている。例えば、特開2002-365547号公報を参照。
特開2002-365547号公報
 しかしながら、上述のような従来の変倍光学系を高変倍化しつつ小型化しようとすると、十分に高い光学性能を得ることが困難であるという問題があった。
 そこで本発明は上記問題点に鑑みてなされたものであり、高変倍で、高い光学性能を備えた小型の変倍光学系、光学装置、及び変倍光学系の製造方法を提供することを目的とする。
 上記課題を解決するために本発明は、
 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有し、
 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔がそれぞれ変化することを特徴とする変倍光学系を提供する。
 また本発明は、
 前記変倍光学系を有することを特徴とする光学装置を提供する。
 また本発明は、
 変倍光学系の製造方法において、
 光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有するようにし、
 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔がそれぞれ変化するようにすることを特徴とする変倍光学系の製造方法を提供する。
 本発明によれば、高変倍で、高い光学性能を備えた小型の変倍光学系、光学装置、及び変倍光学系の製造方法を提供することができる。
図1は、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、及び望遠端状態における断面図である。 図2A、及び図2Bはそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、及び第1中間焦点距離状態における無限遠物体合焦時の諸収差図である。 図3A、及び図3Bはそれぞれ、本願の第1実施例に係る変倍光学系の第2中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 図4は、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、及び望遠端状態における断面図である。 図5A、及び図5Bはそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、及び第1中間焦点距離状態における無限遠物体合焦時の諸収差図である。 図6A、及び図6Bはそれぞれ、本願の第2実施例に係る変倍光学系の第2中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 図7は、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、及び望遠端状態における断面図である。 図8A、及び図8Bはそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、及び第1中間焦点距離状態における無限遠物体合焦時の諸収差図である。 図9A、及び図9Bはそれぞれ、本願の第3実施例に係る変倍光学系の第2中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 図10は、本願の変倍光学系を備えたカメラの構成を示す図である。 図11は、本願の変倍光学系の製造方法の概略を示す図である。
 以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
 本願の変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔がそれぞれ変化することを特徴とする。
 上記構成により、本願の変倍光学系は変倍が可能となり、また変倍に伴う歪曲収差の変動を抑えることができる。
 また本願の変倍光学系は、上記のように第5レンズ群を負レンズ群とすることにより、変倍光学系の主点位置を物体側に配置し、広角端状態から望遠端状態までの変倍領域全体において変倍光学系の全長の短縮化を図ることができる。またこれに加えて、周辺光束の光軸に対する距離を小さく抑え、第5レンズ群を小径化することができる。もし、第5レンズ群を正レンズ群とすれば、変倍光学系の全長や第5レンズ群の径を同一として考えたとき、第5レンズ群を負レンズ群とした場合に比べて各レンズ群の屈折力が増大してしまう。このため、広角端状態から望遠端状態への変倍時の球面収差の変動や非点収差の変動を抑えることが困難になってしまう。
 以上より、高変倍で、高い光学性能を備えた小型の変倍光学系を実現することができる。
 また本願の変倍光学系は、以下の条件式(1)を満足することが望ましい。
(1) 1.80 < (-f5)/fw
 ただし、
f5:前記第5レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
 条件式(1)は、第5レンズ群の最適な焦点距離の範囲を規定し、変倍比を確保しつつ変倍に伴う収差変動を抑えるための条件式である。本願の変倍光学系は、条件式(1)を満足することにより、変倍に伴う歪曲収差の変動や非点収差の変動を抑え、高い光学性能を実現することができる。
 本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、第5レンズ群の焦点距離が小さくなり過ぎる。このため、変倍に伴う歪曲収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の下限値を2.40とすることが好ましい。
 ここで、より好ましくは、条件式(1)の上限値を10.0とすることが好ましい。本願の変倍光学系の条件式(1)の対応値がこの上限値を下回ることで、変倍に伴う歪曲収差の変動や非点収差の変動を第5レンズ群によって抑えることができ、高い光学性能を実現することができる。なお、本願の効果をより確実にするために、条件式(1)の上限値を8.50とすることが好ましい。
 また本願の変倍光学系は、以下の条件式(2)を満足することが望ましい。
(2) 0.40 < f5/f4 < 4.20
 ただし、
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
 条件式(2)は、第4レンズ群と第5レンズ群の最適な焦点距離の比率を規定し、変倍に伴う収差変動を抑えるための条件式である。本願の変倍光学系は、条件式(2)を満足することにより、変倍に伴う歪曲収差の変動や非点収差の変動を抑え、高い光学性能を実現することができる。
 本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、第5レンズ群の焦点距離が第4レンズ群の焦点距離に対して小さくなり過ぎる。このため、変倍に伴う歪曲収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の下限値を0.52とすることが好ましい。また、本願の効果をより確実にするために、条件式(2)の下限値を0.66とすることがより好ましい。
 一方、本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、第4レンズ群の焦点距離が相対的に小さくなる。このため、第4レンズ群で発生する非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の上限値を2.80とすることが好ましい。また、本願の効果をより確実にするために、条件式(2)の上限値を1.60とすることがより好ましい。
 また本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.88 < (-f5)/f3 < 8.20
 ただし、
f3:前記第3レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
 条件式(3)は、第3レンズ群と第5レンズ群の最適な焦点距離の比率を規定し、変倍に伴う収差変動を抑えるための条件式である。本願の変倍光学系は、条件式(3)を満足することにより、変倍に伴う歪曲収差、非点収差、球面収差、及びコマ収差のそれぞれの変動を抑え、高い光学性能を実現することができる。
 本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、第5レンズ群の焦点距離が第3レンズ群の焦点距離に対して小さくなり過ぎる。このため、変倍に伴う歪曲収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の下限値を1.20とすることが好ましい。また、本願の効果をより確実にするために、条件式(3)の下限値を1.46とすることがより好ましい。
 一方、本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、第3レンズ群の焦点距離が相対的に小さくなる。このため、第3レンズ群で発生する球面収差の変動やコマ収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の上限値を7.50とすることが好ましい。また、本願の効果をより確実にするために、条件式(3)の上限値を5.80とすることがより好ましい。
 また本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.066 < R5/f5 < 0.600
 ただし、
f5:前記第5レンズ群の焦点距離
R5:前記第5レンズ群中の物体側に凹形状で曲率半径の絶対値の最も小さいレンズ面の曲率半径
 条件式(4)は、本願の変倍光学系における収差変動を抑えるための条件式である。なお、条件式(4)中のR5は、物体側に凹形状のレンズ面の曲率半径の符号を負としている。本願の変倍光学系は、条件式(4)を満足することにより、変倍に伴う非点収差の変動とコマ収差の変動を抑え、高い光学性能を実現することができる。
 本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、変倍に伴う非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(4)の下限値を0.087とすることが好ましい。また、本願の効果をより確実にするために、条件式(4)の下限値を0.098とすることがより好ましい。
 一方、本願の変倍光学系の条件式(4)の対応値が上限値を上回ると、第3レンズ群から第4レンズ群で発生するコマ収差の変動や非点収差の変動を第5レンズ群で抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(4)の上限値を0.490とすることが好ましい。また、本願の効果をより確実にするために、条件式(4)の上限値を0.350とすることがより好ましい。
 また本願の変倍光学系は、前記第5レンズ群が接合レンズを有し、前記第5レンズ群中の物体側に凹形状で曲率半径の絶対値の最も小さい前記レンズ面は、前記接合レンズの接合面であることが望ましい。この構成により、本願の変倍光学系は前記レンズ面の製造誤差により発生する偏芯コマ収差を抑え、高い光学性能を実現することができる。
 また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第4レンズ群との間隔が、広角端状態から中間焦点距離状態まで増加し、中間焦点距離状態から望遠端状態まで減少することが望ましい。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、第3レンズ群から第4レンズ群で発生する非点収差の変動を抑えることができ、高い光学性能を実現することができる。
 また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第4レンズ群と前記第5レンズ群との間隔が、広角端状態から中間焦点距離状態まで減少し、中間焦点距離状態から望遠端状態まで増加することが望ましい。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、第4レンズ群から第5レンズ群で発生する非点収差の変動を抑えることができ、高い光学性能を実現することができる。
 また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第5レンズ群が一体で移動することが望ましい。この構成により、本願の変倍光学系は第3レンズ群と第5レンズ群を構造的に単純化することができ、相互偏芯を抑えることができる。このため、製造誤差により発生する偏芯コマ収差や非点収差を抑え、高い光学性能を実現することができる。
 また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加し、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、本願の変倍光学系は各レンズ群で発生する球面収差や非点収差を抑え、広角端状態から望遠端状態への変倍時の球面収差の変動や非点収差の変動を抑えることができる。
 また本願の変倍光学系は、前記第5レンズ群が非球面を有することが望ましい。この構成により、本願の変倍光学系は第5レンズ群で発生するコマ収差や非点収差を抑えることができ、高い光学性能を実現することができる。
 また本願の変倍光学系は、前記非球面が前記第5レンズ群中の最も物体側のレンズ面に設けられていることが望ましい。この構成により、本願の変倍光学系は第5レンズ群で発生するコマ収差や非点収差を効率的に抑えることができ、高い光学性能を実現することができる。
 また本願の変倍光学系は、前記第3レンズ群の中又は近傍に開口絞りを有することが望ましい。この構成により、本願の変倍光学系は広角端状態から望遠端状態への変倍時の軸外収差、特に非点収差の変動を抑えることができる。
 また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記開口絞りが前記第3レンズ群と一体で移動することが望ましい。この構成により、本願の変倍光学系は広角端状態から望遠端状態への変倍時の軸外収差、特に非点収差の変動を抑えることができる。
 本願の光学装置は、上述した構成の変倍光学系を有することを特徴とする。これにより、高変倍で、高い光学性能を備えた小型の光学装置を実現することができる。
 本願の変倍光学系の製造方法は、変倍光学系の製造方法において、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔がそれぞれ変化するようにすることを特徴とする。これにより、高変倍で、高い光学性能を備えた小型の変倍光学系を製造することができる。
 以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
 図1は、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、及び望遠端状態における断面図である。なお、図1において、Wは広角端状態、M1は第1中間焦点距離状態、M2は第2中間焦点距離状態、Tは望遠端状態をそれぞれ示しており、後述する各実施例の断面図においても同様である。
 本実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。
 第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成されている。なお、負メニスカスレンズL21は、像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 第3レンズ群G3は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズと、物体側に凸面を向けた正メニスカスレンズL33と、両凸形状の正レンズL34と物体側に凹面を向けた負メニスカスレンズL35との接合レンズとから構成されている。なお、第3レンズ群G3の物体側の近傍には開口絞りSが備えられている。
 第4レンズ群G4は、光軸に沿って物体側から順に、両凹形状の負レンズL41と両凸形状の正レンズL42との接合レンズのみで構成されている。なお、第4レンズ群G4中の最も物体側に位置する負レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 第5レンズ群G5は、光軸に沿って物体側から順に、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズのみで構成されている。なお、第5レンズ群G5中の物体側に凹形状で曲率半径の絶対値の最も小さいレンズ面は、正レンズL51と負メニスカスレンズL52との接合面である。また、第5レンズ群G5中の最も物体側に位置する正レンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 以上の構成の下、本実施例に係る変倍光学系では、広角端状態Wから望遠端状態Tへの変倍時に、第1レンズ群G1は物体側へ単調に移動し、第2レンズ群G2は広角端状態Wから第1中間焦点距離状態M1まで像側へ移動し第1中間焦点距離状態M1から望遠端状態Tまで物体側へ移動し、第3レンズ群G3、第4レンズ群G4、及び第5レンズ群G5は物体側へ単調に移動する。なお、この時、開口絞りS、第3レンズ群G3、及び第5レンズ群G5は一体で移動する。これにより、広角端状態Wから望遠端状態Tへの変倍時に、第1レンズ群G1と第2レンズ群G2との間隔が増加し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が広角端状態Wから第1中間焦点距離状態M1まで増加し第1中間焦点距離状態M1から望遠端状態Tまで減少し、第4レンズ群G4と第5レンズ群G5との間隔が広角端状態Wから第1中間焦点距離状態M1まで減少し第1中間焦点距離状態M1から望遠端状態Tまで増加する。
 以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
 表1において、fは焦点距離、Bfはバックフォーカスを示す。
 [面データ]において、mは物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、Iは像面をそれぞれ示している。なお、曲率半径rの欄の∞は平面を示しており、屈折率ndの欄において空気の屈折率1.000000は記載を省略している。また、非球面には面番号に*を付して曲率半径rの欄には近軸曲率半径を示している。
 [非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1-κ(h/r)1/2
  +A4h+A6h+A8h+A10h10
 ここで、hを光軸に垂直な方向の高さ、xを非球面の頂点の接平面から当該非球面までの高さhにおける光軸方向に沿った距離であるサグ量、κを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径である近軸曲率半径とする。なお、「E-n」(n:整数)は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。
 [各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長、即ち無限遠物体合焦時の第1レンズ群G1の最も物体側のレンズ面から像面Iまでの距離、di(i:整数)は第i面の可変の面間隔、φは開口絞り径をそれぞれ示す。なお、Wは広角端状態、M1は第1中間焦点距離状態、M2は第2中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
 [レンズ群データ]において、STは各レンズ群の始面、即ち最も物体側のレンズ面を示す。
 [条件式対応値]には、各条件式の対応値を示す。
 ここで、表1に掲載されている焦点距離fや曲率半径r、及びその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
(表1)第1実施例
[面データ]
  m            r        d       nd     νd
 OP           ∞
   1         101.7859   1.4000   1.950000   29.37
   2          32.5483   6.8500   1.497820   82.52
   3         507.0890   0.1000
   4          37.3347   4.8500   1.882997   40.76
   5         300.9596    d5
 
   6          78.3556   1.0000   1.806100   40.74
 *7           8.1498   6.1500
   8         -15.0638   1.0000   1.882997   40.76
   9        -111.9446   0.1500
  10          40.1532   3.6000   1.808090   22.79
  11         -17.3545   0.6000
  12         -13.7038   1.0000   1.902650   35.70
  13         -22.0248    d13
 
  14            ∞      1.5000                      開口絞りS
  15          29.5784   1.0000   2.000690   25.45
  16          18.6363   2.8000   1.516800   64.10
  17         -55.7763   2.0000
  18          24.2391   2.1500   1.516800   64.10
  19         858.3278   0.1000
  20          17.6507   4.1000   1.497820   82.52
  21         -15.2742   1.9000   1.950000   29.37
  22         -23.3096    d22
 
*23         -14.7112   1.3500   1.806100   40.74
  24          31.5094   2.3000   1.808090   22.79
  25         -28.7594    d25
 
*26          32.3594   5.3000   1.516120   63.84
  27          -5.7380   1.9000   1.902650   35.70
  28         -44.3875    Bf
  I            ∞
 
[非球面データ]
第7面
κ     0.8091
A4    -2.81470E-05
A6    -5.35060E-07
A8     1.15520E-08
A10   -2.20190E-10
 
第23面
κ    -4.9782
A4    -5.87340E-05
A6     1.19560E-06
A8    -1.77790E-08
A10    9.84750E-11
 
第26面
κ    20.0000
A4    -8.22840E-05
A6     4.90020E-06
A8    -8.03990E-08
A10    6.79360E-09
 
[各種データ]
変倍比      9.42
 
             W         T
f         10.30  ~  97.00
FNO      4.11  ~   5.87
ω         39.54  ~   4.59°
Y          7.97  ~   7.97
TL      100.65  ~ 133.98
 
             W        M1       M2        T
f        10.30000   35.00000   60.00000   97.00000
ω        39.58845   12.47589    7.34848    4.58728
FNO     4.10582    5.89080    5.89975    5.86696
φ         8.80       8.80       9.20      11.60
d5         1.80000   19.37763   32.00000   35.69237
d13       26.66538    7.08688    5.31318    2.20000
d22        2.21304    4.15113    3.20959    2.20000
d25        3.82473    1.88667    2.82824    3.83771
Bf      13.04939   24.70184   26.64686   36.95330
 
[レンズ群データ]
       ST         f
G1       1        63.72998
G2       6       -11.45481
G3      15        14.77721
G4      23       -42.51000
G5      26       -36.37957
 
[条件式対応値]
(1) (-f5)/fw = -3.532
(2) f5/f4 = 0.856
(3) (-f5)/f3 = 2.462
(4) R5/f5 = 0.158
 
 図2A、及び図2Bはそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、及び第1中間焦点距離状態における無限遠物体合焦時の諸収差図である。
 図3A、及び図3Bはそれぞれ、本願の第1実施例に係る変倍光学系の第2中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 各収差図において、FNOはFナンバー、Aは光線入射角(単位は「度」)をそれぞれ示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)における収差をそれぞれ示す。なお、d、gの記載のない歪曲収差図についてはd線における収差を示している。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
 各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し高い光学性能を有していることがわかる。
(第2実施例)
 図4は、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、及び望遠端状態における断面図である。
 本実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。
 第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成されている。なお、負メニスカスレンズL21は、像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 第3レンズ群G3は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズと、物体側に凸面を向けた正メニスカスレンズL33と、両凸形状の正レンズL34と物体側に凹面を向けた負メニスカスレンズL35との接合レンズとから構成されている。なお、第3レンズ群G3の物体側の近傍には開口絞りSが備えられている。
 第4レンズ群G4は、光軸に沿って物体側から順に、両凹形状の負レンズL41と両凸形状の正レンズL42との接合レンズのみで構成されている。なお、第4レンズ群G4中の最も物体側に位置する負レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凸面を向けた正メニスカスレンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズとから構成されている。なお、第5レンズ群G5中の物体側に凹形状で曲率半径の絶対値の最も小さいレンズ面は、正レンズL52と負メニスカスレンズL53との接合面である。また、第5レンズ群G5中の最も物体側に位置する正メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 以上の構成の下、本実施例に係る変倍光学系では、広角端状態Wから望遠端状態Tへの変倍時に、第1レンズ群G1は物体側へ単調に移動し、第2レンズ群G2は広角端状態Wから第2中間焦点距離状態M2まで像側へ移動し第2中間焦点距離状態M2から望遠端状態Tまで物体側へ移動し、第3レンズ群G3、第4レンズ群G4、及び第5レンズ群G5は物体側へ単調に移動する。なお、この時、開口絞りS、第3レンズ群G3、及び第5レンズ群G5は一体で移動する。これにより、広角端状態Wから望遠端状態Tへの変倍時に、第1レンズ群G1と第2レンズ群G2との間隔が増加し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が広角端状態Wから第2中間焦点距離状態M2まで増加し第2中間焦点距離状態M2から望遠端状態Tまで減少し、第4レンズ群G4と第5レンズ群G5との間隔が広角端状態Wから第2中間焦点距離状態M2まで減少し第2中間焦点距離状態M2から望遠端状態Tまで増加する。
 以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表2)第2実施例
[面データ]
  m            r        d       nd     νd
 OP           ∞
   1         149.4765   1.4000   1.950000   29.37
   2          38.6411   6.6000   1.497820   82.57
   3        -351.6316   0.1000
   4          41.7750   4.6000   1.883000   40.66
   5         328.2384    d5
 
   6          72.4891   1.0000   1.806100   40.97
 *7           7.7391   5.8500
   8         -13.9505   1.0000   1.883000   40.66
   9        -103.9877   0.1000
  10          40.8028   3.4000   1.808090   22.74
  11         -18.8169   0.6000
  12         -13.4665   1.0000   1.883000   40.66
  13         -18.2363    d13
 
  14            ∞      1.4000                      開口絞りS
  15          28.0065   1.5000   2.000690   25.46
  16          17.4484   2.9000   1.497820   82.57
  17         -29.2004   2.0000 
  18          28.1447   1.6000   1.795040   28.69
  19          53.0274   0.1000 
  20          27.5255   4.2000   1.497820   82.57
  21         -13.9702   2.1800   2.000690   25.46
  22         -20.5898    d22
 
*23         -13.2794   1.0000   1.806100   40.97
  24          24.2300   3.5000   1.728250   28.38
  25         -18.1038    d25
 
*26          47.8180   1.6500   1.583130   59.42
  27         100.8528   0.2000 
  28          38.0626   3.8000   1.516800   63.88
  29          -8.1478   1.0000   1.954000   33.46
  30         -52.2418    Bf
  I            ∞
 
[非球面データ]
第7面
κ     0.9456
A4    -7.24873E-05
A6    -1.38772E-06
A8     3.49795E-08
A10   -9.90184E-10
 
第23面
κ    -5.0310
A4    -2.13400E-04
A6     3.25281E-06
A8    -4.07563E-08
A10    2.36604E-10
 
第26面
κ   -15.0179
A4     1.31767E-05
A6     1.09725E-06
A8    -1.09512E-08
A10    4.81750E-10
 
[各種データ]
変倍比      9.42
 
             W         T
f         10.30  ~  97.00
FNO      4.13  ~   5.79
ω         39.34  ~   4.54°
Y          7.97  ~   7.97
TL      104.60  ~ 137.98
 
             W        M1       M2        T
f        10.30000   20.00000   50.00000   97.00000
ω        39.34094   21.01370    8.74331    4.54414
FNO     4.12898    4.96138    5.51068    5.79408
φ         9.00       9.00       9.50       9.80
d5         2.00000   11.66890   30.95696   41.68937
d13       26.10451   13.02302    4.99096    2.00000
d22        2.34607    4.05509    5.18708    2.50149
d25        7.92894    6.21994    5.08793    7.77351
Bf      13.54976   19.90197   26.27832   31.33645
 
[レンズ群データ]
       ST         f
G1       1        66.37666
G2       6       -11.22172
G3      15        16.67848
G4      23       -58.03866
G5      26       -77.03015
 
[条件式対応値]
(1) (-f5)/fw = 7.479
(2) f5/f4 = 1.327
(3) (-f5)/f3 = 4.619
(4) R5/f5 = 0.106
 
 図5A、及び図5Bはそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、及び第1中間焦点距離状態における無限遠物体合焦時の諸収差図である。
 図6A、及び図6Bはそれぞれ、本願の第2実施例に係る変倍光学系の第2中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し高い光学性能を有していることがわかる。
(第3実施例)
 図7は、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、及び望遠端状態における断面図である。
 本実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。
 第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成されている。なお、負メニスカスレンズL21は、像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 第3レンズ群G3は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズと、物体側に凸面を向けた正メニスカスレンズL33と、両凸形状の正レンズL34と物体側に凹面を向けた負メニスカスレンズL35との接合レンズとから構成されている。なお、第3レンズ群G3中の正レンズL32と正メニスカスレンズL33との間には開口絞りSが備えられている。
 第4レンズ群G4は、光軸に沿って物体側から順に、両凹形状の負レンズL41と両凸形状の正レンズL42との接合レンズのみで構成されている。なお、第4レンズ群G4中の最も物体側に位置する負レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズとから構成されている。なお、第5レンズ群G5中の物体側に凹形状で曲率半径の絶対値の最も小さいレンズ面は、正レンズL52と負メニスカスレンズL53との接合面である。また、第5レンズ群G5中の最も物体側に位置する負メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
 第6レンズ群G6は、物体側に凸面を向けた正メニスカスレンズL61のみで構成されている。
 以上の構成の下、本実施例に係る変倍光学系では、広角端状態Wから望遠端状態Tへの変倍時に、第1レンズ群G1は物体側へ単調に移動し、第2レンズ群G2は広角端状態Wから第1中間焦点距離状態M1まで像側へ移動し第1中間焦点距離状態M1から望遠端状態Tまで物体側へ移動し、第3レンズ群G3、第4レンズ群G4、第5レンズ群G5、及び第6レンズ群G6は物体側へ単調に移動する。なお、この時、開口絞りS、第3レンズ群G3、及び第5レンズ群G5は一体で移動する。これにより、広角端状態Wから望遠端状態Tへの変倍時に、第1レンズ群G1と第2レンズ群G2との間隔が増加し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が広角端状態Wから第2中間焦点距離状態M2まで増加し第2中間焦点距離状態M2から望遠端状態Tまで減少し、第4レンズ群G4と第5レンズ群G5との間隔が広角端状態Wから第2中間焦点距離状態M2まで減少し第2中間焦点距離状態M2から望遠端状態Tまで増加し、第5レンズ群G5と第6レンズ群G6との間隔が増加する。
 以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表3)第3実施例
[面データ]
  m            r        d       nd     νd
 OP           ∞
   1         154.5301   1.4000   1.950000   29.37
   2          39.8607   7.2500   1.497820   82.57
   3        -283.4227   0.1000
   4          43.5964   4.8500   1.883000   40.66
   5         446.9311    d5
 
   6          96.1250   1.0000   1.806100   40.97
 *7           8.1961   6.1500
   8         -14.4871   1.0000   1.883000   40.66
   9         -97.9643   0.1000
  10          44.3150   3.6500   1.808090   22.74
  11         -17.2518   0.8000
  12         -14.4809   1.0000   1.883000   40.66
  13         -24.0963    d13
 
  14          30.1004   1.4000   1.950000   29.37
  15          18.1656   2.8500   1.497820   82.57
  16         -30.1820   1.0000
  17            ∞      1.0000                      開口絞りS
  18          21.4294   1.5000   1.806100   40.97
  19          61.8962   1.0500
  20          32.7220   2.5500   1.497820   82.57
  21         -17.3215   1.0000   2.000690   25.46
  22         -26.1872    d22
 
*23         -11.1837   1.0000   1.806100   40.73
  24          20.9851   3.4000   1.647690   33.72
  25         -11.9280    d25
 
*26          31.4353   1.0000   1.806100   40.73
  27          10.4731   1.0000
  28          10.6935   5.2000   1.575010   41.51
  29          -8.0000   1.0000   1.950000   29.37
  30         -43.9250    d30
 
  31          78.8127   1.4000   1.808090   22.74
  32         130.1997    Bf
  I            ∞
 
[非球面データ]
第7面
κ     1.0193
A4    -7.25972E-05
A6    -2.01927E-06
A8     5.23101E-08
A10   -1.09165E-09
 
第23面
κ    -3.3364
A4    -2.63114E-04
A6     2.76766E-06
A8    -3.39467E-08
A10    6.49727E-11
 
第26面
κ     1.5816
A4    -1.52827E-05
A6     7.21136E-07
A8    -2.56336E-09
A10    4.03092E-10
 
[各種データ]
変倍比      9.42
 
             W         T
f         10.30  ~  97.00
FNO      3.63  ~   5.80
ω         39.36  ~   4.56°
Y          7.97  ~   7.97
TL      104.89  ~ 139.98
 
             W        M1       M2        T
f        10.30000   20.00000   50.00000   97.00000
ω        39.35588   21.00824    8.74248    4.55748
FNO     3.63391    4.50179    5.47868    5.80104
φ        10.60      10.60      10.60      10.60
d5         2.00000   12.01131   29.94199   40.54244
d13       26.77743   14.69932    6.72364    3.40000
d22        2.66702    3.74847    4.51403    2.66188
d25        4.74793    3.66651    2.90094    4.75306
d30        1.50000    1.80000    2.40000    4.50000
Bf      13.54939   20.44615   27.99896   30.47600
 
[レンズ群データ]
       ST         f
G1       1        64.96294
G2       6       -10.79650
G3      14        15.45800
G4      23       -68.94014
G5      26       -50.62258
G6      31       244.13912
 
[条件式対応値]
(1) (-f5)/fw = 4.915
(2) f5/f4 = 0.734
(3) (-f5)/f3 = 3.275
(4) R5/f5 = 0.158
 
 図8A、及び図8Bはそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、及び第1中間焦点距離状態における無限遠物体合焦時の諸収差図である。
 図9A、及び図9Bはそれぞれ、本願の第3実施例に係る変倍光学系の第2中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
 各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し高い光学性能を有していることがわかる。
 上記各実施例によれば、高変倍で、高い光学性能を備えた小型の変倍光学系を実現することができる。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本願の変倍光学系の数値実施例として5群や6群構成のものを示したが、本願はこれに限られず、その他の群構成、例えば7群等の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された少なくとも1つのレンズを有する部分をいう。
 また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第4レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
 また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に垂直な成分を含むように移動させ、又は光軸を含む面内方向へ回転移動、即ち揺動させることで、手ブレ等によって生じる像ブレを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
 また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
 また、本願の変倍光学系において開口絞りは第2レンズ群と第3レンズ群との間、又は第3レンズ群中に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
 また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 また、本願の変倍光学系は、変倍比が3~20倍程度である。
 次に、本願の変倍光学系を備えたカメラを図10に基づいて説明する。
 図10は、本願の変倍光学系を備えたカメラの構成を示す図である。
 本カメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。
 本カメラ1において、被写体である不図示の物体からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
 ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、上述のように小型、高変倍で、高い光学性能を備えている。これにより本カメラ1は、小型化及び高変倍化を図りながら、高い光学性能を実現することができる。なお、上記第2、第3実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラー3を有しない構成のカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
 最後に、本願の変倍光学系の製造方法の概略を図11に基づいて説明する。
 図11に示す本願の変倍光学系の製造方法は、以下のステップS1、S2を含むものである。
 ステップS1:光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有するようにする。
 ステップS2:公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔がそれぞれ変化するようにする。
 斯かる本願のズームレンズの製造方法によれば、高変倍で、高い光学性能を備えた小型の変倍光学系を製造することができる。

Claims (16)

  1.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有し、
     広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔がそれぞれ変化することを特徴とする変倍光学系。
  2.  以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
    1.80 < (-f5)/fw
     ただし、
    f5:前記第5レンズ群の焦点距離
    fw:広角端状態における前記変倍光学系の焦点距離
  3.  以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
    0.40 < f5/f4 < 4.20
     ただし、
    f4:前記第4レンズ群の焦点距離
    f5:前記第5レンズ群の焦点距離
  4.  以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
    0.88 < (-f5)/f3 < 8.20
     ただし、
    f3:前記第3レンズ群の焦点距離
    f5:前記第5レンズ群の焦点距離
  5.  以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
    0.066 < R5/f5 < 0.600
     ただし、
    f5:前記第5レンズ群の焦点距離
    R5:前記第5レンズ群中の物体側に凹形状で曲率半径の絶対値の最も小さいレンズ面の曲率半径
  6.  以下の条件式を満足し、
    0.066 < R5/f5 < 0.600
     ただし、
    f5:前記第5レンズ群の焦点距離
    R5:前記第5レンズ群中の物体側に凹形状で曲率半径の絶対値の最も小さいレンズ面の曲率半径
     前記第5レンズ群が接合レンズを有し、
     前記第5レンズ群中の物体側に凹形状で曲率半径の絶対値の最も小さい前記レンズ面は、前記接合レンズの接合面であることを特徴とする請求項1に記載の変倍光学系。
  7.  広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第4レンズ群との間隔が、広角端状態から中間焦点距離状態まで増加し、中間焦点距離状態から望遠端状態まで減少することを特徴とする請求項1に記載の変倍光学系。
  8.  広角端状態から望遠端状態への変倍時に、前記第4レンズ群と前記第5レンズ群との間隔が、広角端状態から中間焦点距離状態まで減少し、中間焦点距離状態から望遠端状態まで増加することを特徴とする請求項1に記載の変倍光学系。
  9.  広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第5レンズ群が一体で移動することを特徴とする請求項1に記載の変倍光学系。
  10.  広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加し、前記第2レンズ群と前記第3レンズ群との間隔が減少することを特徴とする請求項1に記載の変倍光学系。
  11.  前記第5レンズ群が非球面を有することを特徴とする請求項1に記載の変倍光学系。
  12.  前記第5レンズ群が非球面を有し、
     前記非球面が前記第5レンズ群中の最も物体側のレンズ面に設けられていることを特徴とする請求項1に記載の変倍光学系。
  13.  前記第3レンズ群の中又は近傍に開口絞りを有することを特徴とする請求項1に記載の変倍光学系。
  14.  前記第3レンズ群の中又は近傍に開口絞りを有し、
     広角端状態から望遠端状態への変倍時に、前記開口絞りが前記第3レンズ群と一体で移動することを特徴とする請求項1に記載の変倍光学系。
  15.  請求項1に記載の変倍光学系を有することを特徴とする光学装置。
  16.  変倍光学系の製造方法において、
     光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを有するようにし、
     広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔がそれぞれ変化するようにすることを特徴とする変倍光学系の製造方法。
PCT/JP2013/055180 2012-02-29 2013-02-27 変倍光学系、光学装置、変倍光学系の製造方法 WO2013129490A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380011477.3A CN104136956B (zh) 2012-02-29 2013-02-27 变焦光学系统和光学装置
US14/469,685 US9684154B2 (en) 2012-02-29 2014-08-27 Zooming optical system, optical apparatus and method for manufacturing zooming optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-043840 2012-02-29
JP2012043840A JP5915261B2 (ja) 2012-02-29 2012-02-29 変倍光学系、光学装置、変倍光学系の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/469,685 Continuation US9684154B2 (en) 2012-02-29 2014-08-27 Zooming optical system, optical apparatus and method for manufacturing zooming optical system

Publications (1)

Publication Number Publication Date
WO2013129490A1 true WO2013129490A1 (ja) 2013-09-06

Family

ID=49082684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055180 WO2013129490A1 (ja) 2012-02-29 2013-02-27 変倍光学系、光学装置、変倍光学系の製造方法

Country Status (4)

Country Link
US (1) US9684154B2 (ja)
JP (1) JP5915261B2 (ja)
CN (3) CN108490592B (ja)
WO (1) WO2013129490A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398201B2 (en) 2013-09-27 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, interchangeable lens apparatus and camera system
WO2020105107A1 (ja) * 2018-11-20 2020-05-28 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6325772B2 (ja) * 2013-03-29 2018-05-16 キヤノン株式会社 撮影レンズ及びそれを有する撮像装置
JP6189637B2 (ja) * 2013-05-22 2017-08-30 株式会社タムロン ズームレンズ及び撮像装置
JP6173039B2 (ja) * 2013-05-22 2017-08-02 株式会社タムロン ズームレンズ及び撮像装置
JP6325285B2 (ja) * 2014-02-28 2018-05-16 株式会社タムロン インナーフォーカス式レンズ
JP6325284B2 (ja) * 2014-02-28 2018-05-16 株式会社タムロン インナーフォーカス式レンズ
CN106796339B (zh) 2014-08-29 2020-07-21 株式会社尼康 变倍光学系统及光学设备
US11099366B2 (en) * 2015-12-09 2021-08-24 Nikon Corporation Zoom lens, optical apparatus and method for manufacturing the zoom lens
US10295802B2 (en) * 2016-04-06 2019-05-21 Olympus Corporation Zoom optical system and image pickup apparatus using the same
JP6289533B2 (ja) * 2016-05-02 2018-03-07 株式会社タムロン ズームレンズ及びそれを備えた撮像装置
JP6682141B2 (ja) * 2016-08-30 2020-04-15 富士フイルム株式会社 ズームレンズ、投写型表示装置、および、撮像装置
JP6576381B2 (ja) * 2017-03-03 2019-09-18 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP6859219B2 (ja) * 2017-07-12 2021-04-14 株式会社タムロン ズームレンズ及び撮像装置
JP2019028258A (ja) * 2017-07-31 2019-02-21 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
CN111095071B (zh) * 2017-09-11 2022-05-10 株式会社尼康 变倍光学系统、光学装置以及变倍光学系统的制造方法
JP7088196B2 (ja) * 2017-09-11 2022-06-21 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法
CN110196484B (zh) * 2019-05-30 2020-06-23 浙江大华技术股份有限公司 一种镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205628A (ja) * 1987-02-20 1988-08-25 Canon Inc 高変倍比ズ−ムレンズ
JPH01252915A (ja) * 1988-03-31 1989-10-09 Minolta Camera Co Ltd コンパクトな高変倍率ズームレンズ系
JPH10186234A (ja) * 1996-12-25 1998-07-14 Canon Inc ズームレンズ
JP2006184430A (ja) * 2004-12-27 2006-07-13 Canon Inc ズームレンズ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896950A (en) 1987-02-20 1990-01-30 Canon Kabushiki Kaisha Zoom lens of high power varying ratio
US5086356A (en) 1988-01-01 1992-02-04 Minolta Camera Kabushiki Kaisha Compact zoom lens system
JP2870035B2 (ja) * 1989-08-28 1999-03-10 ミノルタ株式会社 広角域を含む高変倍率ズームレンズ系
US6061180A (en) * 1996-10-29 2000-05-09 Canon Kabushiki Kaisha Zoom lens
JP4789349B2 (ja) 2001-06-11 2011-10-12 キヤノン株式会社 ズームレンズ及びそれを有する光学機器
JP2004170697A (ja) * 2002-11-20 2004-06-17 Nikon Corp アフォーカルズームレンズ
JP4222165B2 (ja) * 2003-09-08 2009-02-12 ソニー株式会社 ズームレンズおよび撮像装置
JP4585776B2 (ja) * 2004-02-26 2010-11-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP4617111B2 (ja) * 2004-07-30 2011-01-19 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US7123421B1 (en) * 2005-04-22 2006-10-17 Panavision International, L.P. Compact high performance zoom lens system
JP4845502B2 (ja) * 2005-12-15 2011-12-28 キヤノン株式会社 光学系及びそれを有する光学機器
JP2009169082A (ja) * 2008-01-16 2009-07-30 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP4560745B2 (ja) * 2008-08-06 2010-10-13 ソニー株式会社 可変焦点距離レンズ系
JP5492658B2 (ja) * 2010-05-24 2014-05-14 株式会社タムロン 高変倍率ズームレンズ
JP5498260B2 (ja) * 2010-05-24 2014-05-21 株式会社タムロン ズームレンズユニット
JP5498259B2 (ja) * 2010-05-24 2014-05-21 株式会社タムロン 高変倍率ズームレンズ
JP5462111B2 (ja) * 2010-08-24 2014-04-02 パナソニック株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205628A (ja) * 1987-02-20 1988-08-25 Canon Inc 高変倍比ズ−ムレンズ
JPH01252915A (ja) * 1988-03-31 1989-10-09 Minolta Camera Co Ltd コンパクトな高変倍率ズームレンズ系
JPH10186234A (ja) * 1996-12-25 1998-07-14 Canon Inc ズームレンズ
JP2006184430A (ja) * 2004-12-27 2006-07-13 Canon Inc ズームレンズ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398201B2 (en) 2013-09-27 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, interchangeable lens apparatus and camera system
JP6064217B2 (ja) * 2013-09-27 2017-01-25 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JPWO2015045297A1 (ja) * 2013-09-27 2017-03-09 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
WO2020105107A1 (ja) * 2018-11-20 2020-05-28 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法
JPWO2020105107A1 (ja) * 2018-11-20 2021-09-27 株式会社ニコン 変倍光学系、光学機器、および変倍光学系の製造方法
JP7217869B2 (ja) 2018-11-20 2023-02-06 株式会社ニコン 変倍光学系、光学機器

Also Published As

Publication number Publication date
CN107621690B (zh) 2020-06-09
US9684154B2 (en) 2017-06-20
CN107621690A (zh) 2018-01-23
US20140362452A1 (en) 2014-12-11
JP2013182022A (ja) 2013-09-12
CN104136956B (zh) 2018-03-27
CN104136956A (zh) 2014-11-05
CN108490592A (zh) 2018-09-04
JP5915261B2 (ja) 2016-05-11
CN108490592B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
JP5915261B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP5581730B2 (ja) 変倍光学系、光学装置
JP5321608B2 (ja) 変倍光学系、光学装置
JP7259905B2 (ja) ズームレンズおよび光学機器
JP2008203471A (ja) ズームレンズ、光学機器、および結像方法
JP2010044226A (ja) ズームレンズ系、このズームレンズ系を備えた光学機器、及び、ズームレンズ系を用いた変倍方法
JP6182868B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6229259B2 (ja) 変倍光学系、光学装置
JP6127462B2 (ja) 変倍光学系、光学装置
WO2014112176A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2014077120A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP2015031951A (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP6102269B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6098176B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6060616B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6269714B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2015136988A1 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
WO2014069447A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2014069446A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2014065266A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6349801B2 (ja) ズームレンズ、光学装置
JP2014089288A (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6424414B2 (ja) 変倍光学系、光学装置
JP5500415B2 (ja) ズームレンズ、光学機器
WO2014069448A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754926

Country of ref document: EP

Kind code of ref document: A1