WO2013128947A1 - 電力制御システム、電力制御装置、及び電力制御方法 - Google Patents

電力制御システム、電力制御装置、及び電力制御方法 Download PDF

Info

Publication number
WO2013128947A1
WO2013128947A1 PCT/JP2013/001283 JP2013001283W WO2013128947A1 WO 2013128947 A1 WO2013128947 A1 WO 2013128947A1 JP 2013001283 W JP2013001283 W JP 2013001283W WO 2013128947 A1 WO2013128947 A1 WO 2013128947A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
load
charging
control unit
Prior art date
Application number
PCT/JP2013/001283
Other languages
English (en)
French (fr)
Inventor
哲也 竹中
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/382,533 priority Critical patent/US10164436B2/en
Priority to EP13754316.1A priority patent/EP2822139A4/en
Publication of WO2013128947A1 publication Critical patent/WO2013128947A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • Patent Document 1 describes a distributed power generation system in which a storage battery is added to an existing power generation system.
  • an object of the present invention made in view of the above is to provide a control system or the like that enables stable power supply from a solar cell to a load even when the system is shut off.
  • a first control unit that performs control to supply power from a solar cell to a plurality of loads, and charging / discharging of a storage battery that is one of the plurality of loads are controlled.
  • a first control unit that performs output control following power consumption in the plurality of loads, and the second control unit is configured to perform the independent control during the independent operation. While increasing the charging power of the storage battery, an output fluctuation from the solar battery or the first control unit accompanying the increase in the charging power is detected, and charging of the storage battery is controlled based on the detected output fluctuation.
  • the second control unit gradually increases the charging power of the storage battery and monitors the change in the charging power when performing the process of detecting the output fluctuation. The maximum power that can be output by the solar cell or the first control unit is obtained.
  • the second control unit controls the storage battery to be charged on condition that a charge amount in the storage battery is below a reference value.
  • the second control unit controls the storage battery to discharge on the condition that a charge amount in the storage battery exceeds a reference value.
  • the supply of power by the first control unit is stopped when the generated power reaches a predetermined range.
  • the plurality of loads are connected in parallel to the first control unit, and when the second control unit charges the storage battery, the voltage of the storage battery is supplied to a load other than the storage battery.
  • the power supplied to the storage battery is adjusted so as to be lower than the voltage of the generated power.
  • the generated power exceeds the load power consumed by the plurality of loads, a part of the generated power is output to a commercial power supply system, or the generated power reduces the load power.
  • the first control device and the plurality of loads are connected to the commercial power supply system so that a part of the load power is supplied from the commercial power supply system when the power is below, and the second control unit is connected to the commercial power system.
  • charging / discharging is controlled so that power is supplied to the storage battery or not.
  • the solution of the present invention has been described as an apparatus.
  • the present invention can be realized as a method, a program, and a storage medium that stores the program substantially corresponding to these, and the scope of the present invention. It should be understood that these are also included.
  • each step of the method or program uses an arithmetic processing unit such as a CPU or a DSP as necessary in data processing, and the input data, processed / generated data, etc. are stored in an HDD, memory, etc. Is stored in the storage device.
  • a power control method that implements the present invention as a method includes a step of controlling charging / discharging of a storage battery connected to a solar cell system that performs load following control, and increases the charging power of the storage battery during a self-sustaining operation.
  • the said 2nd control part increases the charging power of the said storage battery during self-sustained operation, and the output fluctuation
  • FIG. 6 is a flowchart for explaining an operation procedure for charge control of a load 102 by a power storage power conditioner 106.
  • FIG. 5 is a flowchart illustrating an operation procedure according to discharge control of a load 102 by a power storage power conditioner 106.
  • FIG. 1 shows a configuration example of a distributed power generation system to which a control device according to this embodiment is applied.
  • the distributed power generation system 10 is provided, for example, in a home or various commercial and industrial facilities, and supplies the power generated by the solar cell 103 to loads 100 and 102 in the home and on the premises.
  • Solar cell 103 is configured, for example, such that power generation units having photoelectric conversion cells are connected in a matrix and output a predetermined short-circuit current (for example, 10 A).
  • the type of solar cell 103 is not limited as long as it is capable of photoelectric conversion, such as a silicon-based polycrystalline solar cell, a silicon-based single crystal solar cell, or a thin-film solar cell such as CIGS.
  • the loads 100 and 102 are connected in parallel to the PV power conditioner 104 that controls the electric power extracted from the solar cell 103.
  • the load 100 is a power load that consumes power.
  • various electric appliances such as air conditioners, microwave ovens, and televisions used in homes, machines such as air conditioners and lighting fixtures used in commercial and industrial facilities, and lighting. Facilities, etc.
  • the load 100 is an example of a first load in which power to be supplied in the present embodiment varies.
  • the load 102 is a load that can adjust the input / output power and absorb the input power, and is a storage battery that can be charged and discharged, for example.
  • the storage battery is, for example, a lithium battery in which a plurality of cells are connected in series, a lead battery, or the like.
  • the load 102 is not limited to a storage battery as long as it is an electric load that absorbs adjustable input power, and may be, for example, a hot water supply device.
  • the load 102 is an example of a second load capable of adjusting the power to be supplied in the present embodiment.
  • the power consumed by the load 100 and the charging power for the load 102 are included in the load power to be supplied to the entire loads 100 and 102.
  • the current passing through either or both of the DC / DC converter 116 and the DC / AC inverter 118 is controlled, so that the load power of the generated power of the solar cell 103 is changed.
  • Control is performed so that the corresponding power is output. That is, power following the load power is output from the generated power of the solar cell 103.
  • MPPT Maximum Power Point Tracking
  • the PV controller 120 outputs a control signal for controlling these operations to DC / DC converter 116 and DC / AC inverter 118.
  • the PV control unit 120 is, for example, a microcomputer, and includes a storage medium that stores a control program and a CPU (Central Processing Unit) that executes a control procedure according to the control program.
  • a control program for example, a microcomputer, and includes a storage medium that stores a control program and a CPU (Central Processing Unit) that executes a control procedure according to the control program.
  • CPU Central Processing Unit
  • the distributed power generation system 10 further includes a storage power conditioner (power conditioner) 106 that controls charging and discharging of the load 102 that is a storage battery.
  • a storage power conditioner power conditioner
  • bidirectional DC / AC inverter 124 converts alternating current supplied from solar cell 103 into direct current and outputs it to directional DC / DC converter 122, and converts direct current into alternating current to load 100. Output.
  • the bidirectional DC / DC converter 122 depressurizes and outputs the DC voltage from the bidirectional DC / AC inverter 124 to the load 102, and boosts the DC voltage of the load 102 to generate the bidirectional DC / AC inverter 124. Output to.
  • the bidirectional DC / DC converter 122 and / or the bidirectional DC / AC inverter 124 are examples of the “regulator”.
  • the power storage control unit 126 outputs a control signal for controlling these operations to the bidirectional DC / DC converter 122 and the bidirectional DC / AC inverter 124.
  • the power storage control unit 126 is, for example, a microcomputer, and includes a storage medium that stores a control program and a CPU that executes a control procedure according to the control program.
  • the power storage control unit 126 is an example of a “control unit” in the present embodiment.
  • the distributed power generation system 10 includes a direct current sensor 108 that detects a direct current input from the solar cell 103 to the PV power conditioner 104. Further, a DC voltage sensor 110 that detects a DC voltage input from the solar battery 103 to the PV power conditioner 104 is provided. Detection data of the DC current sensor 108 and the DC voltage sensor 110 is transmitted to the power storage control unit 126 of the power storage power conditioner 106.
  • the distributed power generation system 10 includes an AC current sensor that detects an AC current output from the PV power conditioner 104 to the loads 100 and 102 instead of or in addition to the DC current sensor 108 and the DC voltage sensor 110. 112 and an AC voltage sensor 114 that detects an AC voltage output from the PV power conditioner 104 to the loads 100 and 102 may be provided.
  • Data detected by the AC current sensor 112 and the AC voltage sensor 114 is transmitted to the power storage control unit 126 of the power storage power conditioner 106. Then, the power storage control unit 126 acquires the output current of the solar cell 103 based on the detection data transmitted from either or both of the direct current sensor 108 and the alternating current sensor 112. In addition, the power storage control unit 126 acquires the output voltage of the solar battery 103 based on detection data transmitted from either or both of the DC voltage sensor 110 and the AC voltage sensor 114.
  • the distributed power generation system 10 includes a voltage monitoring unit 134 that periodically detects the voltage of the load 102 (for example, every several tens of milliseconds).
  • the voltage monitoring unit 134 may be provided outside the power storage power conditioner 106 or may be provided inside.
  • the detection data of the voltage monitoring unit 134 is transmitted to the power storage control unit 126.
  • the electrical storage control part 126 acquires the voltage of the load 102 from this detection data.
  • FIG. 2 is a diagram for explaining the generated power of the solar cell 103.
  • FIG. 2 shows a current / voltage characteristic (solid line) IV and a power / voltage characteristic (dotted line) PV of the generated power of the solar cell 103 at a certain amount of solar radiation.
  • the horizontal axis represents voltage, and the vertical axis represents current and power.
  • the relationship between the current / voltage characteristic IV and the power / voltage characteristic PV is as follows.
  • the intercept of the voltage axis and the intercept of the current axis correspond to the open circuit voltage Vo and the short circuit current Is of the solar cell 103, respectively.
  • the generated power of the solar cell 103 increases as the voltage drops from the open voltage Vo to the voltage Vc, and substantially matches the short-circuit current Is when the voltage falls below the voltage Vc. It has the characteristic.
  • the power / voltage characteristic PV draws a substantially quadratic curve in which the power is maximum Pmax at the voltage Vc. This electric power Pmax is generated electric power that can be supplied by the solar cell 103.
  • the current / voltage characteristic IV and the corresponding power / voltage characteristic PV vary depending on the sunlight. That is, when the sunshine is strong, the current / voltage characteristic IV and the power / voltage characteristic PV are shifted upward in the drawing, and when the sunshine is weak, they are shifted downward.
  • the operating point of the output power of the solar cell 103 will be described.
  • the output power of the solar cell 103 is controlled by the PV power conditioner 104 so as to follow the load power.
  • the load power is P_W1.
  • the PV power conditioner 104 performs control so that the output current of the solar battery 103 becomes the current I_W1 corresponding to the load power P_W1.
  • the operating point W1 at this time is shown on the power / voltage characteristic PV.
  • the solar cell 103 since the load power P_W1 is smaller than the generated power Pmax, the solar cell 103 has a surplus power for outputting power corresponding to the difference D1 between the generated power Pmax and the load power P_W1.
  • the load power increases For example, in addition to the microwave oven that is the load 100, it is assumed that the air conditioner starts operating and the power consumption increases. Then, the sum of the power consumption of the load 100 and the charging power of the load 102 which is a storage battery increases to P_W2. Then, the PV power conditioner 104 controls the output current of the solar cell 103 to be a current I_W2 corresponding to the load power P_W2, and the operating point W1 on the power / voltage characteristic PV shifts to W2.
  • the solar cell 103 has an output available capacity corresponding to the difference D2 between the generated power Pmax and the load power P_W2. Therefore, load power to the loads 100 and 102 is stably supplied.
  • the load power P_W2 to be supplied becomes larger than the generated power Pmax, the power supply is insufficient. Therefore, the PV power conditioner 104 stops operating when the load power P_W2 to be supplied becomes larger than the generated power Pmax or when such a situation is predicted.
  • Such a time is, for example, a time when the load power P_W2 reaches a predetermined range (an arbitrary power range determined by an experiment or the like) from the generated power Pmax, which is considered to substantially match the generated power Pmax.
  • the time point may be a time point when the increase width of the output power or the output current decreases below a certain value (an arbitrary value determined by an experiment or the like such that the increase width is considered to be substantially zero).
  • PV power conditioner 104 stops operation, it will interfere with supply of load electric power.
  • the power storage power conditioner 106 obtains load power and generated power from the output power of the solar cell 103, and controls charging / discharging of the load 102 according to the remaining power that can be output. Specifically, if there is no risk that the increase in load power exceeds the surplus power that can be output, charging of the load 102 is performed, and charging of the load 102 is stopped when there is a risk that the surplus power may be exceeded. By doing so, the charge power is allocated to supply of the load 100. If the power supply to the load 100 is still insufficient, the load 102 can be discharged to increase the supply amount of the load power. By doing so, it is possible to avoid an inconvenient operation in which the PV power conditioner stops the output of the solar cell 103 even when the load power is supplied if the charged power is used, and the stable supply of the load power is possible. Can be made possible.
  • the power storage control unit 126 outputs the output current acquired from the DC current sensor 108 or the AC current sensor 112 and the DC voltage sensor 110 or the AC voltage sensor.
  • the load power is derived from the output voltage acquired from 114.
  • the load power derived here corresponds to the required load power required for the solar cell 103.
  • the bidirectional DC / DC converter 122 gradually increases the charging power to the load 102 while acquiring the output power. Until the output power of the solar cell 103 reaches the generated power Pmax, the operating point of the output power increases toward the generated power Pmax as the charging power increases (arrow 21). At this time, the increase amount of the output power per unit increase amount of the charging power gradually decreases as the operating point approaches the generated power Pmax. When the charging power is further increased and the load power exceeds the generated power Pmax, the output power of the solar cell 103 starts to decrease (22).
  • the bidirectional DC / DC converter 122 stops charging the load 102, and from the output power before the charging is stopped, the power storage control unit 126 derives the generated power Pmax.
  • the reference value used for such determination is obtained in advance through experiments or the like, for example, and stored in a nonvolatile storage medium in the power storage control unit 126 or the like.
  • the reference value is set to “0”, and the generated power Pmax can be derived when the output power decreases, that is, when the operating point passes the generated power Pmax.
  • the method of monitoring the increase amount of the output power of the solar cell 103 was shown as a method of obtaining the generated power, the increase amount of the output current of the solar cell 103 was monitored, and the increase amount gradually decreased to set the reference value. You may obtain
  • the above procedure is executed periodically (for example, every several tens of millimeters to several tens of seconds).
  • FIG. 3 is a flowchart for explaining an operation procedure for charging control of the load 102 by the power storage power conditioner 106.
  • the procedure of FIG. 3 corresponds to the operation procedure of the power storage control unit 126 of the power storage power conditioner 106, and is executed at a predetermined cycle (for example, a cycle of several tens of milliseconds to several seconds).
  • the power storage control unit 126 acquires the storage battery, that is, the charge amount of the load 102 (Step 301). For example, the power storage control unit 126 derives the charge amount (remaining amount) based on the voltage of the load 102 acquired from the voltage monitoring unit 134. When the amount of charge is equal to or greater than the predetermined threshold value T1 (Yes in Step 302), the power storage control unit 126 ends the process without performing charging.
  • the threshold T1 an arbitrary value / unit indicating a sufficient charge amount is used as the threshold T1.
  • the threshold value T1 is obtained in advance through experiments or the like.
  • the power storage control unit 126 derives load power (Step 303) and derives generated power (Step 304).
  • the generated power is derived by the power storage control unit 126, for example, by the method shown in FIG.
  • Step 305 it is determined whether the generated power has a surplus.
  • the power storage control unit 126 derives the load power by the method shown in FIG. 2, and determines whether or not the load power exceeds the reference power corresponding to the generated power.
  • the reference power for example, power obtained by subtracting a certain amount of surplus from the generated power, or power obtained by multiplying the generated power by a predetermined ratio so as to leave a certain amount of surplus is used.
  • the remaining power is a value larger than the maximum power consumption of the power consumption of the load 100 in the home where the distributed power generation system 10 is installed.
  • the load with the largest power consumption is an air conditioner with a power consumption of 600 W
  • the air conditioner is operated while using a microwave oven with a power consumption of 500 W
  • the load power increases to 1100 W by the power consumption of the air conditioner.
  • the load power does not exceed the generated power.
  • the load power 500W when the microwave oven is used is equal to or less than the reference power 900W in consideration of the additional 600W by the air conditioner, the load power can be supplied within the generated power even if the air conditioner is added. Therefore, in that case, even if the load power has increased to some extent by charging the load 102, it can be determined that the probability that the load power exceeds the generated power immediately after the additional load power increases is low. That is, it can be determined that the generated power has a surplus. Conversely, when the load power exceeds the reference power, it can be determined that there is a high probability that the load power exceeds the generated power due to an additional increase in load power. That is, it can be determined that the generated power has no surplus.
  • the power storage control unit 126 ends the process without performing charging. By doing so, stable power supply to the load 100 can be enabled without spending load power on charging power. Even when the load 102 is a power load other than the storage battery, stable power supply to the load 100 can be ensured by stopping the power supply to the load 102.
  • step Step 307 it is preferable that the power storage control unit 126 causes the bidirectional DC / DC converter 122 to control the charging power so that the voltage of the load 102 is lower than the output voltage of the solar battery 103. By doing so, it is possible to prevent a current from flowing from the load 102 to the load 100 before the discharge is started in a procedure to be described later, so that power is not wasted.
  • Step 302 of FIG. 3 although it is determined in advance that charging is performed according to the amount of charge of the load 102, the remaining amount of generated power is determined to be charged in the subsequent procedure, the amount of charge is determined. Is sufficient, and it is possible to avoid a situation where charging is not necessary (or impossible). Therefore, the CPU load and processing time required for useless processing can be omitted.
  • the present embodiment also includes a case in which the determination procedure in step Step 302 is omitted, and the determination is made based on whether or not the generated power has a surplus power. Even in that case, when there is no surplus in generated power, stable power supply to the load 100 can be achieved without spending load power on charging power.
  • FIG. 4 is a flowchart for explaining an operation procedure related to discharge control of the load 102 by the power storage power conditioner 106.
  • the procedure in FIG. 4 corresponds to the operation procedure of the power storage control unit 126 of the power storage power conditioner 106, and is executed at a predetermined cycle (for example, a cycle of several tens of milliseconds to several seconds).
  • the power storage control unit 126 derives the storage battery, that is, the charge amount of the load 102 (Step 401). For example, the power storage control unit 126 obtains the charge amount (remaining amount) in the same manner as in Step 301 in FIG. When the charge amount is less than the predetermined threshold T2 (No in Step 402), the power storage control unit 126 ends the process without discharging.
  • the threshold value T2 an arbitrary value / unit indicating a sufficient charge amount that can be discharged is used.
  • the threshold value T2 is obtained in advance by experiments or the like.
  • the power storage control unit 126 derives load power (Step 403) and derives generated power (Step 404).
  • the power storage control unit 126 derives the generated power by, for example, the method shown in FIG.
  • Step 405 it is determined whether the generated power has a surplus.
  • the power storage control unit 126 ends the process without discharging.
  • the load power is stably supplied within the generated power, it is not necessary to discharge the load 102 to supplement the load power.
  • the charge amount is insufficient when the procedure of FIG. 3 is executed, charging is executed.
  • the power storage control unit 126 starts discharging the load 102 (Step 406). By doing so, it is possible to enable stable power supply to the load 100 even when power supply to the load power is insufficient only by stopping charging.
  • step Step 405 instead of the direct current and voltage input to the PV power conditioner 104 acquired via the direct current sensor 108 and direct current voltage sensor 110, the alternating current sensor 112 and alternating current voltage sensor 114 are used. It is preferable to obtain the load power using the alternating current and voltage output from the PV power conditioner 104 acquired in this manner. This is because a quicker response is possible in the case where the discharge is required because the PV power conditioner 104 does not perform the boosting or conversion process.
  • Step 402 of FIG. 4 it is determined in advance whether or not to discharge according to the amount of charge of the load 102, so that the amount of charge is determined even though it is determined in the subsequent step that the generated power is discharged without remaining power. Can be avoided because of insufficient discharge. Therefore, it is possible to avoid the CPU load and processing time required for useless processing.
  • the present embodiment also includes a case in which the determination step of step Step 402 is omitted, and a determination is made as to whether or not to discharge based on whether or not the generated power has sufficient power. Even in this case, if the load 102 is charged to some extent, it can be compensated by discharging when the generated power has no surplus, and stable power supply to the load 100 can be achieved. .
  • stable power supply from the solar cell to the load can be achieved even when the linkage with the system is interrupted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

 太陽電池からの電力を複数の負荷に供給する制御を行う第1制御部と、前記複数の負荷の一つである蓄電池の充放電を制御する第2制御部と、を備えた電力制御システムにおいて、前記第1制御部は、前記複数の負荷での消費電力に追従した出力制御を行い、前記第2制御部は、自立運転中に前記蓄電池の充電電力を増加させるとともに当該充電電力の増加に伴った前記太陽電池あるいは前記第1制御部からの出力変動を検出し、当該検出した出力変動に基づいて前記蓄電池の充電を制御することで、系統が遮断されたときであっても、所定の負荷に供給していた分の負荷電力で供給電力を補充でき、他の負荷への安定的な電力供給が可能になる。

Description

電力制御システム、電力制御装置、及び電力制御方法 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2012-47088号(2012年3月2日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、太陽電池から負荷への電力供給を制御する制御システム、制御装置、及び制御方法に関する。
 環境問題や安全性への要求を背景として、太陽光や風力による発電が注目されている。たとえば、各家庭に太陽光発電システムを導入する例が増加しつつある。太陽光発電システムでは、太陽電池による発電電力が家庭内の電力負荷(以下、単に負荷という)に供給される。そして、発電電力が負荷の消費電力を上回るときには、余剰な発電電力は商用電源系統(以下、単に系統という)に対し逆潮流により売却される。そして、負荷の消費電力が増加して発電電力を上回るときは、系統からの電力供給により不足分が補われる。
 また、近年、災害などによる系統側の不測の停電時や作業停止時にも負荷への電力供給を確保できるようにするためや、夜間電力を有効利用するために、発電された余剰な電力を予め蓄電池に蓄えておく分散型発電システムが注目されている。特許文献1には、既存の発電システムに蓄電池を追加した分散型発電システムについて記載されている。
特開2005-130572号公報
 既存の太陽光発電システムに蓄電池を追加した分散型発電システムでは、太陽光発電を制御(調節を含む)するパワーコンディショナ(以下、PV(Photovoltaic)パワコンという)にとって、蓄電池が追加的な負荷となる。よって、その分、負荷全体に供給すべき電力が増加する。以下では、電器製品などの負荷が消費する電力を消費電力、蓄電池を充電するための電力を充電電力といい、蓄電池を含む負荷全体に供給すべき電力、すなわち消費電力と充電電力とを含む電力を、負荷電力という。
 ところで、分散型発電システムでは、停電時に系統との連係が遮断されて逆潮流ができなくなると、PVパワコン側がいわゆる自立運転を行う。自立運転では、余剰な発電電力による不要な電圧上昇を抑えるために、負荷電力に追従した電力が太陽電池の発電電力から出力されるような制御が行われる。かかる状況下で、たとえば同時に多くの電器製品を稼動させて負荷の消費電力が急増すると、これに追従して太陽電池からの出力電力が急増する。そして、出力電力が発電電力を超えることが予見されると、PVパワコンが出力電力を停止する安全寄りの制御を行い、負荷電力の供給ができなくなる。特に、蓄電池を追加的な負荷として構成された分散型発電システムにおいては、蓄電池の充電電力が追加された分、発電電力のうち出力可能な余力が小さくなるので、かかる事態が生じやすくなる。
 そこで、上記に鑑みてなされた本発明の目的は、系統が遮断されたときであっても太陽電池から負荷への安定的な電力供給を可能にする制御システム等を提供することにある。
 上記課題を解決するための本発明の一側面では、太陽電池からの電力を複数の負荷に供給する制御を行う第1制御部と、前記複数の負荷の一つである蓄電池の充放電を制御する第2制御部と、を備えた電力制御システムにおいて、前記第1制御部は、前記複数の負荷での消費電力に追従した出力制御を行い、前記第2制御部は、自立運転中に前記蓄電池の充電電力を増加させるとともに当該充電電力の増加に伴った前記太陽電池あるいは前記第1制御部からの出力変動を検出し、当該検出した出力変動に基づいて前記蓄電池の充電を制御する。
 上記側面の一態様では、前記第2制御部は、前記出力変動に基づき、前記太陽電池あるいは第1制御部が供給可能な電力である発電電力を求め、前記蓄電池以外の複数の負荷が消費する電力が前記発電電力より大きいときに、前記蓄電池の電力を前記蓄電池以外の負荷へ放電させるように前記蓄電池の充放電を制御する。
 上記側面の別の態様では、前記第2制御部は、前記出力変動を検出する処理を、定期的に行う。
 上記側面のさらに別の態様では、前記第2制御部は、前記出力変動を検出する処理を行うときに、前記蓄電池の充電電力を徐々に増加するとともに、当該充電電力の変化を監視することにより、前記太陽電池あるいは前記第1制御部が出力できる最大電力を求める。
 上記側面のさらに別の態様では、前記第2制御部は、前記蓄電池における充電量が基準値を下回ることを条件として、前記蓄電池を充電するよう制御する。
 上記側面のさらに別の態様では、前記第2制御部は、前記蓄電池における充電量が基準値を上回ることを条件として、前記蓄電池が放電するよう制御する。
 上記側面のさらに別の態様では、前記発電電力が所定の範囲内に達すると前記第1制御部による電力の供給が停止される。
 上記側面のさらに別の態様では、前記複数の負荷が、前記第1制御部に対し並列接続され、前記第2制御部は、蓄電池を充電するとき、前記蓄電池の電圧が蓄電池以外の負荷に供給される電力の電圧より低くなるように前記蓄電池に供給する電力を調節する。
 上記側面のさらに別の態様では、前記発電電力が、前記複数の負荷が消費する負荷電力を上回るときには当該発電電力の一部が商用電源系統に出力され、または、前記発電電力が前記負荷電力を下回るときには前記商用電源系統から前記負荷電力の一部が供給されるように、前記第1制御装置及び前記複数の負荷が前記商用電源系統と接続され、前記第2制御部は、前記商用電源系統との接続が遮断されたときに、前記蓄電池に対する電力の供給を行う、または行わないように充放電を制御する。
 本発明の別の側面では、負荷追従制御を行う太陽電池システムに接続される蓄電池の充放電を制御する制御部を備えた電力制御装置において、自立運転中に、前記制御部は、前記蓄電池の充電電力を増加させるとともに当該充電電力の増加に伴った太陽電池システムの出力変動を検出し、当該検出した出力変動に基づいて前記蓄電池の充電を制御する。
 上述したように本発明の解決手段を装置として説明してきたが、本発明はこれらに実質的に相当する方法、プログラム、プログラムを記録した記憶媒体としても実現し得るものであり、本発明の範囲にはこれらも包含されるものと理解されたい。なお、方法やプログラムの各ステップは、データの処理においては必要に応じて、CPU、DSPなどの演算処理装置を使用するものであり、入力したデータや加工・生成したデータなどをHDD、メモリなどの記憶装置に格納するものである。
 例えば、本発明を方法として実現した電力制御方法は、負荷追従制御を行う太陽電池システムに接続される蓄電池の充放電を制御する工程と、自立運転中に、前記蓄電池の充電電力を増加させるとともに当該充電電力の増加に伴った太陽電池システムの出力変動を検出し、当該検出した出力変動に基づいて前記蓄電池の充電を制御工程とを含む。
 上記側面の1つによれば、前記第2制御部は、自立運転中に前記蓄電池の充電電力を増加させるとともに当該充電電力の増加に伴った前記太陽電池あるいは前記第1制御部からの出力変動を検出し、当該検出した出力変動に基づいて前記蓄電池の充電を制御するので、系統が遮断されたときであっても太陽電池から負荷への安定的な電力供給が可能になる。
本実施形態における制御装置が適用される分散型発電システムの構成例を示す図である。 太陽電池103の発電電力について説明する図である。 蓄電パワコン106による負荷102の充電制御にかかる動作手順を説明するフローチャート図である。 蓄電パワコン106による負荷102の放電制御にかかる動作手順を説明するフローチャート図である。
 以下、図面にしたがって本発明の実施の形態について説明する。但し、本発明の技術的範囲はこれらの実施の形態に限定されず、特許請求の範囲に記載された事項とその均等物まで及ぶものである。
 図1は、本実施形態における制御装置が適用される分散型発電システムの構成例を示す。この分散型発電システム10は、たとえば、家庭や各種商工業施設に設けられ、太陽電池103の発電電力を家庭内や構内の負荷100、102に供給する。太陽電池103は、たとえば、光電変換セルを有する発電部がマトリクス状に接続され、所定の短絡電流(たとえば10A)を出力するように構成される。太陽電池103は、シリコン系多結晶太陽電池、シリコン系単結晶太陽電池、あるいはCIGS等薄膜系太陽電池等、光電変換可能なものであればその種類は制限されない。
 負荷100、102は、太陽電池103から取り出す電力を制御するPVパワコン104に対して並列接続される。負荷100は、電力を消費する電力負荷であり、たとえば家庭内で使用されるエアコン、電子レンジ、テレビ等の各種電器製品や、商工業施設で使用される空調機や照明器具などの機械、照明設備等である。負荷100が、本実施形態における供給すべき電力が変動する第1の負荷の例である。また、負荷102は、入出力される電力が調整可能であって、入力される電力を吸収するような負荷であり、たとえば、充放電可能な蓄電池である。蓄電池は、たとえば、複数のセルが直列接続されたリチウム電池や、鉛電池等である。以下、負荷102が蓄電池である場合を例として説明するが、負荷102は、調整可能な入力電力を吸収する電気負荷であれば、蓄電池に限られず、たとえば、給湯装置等であってもよい。負荷102が、本実施形態における供給すべき電力を調節可能な第2の負荷の例である。そして、負荷100が消費する電力と、負荷102の充電電力とが、負荷100、102全体に対し供給すべき負荷電力に含まれる。
 この分散型発電システム10は、系統12に接続される。分散型発電システム10は、系統12との連係により、太陽電池103の発電電力が負荷100、102に供給すべき負荷電力を上回るときは、余剰の発電電力を系統12に逆潮流させる。また、太陽電池103の発電電力が負荷電力を下回るときには、系統12から不足分の電力が供給される。しかし、たとえば災害などで系統12が停電すると、系統12との連係が遮断され、系統への逆潮流や、系統からの電力供給ができなくなる。以下に述べる本実施形態は、系統12との連係が遮断された場合に関する。
 分散型発電システム10において、PVパワコン104は、太陽電池103が発電した発電電力から取り出す電力を制御する。PVパワコン104では、DC/DCコンバータ116が太陽電池103の直流電圧を昇圧する。たとえば、太陽電池103の出力電圧が60~80Vのとき、太陽電池103の直流電圧は300~400Vに昇圧される。そして、DC/ACインバータ118が、直流電圧を交流に変換する。たとえば、直流電圧は、一般家庭用に、単相3線式正弦波出力の100V/200Vに変換される。このようにして、太陽電池103の発電電力は、DC/DCコンバータ116とDC/ACインバータ118を介して負荷100、102へ供給される。このとき、PV制御部120の制御のもと、DC/DCコンバータ116、DC/ACインバータ118の両方またはいずれかが通過する電流を制御することで、太陽電池103の発電電力のうち負荷電力に応じた電力が出力されるように制御される。すなわち、負荷電力に追従した電力が太陽電池103の発電電力から出力される。なお、系統12からの電力が供給され連係が遮断されていない場合には、太陽電池103からの出力電力が最大となるようMPPT(Maximum Power Point Tracking:最大電力追従)制御が行われる。
 PV制御部120は、DC/DCコンバータ116とDC/ACインバータ118に対しこれらの動作を制御するための制御信号を出力する。PV制御部120は、たとえば、マイクロコンピュータであり、制御プログラムを格納する記憶媒体や制御プログラムにしたがって制御手順を実行するCPU(Central Processing Unit)を有する。
 分散型発電システム10は、さらに蓄電池である負荷102の充放電を制御する、蓄電パワーコンディショナ(パワコン)106を有する。蓄電パワコン106では、双方向DC/ACインバータ124は、太陽電池103から供給される交流を直流に変換して方向DC/DCコンバータ122に出力し、また、直流を交流に変換して負荷100へ出力する。また、双方向DC/DCコンバータ122は、双方向DC/ACインバータ124からの直流電圧を減圧して負荷102に出力し、また、負荷102の直流電圧を昇圧して双方向DC/ACインバータ124に出力する。このとき、蓄電制御部126の制御のもと、双方向DC/DCコンバータ122、双方向DC/ACインバータ124の両方またはいずれかが通過する電流を制御することで、蓄電池である負荷102への電力供給を制御する。すなわち、充放電が制御される。本実施形態では、双方向DC/DCコンバータ122、双方向DC/ACインバータ124の両方またはいずれかが「調節部」の例である。
 蓄電制御部126は、双方向DC/DCコンバータ122と双方向DC/ACインバータ124に対し、これらの動作を制御するための制御信号を出力する。蓄電制御部126は、たとえば、マイクロコンピュータであり、制御プログラムを格納する記憶媒体や、制御プログラムにしたがって制御手順を実行するCPUを有する。蓄電制御部126が、本実施形態における「制御部」の例である。
 かかる双方向DC/DCコンバータ122、双方向DC/ACインバータ124、及び蓄電制御126を備える蓄電パワコン106が、本実施形態における「制御装置」に対応する。
 分散型発電システム10には、太陽電池103からPVパワコン104に入力される直流電流を検知する直流電流センサ108が備えられる。さらに、太陽電池103からPVパワコン104に入力される直流電圧を検知する直流電圧センサ110が備えられる。直流電流センサ108、直流電圧センサ110の検知データは、蓄電パワコン106の蓄電制御部126に伝送される。また、分散型発電システム10には、直流電流センサ108、直流電圧センサ110の代わりに、または、これに加えて、PVパワコン104から負荷100、102に出力される交流電流を検知する交流電流センサ112と、PVパワコン104から負荷100、102に出力される交流電圧を検知する交流電圧センサ114を備えてもよい。交流電流センサ112、交流電圧センサ114の検知データは、蓄電パワコン106の蓄電制御部126に伝送される。そして、蓄電制御部126は、直流電流センサ108、交流電流センサ112のいずれかまたは両方から伝送される検知データに基づき、太陽電池103の出力電流を取得する。また、蓄電制御部126は、直流電圧センサ110、交流電圧センサ114のいずれかまたは両方から伝送される検知データに基づき、太陽電池103の出力電圧を取得する。
 さらに、分散型発電システム10には、負荷102の電圧を定期的(たとえば数十ミリ秒ごと)に検知する電圧監視部134が備えられる。電圧監視部134は、蓄電パワコン106の外部に設けられてもよいし、内部に設けられてもよい。電圧監視部134の検知データは、蓄電制御部126に伝送される。そして、蓄電制御部126が、この検知データから負荷102の電圧を取得する。
 図2は、太陽電池103の発電電力について説明する図である。図2には、ある日射量での、太陽電池103の発電電力の電流・電圧特性(実線)IVと、電力・電圧特性(点線)PVが示される。横軸は電圧、縦軸は電流及び電力を示す。
 電流・電圧特性IVと、電力・電圧特性PVの関係は、次のとおりである。電流・電圧特性IVにおいて、電圧軸の切片と電流軸の切片が、それぞれ太陽電池103の開放電圧Voと短絡電流Isに対応する。電流・電圧特性IVに示されるように、太陽電池103の発電電力は、電圧が開放電圧Voから電圧Vcに降下するにつれて電流が上昇し、電圧が電圧Vcを下回ると短絡電流Isと略一致するという特性を有する。これに対応して、電力・電圧特性PVは、電圧Vcで電力が最大Pmaxとなる略二次曲線を描く。この電力Pmaxが、太陽電池103が供給可能な発電電力である。なお、かかる電流・電圧特性IVと、これに対応する電力・電圧特性PVは、日照によって変動する。すなわち、日照が強いときは、図面における上方に電流・電圧特性IV、電力・電圧特性PVがシフトし、日照が弱いときは、下方にシフトする。
 ここで、太陽電池103の出力電力の動作点について説明する。上述したように、太陽電池103の出力電力は、PVパワコン104により負荷電力に追従するように制御される。たとえば、いま、負荷100である電子レンジの消費電力と、蓄電池である負荷102の充電電力の合計、すなわち負荷電力がP_W1であるとする。このとき、PVパワコン104は、太陽電池103の出力電流が、負荷電力P_W1に対応する電流I_W1になるように制御する。このときの動作点W1が電力・電圧特性PV上に示される。このとき、発電電力Pmaxより負荷電力P_W1が小さいので、太陽電池103は、発電電力Pmaxと負荷電力P_W1の差分D1に対応する電力を出力する余力を有する。
 次に、負荷電力が増加した場合について説明する。たとえば、負荷100である電子レンジに加え、エアコンが稼動を開始し消費電力が増加したとする。すると、負荷100の消費電力と、蓄電池である負荷102の充電電力の合計が、P_W2に増加する。すると、PVパワコン104により太陽電池103の出力電流が、負荷電力P_W2に対応する電流I_W2になるように制御され、電力・電圧特性PV上の動作点W1がW2に移行する。このとき、図示するように、発電電力Pmaxより負荷電力P_W2がまだ小さければ、太陽電池103は、発電電力Pmaxと負荷電力P_W2の差分D2に対応する出力可能な余力を有する。よって、負荷100、102に対する負荷電力は安定的に供給される。しかし、発電電力Pmaxより供給すべき負荷電力P_W2が大きくなると、電力供給に不足が生じる。よって、発電電力Pmaxより供給すべき負荷電力P_W2が大きくなった時点、または、かかる事態が予見される時点で、PVパワコン104が動作を停止する。かかる時点は、たとえば、発電電力Pmaxとほぼ一致するとみなされるような、発電電力Pmaxから所定の範囲(実験等により定められる任意の電力の範囲)に、負荷電力P_W2が達した時点である。または、かかる時点は、出力電力や出力電流の増加幅が一定値(増加幅が実質的にゼロとみなされるような、実験等により定められる任意の値)以下に減少した時点であってもよい。そして、PVパワコン104が動作を停止すると、負荷電力の供給に支障を来たすことになる。
 そこで、本実施形態では、蓄電パワコン106が、太陽電池103の出力電力から負荷電力と発電電力を求め、出力可能な電力の余力に応じて負荷102の充放電を制御する。具体的には、負荷電力の増加が出力可能な余力を上回るおそれがなければ、負荷102の充電を行い、余力を上回るおそれがあるときに、負荷102の充電を停止する。そうすることで、充電電力分を負荷100の供給に充てる。それでも負荷100への電力供給が不足しそうなときには、負荷102を放電することで、負荷電力の供給量を増加させることができる。そうすることで、充電した電力を用いれば負荷電力が供給されたにもかかわらずPVパワコンが太陽電池103の出力を停止してしまう、といった不都合な動作を回避でき、負荷電力の安定的な供給を可能にできる。
 ここで、負荷電力と発電電力の求め方について説明する。まず、双方向DC/DCコンバータ122が負荷102への充電を停止した状態で、蓄電制御部126が、直流電流センサ108または交流電流センサ112から取得した出力電流と直流電圧センサ110または交流電圧センサ114から取得した出力電圧とから負荷電力を導出する。ここで導出される負荷電力が、太陽電池103に要求される要求負荷電力に対応する。
 次に、蓄電制御部126は、出力電力を取得しながら、双方向DC/DCコンバータ122が負荷102への充電電力を徐々に増加させる。太陽電池103の出力電力が発電電力Pmaxに達するまでは、充電電力が増加するに従い、出力電力の動作点が発電電力Pmaxに向けて増加する(矢印21)。このとき、充電電力の単位増加量あたりの出力電力の増加量は、動作点が発電電力Pmaxに近づくにつれて漸減する。そして、さらに充電電力を増加させ、負荷電力が発電電力Pmaxを超えると、太陽電池103の出力電力は減少し始める(22)。よって、たとえば、出力電力の増加量が所定の基準値を下回った時点で、双方向DC/DCコンバータ122が負荷102への充電を停止し、充電を停止する前の出力電力から、蓄電制御部126が発電電力Pmaxを導出する。
 かかる判定に用いる基準値は、たとえば、実験等で予め求められ、蓄電制御部126内の不揮発性記憶媒体などに格納される。なお、基準値を「0」とし、出力電力が減少した時点で、すなわち、動作点が発電電力Pmaxを通過した時点で発電電力Pmaxを導出することもできる。ただし、負荷電力の安定的な供給に資するうえでは、基準値を「0」より大きい値に設定することが好適である。なお、発電電力の求め方として、太陽電池103の出力電力の増加量を監視する方法を示したが、太陽電池103の出力電流の増加量を監視して、増加量が漸減して基準値を下回ったときの出力電流と電圧とから発電電力を求めてもよい。
 なお、太陽電池103の発電電力は日射により変化するので、上記のような手順は定期的(たとえば、数十ミリ~数十秒ごと)に実行される。
 次に、上記のようにして求めた発電電力と負荷電力とに基づき、発電電力の余力に応じて負荷102への電力供給を制御する手順について、図3、4を用いて説明する。
 図3は、蓄電パワコン106による負荷102の充電制御にかかる動作手順を説明するフローチャート図である。図3の手順は、蓄電パワコン106の蓄電制御部126の動作手順に対応し、所定の周期(たとえば、数十ミリ秒~数秒周期)で実行される。
 まず、蓄電制御部126は、蓄電池、すなわち負荷102の充電量を取得する(Step301)。たとえば、蓄電制御部126は、電圧監視部134から取得した負荷102の電圧に基づき、充電量(残量)を導出する。充電量が所定の閾値T1以上のとき(Step302のYes)、蓄電制御部126は、充電を行わず処理を終了する。ここで、閾値T1は、十分な充電量を示す任意の値・単位が用いられる。かかる閾値T1は、予め実験等で求められる。一方、充電量が所定の閾値T1未満のとき(Step302のNo)、蓄電制御部126は、負荷電力を導出し(Step303)、発電電力を導出する(Step304)。蓄電制御部126、たとえば、図2で示した方法により、発電電力を導出する。
 そして、発電電力に余力があるかが判定される(Step305)。たとえば、蓄電制御部126は、図2で示した方法により負荷電力を導出し、発電電力に対応する基準電力を負荷電力が上回るか否かを判定する。
 基準電力は、たとえば、発電電力からある程度の余力を差し引いた電力、またはある程度の余力を残すように発電電力に所定の割合を乗じた電力が用いられる。ある程度の余力は、たとえば、分散型発電システム10が設置される家庭内における負荷100の消費電力うち、最大の消費電力より大きい値であることが好適である。
 たとえば、分散型発電システム10が設置される家庭において消費電力が最大の負荷が消費電力600Wのエアコンであるような場合、消費電力500Wの電子レンジを使用しているときにエアコンを稼動させると、エアコンの消費電力の分、負荷電力が増大し1100Wになる。ここで、かかる負荷電力の増加を吸収しうる余力があれば、負荷電力が発電電力を上回ることがない。たとえば、ある日照条件での発電電力が1500Wのとき、基準電力を、1500W-600W=900Wとする。このとき、電子レンジを使用しているときの負荷電力500Wが、エアコンによる追加分600Wを見込んだ基準電力900W以下であれば、エアコンを追加したとしても、発電電力内で負荷電力を供給できる。よって、その場合、負荷102を充電することである程度負荷電力が増加していたとしても、追加的な負荷電力の増加によりただちに発電電力を負荷電力が上回る蓋然性は低いと判断できる。すなわち、発電電力に余力があると判断できる。逆に、負荷電力が基準電力を上回るときには、追加的な負荷電力の増加により発電電力を負荷電力が上回る蓋然性が高いと判断できる。すなわち、発電電力に余力がないと判断できる。
 上記のような基準電力による判断の結果、発電電力に余力がない場合(Step305のNo)、蓄電制御部126は、充電を行わずに、処理を終了する。そうすることで、負荷電力を充電電力に費やすことなく、負荷100への安定的な電力供給を可能にすることができる。なお、負荷102が蓄電池以外の電力負荷の場合であっても、負荷102への電源供給を停止することで、負荷100への安定的な電力供給を確保できる。一方、発電電力に余力がある場合(Step305のYes)、蓄電制御部126は、発電電力の余力に応じた充電電力を決定する(Step306)。たとえば、上記の例では、基準電力と負荷電力との差分、すなわち900W-500W=400Wを、充電電力に充てることができる。よって、400W、またはある程度の余裕をみてそれ未満の充電電力が決定される。そして、蓄電制御部126は、負荷102の充電を開始する(Step307)。そうすることで、次に図4で示すような、負荷102の放電に備え充電することができる。
 なお、手順Step307において、蓄電制御部126は、双方向DC/DCコンバータ122に、負荷102の電圧が太陽電池103の出力電圧より低くなるように充電電力を制御させることが、好適である。そうすることで、後述する手順において放電を開始する前に負荷102から負荷100に電流が流れ、電力が無駄に供給されるといったことを防止できる。
 また、図3の手順Step302において、負荷102の充電量に応じて充電する、しないを予め判定することにより、後段の手順で発電電力に余力がなく充電をすると判定したにもかかわらず、充電量が十分であり充電の必要がない(またはできない)といった事態を回避できる。よって、無駄な処理にかかるCPUの負荷や処理時間を省略できる。ただし、手順Step302の判定手順を省略し、単に発電電力に余力があるかないかに基づいて、充電をする、しないを判定する手順とする場合も、本実施形態に含まれる。その場合であっても、発電電力に余力がないときに、負荷電力を充電電力に費やすことなく、負荷100への安定的な電力供給を可能にすることができる。
 図4は、蓄電パワコン106による負荷102の放電制御にかかる動作手順を説明するフローチャート図である。図4の手順は、蓄電パワコン106の蓄電制御部126の動作手順に対応し、所定の周期(たとえば、数十ミリ秒~数秒周期)で実行される。
 まず、蓄電制御部126は、蓄電池、すなわち負荷102の充電量を導出する(Step401)。たとえば、蓄電制御部126は、図3の手順Step301と同様にして充電量(残量)を求める。充電量が所定の閾値T2未満のとき(Step402のNo)、蓄電制御部126は、放電を行わず処理を終了する。ここで、閾値T2は、放電可能な十分な充電量を示す任意の値・単位が用いられる。かかる閾値T2は、予め実験等により求められる。一方、充電量が所定の閾値T2以上のとき(Step402のYes)、蓄電制御部126は、負荷電力を導出し(Step403)、発電電力を導出する(Step404)。蓄電制御部126は、たとえば、図2で示した方法により、発電電力を導出する。
 そして、発電電力に余力があるかが判定される(Step405)。ここでは、たとえば、図3の手順Step305で示した手順と同様の処理が行われる。発電電力に余力がある場合(Step405のYes)、蓄電制御部126は、放電を行わずに、処理を終了する。このとき、負荷電力は発電電力内で安定的に供給されているので、負荷102を放電して負荷電力を補う必要はない。そして、この場合、図3の手順が実行されたときに、充電量が不十分であれば、充電が実行される。一方、発電電力に余力がない場合(Step405のNo)、蓄電制御部126は、負荷102の放電を開始する(Step406)。そうすることで、充電を停止しただけでは負荷電力に対する電力供給が不十分な場合であっても、負荷100への安定的な電力供給を可能にすることができる。
 なお、手順Step405の判定処理において、直流電流センサ108、直流電圧センサ110を介して取得されるPVパワコン104に入力される直流電流、電圧の代わりに、交流電流センサ112、交流電圧センサ114を介して取得されるPVパワコン104から出力される交流電流、電圧を用いて負荷電力を求める方が好適である。なぜなら、PVパワコン104による昇圧、変換処理を経ない分、放電を必要とする場合におけるより迅速な応答が可能になるからである。
 また、図4の手順Step402において、負荷102の充電量に応じて放電する、しないを予め判定することにより、後段の手順で発電電力に余力がなく放電をすると判定したにもかかわらず、充電量が不十分であり放電ができないといった事態を回避できる。よって、無駄な処理にかかるCPUの負荷や処理時間を回避できる。ただし、手順Step402の判定手順を省略し、単に発電電力に余力があるかないかに基づいて、放電をする、しないを判定する手順とする場合も、本実施形態に含まれる。その場合であっても、負荷102にある程度の充電がなされていれば、発電電力に余力がないときに放電で補うことができ、負荷100への安定的な電力供給を可能にすることができる。
 図3、4に示す手順は定期的に実行されるので、日照に応じて発電電力が変動しても、即時に発電電力に応じた余力を求めることができ、柔軟な対応が可能になる。
 このように、本実施形態によれば、分散型発電システムを既存の太陽光発電システムに蓄電池を追加して構成する場合であっても、太陽電池の出力電流に基づき蓄電池の充放電を制御できるので、蓄電パワコンがPVパワコンから制御データを取得することなく、負荷電力の供給を制御できる。
 以上、説明したとおり、本実施形態によれば、系統との連係が遮断されたときであっても太陽電池から負荷への安定的な電力供給を可能にすることができる。
10:分散型発電システム
103:太陽電池
106:蓄電パワーコンディショナ
102:負荷(蓄電池)
122:双方向DC/DCコンバータ
126:蓄電制御部

Claims (11)

  1.  太陽電池からの電力を複数の負荷に供給する制御を行う第1制御部と、
     前記複数の負荷の一つである蓄電池の充放電を制御する第2制御部と、を備え、
     前記第1制御部は、前記複数の負荷での消費電力に追従した出力制御を行い、
     前記第2制御部は、自立運転中に前記蓄電池の充電電力を増加させるとともに当該充電電力の増加に伴った前記太陽電池あるいは前記第1制御部からの出力変動を検出し、当該検出した出力変動に基づいて前記蓄電池の充電を制御することを特徴とする、
    電力制御システム。
  2.  請求項1において、
     前記第2制御部は、前記出力変動に基づき、前記太陽電池あるいは第1制御部が供給可能な電力である発電電力を求め、前記蓄電池以外の複数の負荷が消費する電力が前記発電電力より大きいときに、前記蓄電池の電力を前記蓄電池以外の負荷へ放電させるように前記蓄電池の充放電を制御する、電力制御システム。
  3.  請求項1または2のいずれかにおいて、
     前記第2制御部は、前記出力変動を検出する処理を、定期的に行うことを特徴とする、電力制御システム。
  4.  請求項1乃至3のいずれかにおいて、
     前記第2制御部は、前記出力変動を検出する処理を行うときに、前記蓄電池の充電電力を徐々に増加するとともに、当該充電電力の変化を監視することにより、前記太陽電池あるいは前記第1制御部が出力できる最大電力を求めることを特徴とする電力制御システム。
  5.  請求項1乃至4のいずれかにおいて、
     前記第2制御部は、前記蓄電池における充電量が基準値を下回ることを条件として、前記蓄電池を充電するよう制御する、電力制御システム。
  6.  請求項1乃至5のいずれかにおいて、
     前記第2制御部は、前記蓄電池における充電量が基準値を上回ることを条件として、前記蓄電池が放電するよう制御する、電力制御システム。
  7.  請求項2乃至6のいずれかにおいて、
     前記発電電力が所定の範囲内に達すると前記第1制御部による電力の供給が停止される、電力制御システム。
  8.  請求項2乃至5のいずれかにおいて、
     前記複数の負荷が、前記第1制御部に対し並列接続され、
     前記第2制御部は、蓄電池を充電するとき、前記蓄電池の電圧が蓄電池以外の負荷に供給される電力の電圧より低くなるように前記蓄電池に供給する電力を調節する、電力制御システム。
  9.  請求項2乃至8のいずれかにおいて、
     前記発電電力が、前記複数の負荷が消費する負荷電力を上回るときには当該発電電力の一部が商用電源系統に出力され、または、前記発電電力が前記負荷電力を下回るときには前記商用電源系統から前記負荷電力の一部が供給されるように、前記第1制御装置及び前記複数の負荷が前記商用電源系統と接続され、
     前記第2制御部は、前記商用電源系統との接続が遮断されたときに、前記蓄電池に対する電力の供給を行う、または行わないように充放電を制御する、電力制御システム。
  10.  負荷追従制御を行う太陽電池システムに接続される蓄電池の充放電を制御する制御部を備え、
     自立運転中に、前記制御部は、前記蓄電池の充電電力を増加させるとともに当該充電電力の増加に伴った太陽電池システムの出力変動を検出し、当該検出した出力変動に基づいて前記蓄電池の充電を制御することを特徴とする、電力制御装置。
  11.  負荷追従制御を行う太陽電池システムに接続される蓄電池の充放電を制御する工程と、
     自立運転中に、前記蓄電池の充電電力を増加させるとともに当該充電電力の増加に伴った太陽電池システムの出力変動を検出し、当該検出した出力変動に基づいて前記蓄電池の充電を制御工程と
    を含むことを特徴とする、電力制御方法。
PCT/JP2013/001283 2012-03-02 2013-03-01 電力制御システム、電力制御装置、及び電力制御方法 WO2013128947A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/382,533 US10164436B2 (en) 2012-03-02 2013-03-01 Power control system, power control apparatus and power control method
EP13754316.1A EP2822139A4 (en) 2012-03-02 2013-03-01 POWER CONTROL SYSTEM, POWER CONTROL DEVICE AND POWER CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-047088 2012-03-02
JP2012047088A JP2013183577A (ja) 2012-03-02 2012-03-02 電力制御システム、電力制御装置、及び電力制御方法

Publications (1)

Publication Number Publication Date
WO2013128947A1 true WO2013128947A1 (ja) 2013-09-06

Family

ID=49082158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001283 WO2013128947A1 (ja) 2012-03-02 2013-03-01 電力制御システム、電力制御装置、及び電力制御方法

Country Status (4)

Country Link
US (1) US10164436B2 (ja)
EP (1) EP2822139A4 (ja)
JP (1) JP2013183577A (ja)
WO (1) WO2013128947A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113087A (zh) * 2014-07-02 2014-10-22 佛山市柏克新能科技股份有限公司 一种太阳能ups系统
EP3010110A1 (en) * 2014-10-15 2016-04-20 LSIS Co., Ltd. Grid-tied photovoltaic power generation system
CN106100517A (zh) * 2016-04-22 2016-11-09 北京科诺伟业科技股份有限公司 一种角型三相串联式光伏电站储能模式控制方法
WO2017138629A1 (ja) * 2016-02-12 2017-08-17 日本電気株式会社 充放電制御システム、充放電制御方法及びプログラム
EP2922169B1 (en) * 2014-03-20 2018-02-14 LSIS Co., Ltd. System for charging battery of energy storage system using power conditioners

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007526B2 (ja) * 2012-03-13 2016-10-12 オムロン株式会社 充電電力制御装置、充電電力制御方法、プログラム、および太陽光発電システム
CN103956778A (zh) * 2014-04-16 2014-07-30 中国科学院广州能源研究所 一种基于相角下垂控制的微电网系统及组网方法
CN104300582B (zh) * 2014-10-31 2016-08-17 南京因泰莱电器股份有限公司 一种光伏防逆流保护控制方法
CN104333294A (zh) * 2014-11-12 2015-02-04 英利集团有限公司 一种光伏微电网组网及其控制方法
KR101964627B1 (ko) * 2014-11-18 2019-04-02 엘에스산전 주식회사 태양광을 이용한 용수 공급 시스템
US9692246B2 (en) * 2015-03-13 2017-06-27 Active-Semi, Inc. Light load detection and current drain cutoff in a power bank device
JP6711041B2 (ja) * 2015-03-19 2020-06-17 株式会社リコー 電力供給装置、画像形成装置、電力供給方法、及びプログラム
JP6531496B2 (ja) * 2015-06-02 2019-06-19 オムロン株式会社 蓄電池制御装置
CN104953699B (zh) * 2015-06-02 2017-05-31 航天科工海鹰集团有限公司 微电网系统无缝切换控制方法
US10187115B2 (en) * 2015-07-13 2019-01-22 Maxim Integrated Products, Inc. Systems and methods for DC power line communication in a photovoltaic system
WO2017029723A1 (ja) * 2015-08-19 2017-02-23 三菱電機株式会社 電力変換装置
CN105226724B (zh) * 2015-10-30 2017-11-03 国家电网公司 一种基于虚拟输出阻抗的三相逆变器控制装置及其方法
DE102016201105A1 (de) * 2016-01-26 2017-07-27 Viessmann Werke Gmbh & Co Kg Vorrichtung und Verfahren für die Steuerung eines Gebäudeenergiesystems
CN107040034A (zh) * 2016-02-03 2017-08-11 珠海格力电器股份有限公司 一种光伏储能空调装置及控制方法
CN105515055A (zh) * 2016-02-19 2016-04-20 云南电网有限责任公司电力科学研究院 一种智能家居电能控制方法及系统
US10139847B2 (en) * 2016-05-18 2018-11-27 Solarcity Corporation Systems and methods for controlling PV production within energy export constraints
JP6806325B2 (ja) * 2016-07-29 2021-01-06 国立研究開発法人産業技術総合研究所 太陽光発電システム評価装置、評価方法、及び、評価装置用プログラム
CN106410818B (zh) * 2016-11-10 2018-11-02 华南理工大学 采用分数阶电容的实时功率因数校正电路及其控制方法
JP6706349B2 (ja) * 2017-01-04 2020-06-03 東芝三菱電機産業システム株式会社 無停電電源システムおよび無停電電源装置
US10998746B2 (en) * 2017-04-03 2021-05-04 Smart Charging Technologies Llc Direct current uninterruptible power supply with AC power supply and related methods
CN108233421B (zh) * 2018-02-05 2020-09-08 华为技术有限公司 光伏发电系统和光伏输电方法
CN111463813A (zh) * 2020-05-07 2020-07-28 上海电机学院 一种可参与电网能源优化配置的家用微电网系统
CN112366738B (zh) * 2020-11-03 2023-03-14 安徽奥里奥克科技股份有限公司 一种保障电梯供电的微电网蓄电控制系统
CN113193638B (zh) * 2021-05-06 2023-01-20 中国联合网络通信集团有限公司 一种供电控制方法、装置、设备及存储介质
WO2024043361A1 (ko) * 2022-08-24 2024-02-29 주식회사 그리다에너지 마이크로그리드의 분산형 부하 노드 간 ac 전력 분배 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130572A (ja) 2003-10-22 2005-05-19 Osaka Gas Co Ltd 分散型発電システム
JP2008048544A (ja) * 2006-08-17 2008-02-28 Sharp Corp 太陽光発電システム
WO2011151939A1 (ja) * 2010-05-31 2011-12-08 清水建設株式会社 電力システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2389213T3 (es) * 2005-03-01 2012-10-24 Beacon Power Corporation Método y dispositivo que permiten aislar intencionadamente fuentes de generación de energía distribuidas
US8310094B2 (en) 2006-01-27 2012-11-13 Sharp Kabushiki Kaisha Power supply system
US7994657B2 (en) * 2006-12-22 2011-08-09 Solarbridge Technologies, Inc. Modular system for unattended energy generation and storage
US8987939B2 (en) * 2007-11-30 2015-03-24 Caterpillar Inc. Hybrid power system with variable speed genset
US8373312B2 (en) * 2008-01-31 2013-02-12 General Electric Company Solar power generation stabilization system and method
DE102009040090A1 (de) * 2009-09-04 2011-03-10 Voltwerk Electronics Gmbh Inseleinheit für ein Energienetz mit einer Steuereinheit zum Steuern eines Energieflusses zwischen der Energieerzeugungseinheit, der Energiespeichereinheit, der Lasteinheit und/oder dem Energienetz
EP2528759B1 (en) * 2010-01-29 2014-11-05 Carrier Corporation Solar power assisted transport refrigeration systems, transport refigeration units and methods for same
US8896151B2 (en) 2010-05-31 2014-11-25 Shimizu Corporation Electric power system
US8344550B2 (en) * 2010-12-21 2013-01-01 General Electric Company Power conversion control with energy storage
JP5807201B2 (ja) * 2010-12-28 2015-11-10 パナソニックIpマネジメント株式会社 電力制御装置
JP5311153B2 (ja) * 2011-03-15 2013-10-09 オムロン株式会社 電力制御装置および電力制御方法
US8831788B2 (en) * 2011-04-20 2014-09-09 General Electric Company Systems, methods, and apparatus for maintaining stable conditions within a power grid
US20130002027A1 (en) * 2011-06-30 2013-01-03 Caterpillar Inc. Uninterruptible power supply
US9431825B2 (en) * 2011-07-28 2016-08-30 Tigo Energy, Inc. Systems and methods to reduce the number and cost of management units of distributed power generators
US9172249B2 (en) * 2011-08-12 2015-10-27 Rocky Research Intelligent microgrid controller
US20130173190A1 (en) * 2011-12-30 2013-07-04 Caterpillar Inc. Methods and systems for estimating charge capacity of an electrical energy-storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130572A (ja) 2003-10-22 2005-05-19 Osaka Gas Co Ltd 分散型発電システム
JP2008048544A (ja) * 2006-08-17 2008-02-28 Sharp Corp 太陽光発電システム
WO2011151939A1 (ja) * 2010-05-31 2011-12-08 清水建設株式会社 電力システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2822139A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2922169B1 (en) * 2014-03-20 2018-02-14 LSIS Co., Ltd. System for charging battery of energy storage system using power conditioners
US9899851B2 (en) 2014-03-20 2018-02-20 Lsis Co., Ltd. System for charging battery of energy storage system using PCS
CN104113087A (zh) * 2014-07-02 2014-10-22 佛山市柏克新能科技股份有限公司 一种太阳能ups系统
CN104113087B (zh) * 2014-07-02 2017-02-01 佛山市柏克新能科技股份有限公司 一种太阳能ups系统
EP3010110A1 (en) * 2014-10-15 2016-04-20 LSIS Co., Ltd. Grid-tied photovoltaic power generation system
CN105529735A (zh) * 2014-10-15 2016-04-27 Ls产电株式会社 并网光伏发电系统
US10014687B2 (en) 2014-10-15 2018-07-03 Lsis Co., Ltd. Grid-tied photovoltaic power generation system
WO2017138629A1 (ja) * 2016-02-12 2017-08-17 日本電気株式会社 充放電制御システム、充放電制御方法及びプログラム
JPWO2017138629A1 (ja) * 2016-02-12 2018-12-06 日本電気株式会社 充放電制御システム、充放電制御方法及びプログラム
JP7069722B2 (ja) 2016-02-12 2022-05-18 日本電気株式会社 充放電制御システム、充放電制御方法及びプログラム
CN106100517A (zh) * 2016-04-22 2016-11-09 北京科诺伟业科技股份有限公司 一种角型三相串联式光伏电站储能模式控制方法

Also Published As

Publication number Publication date
EP2822139A1 (en) 2015-01-07
EP2822139A4 (en) 2016-02-24
US10164436B2 (en) 2018-12-25
JP2013183577A (ja) 2013-09-12
US20150097429A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
WO2013128947A1 (ja) 電力制御システム、電力制御装置、及び電力制御方法
US9800051B2 (en) Method and apparatus for controlling energy flow between dissimilar energy storage devices
KR101097266B1 (ko) 전력 저장 시스템 및 그 제어방법
JP6063031B2 (ja) パワーコンディショナ及びその制御方法
RU2020135633A (ru) Промышленная пиковая электростанция на возобновляемых источниках, связанная с ней солнечная батарея и накопитель энергии
JP3726265B2 (ja) 直流連系による家庭用分散型電源装置及びその制御方法
CN110571781A (zh) 直流母线电压控制方法与系统
WO2015133136A1 (ja) 電源システム
KR101337576B1 (ko) Soc 관리를 위한 방법 및 시스템
JP6557153B2 (ja) 電力管理装置
JP2017118598A (ja) 電力供給システム
KR101587488B1 (ko) 계통 연계형 시스템에서의 고효율 배터리 충방전 시스템 및 방법
JP6256983B2 (ja) 蓄電池付きパワーコンディショナ
JP6817565B2 (ja) 電力変換装置、電力変換システム
JP6242128B2 (ja) 電力変換装置
JP5876374B2 (ja) 電力制御方法、電力制御システム、及び電力制御装置
JP7022942B2 (ja) 電力変換システム、電力変換装置
JP5172613B2 (ja) 太陽光発電装置および太陽光発電システム
CN203103982U (zh) 一种两级式光伏并网逆变器的最大功率跟踪控制系统
JP6625469B2 (ja) 電力制御装置
JP2013230005A (ja) 制御装置、及び電力供給方法
JP6208613B2 (ja) 発電システム
WO2024131045A1 (zh) 光伏设备以及提升光伏设备的光伏利用率的方法
JPH04308431A (ja) 太陽光発電連系システムの制御法
JP3242499U (ja) 電力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14382533

Country of ref document: US

Ref document number: 2013754316

Country of ref document: EP