WO2013129192A1 - ろう付方法 - Google Patents

ろう付方法 Download PDF

Info

Publication number
WO2013129192A1
WO2013129192A1 PCT/JP2013/054048 JP2013054048W WO2013129192A1 WO 2013129192 A1 WO2013129192 A1 WO 2013129192A1 JP 2013054048 W JP2013054048 W JP 2013054048W WO 2013129192 A1 WO2013129192 A1 WO 2013129192A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
base material
foil
metal layer
metal
Prior art date
Application number
PCT/JP2013/054048
Other languages
English (en)
French (fr)
Inventor
紘介 西川
哲也 森藤
杏三 水野
延樹 根来
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/381,287 priority Critical patent/US9427817B2/en
Publication of WO2013129192A1 publication Critical patent/WO2013129192A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/34Casings; Combustion chambers; Liners thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • F02K9/64Combustion or thrust chambers having cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing

Definitions

  • the present invention relates to a brazing method and a method for manufacturing a rocket engine combustion chamber.
  • a method for manufacturing a rocket engine combustion chamber disclosed in Patent Document 1 will be described. Brazing is used in the method of manufacturing the rocket engine combustion chamber.
  • the manufacturing method of a rocket engine combustion chamber includes the following steps.
  • a cooling fluid liner is formed.
  • the cooling fluid liner is made of a copper alloy.
  • a plurality of cooling fluid channels are formed on the outer surface of the cooling fluid liner.
  • Form at least two throat supports. Form a structural jacket with a manifold.
  • the throat support and structural jacket are made of stainless steel. Plating the cooling fluid liner with gold. Plate the throat support and structural jacket with nickel.
  • a throat support is assembled around the outer surface of the cooling fluid liner and the throat support and cooling fluid liner are inserted into the structural jacket to form a combustion chamber assembly.
  • a brazing alloy foil is inserted between the cooling fluid liner, the throat support, and the structural jacket.
  • a sealing joint (not shown) is formed between the cooling fluid liner and the structural jacket to seal the cooling fluid flow path.
  • Insert the combustion chamber assembly into a pressure furnace (not shown). The pressure furnace is pressurized to bring the cooling fluid liner, throat support, and structural jacket into contact with each other. The combustion chamber assembly is heated while the pressure furnace is pressurized to join the cooling fluid liner, throat support, and structural jacket. The manifold of the structural jacket and the cooling fluid flow path are connected.
  • Patent Document 2 discloses a method for manufacturing a rocket engine combustion chamber. In this method, brazing (HIP brazing) by hot isostatic pressing is performed.
  • the present invention may provide a brazing method and a rocket engine combustion chamber manufacturing method in which the cost for providing a diffusion barrier layer between the base material and the foil brazing material is reduced.
  • the brazing method includes a first base material having a first unplated surface, a metal layer functioning as a diffusion barrier layer, a foil brazing material, and a second base material having a second surface. Disposing the first base material, the metal layer, the foil brazing material, and the second base material so that the first surface and the second surface face each other, and Brazing the first base material and the second base material with the foil brazing material.
  • a laminate is disposed between the first base material and the second base material.
  • the laminated body includes the foil brazing material and the metal layer bonded to the foil brazing material.
  • the plurality of stacked bodies are the first surface and the second body. Arranged along the surface.
  • the size of the laminated body can be reduced. Therefore, it is easy to manufacture the laminate.
  • the brazing method further includes the step of manufacturing the laminate by forming the metal layer on the surface of the foil brazing material by electroplating.
  • the brazing method further includes the step of manufacturing the laminate by forming the metal layer on the surface of the foil brazing material by sputtering.
  • the brazing method further includes the step of manufacturing the laminated body by press-bonding the metal foil to be the metal layer and the foil brazing material.
  • the metal layer is a metal foil.
  • the metal layer is a metal foil, plating work, sputtering work, and crimping work on the foil brazing material are unnecessary.
  • the second surface is not plated.
  • another metal foil functioning as another diffusion barrier layer is used as the foil brazing material and the second base material. Place between materials.
  • the other metal foil is different in composition from the metal foil.
  • Disposing metal foils having different components on both sides of the brazing filler metal is easier than forming metal layers having different components on both sides of the foil brazing material by plating or the like.
  • a method for manufacturing a rocket engine combustion chamber includes a first base material having a first unplated surface, a metal layer functioning as a diffusion barrier layer, a foil brazing material, and a second surface.
  • the first base material, the metal layer, the foil brazing material, and the second base material are arranged so that the second base material is arranged in order and the first surface and the second surface face each other. And brazing the first base material and the second base material with the foil brazing material.
  • a groove to be a flow path through which the cooling fluid flows is formed on the first surface.
  • a brazing method and a rocket engine combustion chamber manufacturing method in which the cost for providing a diffusion barrier layer between a base material and a foil brazing material is reduced.
  • FIG. 1 is a cross-sectional view of a joint by a brazing method according to a comparative example of the present invention.
  • FIG. 2 is a cross-sectional view of another joint by a brazing method according to a comparative example of the present invention.
  • FIG. 3 is a cross-sectional view of a joint portion obtained by the brazing method according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of another joint by the brazing method according to the first embodiment.
  • FIG. 5 is a schematic view showing a method for manufacturing a laminate used in the brazing method according to the first embodiment.
  • FIG. 6 is a schematic view showing another method of manufacturing the laminate used in the brazing method according to the first embodiment.
  • FIG. 7 is a schematic view showing still another method for manufacturing a laminate used in the brazing method according to the first embodiment.
  • FIG. 8 is a cross-sectional view of a joint portion obtained by a brazing method according to a first modification of the first embodiment.
  • FIG. 9 is a cross-sectional view of a joint portion obtained by a brazing method according to a second modification of the first embodiment.
  • FIG. 10 is a cross-sectional view of a joint portion obtained by the brazing method according to the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a joint portion obtained by a brazing method according to a first modification of the second embodiment.
  • FIG. 12A is an assembly view of a rocket engine combustion chamber according to the first and second embodiments.
  • FIG. 12B is a cross-sectional view of the rocket engine combustion chamber according to the first and second embodiments.
  • FIG. 13A shows a cross-sectional photograph of a joint according to a comparative example.
  • FIG. 13B shows a cross-sectional photograph of the joint according to the first embodiment.
  • FIG. 14 shows the results of a tensile test of the joint according to the comparative example and the joint according to the first embodiment.
  • FIG. 1 shows a state before brazing of a joint portion (brazing portion) by a brazing method according to a comparative example of the present invention.
  • a foil brazing material 231 is disposed between the base materials 10 and 15 to be brazed.
  • the surface 11 of the base material 10 and the surface 16 of the base material 15 face each other.
  • the shape of the base material 10 and the shape of the base material 15 are arbitrary.
  • the surface 11 and the surface 16 may be flat or curved.
  • a metal layer 232 as a plating layer is formed on the surface 11.
  • the base material 10 is made of magnesium alloy, aluminum alloy, titanium alloy, iron alloy, cobalt alloy, nickel alloy, copper alloy, pure magnesium, pure aluminum, pure titanium, pure iron, pure cobalt, pure nickel, or pure copper.
  • the foil brazing material 231 is made of a cobalt brazing material, a nickel brazing material, a copper brazing material, a palladium brazing material, a silver brazing material, or a gold brazing material.
  • the metal layer 232 is formed of nickel, copper, gold, an alloy containing nickel as a main component, an alloy containing copper as a main component, or an alloy containing gold as a main component.
  • the material of the base material 15 is different from the material of the base material 10.
  • the thickness of the foil brazing material 231 is 10 to 200 ⁇ m, and the thickness of the metal layer 232 is 5 to 20 ⁇ m.
  • the base material 10 and the base material are obtained.
  • 15 is brazed using a foil brazing material 231.
  • the components of the base material 10, the metal layer 232, and the foil brazing material 231 are diffused so that the boundary between the base material 10 and the metal layer 232 becomes unclear, and the metal layer 232 and the foil brazing material The boundary of 231 becomes unclear.
  • the components of the foil brazing material 231 and the base material 15 are diffused, so that the boundary between the foil brazing material 231 and the base material 15 becomes unclear. If the reaction temperature between the components of the brazing filler metal 231 and the base material 10 is low or the diffusion of the constituents of the foil brazing material 231 in the base material 10 is fast, the base material 10 and the brazing brazing during brazing are performed. If the reaction of the material 231 is not suppressed to some extent, there is a possibility that a defect or an embrittlement layer leading to a decrease in the mechanical strength of the joint portion may occur.
  • the metal layer 232 functions as a diffusion barrier layer that suppresses the reaction between the base material 10 and the foil brazing material 231 to some extent during brazing. That is, the material of the metal layer 232 is selected according to the material of the base material 10 and the material of the foil brazing material 231.
  • FIG. 2 shows a state before brazing of another joint portion (brazing portion) by the brazing method according to the comparative example.
  • a foil brazing material 231 is disposed between the base materials 20 and 25 to be brazed.
  • the surface 21 of the base material 20 and the surface 26 of the base material 25 face each other.
  • the shape of the base material 20 and the shape of the base material 25 are arbitrary.
  • the surface 21 and the surface 26 may be flat or curved.
  • a plurality of grooves 22 are formed on the surface 21.
  • a metal layer 232 as a plating layer is formed on a portion other than the plurality of groove portions 22 on the surface 21.
  • the base material 20 is made of magnesium alloy, aluminum alloy, titanium alloy, iron alloy, cobalt alloy, nickel alloy, copper alloy, pure magnesium, pure aluminum, pure titanium, pure iron, pure cobalt, pure nickel, or pure copper.
  • the foil brazing material 231 is formed of a cobalt brazing material, a nickel brazing material, a copper brazing material, a palladium brazing material, a silver brazing material, or a gold brazing material.
  • the metal layer 232 is formed of nickel, copper, gold, an alloy containing nickel as a main component, an alloy containing copper as a main component, or an alloy containing gold as a main component.
  • the material of the base material 25 is different from the material of the base material 20.
  • the base material 20 and the base material are heated. 25 is brazed with a foil brazing material 231.
  • the components of the base material 20, the metal layer 232, and the foil brazing material 231 diffuse to make the boundary between the base material 20 and the metal layer 232 unclear, and the metal layer 232 and the foil brazing material.
  • the boundary of 231 becomes unclear.
  • the components of the foil brazing material 231 and the base material 25 are diffused, so that the boundary between the foil brazing material 231 and the base material 25 becomes unclear.
  • the base material 20 and the brazing brazing at the time of brazing If the reaction of the material 231 is not suppressed to some extent, there is a possibility that a defect or an embrittlement layer leading to a decrease in the mechanical strength of the joint portion may occur.
  • the metal layer 232 functions as a diffusion barrier layer that suppresses the reaction between the base material 20 and the foil brazing material 231 to some extent during brazing. That is, the material of the metal layer 232 is selected according to the material of the base material 20 and the material of the foil brazing material 231.
  • the problem of the brazing method according to the comparative example will be explained.
  • the surfaces 11 and 21 are curved surfaces such as cylindrical surfaces, or when the areas of the surfaces 11 and 21 are large, it is difficult to control the film thickness when forming the metal layer 232 by plating.
  • the sizes of the base materials 10 and 20 are large, a large plating bath and a large amount of bath liquid are required, and the equipment cost and the running cost of plating are high.
  • the metal layer 232 is formed on the base material 20 by electroplating without masking the groove portion 22, a lump of plating material may be formed at the corner portion of the groove portion 22.
  • a lump of plating material at least partially blocks the flow path.
  • a step of filling the groove 22 with a masking material before forming the metal layer 232 on the surface 21 of the base material 20 by plating, and a masking material after the formation of the metal layer 232 are performed. The process of removing is required.
  • FIG. 3 shows a state before brazing of a joint portion (brazing portion) by the brazing method according to the first embodiment of the present invention.
  • the brazing method according to the first embodiment for the first base material sample will be described.
  • the laminated body 30 is arrange
  • the laminated body 30 includes a foil brazing material 31 and a metal layer 32 bonded to the foil brazing material 31.
  • the base material 10, the metal layer 32, the foil brazing material 31, and the base material 15 are arranged in this order, and the surface 11 of the base material 10 and the surface 16 of the base material 15 face each other.
  • the surface 11 is not plated.
  • the foil brazing material 31 is formed of a cobalt brazing material, a nickel brazing material, a copper brazing material, a palladium brazing material, a silver brazing material, or a gold brazing material.
  • the metal layer 32 is formed of nickel, copper, gold, an alloy containing nickel as a main component, an alloy containing copper as a main component, or an alloy containing gold as a main component.
  • the thickness of the brazing filler metal 31 is 10 to 200 ⁇ m, and the thickness of the metal layer 32 is 5 to 20 ⁇ m. For example, the thickness of the brazing filler metal 31 is 50 ⁇ m, and the thickness of the metal layer 32 is 10 ⁇ m.
  • the base material 10 and the base material 15 are heated. Braze with 31.
  • HIP brazing may be applied and other brazing may be applied.
  • the base material 10 component, the metal layer 32 component, and the foil brazing material 31 component diffuse to make the boundary between the base material 10 and the metal layer 32 unclear.
  • the boundary of 31 becomes unclear.
  • the components of the foil brazing material 31 and the base material 15 are diffused, so that the boundary between the foil brazing material 31 and the base material 15 becomes unclear.
  • the base material 10 and the brazing braze at the time of brazing If the reaction of the material 31 is not suppressed to some extent, there is a possibility that a defect or an embrittlement layer that leads to a decrease in the mechanical strength of the joint portion occurs.
  • the metal layer 32 functions as a diffusion barrier layer that suppresses the reaction between the base material 10 and the foil brazing material 31 during brazing to some extent. That is, the material of the metal layer 32 is selected according to the material of the base material 10 and the material of the foil brazing material 31.
  • FIG. 4 illustrates a brazing method according to the first embodiment for the second base material sample.
  • the laminated body 30 is arrange
  • the base material 20, the metal layer 32, the brazing filler metal 31, and the base material 25 are arranged in this order, and the surface 21 of the base material 20 and the surface 26 of the base material 25 face each other.
  • the surface 21 is not plated.
  • a groove 22 is formed on the surface of the base material 20 facing the base material 25 by cutting or cutting.
  • the groove 22 may be formed in a comb shape.
  • the base material 20 and the base material 25 are heated. Braze with 31.
  • HIP brazing may be applied and other brazing may be applied.
  • the components of the base material 20, the metal layer 32, and the foil brazing material 31 are diffused, so that the boundary between the base material 20 and the metal layer 32 becomes unclear.
  • the boundary of 31 becomes unclear.
  • the components of the foil brazing material 31 and the base material 25 diffuse, so that the boundary between the foil brazing material 31 and the base material 25 becomes unclear.
  • the base material 20 and the brazing brazing at the time of brazing If the reaction of the material 31 is not suppressed to some extent, there is a possibility that a defect or an embrittlement layer that leads to a decrease in the mechanical strength of the joint portion occurs.
  • the metal layer 32 functions as a diffusion barrier layer that suppresses the reaction between the base material 20 and the foil brazing material 31 to some extent during brazing. That is, the material of the metal layer 32 is selected according to the material of the base material 20 and the material of the foil brazing material 31.
  • the manufacturing method of the laminated body 30 is demonstrated.
  • the metal layer 32 is formed by electroplating.
  • the brazing filler metal 31 includes a surface 31a and a surface 31b opposite to the surface 31a.
  • the surface 31 b is covered with a plating inhibitor 45.
  • a DC power source 43 is connected to the brazing filler metal 31 and the electrode 44 immersed in the bath solution 42 in the plating bath 41 to form the metal layer 32 on the surface 31a.
  • the plating bath 41 may be smaller and the amount of the bath solution 42 may be smaller.
  • the metal layer 32 is formed by sputtering. While the sputtering apparatus 46 is moved along the surface 31 a of the foil brazing material 31, particles from the sputtering apparatus 46 are attached to the surface 31 a of the foil brazing material 31 to form the metal layer 32.
  • the laminated body 30 is manufactured by pressure-bonding the metal foil to be the metal layer 32 and the foil brazing material 31 using rollers 47 and 48.
  • the metal foil is pressure-bonded to the surface 31 a of the foil brazing material 31.
  • the manufacturing method of the laminated body 30 is not limited to the said example.
  • the brazing method according to the present embodiment can be performed without depending on the shape and size of the base materials 10 and 20.
  • a metal layer functioning as a diffusion barrier layer is not formed on the base materials 10 and 20 by plating, so that a large plating bath for plating the base materials 10 and 20 is not necessary. Therefore, the cost (equipment cost and running cost) for providing the diffusion barrier layer is reduced. In particular, when a gold diffusion barrier layer is provided, the cost reduction effect is great.
  • the metal layer functioning as a diffusion barrier layer is not formed on the base material 20 by plating, the step of filling the masking material into the groove portion 22 formed on the surface 21 of the base material 20 and the step of removing the masking material are unnecessary. is there. Since the metal layer 32 is formed on the foil brazing material 31, it is easy to control the film thickness of the metal layer 32, and various methods such as electroplating, sputtering, and pressure bonding can be applied to the formation of the metal layer 32.
  • FIG. 8 shows a state before the joining portion (brazing portion) of the first base material sample is brazed by the brazing method according to the first modification of the first embodiment.
  • a brazing method according to a first modification of the first embodiment will be described.
  • the laminated body 35 includes a foil brazing material 31, a metal layer 32 bonded to the surface 31 a of the foil brazing material 31, and a metal layer 33 bonded to the surface 31 b of the foil brazing material 31.
  • the base material 10 is made of magnesium alloy, aluminum alloy, titanium alloy, iron alloy, cobalt alloy, nickel alloy, copper alloy, pure magnesium, pure aluminum, pure titanium, pure iron, pure cobalt, pure nickel, or pure copper.
  • the metal layer 33 is formed of nickel, copper, gold, an alloy containing nickel as a main component, an alloy containing copper as a main component, or an alloy containing gold as a main component. The thickness of the metal layer 33 is 5 to 20 ⁇ m.
  • the thickness of the metal layer 33 is 10 ⁇ m.
  • the reaction temperature of the component of the brazing filler metal 31 and the component of the base material 15 is low, or the diffusion of the component of the foil brazing material 31 in the base material 15 is fast.
  • the base material 10 and the base material 15 are heated in a state where the surface 11 of the base material 10 and the metal layer 32 are in contact with each other, and the metal layer 33 and the surface 16 of the base material 15 are in contact with each other.
  • HIP brazing may be applied and other brazing may be applied.
  • the base material 10 component, the metal layer 32 component, and the foil brazing material 31 component diffuse to make the boundary between the base material 10 and the metal layer 32 unclear.
  • the boundary of 31 becomes unclear.
  • the components of the foil brazing material 31, the metal layer 33, and the base material 15 are diffused, so that the boundary between the foil brazing material 31 and the metal layer 33 becomes unclear.
  • the 15 boundaries are blurred.
  • the metal layer 32 functions as a diffusion barrier layer that suppresses the reaction between the base material 10 and the foil brazing material 31 to some extent during brazing.
  • the metal layer 33 functions as a diffusion barrier layer that suppresses the reaction between the base material 15 and the foil brazing material 31 to some extent during brazing. That is, the material of the metal layer 33 is selected according to the material of the base material 15 and the material of the foil brazing material 31.
  • the material of the base material 15 may be different from the material of the base material 10 or may be the same. When the material of the base material 15 and the material of the base material 10 are the same, it is preferable that the material of the metal layer 33 and the material of the metal layer 32 are the same.
  • the laminate 35 may be manufactured by forming the metal layer 32 on the surface 31a of the foil brazing material 31 by electroplating and forming the metal layer 33 on the surface 31b of the foil brazing material 31 by electroplating.
  • the laminate 35 may be manufactured by forming the metal layer 32 on the surface 31a of the brazing material 31 by sputtering and forming the metal layer 33 on the surface 31b of the foil brazing material 31 by sputtering.
  • the laminate 35 may be manufactured by pressing a metal foil to be the metal layer 32 to 31a and pressing the metal foil to be the metal layer 33 to the surface 31b of the foil brazing material 31.
  • the base material 20 when the reaction temperature of the components of the foil brazing material 31 and the base material 25 is low or the diffusion of the components of the foil brazing material 31 in the base material 25 is fast, the base material 20 And a laminated body 35 is used in place of the laminated body 30 when brazing 25 and 25.
  • the base material 25 is made of magnesium alloy, aluminum alloy, titanium alloy, iron alloy, cobalt alloy, nickel alloy, copper alloy, pure magnesium, pure aluminum, pure titanium, pure iron, pure cobalt, pure nickel, or pure copper. ing.
  • the metal layer 32 functions as a diffusion barrier layer that suppresses the reaction between the base material 20 and the foil brazing material 31 to some extent during brazing.
  • the metal layer 33 functions as a diffusion barrier layer that suppresses the reaction between the base material 25 and the foil brazing material 31 during brazing to some extent.
  • the material of the metal layer 33 is selected according to the material of the base material 25 and the material of the foil brazing material 31.
  • the material of the base material 25 may be different from the material of the base material 20 or may be the same. When the material of the base material 25 and the material of the base material 20 are the same, it is preferable that the material of the metal layer 33 and the material of the metal layer 32 are the same.
  • FIG. 9 shows a state before the joining portion (brazing portion) is brazed by the brazing method according to the second modification of the first embodiment.
  • a brazing method according to a second modification of the first embodiment will be described.
  • a plurality of laminated bodies 30 are arranged and brazed between base materials 10 and 15 to be brazed.
  • the plurality of stacked bodies 30 are arranged along the surfaces 11 and 16. According to this modification, since the size of the stacked body 30 can be reduced, the stacked body 30 can be easily manufactured.
  • a plurality of laminated bodies 35 may be disposed between the base materials 10 and 15 so as to be aligned along the surfaces 11 and 16, and brazing may be performed, and the base material 20 may be aligned along the surfaces 21 and 26.
  • a plurality of laminated bodies 30 may be placed between the base materials 20 and 25 so as to be arranged along the surfaces 21 and 26. You may attach
  • FIG. 10 shows a state before brazing of a joint portion (brazing portion) by the brazing method according to the second embodiment of the present invention.
  • the brazing method according to the second embodiment will be described with reference to FIG.
  • a foil brazing material 37 and a metal layer 38 are arranged between the base materials 10 and 15 to be brazed.
  • the metal layer 38 is a metal foil and is not bonded to the foil brazing material 37.
  • the base material 10, the metal layer 38, the brazing filler metal 37, and the base material 15 are arranged in this order, and the surface 11 of the base material 10 and the surface 16 of the base material 15 face each other.
  • the surface 11 is not plated.
  • the material of the brazing filler material 37 is the same as that of the foil brazing material 31.
  • the material of the metal layer 38 is the same as the material of the metal layer 32.
  • the thickness of the foil brazing material 37 is 10 to 200 ⁇ m, and the thickness of the metal layer 38 is 5 to 20 ⁇ m.
  • the thickness of the foil brazing material 37 is 50 ⁇ m, and the thickness of the metal layer 38 is 10 ⁇ m.
  • the metal layer 38 and the foil brazing material 37 are in contact, and the foil brazing material 37 and the surface 16 of the base material 15 are in contact with each other.
  • the base material 10 and the base material 15 are brazed using the foil brazing material 31.
  • HIP brazing may be applied and other brazing may be applied.
  • the components of the base material 10, the metal layer 38, and the foil brazing material 37 diffuse to make the boundary between the base material 10 and the metal layer 38 unclear, and the metal layer 38 and the foil brazing material.
  • the boundary of 37 becomes unclear.
  • the components of the foil brazing material 37 and the base material 15 are diffused, so that the boundary between the foil brazing material 37 and the base material 15 becomes unclear.
  • the reaction temperature of the components of the brazing filler metal 37 and the base material 10 is low or the diffusion of the constituents of the foil brazing material 37 in the base material 10 is fast, the base material 10 and the brazing brazing during brazing are performed. If the reaction of the material 37 is not suppressed to some extent, there is a possibility that a defect or an embrittlement layer leading to a decrease in the mechanical strength of the joint portion may occur.
  • the metal layer 38 functions as a diffusion barrier layer that suppresses the reaction between the base material 10 and the foil brazing material 37 to some extent during brazing. That is, the material of the metal layer 38 is selected according to the material of the base material 10 and the material of the foil brazing material 37.
  • brazing method according to the present embodiment may be applied to the brazing of the base materials 20 and 25 of the second base material sample.
  • the brazing method according to the present embodiment can be performed without depending on the shape and size of the base materials 10 and 20.
  • the brazing method according to the present embodiment does not form a metal layer functioning as a diffusion barrier layer on the base materials 10 and 20 by plating. Therefore, a large plating bath or a large amount of bath liquid for plating the base materials 10 and 20 is used. The cost of is unnecessary. Therefore, the cost (equipment cost and running cost) for providing the diffusion barrier layer is reduced.
  • the step of filling the masking material into the groove portion 22 formed on the surface 21 of the base material 20 and the step of removing the masking material are unnecessary. is there. Since the metal layer 38 is a metal foil, the film thickness of the metal layer 38 can be easily controlled. According to this embodiment, the plating operation, sputtering operation, and crimping operation for the foil brazing material 37 are not necessary. Since the plating operation on the brazing filler metal 37 is unnecessary, masking at the time of plating is also unnecessary.
  • FIG. 11 shows a state before brazing of another joint portion (brazing portion) by the brazing method according to the first modification of the second embodiment.
  • a brazing method according to a first modification of the second embodiment will be described.
  • a metal layer 38, a foil brazing material 37, and a metal layer 39 are disposed between the base materials 20 and 25 to be brazed.
  • the metal layer 39 is a metal foil and is not bonded to the foil brazing material 37.
  • the base material 20, the metal layer 38, the foil brazing material 37, the metal layer 39, and the base material 25 are arranged in this order, and the surface 21 of the base material 20 and the surface 26 of the base material 25 face each other. Surfaces 21 and 26 are not plated.
  • the base material 25 is made of magnesium alloy, aluminum alloy, titanium alloy, iron alloy, cobalt alloy, nickel alloy, copper alloy, pure magnesium, pure aluminum, pure titanium, pure iron, pure cobalt, pure nickel, or pure copper.
  • the metal layer 39 is formed of nickel, copper, gold, an alloy containing nickel as a main component, an alloy containing copper as a main component, or an alloy containing gold as a main component.
  • the thickness of the metal layer 39 is 5 to 20 ⁇ m.
  • the thickness of the metal layer 39 is 10 ⁇ m.
  • the reaction temperature of the component of the brazing filler metal 37 and the component of the base material 25 is low, or the diffusion of the component of the foil brazing material 37 in the base material 25 is fast.
  • the surface 21 of the base material 20 and the metal layer 38 are in contact, the metal layer 38 and the foil brazing material 37 are in contact, the foil brazing material 37 and the metal layer 39 are in contact, and the metal layer 39 and the base material 25.
  • the base material 20 and the base material 25 are brazed using the foil brazing material 37 by heating in a state where the surface 26 is in contact with each other.
  • HIP brazing may be applied and other brazing may be applied.
  • the components of the base material 20, the metal layer 38, and the foil brazing material 37 are diffused so that the boundary between the base material 20 and the metal layer 38 becomes unclear.
  • the boundary of 37 becomes unclear.
  • the metal layer 38 functions as a diffusion barrier layer that suppresses the reaction between the base material 20 and the foil brazing material 37 to some extent during brazing.
  • the metal layer 39 functions as a diffusion barrier layer that suppresses the reaction between the base material 25 and the foil brazing material 37 to some extent during brazing. That is, the material of the metal layer 39 is selected according to the material of the base material 25 and the material of the foil brazing material 37.
  • the material of the base material 25 may be different from the material of the base material 20 or may be the same.
  • the material of the base material 25 and the material of the base material 20 are the same, it is preferable that the material of the metal layer 39 and the material of the metal layer 38 are the same.
  • brazing method according to the present embodiment may be applied to the brazing of the base materials 10 and 15.
  • the brazing method according to this modification even when the material (component) of the metal layer 38 and the material (component) of the metal layer 39 are different, the metal of the material (component) different from each other on both sides of the foil brazing material 37 is used. What is necessary is just to arrange
  • the brazing method according to the present modification is very easy as compared with the case where the laminated body 35 in which the material (component) of the metal layer 32 and the material (component) of the metal layer 33 are different is manufactured by electroplating or sputtering.
  • the brazing method according to the above embodiment can be applied to the manufacture of a rocket engine combustion chamber.
  • the two throat supports 105 are brazed using the brazing method according to the above embodiment, the throat support 105 and the cooling fluid liner 103 are brazed, the structural jacket 101 and the cooling It is possible to braze the fluid liner 103.
  • FIG. 12B is a cross-sectional view of the rocket engine combustion chamber.
  • the base material 20 is the cooling fluid liner 103
  • the groove portion 22 becomes a flow path through which the cooling fluid flows by brazing the base material 25 to the base material 20. Since the components of the rocket engine combustion chamber are large in size, if the brazing method according to the above embodiment is applied, the cost is greatly reduced compared to the case where a metal layer functioning as a diffusion barrier layer is formed on the component by plating. Is done.
  • the joint part according to the comparative example was formed by the brazing method shown in FIG.
  • a gold plating layer 232 functioning as a diffusion barrier layer was formed on the surface 11
  • a nickel plating layer for improving the wettability of the base material 15 was formed on the surface 16.
  • the joint part according to the first embodiment was formed by the brazing method shown in FIG.
  • a nickel plating layer for improving the wettability of the base material 15 was formed on the surface 16 using the brazing filler metal 31 on which the gold plating layer 32 was formed.
  • the result of the tensile test of the joint according to the comparative example and the joint according to the first embodiment will be described. At both the tensile test temperatures of 23 ° C. and 377 ° C., the tensile strength of the joint according to the comparative example and the tensile strength of the joint according to the first embodiment were equal.
  • brazing method and the rocket engine combustion chamber manufacturing method according to the present invention have been described above with reference to the embodiment.
  • the brazing method and the rocket engine combustion chamber manufacturing method according to the present invention are not limited to the above embodiment. It is possible to add a change to the said embodiment or to combine the said embodiment. You may apply the brazing method by this invention to manufacture of products other than a rocket engine combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 ろう付方法において、めっきされていない表面を有する母材、拡散バリア層として機能する金属層、箔ろう材、及び表面を有する母材の順番に並ぶように且つ表面及び表面が互いに向かい合うように、母材、金属層、箔ろう材、及び母材を配置する。母材及び母材を箔ろう材を用いてろう付けする。こうして、母材と箔ろう材との間に拡散バリア層を設けるためのコストが低減される。

Description

ろう付方法
 本発明は、ろう付方法及びロケットエンジン燃焼室の製造方法に関する。
 特許文献1に開示されたロケットエンジン燃焼室の製造方法を説明する。このロケットエンジン燃焼室の製造方法においてろう付けが用いられている。ロケットエンジン燃焼室の製造方法は、以下のステップを含む。冷却流体ライナーを形成する。冷却流体ライナーは銅合金製である。冷却流体ライナーの外側表面に複数の冷却流体流路を形成する。少なくとも二つのスロートサポートを形成する。マニホールドを備えた構造ジャケットを形成する。スロートサポート及び構造ジャケットはステンレス鋼製である。冷却流体ライナーを金でめっきする。スロートサポート及び構造ジャケットをニッケルでめっきする。スロートサポートを冷却流体ライナーの外側表面のまわりに組立て、スロートサポート及び冷却流体ライナーを構造ジャケットに挿入して燃焼室組立体を形成する。ここで、冷却流体ライナー、スロートサポート、及び構造ジャケットの間にろう付け合金箔を挿入する。冷却流体ライナーと構造ジャケットの間に封止接合部(不図示)を形成して冷却流体流路を封止する。燃焼室組立体を圧力炉(不図示)に挿入する。圧力炉を加圧して冷却流体ライナー、スロートサポート、及び構造ジャケットを互いに接触させる。圧力炉を加圧しながら燃焼室組立体を加熱して冷却流体ライナー、スロートサポート、及び構造ジャケットを結合する。構造ジャケットのマニホールドと冷却流体流路とが接続される。
 特許文献2は、ロケットエンジン燃焼室の製造方法を開示している。この方法において、熱間等方圧加圧処理によるろう付け(HIPろう付け)が行われる。
米国特許第5701670号明細書 特開2004-169702号公報
 本発明は、母材と箔ろう材との間に拡散バリア層を設けるためのコストが低減されるろう付方法及びロケットエンジン燃焼室の製造方法を提供してもよい。
 本発明の第1の観点によるろう付方法は、めっきされていない第1表面を有する第1母材、拡散バリア層として機能する金属層、箔ろう材、及び第2表面を有する第2母材の順番に並ぶように且つ前記第1表面及び前記第2表面が互いに向かい合うように、前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置するステップと、前記第1母材及び前記第2母材を前記箔ろう材を用いてろう付けするステップとを具備する。
 拡散バリア層として機能する金属層をめっきにより第1母材に形成する必要がないため、第1母材をめっきするための大型のめっき浴が不要である。したがって、拡散バリア層を設けるためのコストが低減される。
 前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置する前記ステップにおいて、前記第1母材及び前記第2母材の間に積層体を配置する。前記積層体は、前記箔ろう材と、前記箔ろう材に結合した前記金属層とを備える。
 前記積層体は複数であり、前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置する前記ステップにおいて、前記複数の積層体が前記第1表面及び前記第2表面に沿って並べられる。
 複数の積層体を用いることで、積層体のサイズを小さくすることができる。したがって、積層体の製造が容易である。
 上記ろう付方法は、前記箔ろう材の表面に前記金属層を電気めっきにより形成して前記積層体を製造するステップを更に具備する。
 上記ろう付方法は、前記箔ろう材の表面に前記金属層をスパッタリングにより形成して前記積層体を製造するステップを更に具備する。
 上記ろう付方法は、前記金属層となるべき金属箔と前記箔ろう材とを圧着して前記積層体を製造するステップを更に具備する。
 前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置する前記ステップにおいて、前記金属層は金属箔である。
 金属層が金属箔であるため、箔ろう材に対するめっき作業、スパッタリング作業、及び圧着作業が不要である。
 前記第2表面はめっきされていない。前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置する前記ステップにおいて、他の拡散バリア層として機能する他の金属箔を前記箔ろう材及び前記第2母材の間に配置する。前記他の金属箔は前記金属箔と成分が異なる。
 箔ろう材の両側に互いに異なる成分の金属箔を配置することは、箔ろう材の両側に互いに異なる成分の金属層をめっき等により形成することよりも容易である。
 本発明の第2の観点によるロケットエンジン燃焼室の製造方法は、めっきされていない第1表面を有する第1母材、拡散バリア層として機能する金属層、箔ろう材、及び第2表面を有する第2母材の順番に並ぶように且つ前記第1表面及び前記第2表面が互いに向かい合うように、前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置するステップと、前記第1母材及び前記第2母材を前記箔ろう材を用いてろう付けするステップとを具備する。
 拡散バリア層として機能する金属層をめっきにより第1母材に形成する必要がないため、第1母材をめっきするための大型のめっき浴が不要である。したがって、拡散バリア層を設けるためのコストが低減される。
 冷却流体が流れる流路となるべき溝部が前記第1表面に形成されている。
 拡散バリア層として機能する金属層をめっきにより第1母材に形成する必要がないため、流路がめっき材料の塊で塞がれることを防止するために溝部をマスキングすることが不要である。
 本発明によれば、母材と箔ろう材との間に拡散バリア層を設けるためのコストが削減されるろう付方法及びロケットエンジン燃焼室の製造方法が提供される。
図1は、本発明の比較例に係るろう付方法による接合部の断面図である。 図2は、本発明の比較例に係るろう付方法による他の接合部の断面図である。 図3は、本発明の第1の実施形態に係るろう付方法による接合部の断面図である。 図4は、第1の実施形態に係るろう付方法による他の接合部の断面図である。 図5は、第1の実施形態に係るろう付方法で使用される積層体の製造方法を示す概略図である。 図6は、第1の実施形態に係るろう付方法で使用される積層体の他の製造方法を示す概略図である。 図7は、第1の実施形態に係るろう付方法で使用される積層体の更に他の製造方法を示す概略図である。 図8は、第1の実施形態の第1変形例に係るろう付方法による接合部の断面図である。 図9は、第1の実施形態の第2変形例に係るろう付方法による接合部の断面図である。 図10は、本発明の第2の実施形態に係るろう付方法による接合部の断面図である。 図11は、第2の実施形態の第1変形例に係るろう付方法による接合部の断面図である。 図12Aは、第1及び第2の実施形態に係るロケットエンジン燃焼室の組立図である。 図12Bは、第1及び第2の実施形態に係るロケットエンジン燃焼室の断面図である。 図13Aは、比較例に係る接合部の断面写真を示す。 図13Bは、第1の実施形態に係る接合部の断面写真を示す。 図14は、比較例に係る接合部と第1の実施形態に係る接合部の引張試験の結果を示す。
 本発明によるろう付方法及びロケットエンジン燃焼室の製造方法による効果を理解しやすくするため、はじめに本発明の比較例に係るろう付方法を説明する。
 (比較例)
 図1は、本発明の比較例に係るろう付方法による接合部(ろう付け部)のろう付け前の状態を示す。図1に示すように、ろう付けされるべき母材10及び15の間に箔ろう材231を配置する。ここで、母材10の表面11と母材15の表面16とが互いに向かい合わされる。母材10の形状及び母材15の形状は任意である。表面11及び表面16は、平面であっても曲面であってもよい。表面11にめっき層としての金属層232が形成されている。母材10は、マグネシウム合金、アルミニウム合金、チタン合金、鉄合金、コバルト合金、ニッケル合金、銅合金、純マグネシウム、純アルミニウム、純チタン、純鉄、純コバルト、純ニッケル、又は、純銅により形成されている。箔ろう材231は、コバルト系ろう材、ニッケル系ろう材、銅系ろう材、パラジウム系ろう材、銀系ろう材、又は、金系ろう材により形成されている。金属層232は、ニッケル、銅、金、ニッケルを主成分とする合金、銅を主成分とする合金、又は、金を主成分とする合金により形成されている。母材15の材料は母材10の材料と異なる。箔ろう材231の厚さは10~200μmであり、金属層232の厚さは5~20μmである。
 母材10の表面11の金属層232と箔ろう材231とが接触し、且つ、箔ろう材231と母材15の表面16とが接触した状態で加熱することで、母材10及び母材15を箔ろう材231を用いてろう付けする。ろう付け時に、母材10の成分、金属層232の成分、及び箔ろう材231の成分が拡散することにより、母材10と金属層232の境界が不鮮明になり、金属層232と箔ろう材231の境界が不鮮明になる。ろう付け時に、箔ろう材231の成分及び母材15の成分が拡散することにより、箔ろう材231と母材15の境界が不鮮明になる。尚、箔ろう材231の成分と母材10の成分の反応温度が低い、又は、母材10中での箔ろう材231の成分の拡散が速い場合、ろう付け時の母材10と箔ろう材231の反応をある程度抑制しないと、接合部の機械的強度の低下につながる欠陥又は脆化層が生じるおそれがある。金属層232は、ろう付け時の母材10と箔ろう材231の反応をある程度抑制する拡散バリア層として機能する。すなわち、金属層232の材料は、母材10の材料及び箔ろう材231の材料に応じて選択される。
 図2は、比較例に係るろう付方法による他の接合部(ろう付け部)のろう付け前の状態を示す。図2に示すように、ろう付けされるべき母材20及び25の間に箔ろう材231を配置する。ここで、母材20の表面21と母材25の表面26とが互いに向かい合わされる。母材20の形状及び母材25の形状は任意である。表面21及び表面26は、平面であっても曲面であってもよい。表面21に複数の溝部22が形成されている。表面21の複数の溝部22以外の部分にめっき層としての金属層232が形成されている。母材20は、マグネシウム合金、アルミニウム合金、チタン合金、鉄合金、コバルト合金、ニッケル合金、銅合金、純マグネシウム、純アルミニウム、純チタン、純鉄、純コバルト、純ニッケル、又は、純銅により形成されている。箔ろう材231は、コバルト系ろう材、ニッケル系ろう材、銅系ろう材、パラジウム系ろう材、銀系ろう材、又は、金系ろう材により形成されている。金属層232は、ニッケル、銅、金、ニッケルを主成分とする合金、銅を主成分とする合金、又は、金を主成分とする合金により形成されている。母材25の材料は母材20の材料と異なる。
 母材20の表面21の金属層232と箔ろう材231とが接触し、且つ、箔ろう材231と母材25の表面26とが接触した状態で加熱することで、母材20及び母材25を箔ろう材231を用いてろう付けする。ろう付け時に、母材20の成分、金属層232の成分、及び箔ろう材231の成分が拡散することにより、母材20と金属層232の境界が不鮮明になり、金属層232と箔ろう材231の境界が不鮮明になる。ろう付け時に、箔ろう材231の成分及び母材25の成分が拡散することにより、箔ろう材231と母材25の境界が不鮮明になる。尚、箔ろう材231の成分と母材20の成分の反応温度が低い、又は、母材20中での箔ろう材231の成分の拡散が速い場合、ろう付け時の母材20と箔ろう材231の反応をある程度抑制しないと、接合部の機械的強度の低下につながる欠陥又は脆化層が生じるおそれがある。金属層232は、ろう付け時の母材20と箔ろう材231の反応をある程度抑制する拡散バリア層として機能する。すなわち、金属層232の材料は、母材20の材料及び箔ろう材231の材料に応じて選択される。
 比較例に係るろう付方法の問題点を説明する。表面11及び21が円筒面のような曲面である場合や、表面11及び21の面積が大きい場合、めっきにより金属層232を形成する際の膜厚コントロールが困難である。母材10及び20のサイズが大きい場合、大型のめっき浴及び大量の浴液が必要であり、設備コスト及びめっきのランニングコストが高い。溝部22をマスキングしないで電気めっきにより母材20に金属層232を形成すると、溝部22のコーナー部にめっき材料の塊が形成されるおそれがある。母材20に母材25をろう付けすることにより溝部22に対応する流路を形成する場合、めっき材料の塊が流路を少なくとも部分的に塞いでしまう。このように溝部22がめっきされてはいけない場合、めっきにより母材20の表面21に金属層232を形成する前に溝部22にマスキング材を充填する工程、及び、金属層232の形成後にマスキング材を除去する工程が必要になる。
 次に、添付図面を参照して、本発明によるろう付方法及びロケットエンジン燃焼室の製造方法を実施するための形態を説明する。
 (第1の実施形態)
 図3は、本発明の第1の実施形態に係るろう付方法による接合部(ろう付け部)のろう付け前の状態を示す。図3を参照して、第1母材サンプルに対する第1の実施形態に係るろう付方法を説明する。図3に示すように、ろう付けされるべき母材10及び15の間に積層体30を配置する。積層体30は、箔ろう材31と、箔ろう材31に結合した金属層32とを備える。ここで、母材10、金属層32、箔ろう材31、及び母材15の順番に並べ、且つ、母材10の表面11と母材15の表面16とを互いに向かい合わせる。表面11はめっきされていない。箔ろう材31は、コバルト系ろう材、ニッケル系ろう材、銅系ろう材、パラジウム系ろう材、銀系ろう材、又は、金系ろう材により形成されている。金属層32は、ニッケル、銅、金、ニッケルを主成分とする合金、銅を主成分とする合金、又は、金を主成分とする合金により形成されている。箔ろう材31の厚さは10~200μmであり、金属層32の厚さは5~20μmである。例えば、箔ろう材31の厚さは50μmであり、金属層32の厚さは10μmである。
 母材10の表面11と金属層32とが接触し、且つ、箔ろう材31と母材15の表面16とが接触した状態で加熱することで、母材10及び母材15を箔ろう材31を用いてろう付けする。ここで、HIPろう付けが適用されてもよく、他のろう付けが適用されてもよい。ろう付け時に、母材10の成分、金属層32の成分、及び箔ろう材31の成分が拡散することにより、母材10と金属層32の境界が不鮮明になり、金属層32と箔ろう材31の境界が不鮮明になる。ろう付け時に、箔ろう材31の成分及び母材15の成分が拡散することにより、箔ろう材31と母材15の境界が不鮮明になる。尚、箔ろう材31の成分と母材10の成分の反応温度が低い、又は、母材10中での箔ろう材31の成分の拡散が速い場合、ろう付け時の母材10と箔ろう材31の反応をある程度抑制しないと、接合部の機械的強度の低下につながる欠陥又は脆化層が生じるおそれがある。金属層32は、ろう付け時の母材10と箔ろう材31の反応をある程度抑制する拡散バリア層として機能する。すなわち、金属層32の材料は、母材10の材料及び箔ろう材31の材料に応じて選択される。
 図4は、第2母材サンプルに対する第1の実施形態に係るろう付方法を説明する。図4に示すように、ろう付けされるべき母材20及び25の間に積層体30を配置する。ここで、母材20、金属層32、箔ろう材31、及び母材25の順番に並べ、且つ、母材20の表面21と母材25の表面26とを互いに向かい合わせる。表面21はめっきされていない。なお、母材20の母材25に対向する面には、切り込みまたは切りかけにより溝部22が形成されている。この溝部22は、櫛状に形成されていてもよい。
 母材20の表面21と金属層32とが接触し、且つ、箔ろう材31と母材25の表面26とが接触した状態で加熱することで、母材20及び母材25を箔ろう材31を用いてろう付けする。ここで、HIPろう付けが適用されてもよく、他のろう付けが適用されてもよい。ろう付け時に、母材20の成分、金属層32の成分、及び箔ろう材31の成分が拡散することにより、母材20と金属層32の境界が不鮮明になり、金属層32と箔ろう材31の境界が不鮮明になる。ろう付け時に、箔ろう材31の成分及び母材25の成分が拡散することにより、箔ろう材31と母材25の境界が不鮮明になる。尚、箔ろう材31の成分と母材20の成分の反応温度が低い、又は、母材20中での箔ろう材31の成分の拡散が速い場合、ろう付け時の母材20と箔ろう材31の反応をある程度抑制しないと、接合部の機械的強度の低下につながる欠陥又は脆化層が生じるおそれがある。金属層32は、ろう付け時の母材20と箔ろう材31の反応をある程度抑制する拡散バリア層として機能する。すなわち、金属層32の材料は、母材20の材料及び箔ろう材31の材料に応じて選択される。
 図5を参照して、積層体30の製造方法を説明する。金属層32は電気めっきにより形成される。箔ろう材31は、表面31aと、表面31aの反対側の表面31bとを備える。表面31bをめっき防止剤45で覆う。めっき浴41内の浴液42に浸漬した箔ろう材31及び電極44に直流電源43を接続して、金属層32を表面31aに形成する。母材10又は20をめっきする場合に比べて、めっき浴41が小さくてよく、浴液42の量が少なくてよい。
 図6を参照して、積層体30の他の製造方法を説明する。金属層32はスパッタリングにより形成される。スパッタリング装置46を箔ろう材31の表面31aに沿って移動させながら、スパッタリング装置46からの粒子を箔ろう材31の表面31aに付着させて金属層32を形成する。
 図7を参照して、積層体30の更に他の製造方法を説明する。金属層32となるべき金属箔と箔ろう材31とをローラー47及び48を用いて圧着して積層体30を製造する。金属箔は箔ろう材31の表面31aに圧着される。
 尚、積層体30の製造方法は上記例に限定されない。
 本実施形態に係るろう付方法は、拡散バリア層として機能する金属層をめっきにより母材10及び20に形成しないため、母材10及び20の形状やサイズに依存せずに実施可能である。本実施形態に係るろう付方法は、拡散バリア層として機能する金属層をめっきにより母材10及び20に形成しないため、母材10及び20をめっきするための大型のめっき浴が不要である。したがって、拡散バリア層を設けるためのコスト(設備コスト及びランニングコスト)が低減される。特に、金の拡散バリア層を設ける場合にコスト低減効果が大きい。拡散バリア層として機能する金属層をめっきにより母材20に形成しないため、母材20の表面21に形成された溝部22にマスキング材を充填する工程、及び、マスキング材を除去する工程が不要である。金属層32が箔ろう材31上に形成されるため、金属層32の膜厚コントロールが容易であり、電気めっき、スパッタリング、圧着等の様々な方法を金属層32の形成に適用可能である。
 図8は、第1母材サンプルに対する第1の実施形態の第1変形例に係るろう付方法による接合部(ろう付け部)のろう付け前の状態を示す。図8を参照して、第1の実施形態の第1変形例に係るろう付方法を説明する。図8に示されるように、ろう付けされるべき母材10及び15の間に積層体35を配置する。積層体35は、箔ろう材31と、箔ろう材31の表面31aに結合した金属層32と、箔ろう材31の表面31bに結合した金属層33とを備える。ここで、母材10、金属層32、箔ろう材31、金属層33、及び母材15の順番に並べ、且つ、母材10の表面11と母材15の表面16とを互いに向かい合わせる。表面11及び16はめっきされていない。母材15は、マグネシウム合金、アルミニウム合金、チタン合金、鉄合金、コバルト合金、ニッケル合金、銅合金、純マグネシウム、純アルミニウム、純チタン、純鉄、純コバルト、純ニッケル、又は、純銅により形成されている。金属層33は、ニッケル、銅、金、ニッケルを主成分とする合金、銅を主成分とする合金、又は、金を主成分とする合金により形成されている。金属層33の厚さは5~20μmである。例えば、金属層33の厚さは10μmである。ここで、箔ろう材31の成分と母材15の成分の反応温度が低い、又は、母材15の中での箔ろう材31の成分の拡散が速い。
 母材10の表面11と金属層32とが接触し、且つ、金属層33と母材15の表面16とが接触した状態で加熱することで、母材10及び母材15を箔ろう材31を用いてろう付けする。ここで、HIPろう付けが適用されてもよく、他のろう付けが適用されてもよい。ろう付け時に、母材10の成分、金属層32の成分、及び箔ろう材31の成分が拡散することにより、母材10と金属層32の境界が不鮮明になり、金属層32と箔ろう材31の境界が不鮮明になる。ろう付け時に、箔ろう材31の成分、金属層33の成分、及び母材15の成分が拡散することにより、箔ろう材31と金属層33の境界が不鮮明になり、金属層33と母材15の境界が不鮮明になる。上述のように、金属層32は、ろう付け時に母材10と箔ろう材31の反応をある程度抑制する拡散バリア層として機能する。金属層33は、ろう付け時の母材15と箔ろう材31の反応をある程度抑制する拡散バリア層として機能する。すなわち、金属層33の材料は、母材15の材料及び箔ろう材31の材料に応じて選択される。母材15の材料は母材10の材料と異なっていてもよく、同一でもよい。母材15の材料と母材10の材料が同一の場合、金属層33の材料と金属層32の材料とが同一であることが好ましい。尚、箔ろう材31の表面31aに電気めっきにより金属層32を形成し、箔ろう材31の表面31bに電気めっきにより金属層33を形成することで積層体35を製造してもよく、箔ろう材31の表面31aにスパッタリングにより金属層32を形成し、箔ろう材31の表面31bにスパッタリングにより金属層33を形成することで積層体35を製造してもよく、箔ろう材31の表面31aに金属層32となるべき金属箔を圧着し、箔ろう材31の表面31bに金属層33となるべき金属箔を圧着して積層体35を製造してもよい。
 第2母材サンプルの場合、箔ろう材31の成分と母材25の成分の反応温度が低い、又は、母材25の中での箔ろう材31の成分の拡散が速い場合、母材20及び25をろう付けする際に積層体30のかわりに積層体35が用いられる。母材25は、マグネシウム合金、アルミニウム合金、チタン合金、鉄合金、コバルト合金、ニッケル合金、銅合金、純マグネシウム、純アルミニウム、純チタン、純鉄、純コバルト、純ニッケル、又は、純銅により形成されている。上述のように、金属層32は、ろう付け時の母材20と箔ろう材31の反応をある程度抑制する拡散バリア層として機能する。金属層33は、ろう付け時の母材25と箔ろう材31の反応をある程度抑制する拡散バリア層として機能する。すなわち、金属層33の材料は、母材25の材料及び箔ろう材31の材料に応じて選択される。母材25の材料は母材20の材料と異なっていてもよく、同一でもよい。母材25の材料と母材20の材料が同一の場合、金属層33の材料と金属層32の材料とが同一であることが好ましい。
 図9は、第1の実施形態の第2変形例に係るろう付方法による接合部(ろう付け部)のろう付け前の状態を示す。図9を参照して、第1の実施形態の第2変形例に係るろう付方法を説明する。本変形例では、図9に示すように、ろう付けされるべき母材10及び15の間に複数の積層体30を配置してろう付けする。複数の積層体30は、表面11及び16に沿って並べられる。本変形例によれば、積層体30のサイズを小さくすることができるため、積層体30の製造が容易になる。例えば、電気めっきにより積層体30を製造する場合、めっき浴41が小型でよく、浴液42が少量でよいため、積層体30を製造するための設備コスト及びランニングコストが低減できる。尚、表面11及び16に沿って並ぶように母材10及び15の間に複数の積層体35を配置してろう付けを行ってもよく、表面21及び26に沿って並ぶように母材20及び25の間に複数の積層体30を配置してろう付けを行ってもよく、表面21及び26に沿って並ぶように母材20及び25の間に複数の積層体35を配置してろう付けを行ってもよい。
 (第2の実施形態)
 図10は、本発明の第2の実施形態に係るろう付方法による接合部(ろう付け部)のろう付け前の状態を示す。図10を参照して、第2の実施形態に係るろう付方法を説明する。図10に示すように、ろう付けされるべき母材10及び15の間に、箔ろう材37及び金属層38を配置する。金属層38は、金属箔であり、箔ろう材37に結合されていない。ここで、母材10、金属層38、箔ろう材37、及び母材15の順番に並べ、且つ、母材10の表面11と母材15の表面16とを互いに向かい合わせる。表面11はめっきされていない。箔ろう材37の材料は箔ろう材31の材料と同一である。金属層38の材料は金属層32の材料と同一である。箔ろう材37の厚さは10~200μmであり、金属層38の厚さは5~20μmである。例えば、箔ろう材37の厚さは50μmであり、金属層38の厚さは10μmである。
 母材10の表面11と金属層38とが接触し、金属層38と箔ろう材37が接触し、且つ、箔ろう材37と母材15の表面16とが接触した状態で加熱することで、母材10及び母材15を箔ろう材31を用いてろう付けする。ここで、HIPろう付けが適用されてもよく、他のろう付けが適用されてもよい。ろう付け時に、母材10の成分、金属層38の成分、及び箔ろう材37の成分が拡散することにより、母材10と金属層38の境界が不鮮明になり、金属層38と箔ろう材37の境界が不鮮明になる。ろう付け時に、箔ろう材37の成分及び母材15の成分が拡散することにより、箔ろう材37と母材15の境界が不鮮明になる。尚、箔ろう材37の成分と母材10の成分の反応温度が低い、又は、母材10中での箔ろう材37の成分の拡散が速い場合、ろう付け時の母材10と箔ろう材37の反応をある程度抑制しないと、接合部の機械的強度の低下につながる欠陥又は脆化層が生じるおそれがある。金属層38は、ろう付け時の母材10と箔ろう材37の反応をある程度抑制する拡散バリア層として機能する。すなわち、金属層38の材料は、母材10の材料及び箔ろう材37の材料に応じて選択される。
 尚、本実施形態に係るろう付方法を第2母材サンプルの母材20及び25のろう付けに適用してもよい。
 本実施形態に係るろう付方法は、拡散バリア層として機能する金属層をめっきにより母材10及び20に形成しないため、母材10及び20の形状やサイズに依存せずに実施可能である。本実施形態に係るろう付方法は、拡散バリア層として機能する金属層をめっきにより母材10及び20に形成しないため、母材10及び20をめっきするための大型のめっき浴や大量の浴液のコストが不要である。したがって、拡散バリア層を設けるためのコスト(設備コスト及びランニングコスト)が低減される。拡散バリア層として機能する金属層をめっきにより母材20に形成しないため、母材20の表面21に形成された溝部22にマスキング材を充填する工程、及び、マスキング材を除去する工程が不要である。金属層38が金属箔であるため、金属層38の膜厚コントロールが容易である。本実施形態によれば、箔ろう材37に対するめっき作業、スパッタリング作業、及び圧着作業が不要である。箔ろう材37に対するめっき作業が不要であるため、めっき時のマスキングも不要である。
 図11は、第2の実施形態の第1変形例に係るろう付方法による他の接合部(ろう付け部)のろう付け前の状態を示す。図11を参照して、第2の実施形態の第1変形例に係るろう付方法を説明する。図11に示すように、ろう付けされるべき母材20及び25の間に、金属層38、箔ろう材37、及び金属層39を配置する。金属層39は、金属箔であり、箔ろう材37に結合されていない。ここで、母材20、金属層38、箔ろう材37、金属層39、及び母材25の順番に並べ、且つ、母材20の表面21と母材25の表面26とを互いに向かい合わせる。表面21及び26はめっきされていない。母材25は、マグネシウム合金、アルミニウム合金、チタン合金、鉄合金、コバルト合金、ニッケル合金、銅合金、純マグネシウム、純アルミニウム、純チタン、純鉄、純コバルト、純ニッケル、又は、純銅により形成されている。金属層39は、ニッケル、銅、金、ニッケルを主成分とする合金、銅を主成分とする合金、又は、金を主成分とする合金により形成されている。金属層39の厚さは5~20μmである。例えば、金属層39の厚さは10μmである。ここで、箔ろう材37の成分と母材25の成分の反応温度が低い、又は、母材25の中での箔ろう材37の成分の拡散が速い。
 母材20の表面21と金属層38とが接触し、金属層38と箔ろう材37とが接触し、箔ろう材37と金属層39とが接触し、且つ、金属層39と母材25の表面26とが接触した状態で加熱することで、母材20及び母材25を箔ろう材37を用いてろう付けする。ここで、HIPろう付けが適用されてもよく、他のろう付けが適用されてもよい。ろう付け時に、母材20の成分、金属層38の成分、及び箔ろう材37の成分が拡散することにより、母材20と金属層38の境界が不鮮明になり、金属層38と箔ろう材37の境界が不鮮明になる。ろう付け時に、箔ろう材37の成分、金属層39の成分、及び母材25の成分が拡散することにより、箔ろう材37と金属層38の境界が不鮮明になり、金属層38と母材25の境界が不鮮明になる。金属層38は、ろう付け時の母材20と箔ろう材37の反応をある程度抑制する拡散バリア層として機能する。金属層39は、ろう付け時の母材25と箔ろう材37の反応をある程度抑制する拡散バリア層として機能する。すなわち、金属層39の材料は、母材25の材料及び箔ろう材37の材料に応じて選択される。母材25の材料は母材20の材料と異なっていてもよく、同一でもよい。母材25の材料と母材20の材料が同一の場合、金属層39の材料と金属層38の材料とが同一であることが好ましい。
 尚、本実施形態に係るろう付方法を母材10及び15のろう付けに適用してもよい。
 本変形例に係るろう付方法は、金属層38の材料(成分)と金属層39の材料(成分)が異なる場合であっても、箔ろう材37の両側に互いに異なる材料(成分)の金属箔を配置すればよい。したがって、本変形例に係るろう付方法は、金属層32の材料(成分)と金属層33の材料(成分)が異なる積層体35を用いてろう付けする場合に比べて容易である。本変形例に係るろう付方法は、金属層32の材料(成分)と金属層33の材料(成分)が異なる積層体35を電気めっき又はスパッタリングにより製造する場合に比べて非常に容易である。
 上記実施形態に係るろう付方法は、ロケットエンジン燃焼室の製造に適用することが可能である。例えば、図12Aを参照して、上記実施形態に係るろう付方法を用いて二つのスロートサポート105をろう付けしたり、スロートサポート105と冷却流体ライナー103をろう付けしたり、構造ジャケット101と冷却流体ライナー103をろう付けしたりすることが可能である。図12Bは、ロケットエンジン燃焼室の断面図である。母材20が冷却流体ライナー103である場合、母材20に母材25をろう付けすることにより、溝部22は冷却流体が流れる流路となる。ロケットエンジン燃焼室の部品はサイズが大きいため、上記実施形態に係るろう付方法を適用すれば、その部品に拡散バリア層として機能する金属層をめっきにより形成する場合に較べてコストが大幅に低減される。
 (比較例に係る接合部と第1の実施形態に係る接合部の比較結果)
 次に、比較例に係る接合部と第1の実施形態に係る接合部の品質比較結果を説明する。図1に示すろう付方法で比較例に係る接合部を形成した。ここで、表面11に拡散バリア層として機能する金めっき層232を形成し、表面16に母材15のぬれ性改善のためのニッケルめっき層を形成した。図3に示すろう付方法で第1の実施形態に係る接合部を形成した。ここで、金めっき層32が形成された箔ろう材31を用い、表面16に母材15のぬれ性改善のためのニッケルめっき層を形成した。比較例に係る接合部及び第1の実施形態に係る接合部の断面写真を撮影した。比較例に係る接合部と第1の実施形態に係る接合部の引張試験を行った。
 図13Aに示される比較例に係る接合部の断面写真、及び図13Bに示される第1の実施形態に係る接合部の断面写真を参照して、比較例に係る接合部及び第1の実施形態に係る接合部のいずれにも欠陥は見られなかった。
 図14を参照して、比較例に係る接合部と第1の実施形態に係る接合部の引張試験の結果を説明する。引張試験温度が23℃及び377℃のいずれにおいても、比較例に係る接合部の引張強度と第1の実施形態に係る接合部の引張強度は同等であった。
 したがって、比較例に係る接合部と第1の実施形態に係る接合部の品質に違いは見られなかった。
 以上、実施の形態を参照して本発明によるろう付け方法及びロケットエンジン燃焼室の製造方法を説明したが、本発明によるろう付け方法及びロケットエンジン燃焼室の製造方法は上記実施形態に限定されない。上記実施形態に変更を加えたり上記実施形態どうしを組み合わせたりすることが可能である。本発明によるろう付け方法をロケットエンジン燃焼室以外の製品の製造に適用してもよい。
尚、この出願は、2012年2月28日に出願された日本特許出願2012-041047号を基礎とする優先権を主張し、その開示の全てを引用によりここに取り込む。

Claims (10)

  1.  めっきされていない第1表面を有する第1母材、拡散バリア層として機能する金属層、箔ろう材、及び第2表面を有する第2母材の順番に並ぶように、且つ前記第1表面及び前記第2表面が互いに向かい合うように、前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置するステップと、
     前記第1母材及び前記第2母材を前記箔ろう材を用いてろう付けするステップと
    を具備する
     ろう付方法。
  2.  請求項1に記載のろう付方法であって、
     前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置する前記ステップは、前記第1母材及び前記第2母材の間に積層体を配置するステップを備え、
     前記積層体は、
     前記箔ろう材と、
     前記箔ろう材に結合した前記金属層と
    を備える
     ろう付方法。
  3.  請求項2に記載のろう付方法であって、
     前記積層体は複数であり、
     前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置する前記ステップは、前記複数の積層体を前記第1表面及び前記第2表面に沿って並べるステップを備える
     ろう付方法。
  4.  請求項2又は3に記載のろう付方法であって、
     前記箔ろう材の表面に前記金属層を電気めっきにより形成して前記積層体を製造するステップを更に具備する
     ろう付方法。
  5.  請求項2又は3に記載のろう付方法であって、
     前記箔ろう材の表面に前記金属層をスパッタリングにより形成して前記積層体を製造するステップを更に具備する
     ろう付方法。
  6.  請求項2又は3に記載のろう付方法であって、
     前記金属層となるべき金属箔と前記箔ろう材とを圧着して前記積層体を製造するステップを更に具備する
     ろう付方法。
  7.  請求項1に記載のろう付方法であって、
     前記金属層は金属箔である
     ろう付方法。
  8.  請求項7に記載のろう付方法であって、
     前記第2表面はめっきされず、
     前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置する前記ステップは、他の拡散バリア層として機能する他の金属箔を前記箔ろう材及び前記第2母材の間に配置するステップを備え、
     前記他の金属箔は前記金属箔と成分が異なる
     ろう付方法。
  9.  めっきされていない第1表面を有する第1母材、拡散バリア層として機能する金属層、箔ろう材、及び第2表面を有する第2母材の順番に並ぶように且つ前記第1表面及び前記第2表面が互いに向かい合うように、前記第1母材、前記金属層、前記箔ろう材、及び前記第2母材を配置するステップと、
     前記第1母材及び前記第2母材を前記箔ろう材を用いてろう付けするステップと
    を具備する
     ロケットエンジン燃焼室の製造方法。
  10.  請求項9に記載のロケットエンジン燃焼室の製造方法であって、
     冷却流体が流れる流路となるべき溝部が前記第1表面に形成されている
     ロケットエンジン燃焼室の製造方法。
PCT/JP2013/054048 2012-02-28 2013-02-19 ろう付方法 WO2013129192A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/381,287 US9427817B2 (en) 2012-02-28 2013-02-19 Brazing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012041047A JP6110072B2 (ja) 2012-02-28 2012-02-28 ろう付方法
JP2012-041047 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013129192A1 true WO2013129192A1 (ja) 2013-09-06

Family

ID=49082392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054048 WO2013129192A1 (ja) 2012-02-28 2013-02-19 ろう付方法

Country Status (3)

Country Link
US (1) US9427817B2 (ja)
JP (1) JP6110072B2 (ja)
WO (1) WO2013129192A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004368B1 (fr) * 2013-04-15 2015-09-25 Aircelle Sa Brasage sans outillage
JP6273175B2 (ja) 2014-07-25 2018-01-31 三菱重工業株式会社 部材接合方法及び部材接合システム
US11779985B1 (en) * 2020-11-15 2023-10-10 Herbert U. Fluhler Fabricating method for low cost liquid fueled rocket engines
JP2023065163A (ja) * 2021-10-27 2023-05-12 インターステラテクノロジズ株式会社 ロケットエンジンの燃焼器及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213258A (ja) * 1985-07-10 1987-01-22 Mitsubishi Heavy Ind Ltd 冷却用パネルの接合構造
JP2001001133A (ja) * 1999-06-16 2001-01-09 Denso Corp ろう付け接合方法
JP2001252760A (ja) * 2000-03-10 2001-09-18 Furukawa Electric Co Ltd:The アルミニウム合金組み立て品の短時間ろう付方法
JP2001300721A (ja) * 2000-04-19 2001-10-30 Denso Corp 異種金属のろう付け方法
JP2004535931A (ja) * 2000-11-08 2004-12-02 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー 低融点の鑞付け製品
JP2007038298A (ja) * 2005-08-02 2007-02-15 United Technol Corp <Utc> 異種金属の液相拡散接合

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701670A (en) 1994-06-23 1997-12-30 Boeing North American, Inc. Method of making rocket engine combustion chamber utilizing "slide in" port liner
WO2001066295A1 (fr) 2000-03-10 2001-09-13 The Furukawa Electric Co., Ltd. Procede de brasage de courte duree d'un ensemble en alliage d'aluminium et alliage de metal d'apport de brasage basse temperature
KR100778205B1 (ko) 2000-11-08 2007-11-22 코루스 알루미늄 발쯔프로두크테 게엠베하 브레이징된 구성요소의 조립체를 제조하는 방법
US6829884B2 (en) 2002-11-19 2004-12-14 The Boeing Company Rocket engine combustion chamber having multiple conformal throat supports
DE10337412A1 (de) 2003-08-14 2005-03-10 Daimler Chrysler Ag Verfahren zur Ansteuerung eines Thermostaten
US20060121304A1 (en) * 2004-12-03 2006-06-08 General Electric Company Article protected by a diffusion-barrier layer and a plantium-group protective layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213258A (ja) * 1985-07-10 1987-01-22 Mitsubishi Heavy Ind Ltd 冷却用パネルの接合構造
JP2001001133A (ja) * 1999-06-16 2001-01-09 Denso Corp ろう付け接合方法
JP2001252760A (ja) * 2000-03-10 2001-09-18 Furukawa Electric Co Ltd:The アルミニウム合金組み立て品の短時間ろう付方法
JP2001300721A (ja) * 2000-04-19 2001-10-30 Denso Corp 異種金属のろう付け方法
JP2004535931A (ja) * 2000-11-08 2004-12-02 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー 低融点の鑞付け製品
JP2007038298A (ja) * 2005-08-02 2007-02-15 United Technol Corp <Utc> 異種金属の液相拡散接合

Also Published As

Publication number Publication date
JP6110072B2 (ja) 2017-04-05
JP2013176779A (ja) 2013-09-09
US9427817B2 (en) 2016-08-30
US20150090774A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5527635B2 (ja) アルミニウム系金属の接合方法
US20160288245A1 (en) Repair method and repair material
WO2013129192A1 (ja) ろう付方法
US9383143B2 (en) Metallic thin-film bonding and alloy generation
JP6016095B2 (ja) 接合方法及び接合部品
CA2982021C (en) Method of producing a plate heat exchanger
JP2020015046A (ja) アルミナ分散強化銅のろう付接合方法
JP7116946B2 (ja) 銅錫合金の製造方法
JP2013063458A (ja) 接合方法及び接合部品
JP5473711B2 (ja) 樹脂成形用積層金型およびその製造法
WO2020022046A1 (ja) アルミナ分散強化銅のろう付接合方法
EP3023189B1 (en) Brazing sheet for surface joining
JP5019200B2 (ja) イオン源電極
JP6273175B2 (ja) 部材接合方法及び部材接合システム
WO2014193506A1 (en) Precipitation hardened partial transient liquid phase bond
US20160075119A1 (en) Precipitation hardened partial transient liquid phase bond
CN112453673A (zh) 一种薄壁密排孔柱复杂结构层板的焊接方法
JP2008246583A (ja) 熱圧着方法及び熱圧着装置
JP2016112585A (ja) 面接合用ろう材シート
JP2004181529A (ja) 炭素工具鋼又は炭素鋼と黄銅からなる複合体及びその接合方法
JP2020175404A (ja) アルミナ分散強化銅のろう付接合方法
RU2580255C1 (ru) Способ пайки
JPS58167086A (ja) 拡散接合方法
JP3674860B2 (ja) 純アルミニウムとアルミニウム合金との接合法
KR20120121445A (ko) 금속 클래드재의 계면 확산 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14381287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755832

Country of ref document: EP

Kind code of ref document: A1