WO2017138629A1 - 充放電制御システム、充放電制御方法及びプログラム - Google Patents

充放電制御システム、充放電制御方法及びプログラム Download PDF

Info

Publication number
WO2017138629A1
WO2017138629A1 PCT/JP2017/004888 JP2017004888W WO2017138629A1 WO 2017138629 A1 WO2017138629 A1 WO 2017138629A1 JP 2017004888 W JP2017004888 W JP 2017004888W WO 2017138629 A1 WO2017138629 A1 WO 2017138629A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
power
storage battery
instruction
charge
Prior art date
Application number
PCT/JP2017/004888
Other languages
English (en)
French (fr)
Inventor
小倉 和夫
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/076,168 priority Critical patent/US20210194262A1/en
Priority to JP2017567007A priority patent/JP7069722B2/ja
Publication of WO2017138629A1 publication Critical patent/WO2017138629A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2016-024426 (filed on Feb. 12, 2016), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a charge / discharge control system, a charge / discharge control method, and a program, and more particularly, to a charge / discharge control system, a charge / discharge control method, and a program for performing charge / discharge control of a storage battery that stores power generated by a power generation device.
  • Patent Document 1 discloses a stand-alone power supply system that can reduce the installation cost. Specifically, the independent power supply system of the same document calculates demand prediction data of the load device and power generation output prediction data of the natural energy power generation device using weather prediction data, and the demand prediction data and the power generation When the predicted output data predicts that the storage battery will be charged beyond the maximum charging power of the storage battery, the power generation output from the natural energy power generation device is suppressed, and the demand prediction data and the power generation output data Thus, when it is predicted that the storage battery will be discharged beyond the maximum discharge power of the storage battery, the power consumption of the adjustment load is suppressed. According to Patent Document 1, by adopting the above-described configuration, the installation cost is reduced by eliminating the necessity of separately providing an adjustment power source such as a diesel engine and the need for increasing the capacity of the power storage device.
  • an adjustment power source such as a diesel engine
  • Patent Document 2 discloses a solar power generation system that suppresses system disruption in an electric power system and enables effective use of generated power.
  • this solar power generation system includes a solar cell module 1 that performs solar power generation and a measurement unit 5 that measures generated power, and further, as an electrical device that can consume the generated power, An electric water heater 4 for boiling water in response to power supply is included. And when this solar power generation system acquires the output suppression information which instruct
  • Non-Patent Documents 1 and 2 in recent years, distributed power sources using renewable energy typified by solar power generation (also referred to as “photovoltaics” or “solar photovoltaics”, hereinafter referred to as “PV”) and wind power ( Due to the rapid increase in the number of power generation devices), surplus power that flows backward to the power system increases, and the power system becomes unstable.
  • solar power generation also referred to as “photovoltaics” or “solar photovoltaics”, hereinafter referred to as “PV”
  • PV solar photovoltaics” or “solar photovoltaics”, hereinafter referred to as “PV”) and wind power
  • Non-Patent Documents 1 and 2 free output control is implemented for 30 days a year based on output control in units of one day, but in the future, output suppression control in units of hours will be studied. Has been. However, in order to realize output suppression control in units of time, there is a problem that it is not possible to cope with contact or calendar control in the evening of the previous day, such as slide page 10 of Non-Patent Document 1. Further, according to Non-Patent Document 1, it is planned that a small-scale photovoltaic power generation facility for home use or the like will be an object of output control in the future.
  • JP 2013-176234 A Japanese Patent Laying-Open No. 2015-106937
  • Patent Document 1 a storage battery for charging surplus power may be connected to the PV system. Even in this case, when the output suppression control in Non-Patent Documents 1 and 2 is instructed, the PCS (power conditioning system; also referred to as “power conditioner”) that controls the output of PV is a space that can store power in the storage battery. Based on the capacity, there is a problem that efficient output suppression and power storage that avoids output suppression cannot be implemented.
  • PCS power conditioning system
  • An object of the present invention is to provide a charge / discharge control system, a charge / discharge control method, and a program that can contribute to an improvement in the efficiency of operation of the charge / discharge control system in an environment where the output of the power generator is suppressed.
  • a charge / discharge control system including a power generator that supplies power to a load facility or supplies surplus power to a system side.
  • the charge / discharge control system further includes a storage battery capable of storing surplus power from the power generation device.
  • the charge / discharge control system further includes a control unit that receives a power generation amount suppression instruction and transmits the power generation amount suppression instruction to the power generation device. And when the said control part receives the suppression instruction
  • the power generation amount is supplied to the load facility or surplus power is supplied to the grid side, and the storage battery capable of storing the surplus power from the power generation device is connected to the power generation device, and the power generation amount is suppressed. , And transmits a power generation amount suppression instruction to the power generation device, and when the power generation amount suppression instruction is received, if the free capacity of the storage battery is less than a predetermined value, the power generation device A control device that transmits the power generation amount suppression instruction is provided.
  • a power generation device that supplies power to the load facility or supplies surplus power to the grid side, a storage battery that can store surplus power from the power generation device, and a power generation amount suppression instruction are received
  • the control unit of the charge / discharge control system including the control unit that transmits an output instruction to the power generation device receives the power generation amount suppression instruction, and when the power generation amount suppression instruction is received
  • a charge / discharge control method is provided that includes a step of transmitting an instruction for suppressing the amount of power generation to the power generation device.
  • the present method is associated with a specific machine called a charge / discharge control system including the power generation device, the storage battery, and the control unit.
  • a power generation device that supplies power to load equipment or supplies surplus power to the grid side, a storage battery that can store surplus power from the power generation device, and a power generation amount suppression instruction are received, And a control unit that transmits an output instruction to the power generation device.
  • the computer that constitutes the control unit of the charge / discharge control system includes a process for receiving the power generation amount suppression instruction and the power generation amount suppression instruction.
  • a program for executing a process for transmitting the power generation amount suppression instruction to the power generation device is provided.
  • This program can be recorded on a computer-readable (non-transient) storage medium. That is, the present invention can be embodied as a computer program product.
  • the present invention it is possible to contribute to an improvement in the efficiency of operation of the charge / discharge control system in an environment where the output of the power generator is suppressed. That is, according to the present invention, the charge / discharge control system that receives an instruction to suppress the amount of power generation is converted into one that dramatically improves the operation.
  • connection lines between blocks such as drawings referred to in the following description include both bidirectional and unidirectional directions.
  • the unidirectional arrow schematically shows the main signal (data) flow and does not exclude bidirectionality.
  • the present invention can be realized by a charge / discharge control system including a power generation device 100, a storage battery 200, a control device 300, and a load facility 400, as shown in FIG. More specifically, the power generation apparatus 100 supplies power to the load facility 400 or supplies surplus power to the system side.
  • the storage battery 200 can store surplus power from the power generation device 100.
  • the control device 300 receives a power generation amount suppression instruction from an external device or the like, and transmits a power generation amount suppression instruction to the power generation device 100.
  • “surplus power” refers to power exceeding the power consumption in the load facility in the power generated by the power generation device.
  • the control device 300 confirms the state of charge (SOC; State Of Charge) of the storage battery 200 when receiving the power generation amount suppression instruction. As a result of the confirmation, when the free space is equal to or greater than a predetermined value, the control device 300 shortens the suppression execution period in the power generation device 100 (in the example of FIG. 2, the output suppression instruction transmission is postponed). In the period, control for performing charge control on the storage battery is performed.
  • SOC State Of Charge
  • the control device 300 transmits the received power generation amount suppression instruction to the power generation device 100 as shown in FIG. become.
  • the power generation apparatus 100 whichever is greater, output instruction power (permitted generated power) based on a suppression instruction that is directly or indirectly instructed from the control apparatus 300, or power consumed by the load facility. If the power generation device 100 has the function of suppressing the output with the upper limit as the upper limit, thereafter, the power generation apparatus 100 generates the larger amount of power generated between the power consumption of the load facility 400 and the generated power instructed by the instruction to suppress the power generation amount. I do.
  • FIG. 4 is a diagram showing changes in the output of the charge / discharge control system operating as described above.
  • the example of FIG. 4 shows an example in which a suppression instruction that instructs to suppress the power generation amount to 40% of the rated output is received from 9:00 to 15:00. Since surplus power has been generated from time t1, charging control of the storage battery is started from this time. However, since the output suppression instruction is received at 9 o'clock, the control apparatus 300 should instruct the power generation apparatus 100 to suppress the power generation amount from 9 o'clock (see FIG. 16). In the example, the transmission timing of the power generation amount suppression instruction is delayed, and the charging control of the storage battery 200 is continued.
  • control device 300 is described as an example of being independently arranged as the control unit of the charge / discharge control system.
  • control unit of the power generation device 100 or the storage battery 200 is described.
  • a configuration that functions as a control unit of the charge / discharge control system can also be employed.
  • the control unit of the power generation device 100 a may perform an operation corresponding to the control device 300.
  • the power generation apparatus 100a shortens the power generation implementation period (for example, postponement of the output suppression instruction) based on the state of charge (SOC) of the storage battery 200, performs necessary power generation in the period, and performs the storage battery 200 Is instructed to control charging.
  • the power generation apparatus 100a performs an operation of generating power by the larger one of the power consumption of the load facility 400 and the power generation amount instructed by the power generation amount suppression instruction.
  • an operation equivalent to the control device 300 may be performed by the power storage control device 210a including the storage battery 200a.
  • the power storage control device 210a performs delay processing of the transmission timing of the suppression instruction for the power generation device 100 based on the state of charge (SOC) of the storage battery 200.
  • SOC state of charge
  • control device 300a is arranged on a network.
  • a control device 300a may be a physical server or the like physically connected to a network. It is also possible to provide a service equivalent to the control device 300a using a virtualization server or a virtual network function constructed on a network using a virtualization technique or the like.
  • FIG. 15 is a diagram showing the relationship between the power generation amount, load consumption, and power balance in this type of solar power generation equipment.
  • the portion of the photovoltaic power generation output in the figure that exceeds the load consumption indicates surplus power, that is, power that can be sold.
  • the amount of power generation increases after time t1, and surplus power is generated. After that, as it approaches sunset after noon, while the amount of power generation decreases, load consumption increases, and after time t2, power shortage occurs, and power must be procured from the grid side. Yes.
  • the photovoltaic power generation facility has a function (load follow-up function) that generates extra power as much as the load consumption exceeds the power generation amount after application of the suppression instruction.
  • Some are equipped with a PCS (power conditioning system; also referred to as “power conditioner”).
  • FIG. 16 is an example of a photovoltaic power generation facility provided with this type of PCS, and control is performed to increase the output control value so as to follow the increase in load.
  • FIG. 8 is a diagram showing the configuration of the charge / discharge control system according to the first embodiment of the present invention. Referring to FIG. 8, a configuration including PCS 110 connected to PV 120, storage battery 200 connected to power storage controller 210, HEMS 310, and load facility 400 is shown.
  • PV120 is a device called Photovoltaics, solar photovoltaics, etc., and performs solar power generation.
  • the PCS (power conditioning system) 110 is a device that converts DC power output from the PV 120 into AC power. The output from the PCS 110 is supplied to the system side, the load facility 400 or the storage battery 200 side.
  • the storage controller 210 is a device that controls charging / discharging of the storage battery 200.
  • the power storage controller 210 monitors the state of charge of the storage battery 200 and provides it to the HEMS 310 as SOC (State Of Charge) information.
  • SOC State Of Charge
  • As the storage battery 200 various secondary batteries such as a nickel metal hydride battery, a lead battery, and a sodium / sulfur battery can be used in addition to a lithium ion battery.
  • a dedicated storage battery may be prepared as the storage battery 200, but a storage battery mounted on an electric vehicle (EV) or a storage battery of a household power storage system may be used.
  • EV electric vehicle
  • a HEMS (Home Energy Management System) 310 is connected to the PCS 110, the power measurement device 500, and the power storage controller 210, and is a device that displays and controls information provided from these devices.
  • the HEMS is assumed assuming a home system.
  • the HEMS 310 may be a BEMS (Building Energy Management System), a FEMS (Factor Energy Management System), or these depending on the installation location. It can be replaced by the generic name EMS (Energy Management System). Details of the operation of the HEMS 310 in this embodiment will be described in detail later.
  • the load facility 400 is a device that consumes electric power such as various home appliances.
  • the power measuring apparatus 500 includes a CT (Current Transformer) sensor, measures the difference between the output power of the PCS 110 and the power consumption of the load facility 400, and provides it to the HEMS 310.
  • the load facility 400 may be a heat pump using device (such as a water heater) that can collect and store heat energy from the outside air using electric power, or a pumping pump that stores electric energy as potential energy. .
  • FIG. 9 is a functional block diagram illustrating a configuration example of the HEMS 310.
  • the HEMS 310 includes a system side device communication unit 311, a charge / discharge control instruction unit 312, a PCS control unit 313, and a meter monitoring unit 314.
  • the system side device communication unit 311 communicates with a management server such as an electric power company or a wide area organization (electric power wide area operation promotion organization) by a predetermined method. Specifically, upon receiving a power output suppression instruction from a management server of a power company or a wide-area organization, the grid-side apparatus communication unit 311 transfers the content to the charge / discharge control instruction unit 312. In addition, the system-side device communication unit 311 performs an operation of responding to the management server with a response message (Ack) or the like for the power output suppression instruction.
  • a management server such as an electric power company or a wide area organization (electric power wide area operation promotion organization) by a predetermined method.
  • the grid-side apparatus communication unit 311 transfers the content to the charge / discharge control instruction unit 312.
  • the system-side device communication unit 311 performs an operation of responding to the management server with a response message (Ack) or the like for the power output suppression instruction.
  • the PCS control unit 313 is connected to the PCS 110 and provides current state information of the PCS to the charge / discharge control instruction unit 312. In addition, when the PCS control unit 313 receives an output suppression instruction from the charge / discharge control instruction unit 312, the PCS control unit 313 requests the PCS 110 to perform output suppression according to the content.
  • the meter monitoring unit 314 receives the difference between the output power of the PCS 110 and the power consumption of the load facility 400 from the power measurement device 500 and provides the difference to the charge / discharge control instruction unit 312.
  • the charge / discharge control instruction unit 312 is connected to each unit of the HEMS 310 and the power storage controller 210.
  • the charge / discharge control instruction unit 312 receives the power output suppression instruction from the system-side device communication unit 311, the charge / discharge control instruction unit 312 operates as follows. First, the charge / discharge control instruction unit 312 confirms the state of charge of the storage battery 200 received from the power storage controller 210 and the presence or absence of surplus power received from the power measurement device 500. When the free capacity of the storage battery 200 is equal to or greater than a predetermined threshold and there is surplus power, the charge / discharge control instruction unit 312 shortens the suppression implementation period in the power generation apparatus 100 and uses electricity generated by the power generation apparatus 100 during the period. The storage battery 200 is charged.
  • the suppression execution period is shortened by delaying the transmission timing of the output suppression instruction to the power generation apparatus 100.
  • the charge / discharge control instruction unit 312 continues to check the state of charge of the storage battery 200 during the charge control period. In the present embodiment, when the storage battery 200 is in a fully charged state, the charge / discharge control instruction unit 312 stops the charge control and transmits an output suppression instruction to the PCS 110 via the PCS control unit 313.
  • PCS110 which received the said output suppression instruction
  • the PCS 110 increases the output of the power generation apparatus 100 by the excess amount so as to cover the power consumption of the load facility 400. Control (load following function).
  • Each unit (processing means) of the control device 300 to HEMS 310 shown in FIGS. 1 to 9 stores the above-described threshold values in the memory of a computer constituting these devices, and uses the hardware to It can also be realized by a computer program that executes each processing such as comparison of input values and transmission (transmission) of instructions.
  • FIG. 10 is a sequence diagram showing the operation of the charge / discharge control system according to the first embodiment of the present invention.
  • the HEMS 310 receives an output suppression instruction (Yes in step S001)
  • the HEMS 310 receives the state of charge (SOC) of the storage battery 200 received from the power storage controller 210 and the power measurement device 500 such as a CT sensor.
  • the power balance in the system is confirmed (step S002).
  • the HEMS 310 shifts to the charge control mode and performs control for charging the storage battery 200 with the suppression instruction ( Step S004). Specifically, the HEMS 310 delays the transmission of the output suppression instruction to the PCS 110 and instructs charging of surplus power exceeding the power consumed by the load device 400 among the power generated by the power generation device 100.
  • the HEMS 310 does not need to instruct the storage controller 210 in particular. If it is stopped for a reason, it is necessary to give an instruction to resume the operation.
  • the storage controller 210 may be instructed to charge at the maximum charging power that is the rated power, and the output suppression instruction may be transmitted to the PCS 110 (not shown).
  • the output of the power generator 100 is adjusted by the load following function provided in the PCS 110 so that the second surplus power (surplus power ⁇ maximum charge power) in consideration of the amount that cannot be charged becomes zero. That is, even if the storage battery can be charged, if the surplus power exceeds the maximum charge power that is the acceptable rated power of the storage battery 200, the second surplus power (surplus power-maximum charge power) is set to zero.
  • the output of the power generation device 100 can also be suppressed. However, when the output instruction power by the suppression instruction is larger than the output of the adjusted power generation apparatus 100, the output of the power generation apparatus 100 is adjusted to be the output instruction power.
  • the HEMS 310 confirms the state of charge (SOC) of the storage battery 200 (step S005).
  • SOC state of charge
  • the HEMS 310 ends the charge control mode and transmits the output suppression instruction received in Step S001 to the PCS 110 (Step S006).
  • the HEMS 310 checks whether or not the end of the period (suppression period) designated by the output suppression instruction received in step S001 has arrived (step S008). As a result of the confirmation, if the end of the suppression period has arrived, the HEMS 310 instructs the PCS 110 to end output suppression (step S009).
  • the PCS 110 returns to an operation state without suppression (step S010).
  • the output suppression control is not performed immediately, but the PCS 110 continues normal operation without suppression, while the storage battery 200 is charged. (See FIG. 4).
  • the PCS 110 performs suppression control (load follow-up function) according to the increase or decrease in demand of the load facility 400, so even if power is insufficient due to output suppression, There is no need to procure power from the grid side.
  • the output control value is adjusted so as to follow the increase in load shown in FIG.
  • the PCS 110 When the PCS 110 is performing a load following operation during the output suppression period, it is not allowed to sell power to the system side. For this reason, the PCS adjusts the output so as not to generate the power selling power (however, the output command power that is the generated power permitted by the suppression command can be sold to the grid side).
  • the power storage controller 210 also has an adjustment function that charges surplus power and does not generate sold power. For this reason, if the adjustment functions of the PCS 110 and the power storage controller 210 operate independently at the same time, the operation of the entire system may become unstable.
  • the HEMS 310 serves as a command tower, does not transmit an output suppression instruction to the PCS 110 (does not suppress power generation output), instructs the power storage controller 210 to charge surplus power, or
  • the entire system operates by instructing charging at the maximum charging power (a constant value) (or charging at an arbitrary power value that does not depend on the generated power or even stopping charging) and instructing the PCS 110 to perform load following operation. Is stabilized.
  • the remarkable effect of stabilizing the operation of the entire system by operating only one of the adjustment functions by the HEMS 310 is exhibited.
  • the HEMS 310 has been described as confirming the end of the suppression period.
  • a configuration in which the end of the suppression period is notified to the PCS 110 side when the output suppression instruction is transmitted from the HEMS 310 can be employed. It is.
  • the PCS 110 autonomously confirms the end of the suppression period and ends the suppression control.
  • the HEMS 310 has been described as delaying the transmission timing of the output suppression instruction.
  • the output suppression instruction includes information on the start and end of the suppression control
  • the HEMS 310 outputs these.
  • a configuration in which data is rewritten and then transmitted to the PCS 110 can be employed.
  • the PCS 110 performs the suppression control in accordance with the output suppression instruction after rewriting, it is possible to realize a reduction in the suppression execution period as in the above-described embodiment.
  • FIG. 11 is a sequence diagram showing the operation of the charge / discharge control system of the second embodiment of the present invention.
  • the HEMS 310 confirms the state of charge (SOC) of the storage battery 200 received from the power storage controller 210 (Step S102).
  • the HEMS 310 charges the storage battery 200 with surplus power without performing suppression during the output suppression period specified by the output suppression instruction.
  • a period for performing (charging period) is determined (step S104). The charging period can be determined based on a preset period with a large surplus power or a period designated by the user.
  • the HEMS 310 will be described assuming that the time t4 to t5 when the surplus power during the output suppression period from 9:00 to 15:00 is high is determined as the charging period. In this case, the HEMS 310 transmits the output suppression instruction received in step S101 to the PCS 110 without delay (step S105). On the other hand, when the storage battery 200 is operating the function of charge control according to the surplus power of the power generation apparatus 100, the HEMS 310 instructs the storage controller 210 to stop the function. Note that in which time zone the surplus power becomes high in the output suppression period may be determined from an actually measured value obtained by measuring the power generation output in the power generation apparatus 100, or based on the power generation output predicted in advance by weather information or the like. It may be determined in advance which time zone the surplus power will be high.
  • the PCS 110 that has received the output suppression instruction performs output suppression control according to the output suppression instruction. However, when the power consumption of the load facility 400 exceeds the power generation amount according to the output suppression instruction, the power demand at the load facility 400 The output suppression control (load follow-up function) following the above is performed (step S106).
  • the HEMS 310 checks whether or not the start of the charging period determined in step S104 has arrived (step S107). As a result of the confirmation, if the start of the charging period has arrived, the HEMS 310 instructs the PCS 110 to cancel suppression, and instructs the power storage controller 210 to resume charging control (step S108).
  • the HEMS 310 confirms the state of charge (SOC) of the storage battery 200 (step S109).
  • SOC state of charge
  • the HEMS 310 resumes output suppression and ends the charge control (the charge amount is equal to or greater than the predetermined threshold) for the PCS 110 and the power storage controller 210. Thus, it is instructed to be automatically terminated (step S110).
  • the PCS 110 that has received the instruction restarts the output suppression control according to the output suppression instruction. However, if the power consumption of the load facility 400 exceeds the power generation amount according to the output suppression instruction, Followed output suppression control (load following function) is performed (step S111). In the example of FIG. 11, the end determination of the output suppression control on the HEMS 310 side is omitted, but the determination processing and suppression similar to steps S009 and S010 of FIG. 10 (first embodiment) are performed as necessary. An end process may be added.
  • charging is performed during a period of large surplus power in the output suppression period.
  • charging is not necessarily performed during this period, and charging is performed in consideration of various circumstances.
  • the period of control can be determined. For example, as shown in FIG. 13, charging may be performed during a period from time t4 to t5 in the latter half of the output suppression period. Similarly, as shown in FIG. 4, charging may be performed during the period from 9:00 to time t3 at the beginning of the output suppression period. Further, the charging control period may be received from the user, and charging may be performed at that time.
  • the HEMS 310 has been described as realizing the reduction of the suppression execution period by stopping the output suppression.
  • the output suppression instruction includes information on the start and end of the suppression control.
  • the PCS 110 and the power storage controller 210 perform the suppression control and the charge control in accordance with the output suppression instruction after rewriting, it is possible to shorten the suppression execution period as in the above-described embodiment.
  • the power balance transition storage unit 315 that stores the transition of the power balance shown in FIG. 14 may be provided in the HEMS 310a so that the charge / discharge control instruction unit 312 can refer to the charging period (third) Embodiment).
  • the contents to be stored in the power balance transition storage unit 315 include data representing the transition of the power balance such as the previous day, weekly average, monthly average, day average, and weather average, and the charging period based on any of these. Can also be determined.
  • the PCS 110 increases the output of the power generation apparatus 100 by the excess amount, and the power consumption of the load facility 400 is reduced.
  • the load following function may be provided in the HEMS 310 or a higher management device.
  • the HEMS 310 of FIGS. 8 and 9 the surplus power value is received by the meter monitoring unit 314 and provided to the charge / discharge control instruction unit 312. Therefore, a configuration in which the HEMS 310 instructs the output control value to the PCS through the PCS control unit 313 so that the surplus power value becomes zero can be employed.
  • the HEMS 310 can instruct the power storage controller 210 to specify the value of the charging power to the storage battery 200 such that the surplus power becomes zero.
  • the power generation device has been described with an example assuming a solar power generation device, but the present invention is a power generation device that generates power using renewable energy such as wind power, hydraulic power, tide, and geothermal heat.
  • renewable energy such as wind power, hydraulic power, tide, and geothermal heat.
  • the present invention can be similarly applied to a case where a configuration in which these are mixed is provided.
  • a heat pump device or the like may be connected.
  • a heat pump device such as a water heater
  • the controller is When the power generation amount suppression instruction is received, when the free capacity of the storage battery is equal to or greater than a predetermined value, a period for charging the storage battery is determined, and the power generation amount is suppressed at other times. In the power generation device, the suppression implementation period can be shortened.
  • the said control part can be comprised so that a period with a large surplus electric power may be selected as a period which charges the said storage battery.
  • the power generation device has a function of suppressing output with an upper limit of the output instruction power according to the suppression instruction and the power consumed by the load facility during a suppression period according to the generation amount suppression instruction. Can be provided.
  • the power generation device can be configured to suppress output so that surplus power exceeding the maximum charging power of the storage battery becomes zero when the free capacity of the storage battery is equal to or greater than a predetermined value.
  • Power generation device 100, 100a Power generation device 110 PCS (power conditioning system) 120 PV 200, 200a Storage battery 210 Power storage controller 210a Power storage control device 300, 300a Control device 310, 310a HEMS 311 System side device communication unit 312 Charging / discharging control instruction unit 313 PCS control unit 314 Meter monitoring unit 315 Power balance transition storage unit 400 Load facility 500 Power measuring device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

発電装置の出力抑制が実施される環境において、充放電制御システムの運用の効率化の向上に貢献する。充放電制御システムは、負荷設備に電力を供給又は余剰電力を系統側に供給する発電装置と、前記発電装置からの余剰電力を蓄電可能な蓄電池と、発電量の抑制指示を受信し、前記発電装置に対し発電量の抑制指示を伝達する制御部と、を含む。前記制御部は、発電量の抑制指示を受信した際に、蓄電池の空き容量が所定値未満である場合、前記発電装置に前記発電量の抑制指示を送信する。

Description

充放電制御システム、充放電制御方法及びプログラム
[関連出願についての記載]
本発明は、日本国特許出願:特願2016-024426号(2016年 2月12日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、充放電制御システム、充放電制御方法及びプログラムに関し、特に、発電装置が発電した電力を蓄える蓄電池の充放電制御を行う充放電制御システム、充放電制御方法及びプログラムに関する。
 特許文献1に、設置費用を少なくすることが出来るという独立型電力供給システムが開示されている。具体的には、同文献の独立型電力供給システムは、気象予測データを用いて前記負荷装置の需要予測データ及び前記自然エネルギー発電装置の発電出力予測データを計算し、前記需要予測データ及び前記発電出力予測データにより、前記蓄電池の最大充電電力を超えて前記蓄電池に充電されることが予測される場合には前記自然エネルギー発電装置からの発電出力を抑制し、前記需要予測データ及び前記発電出力データにより、前記蓄電池の最大放電電力を超えて前記蓄電池から放電されることが予測される場合には前記調整用負荷の消費電力を抑制する。特許文献1は、上記構成を採ることにより、別途ディーゼルエンジン等の調整用電源を設ける必要性や、蓄電装置の容量を大きくする必要性をなくすことで、設置費用が少なくなるとしている。
 特許文献2に、電力系統における系統崩壊を抑制させ、かつ発電電力の有効活用が可能となるという太陽光発電システムが開示されている。同文献によると、この太陽光発電システムには、太陽光発電を行う太陽電池モジュール1と、発電電力を計測する計測ユニット5と、を有し、さらに、発電電力を消費可能な電気機器として、電力供給に応じて湯を沸かす電気温水器4が含まれる。そして、この太陽光発電システムは、出力抑制を指示する出力抑制情報を取得し、かつ電気温水器4が沸き上げ動作が可能と判断すると、計測ユニット5は、発電電力の出力抑制を解除するとともに、電気温水器4で使用させる使用電力を算出する。
 非特許文献1、2に記載されているように近年、太陽光発電(photovoltaics、solar photovoltaicsとも言う。以下、「PV」と記す)や風力に代表される再生可能エネルギーを用いた分散型電源(発電装置)の急増により、電力系統に逆潮流する余剰電力が増加し、電力系統が不安定となる問題が生じている。
 現時点では、非特許文献1、2のように、1日単位での出力制御をベースに年間30日の無償の出力制御が実施されているが、今後は、時間単位での出力抑制制御が検討されている。しかしながら、時間単位での出力抑制制御を実現するためには、非特許文献1のスライド10ページのような前日夕方での連絡やカレンダー制御では対応できないという問題点がある。また非特許文献1によると、今後は家庭用等の小型太陽光発電設備も出力制御の対象となることが予定されている。
特開2013-176234号公報 特開2015-106937号公報
九州電力株式会社、平成27年2月 "九州本土の再生可能エネルギー発電設備に対する接続申込みの回答再開に関するご説明資料"、[online]、[平成27年12月10日検索]、インターネット〈URL:http://www.kyuden.co.jp/library/pdf/notice/q27hfv5k.pdf〉 東北電力株式会社、平成27年1月 "(別紙1)改正省令にもとづく再エネ発電設備の新たな出力制御ルールの適用の考え方"、[online]、[平成27年12月10日検索]、インターネット〈URL:http://www.tohoku-epco.co.jp/news/normal/__icsFiles/afieldfile/2015/01/23/1188918b1.pdf〉
 以下の分析は、本発明によって与えられたものである。特許文献1のように、PVシステムに、余剰電力を充電するための蓄電池が接続されている場合がある。この場合においても、上記非特許文献1、2の出力抑制制御が指示されると、PVの出力を制御するPCS(パワーコンディショニングシステム;「パワーコンディショナー」とも言う)は、蓄電池における蓄電が可能な空き容量に基づいて、効率的な出力抑制と出力抑制を回避する蓄電を実施できないという問題点があった。
 本発明は、発電装置の出力抑制が実施される環境において、充放電制御システムの運用の効率化の向上に貢献することのできる充放電制御システム、充放電制御方法及びプログラムを提供することを目的とする。
 第1の視点によれば、負荷設備に電力を供給又は余剰電力を系統側に供給する発電装置を含む充放電制御システムが提供される。この充放電制御システムは、さらに、前記発電装置からの余剰電力を蓄電可能な蓄電池を備える。この充放電制御システムは、さらに、発電量の抑制指示を受信し、前記発電装置に対し発電量の抑制指示を伝達する制御部を備える。そして、前記制御部は、発電量の抑制指示を受信した際に、蓄電池の空き容量が所定値未満である場合、前記発電装置に前記発電量の抑制指示を送信する。
 第2の視点によれば、負荷設備に電力を供給又は余剰電力を系統側に供給する発電装置と、前記発電装置からの余剰電力を蓄電可能な蓄電池と、に接続され、発電量の抑制指示を受信し、前記発電装置に対し発電量の抑制指示を伝達する制御装置であって、前記発電量の抑制指示を受信した際に、蓄電池の空き容量が所定値未満である場合、前記発電装置に前記発電量の抑制指示を送信する制御装置が提供される。
 第3の視点によれば、負荷設備に電力を供給又は余剰電力を系統側に供給する発電装置と、前記発電装置からの余剰電力を蓄電可能な蓄電池と、発電量の抑制指示を受信し、前記発電装置に対し出力指示を伝達する制御部と、を含む充放電制御システムの前記制御部が、前記発電量の抑制指示を受信するステップと、前記発電量の抑制指示を受信した際に、蓄電池の空き容量が所定値未満である場合、前記発電装置に前記発電量の抑制指示を送信するステップと、を含む充放電制御方法が提供される。本方法は、上記発電装置、蓄電池、及び、制御部を含む充放電制御システムという、特定の機械に結びつけられている。
 第4の視点によれば、負荷設備に電力を供給又は余剰電力を系統側に供給する発電装置と、前記発電装置からの余剰電力を蓄電可能な蓄電池と、発電量の抑制指示を受信し、前記発電装置に対し出力指示を伝達する制御部と、を含む充放電制御システムの前記制御部を構成するコンピュータに、前記発電量の抑制指示を受信する処理と、前記発電量の抑制指示を受信した際に、蓄電池の空き容量が所定値未満である場合、前記発電装置に前記発電量の抑制指示を送信する処理と、を実行させるプログラムが提供される。なお、このプログラムは、コンピュータが読み取り可能な(非トランジエントな)記憶媒体に記録することができる。即ち、本発明は、コンピュータプログラム製品として具現することも可能である。
 本発明によれば、発電装置の出力抑制が実施される環境において、充放電制御システムの運用の効率化の向上に貢献することが可能となる。即ち、本発明は、発電量の抑制指示を受信する充放電制御システムを、その運用を飛躍的に効率化するものへと変換するものとなっている。
本発明の一実施形態の構成を示す図である。 本発明の一実施形態の動作を説明するための図である。 本発明の一実施形態の動作を説明するための別の図である。 本発明の一実施形態の作用効果を説明するための図である。 本発明の別の実施形態の構成を示す図である。 本発明の別の実施形態の構成を示す図である。 本発明の別の実施形態の構成を示す図である。 本発明の第1の実施形態の充放電制御システムの構成を示す図である。 本発明の第1の実施形態の充放電制御システムのHEMSの構成例を示す機能ブロック図である。 本発明の第1の実施形態の充放電制御システムの動作を表したシーケンス図である。 本発明の第2の実施形態の充放電制御システムの動作を表したシーケンス図である。 本発明の第2の実施形態の充放電制御システムの作用効果を説明するための図である。 本発明の第2の実施形態の充放電制御システムの作用効果を説明するための図である。 本発明の第2の実施形態の充放電制御システムのHEMSの構成例を示す機能ブロック図である。 本発明に関連する参考例を説明するための図である。 本発明に関連する参考例を説明するための図である。
 はじめに本発明の一実施形態の概要について図面を参照して説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではない。また、以降の説明で参照する図面等のブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。
 本発明は、その一実施形態において、図1に示すように、発電装置100と、蓄電池200と、制御装置300と、負荷設備400と、を含む充放電制御システムにて実現できる。より具体的には、発電装置100は、負荷設備400に電力を供給し、又は余剰電力を系統側に供給する。蓄電池200は、前記発電装置100からの余剰電力を蓄電可能となっている。制御装置300は、外部装置等から発電量の抑制指示を受信し、前記発電装置100に対し発電量の抑制指示を伝達する。ここで「余剰電力」とは発電装置において発電された電力において負荷設備における消費電力を超えた電力のことを示す。
 制御装置300は、前記発電量の抑制指示を受信した場合において、蓄電池200の充電状態(SOC;State Of Charge)を確認する。前記確認の結果、空き容量が所定値以上となっている場合、前記制御装置300は、発電装置100における抑制実施期間を短縮し(図2の例では出力抑制指示の送信延期)、当該短縮した期間において前記蓄電池への充電制御を実施する制御を行う。
 なお、前記充電制御の結果、蓄電池200の空き容量が所定値未満となった場合、制御装置300は、図3に示すように、受信した発電量の抑制指示を、発電装置100に伝達することになる。また、発電装置100が、制御装置300から直接的乃至間接的に指示された抑制指示による出力指示電力(許可された発電電力)と、前記負荷設備にて消費される電力とのいずれか大きい方を上限として出力を抑制する機能を備えている場合、以降、発電装置100は、負荷設備400の消費電力と、発電量の抑制指示にて指示された発電電力のうち、どちらか多い量の発電を行う。
 図4は、上記のように動作する充放電制御システムの出力の変化を表した図である。図4の例は、9時から15時の間、発電量を定格出力の40%に抑えることを指示する抑制指示を受信した例を示している。時刻t1から余剰電力が生じたため、この時刻から蓄電池の充電制御が開始される。しかし9時に出力抑制指示を受信したので、本来であれば、制御装置300は9時から発電量の抑制を実施するよう発電装置100に指示するべきであるが(図16参照)、図4の例では、発電量の抑制指示の送信タイミングを遅らせ、蓄電池200の充電制御を継続している。これは、9時から時刻t3までは、発電装置100からの余剰電力を蓄電池200に充電することにより、余剰電力も負荷で消費されたと見なせるため、発電装置100において出力抑制を実施しなくても出力上限(負荷電力)を超えないことによる。この結果、9時から時刻t3まで充電制御が行われている。時刻t3の段階で、蓄電池200の充電が完了すると、制御装置300は、発電装置100に発電量の抑制を指示している。以降、発電装置100は、定格出力の40%、あるいは、負荷設備の消費電力が不足する場合、これを賄うに足る発電を開始する(なお、図4の例では、時刻t2~15時までの期間は負荷消費電力がPV出力電力を上回っているため買電又は蓄電池の放電を行うことになる。)。以上のように、出力抑制時に蓄電池を充電制御することで、実質的に出力抑制に応じる時間を短縮し、PVによる発電可能電力を有効に使用する制御が実現される。なお、上述の説明では、時刻t1から出力抑制指示を受信する9時までの余剰電力を蓄電池に充電することとしているが、電力系統に逆潮流させて系統側に売電してもよい。
 なお、上記した図1~図4の例では、制御装置300が、充放電制御システムの制御部として独立して配置されている例を挙げて説明したが、発電装置100や蓄電池200の制御部が、充放電制御システムの制御部として機能する構成も採用可能である。
 例えば、図5に示すように、発電装置100aの制御部に上記制御装置300相当の動作を行わせてもよい。この場合、発電装置100aは、蓄電池200の充電状態(SOC)に基づいて、発電実施期間を短縮し(例えば、出力抑制指示の実施延期)、当該期間において必要な発電を行って、前記蓄電池200に対し充電制御を指示する。充電完了後、発電装置100aは、負荷設備400の消費電力と、発電量の抑制指示にて指示された発電量のいずれか多い方の分だけ発電する動作を行う。
 同様に、図6に示すように、蓄電池200aを内蔵した蓄電制御装置210aに上記制御装置300相当の動作を行わせてもよい。この場合、蓄電制御装置210aは、蓄電池200の充電状態(SOC)に基づいて、発電装置100に対する抑制指示の送信タイミングの遅延処理を実施することになる。
 同様に、図7に示すように、制御装置300aをネットワーク上に配置した構成も採用可能である。このような制御装置300aは、物理的にネットワークに接続された物理サーバ等であってもよい。また、仮想化技術等を用いてネットワーク上に構築された仮想化サーバや仮想ネットワークファンクションを用いて、制御装置300a相当のサービスを提供させることも可能である。
[第1の実施形態]
 続いて、本発明の第1の実施形態について説明する。第1の実施形態の説明の前に、参考例として、負荷消費に応じて、出力を調整する機能(負荷追従機能)を備えた太陽光発電設備が出力抑制指示を受けた場合の動作について説明する。
 図15は、この種の太陽光発電設備における発電量、負荷消費、電力収支の関係を表した図である。図中の太陽光発電出力が、負荷消費を上回る部分が余剰電力、即ち、売電可能な電力を示している。図15の例では、時刻t1以降、発電量が増大し、余剰電力が生じている。その後、正午を経て日没に近づくに従い、発電量が減少する一方で、負荷消費が増大し、時刻t2以降、電力の不足が発生し、系統側から電力を調達しなければならない状態となっている。
 このような太陽光発電設備において、例えば、図16に示すように、午前9時~15時の間に出力を40%(定格出力を100%とする)に抑える抑制制御を受けた場合、9時から時刻t3までは、発電量が負荷消費電力を上回っているため、売電することが可能である。より具体的には、許可された発電電力である定格出力の40%の値から負荷消費電力を引いた差分の電力を売電することが可能である。続く、時刻t3~時刻t2の間になると負荷消費電力が増えており、抑制指示適用後の発電量を上回ってしまっている。このような場合、太陽光発電設備の中には、指示された40%に加えて、負荷消費が抑制指示適用後の発電量を上回っている分だけ余分に発電する機能(負荷追従機能)を備えたPCS(パワーコンディショニングシステム;「パワーコンディショナー」とも言う)を備えるものがある。図16は、この種のPCSを備えた太陽光発電設備の例であり、負荷の増大に追従するように出力制御値を増大する制御が行われている。
 ところで、太陽光発電設備に蓄電池が備えられている場合、図16のような出力抑制制御がある日は、同図からも明らかなとおり蓄電池に十分な充電ができず、夜間に買電しなければならなくなってしまうという事態が生じ得る。
(第1の実施形態の構成)
 図8は、本発明の第1の実施形態の充放電制御システムの構成を示す図である。図8を参照すると、PV120と接続されたPCS110と、蓄電コントローラ210に接続された蓄電池200と、HEMS310と、負荷設備400と、を含む構成が示されている。
 PV120は、Photovoltaics、solar photovoltaics等とも呼ばれる機器であり、太陽光発電を行う。PCS(パワーコンディショニングシステム)110は、PV120から出力される直流電力を交流電力に変換する機器である。PCS110からの出力は、系統側、負荷設備400又は蓄電池200側に供給される。
 蓄電コントローラ210は、蓄電池200への充放電を制御する機器である。また、蓄電コントローラ210は、蓄電池200の充電状態を監視し、HEMS310に対し、SOC(State Of Charge)情報として提供する。蓄電池200は、リチウムイオン電池のほか、ニッケル水素電池、鉛電池、ナトリウム・硫黄電池等の各種の2次電池を用いることができる。また、蓄電池200として、専用の蓄電池を用意しても良いが、電気自動車(EV)に搭載されている蓄電池や家庭用蓄電システムの蓄電池を利用することとしてもよい。
 HEMS(Home Energy Management System)310は、PCS110、電力測定装置500、蓄電コントローラ210に接続され、これらから提供される情報の表示、制御を行う機器である。なお、本実施形態では、家庭用のシステムを想定して、HEMSとしているが、HEMS310は、設置場所に応じて、BEMS(Building Energy Management System)、FEMS(Factory Energy Management System)、あるいは、これらを総称するEMS(Energy Management System)に置き換えることができる。本実施形態におけるHEMS310の動作の詳細は後に詳細に説明する。
 負荷設備400は、各種家電等の電力を消費する機器である。電力測定装置500は、CT(Current Transformer)センサを含んで構成され、PCS110の出力電力と負荷設備400の消費電力の差を測定し、HEMS310に提供する。なお、負荷設備400としては、電力を使って外気から熱エネルギーを集めて保存することのできるヒートポンプ利用機器(給湯器等)や電力を使って位置エネルギーとして保存する揚水ポンプ等であってもよい。
 図9は、HEMS310の構成例を示す機能ブロック図である。図9を参照すると、HEMS310は、系統側装置通信部311と、充放電制御指示部312と、PCS制御部313と、メータ監視部314と、を備えて構成されている。
 系統側装置通信部311は、電力会社や広域機関(電力広域的運営推進機関)等の管理サーバと所定の方式で通信する。具体的には、系統側装置通信部311は、電力会社や広域機関の管理サーバから、電力の出力抑制指示を受信すると、その内容を、充放電制御指示部312に転送する。また、系統側装置通信部311は、管理サーバに対して、電力の出力抑制指示に対する応答メッセージ(Ack)等を応答する動作を行う。
 PCS制御部313は、PCS110と接続され、PCSの現在の状態情報を充放電制御指示部312に提供する。また、PCS制御部313は、充放電制御指示部312から出力抑制指示を受け取ると、PCS110に対し、その内容に従った出力抑制の実施を依頼する。
 メータ監視部314は、電力測定装置500から、PCS110の出力電力と負荷設備400の消費電力の差を受信し、充放電制御指示部312に提供する。
 充放電制御指示部312は、これらHEMS310の各部及び蓄電コントローラ210と接続されている。充放電制御指示部312は、系統側装置通信部311から電力の出力抑制指示を受信すると、次のように動作する。まず、充放電制御指示部312は、蓄電コントローラ210から受信した蓄電池200の充電状態と、電力測定装置500から受信した余剰電力の有無を確認する。蓄電池200の空き容量が所定の閾値以上かつ余剰電力が有る場合、充放電制御指示部312は、発電装置100における抑制実施期間を短縮し、当該期間に発電装置100で発電された電気を用いて蓄電池200の充電を実施する。以下本実施形態では、発電装置100への出力抑制指示の伝達時期を遅らせることで、抑制実施期間を短縮するものとして説明する。
 充放電制御指示部312は、前記充電制御期間中も蓄電池200の充電状態の確認を継続する。本実施形態では、蓄電池200が満充電状態になった場合、充放電制御指示部312は、充電制御を中止し、PCS制御部313を介してPCS110に出力抑制指示を伝達する。
 前記出力抑制指示を受信したPCS110は、出力抑制指示に従い、発電装置100の出力の抑制制御を実施する。この抑制制御期間中、PCS110は、負荷設備400の消費電力が、出力抑制指示に従った発電量を超える場合、当該超過分だけ発電装置100の出力を上げ、負荷設備400の消費電力を賄うよう制御する(負荷追従機能)。
 なお、図1~図9に示した制御装置300ないしHEMS310の各部(処理手段)は、これらの装置を構成するコンピュータのメモリに上記した各閾値を保持させて、そのハードウェアを用いて、上記した入力値と比較や指示の送信(伝達)等の各処理を実行させるコンピュータプログラムにより実現することもできる。
 続いて、本実施形態の動作について図面を参照して詳細に説明する。図10は、本発明の第1の実施形態の充放電制御システムの動作を表したシーケンス図である。図10を参照すると、まず、HEMS310は、出力抑制指示を受信すると(ステップS001のYes)、蓄電コントローラ210から受信した蓄電池200の充電状態(SOC)と、CTセンサ等の電力測定装置500から受信したシステム内の電力収支を確認する(ステップS002)。
 前記確認の結果、余剰電力あり、かつ、蓄電池200が充電可能である場合(ステップS003のYes)、HEMS310は、充電制御モードに移行し、抑制指示分を蓄電池200に充電する制御を実施する(ステップS004)。具体的には、HEMS310は、PCS110への出力抑制指示の伝達を遅らせ、発電装置100において発電された電力のうち負荷装置400による消費電力を超えた余剰電力の充電を指示する。蓄電池200が単独で発電装置100の余剰電力に応じて充電する機能を備えている場合、前記機能が既に動作中であれば、HEMS310は蓄電コントローラ210に対して特に指示する必要はないが、何らかの理由で停止している場合は動作再開を指示する必要がある。ここで、余剰電力の量によっては、蓄電池200が受け入れ可能な定格電力を超えてしまう場合がある。この場合には、蓄電コントローラ210へ例えば、定格電力である最大充電電力での充電を指示すると共に、PCS110へ出力抑制指示を伝達すれば良い(非図示)。このようにすることで、PCS110が備える負荷追従機能によって、充電できない分を考慮した第2の余剰電力(余剰電力-最大充電電力)が零になるように発電装置100の出力が調整される。つまり、蓄電池が充電可能であっても、余剰電力が蓄電池200の受け入れ可能な定格電力である最大充電電力を超える場合、第2の余剰電力(余剰電力-最大充電電力)が零になるように、発電装置100の出力を抑制することもできる。ただし、前記調整後の発電装置100の出力よりも抑制指示による出力指示電力の方が大きい場合は、前記出力指示電力になるように発電装置100の出力は調整されることになる。
 充電制御モード中、HEMS310は、蓄電池200の充電状態(SOC)を確認する(ステップS005)。蓄電池200の充電量が所定の閾値以上となった場合(ステップS005のYes)、HEMS310は、充電制御モードを終了し、ステップS001で受信した出力抑制指示をPCS110に伝達する(ステップS006)。
 以降は、PCS110にて出力抑制指示に従った出力抑制制御を実施するが、本実施形態のように、負荷設備400の消費電力が、出力抑制指示に従った発電量を超える場合は(図4の時刻t3以降)、負荷設備400での電力需要に追従した出力抑制制御(負荷追従機能)が行われる(ステップS007)。
 その後、HEMS310は、ステップS001で受信した出力抑制指示にて指定された期間(抑制期間)の終期が到来したか否かを確認する(ステップS008)。前記確認の結果、抑制期間の終期が到来している場合、HEMS310は、PCS110に対し、出力抑制の終了を指示する(ステップS009)。
 以降、PCS110は、抑制なしでの運転状態に復帰する(ステップS010)。
 以上のように、本実施形態によれば、出力抑制指示の受信後、直ちに出力抑制制御するのではなく、PCS110に抑制なしでの通常運転を継続させる一方で、蓄電池200への充電制御が実施される(図4参照)。また、蓄電池200への充電完了後は、PCS110により負荷設備400の需要の増減に応じた抑制制御(負荷追従機能)が行われるため、出力抑制により電力が不足する場合であっても、極力、系統側から電力を調達しなくても済むことになる。
 以上の効果は、図16に示す負荷の増大に追従するように出力制御値を調整する機能を有する場合に、より顕著に表れる。出力抑制期間中でPCS110が負荷追従動作をしている時は、系統側に売電することは許されない。このため、PCSは売電電力が発生しないように出力を調整することになる(ただし、抑制指示により許可された発電電力である出力指示電力については、系統側に売電することができる。)。一方で蓄電コントローラ210にも余剰電力を充電し売電電力を発生させないような調整機能がある。このため、PCS110と蓄電コントローラ210の調整機能が同時に独立に動作すると、システム全体として動作が不安定になる場合がある。しかし上述のようにHEMS310が指令塔となり、PCS110への出力抑制指示を伝達せず(発電出力抑制を行わず)、蓄電コントローラ210に対し余剰電力の充電動作を指示する、あるいは、蓄電コントローラ210に最大充電電力(一定値)での充電(または発電電力に依存しない任意の電力値での充電やさらに充電停止でも良い)を指示し、PCS110に負荷追従動作を指示することで、システム全体として動作が安定化する。このようにHEMS310によりどちらか一方のみの調整機能を動作させることでシステム全体として動作を安定化するという顕著な効果を発揮する。
 なお、上記した実施形態では、HEMS310が、抑制期間の終期を確認するものとして説明したが、HEMS310からの出力抑制指示の伝達時に、PCS110側に抑制期間の終期を通知してしまう構成も採用可能である。この場合、PCS110が自律的に、抑制期間の終期を確認し、抑制制御を終了することになる。
 なお、上記した実施形態では、HEMS310が、出力抑制指示の伝達タイミングを遅らせるものとして説明したが、出力抑制指示に抑制制御の始期や終期に関する情報が含まれている場合には、これらをHEMS310が書き換えてから、PCS110に送信する構成も採用可能である。PCS110がこれら書き換え後の出力抑制指示に従って抑制制御を行うことで、上記した実施形態と同様に、抑制実施期間の短縮を実現することが可能である。
[第2の実施形態]
 続いて、抑制実施期間を短縮する方法に変更を加えた第2の実施形態について説明する。基本的な構成は第1の実施形態と同様であり、第1の実施形態との相違点は、抑制実施期間を短縮するHEMS310の動作のみであるので、以下、その動作上の相違点を中心に説明する。
 図11は、本発明の第2の実施形態の充放電制御システムの動作を表したシーケンス図である。図11を参照すると、まず、HEMS310は、出力抑制指示を受信すると(ステップS101のYes)、蓄電コントローラ210から受信した蓄電池200の充電状態(SOC)を確認する(ステップS102)。
 前記確認の結果、蓄電池200が充電可能である場合(ステップS103のYes)、HEMS310は、出力抑制指示にて指定された出力抑制期間のうち、抑制を行わず余剰電力による蓄電池200への充電を行う期間(充電期間)を決定する(ステップS104)。なお、充電期間は、予め設定された余剰電力の大きい期間や、ユーザの指定の期間に基づいて決定することができる。
 ここでは、HEMS310は、図12に示すように、9時から15時の出力抑制期間中の余剰電力が高い時刻t4~t5を充電期間として決定したものとして説明する。この場合、HEMS310は、ステップS101で受信した出力抑制指示を、遅延させず、PCS110に送信する(ステップS105)。一方、蓄電池200で発電装置100の余剰電力に応じて充電制御する機能が動作している場合、HEMS310は、蓄電コントローラ210に対して、前記機能の停止を指示する。なお、出力抑制期間において、どの時間帯における余剰電力が高くなるかは、発電装置100における発電出力を測定した実測値から決めてもよいし、また事前に気象情報などにより予測した発電出力に基づいてどの時間帯で余剰電力が高くなるか事前に決めてもよい。
 出力抑制指示を受信したPCS110は、出力抑制指示に従った出力抑制制御を実施するが、負荷設備400の消費電力が、出力抑制指示に従った発電量を超える場合、負荷設備400での電力需要に追従した出力抑制制御(負荷追従機能)を実施する(ステップS106)。
 一方、HEMS310は、ステップS104で決定した充電期間の始期が到来したか否かを確認する(ステップS107)。前記確認の結果、充電期間の始期が到来している場合、HEMS310は、PCS110に対しては抑制解除を指示し、蓄電コントローラ210に対しては充電制御の再開を指示する(ステップS108)。
 その後、HEMS310は、蓄電池200の充電状態(SOC)を確認する(ステップS109)。蓄電池200の充電量が所定の閾値以上となった場合(ステップS109のYes)、HEMS310は、PCS110及び蓄電コントローラ210に対し、出力抑制の再開、充電制御の終了(充電量が所定の閾値以上となることで自動終了するときは必須ではない)を指示する(ステップS110)。
 前記指示を受けたPCS110は、出力抑制指示に従った出力抑制制御を再開するが、負荷設備400の消費電力が、出力抑制指示に従った発電量を超える場合、負荷設備400での電力需要に追従した出力抑制制御(負荷追従機能)を実施する(ステップS111)。なお、図11の例では、HEMS310側の出力抑制制御の終了判定が省略されているが、必要に応じて、図10(第1の実施形態)のステップS009、S010と同様の判定処理、抑制終了処理を追加してもよい。
 以上のように、本実施形態によれば、第1の実施形態の効果に加えて、余剰電力の大きい期間に充電を行うことが可能になる。
 なお、上記した実施形態では、出力抑制期間のうちの余剰電力の大きい期間に充電を行うものとして説明したが、必ずしもこの期間に充電を行う必要はなく、諸般の事情を考慮に入れて、充電制御の期間を決定することができる。例えば、図13に示すように、出力抑制期間の後半の時刻t4~t5の期間に充電を行うようにしてもよい。同様に、図4に示すように、出力抑制期間の冒頭の9時~時刻t3の期間に充電を行うようにしてもよい。また、ユーザから充電制御の期間を受け付け、その時間に充電を行うようにしてもよい。
 また、上記した実施形態では、HEMS310が、出力抑制を中止させることで抑制実施期間の短縮を実現するものとして説明したが、出力抑制指示に抑制制御の始期や終期に関する情報が含まれている場合には、これらをHEMS310が書き換えてから、PCS110及び蓄電コントローラ210に送信する構成も採用可能である(つまりHEMS310は、出力抑制スケジュール及び充電スケジュールを作成する機能を備える)。PCS110及び蓄電コントローラ210がこれら書き換え後の出力抑制指示に従って抑制制御及び充電制御を行うことで、上記した実施形態と同様に、抑制実施期間の短縮を実現することが可能である。
 また、上記充電期間を決定する際に、図15の太点線(太陽光発電出力)と、細実線(負荷消費)の差で表される電力収支を参照して、余剰電力の大きい期間を充電期間に決定することもできる。例えば、図14に示す電力収支の推移を記憶する電力収支推移記憶部315をHEMS310aに備えさせ、充放電制御指示部312が充電期間を決定する際に参照できるようにしてもよい(第3の実施形態)。電力収支推移記憶部315に記憶させる内容としては、前日、週平均、月平均、曜日平均、天気別平均等の電力収支の推移を表したデータを保持させ、これらのいずれかに基づいて充電期間に決定させることもできる。
 以上、本発明の各実施形態を説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、各図面に示したネットワーク構成、各要素の構成、メッセージの表現形態は、本発明の理解を助けるための一例であり、これらの図面に示した構成に限定されるものではない。
 また、上記した実施形態では、負荷設備400の消費電力が、出力抑制指示に従った発電量を超える場合、PCS110が、当該超過分だけ発電装置100の出力を上げ、負荷設備400の消費電力を賄うよう制御する機能(負荷追従機能)を有するものとして説明したが、負荷追従機能は、HEMS310や上位の管理装置に持たせてもよい。例えば、図8、図9のHEMS310は、メータ監視部314で余剰電力値を受信し、充放電制御指示部312に提供している。従って、HEMS310が、この余剰電力値が零になるようにPCS制御部313を通じてPCSに出力制御値を指示する構成も採用可能である。同様にHEMS310が、蓄電コントローラ210に対して、余剰電力が零になるような蓄電池200への充電電力値を指示することも可能である。
 また、上記した実施形態では、発電装置が太陽光発電装置を想定した例を挙げて説明したが、本発明は、風力、水力、潮汐、地熱等の再生可能エネルギーにて発電を行う発電装置やこれらが混在する構成を備える場合にも同様に適用することが可能である。
 また、上記した実施形態の蓄電池に加えて、ヒートポンプ利用機器等を接続してもよい。この場合、蓄電池200が満充電状態になっても、ヒートポンプ利用機器(給湯器等)にて、抑制すべき電力の全部又は一部を使って外気から熱エネルギーを集めて保存することができる。これにより、夜間等のエネルギー需要に応えることができる。
 最後に、本発明の好ましい形態を要約する。
[第1の形態]
 (上記第1の視点による充放電制御システム参照)
[第2の形態]
 上記した充放電制御システムにおいて、
 前記制御部は、
 前記発電量の抑制指示を受信した場合において、前記蓄電池の空き容量が所定値以上となっている場合、前記発電装置における抑制実施期間を短縮し、当該期間において前記蓄電池への充電制御を実施することができる。
[第3の形態]
 上記した充放電制御システムにおいて、
 前記制御部は、前記受信した発電量の抑制指示を、前記発電装置に伝達するタイミングを遅らせることで、前記発電装置における抑制実施期間を短縮するよう構成することができる。
[第4の形態]
 上記した充放電制御システムにおいて、
 前記制御部は、
 前記発電量の抑制指示を受信した場合において、前記蓄電池の空き容量が所定値以上となっている場合、前記蓄電池の充電を行う期間を決定し、その他の時間において発電量の抑制を行うことで、前記発電装置における抑制実施期間の短縮を実施するよう構成することができる。
[第5の形態]
 上記した充放電制御システムにおいて、
 前記制御部は、前記蓄電池の充電を行う期間として、余剰電力が大きい期間を選択するよう構成することができる。
[第6の形態]
 上記した充放電制御システムにおいて、
 前記発電装置は、前記発電量の抑制指示による抑制期間中において、前記抑制指示による出力指示電力と、前記負荷設備にて消費される電力とのいずれか大きい方を上限として出力を抑制する機能を備えることができる。
[第7の形態]
 上記した充放電制御システムにおいて、
 前記発電装置は、前記蓄電池の空き容量が所定値以上となっている場合、前記蓄電池の最大充電電力を超えた余剰電力が零となるように出力を抑制よう構成することができる。
[第8の形態]
 (上記第2の視点による制御装置参照)
[第9の形態]
 (上記第3の視点による充放電制御方法参照)
[第10の形態]
 (上記第4の視点によるプログラム参照)
 なお、上記第8~第10の形態は、第1の形態と同様に、第2~第7の形態に展開することが可能である。
 なお、上記の特許文献および非特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
 100、100a 発電装置
 110 PCS(パワーコンディショニングシステム)
 120 PV
 200、200a 蓄電池
 210 蓄電コントローラ
 210a 蓄電制御装置
 300、300a 制御装置
 310、310a HEMS
 311 系統側装置通信部
 312 充放電制御指示部
 313 PCS制御部
 314 メータ監視部
 315 電力収支推移記憶部
 400 負荷設備
 500 電力測定装置

Claims (18)

  1.  負荷設備に電力を供給又は余剰電力を系統側に供給する発電装置と、
     前記発電装置からの余剰電力を蓄電可能な蓄電池と、
     発電量の抑制指示を受信し、前記発電装置に対し発電量の抑制指示を伝達する制御部と、を含み、
     前記制御部は、
     前記発電量の抑制指示を受信した際に、蓄電池の空き容量が所定値未満である場合、前記発電装置に前記発電量の抑制指示を送信する充放電制御システム。
  2.  前記制御部は、
     前記発電量の抑制指示を受信した場合において、前記蓄電池の空き容量が所定値以上となっている場合、前記発電装置における抑制実施期間を短縮し、当該期間において前記蓄電池への充電制御を実施する請求項1の充放電制御システム。
  3.  前記制御部は、前記受信した発電量の抑制指示を、前記発電装置に伝達するタイミングを遅らせることで、前記発電装置における抑制実施期間を短縮する請求項2の充放電制御システム。
  4.  前記制御部は、
     前記発電量の抑制指示を受信した場合において、前記蓄電池の空き容量が所定値以上となっている場合、前記蓄電池の充電を行う期間を決定し、その他の時間において発電量の抑制を行うことで、前記発電装置における抑制実施期間の短縮を実施する請求項1から3いずれか一の充放電制御システム。
  5.  前記制御部は、前記蓄電池の充電を行う期間として、余剰電力が大きい期間を選択する請求項4の充放電制御システム。
  6.  前記発電装置は、前記発電量の抑制指示による抑制期間中において、前記抑制指示による出力指示電力と、前記負荷設備にて消費される電力とのいずれか大きい方を上限として出力を抑制する機能を備える、
     請求項1から5いずれか一の充放電制御システム。
  7.  前記発電装置は、前記蓄電池の空き容量が所定値以上となっている場合、前記蓄電池の最大充電電力を超えた余剰電力が零となるように出力を抑制する請求項1から6いずれか一の充放電制御システム。
  8.  負荷設備に電力を供給又は余剰電力を系統側に供給する発電装置と、
     前記発電装置からの余剰電力を蓄電可能な蓄電池と、に接続され、
     発電量の抑制指示を受信し、前記発電装置に対し発電量の抑制指示を伝達する制御装置であって、
     前記発電量の抑制指示を受信した際に、蓄電池の空き容量が所定値未満である場合、前記発電装置に前記発電量の抑制指示を送信する制御装置。
  9.  前記発電量の抑制指示を受信した場合において、前記蓄電池の空き容量が所定値以上となっている場合、前記発電装置における抑制実施期間を短縮し、当該期間において前記蓄電池への充電制御を実施する請求項8の制御装置。
  10.  前記受信した発電量の抑制指示を、前記発電装置に伝達するタイミングを遅らせることで、前記発電装置における抑制実施期間を短縮する請求項9の制御装置。
  11.  前記発電量の抑制指示を受信した場合において、前記蓄電池の空き容量が所定値以上となっている場合、前記蓄電池の充電を行う期間を決定し、その他の時間において発電量の抑制を行うことで、前記発電装置における抑制実施期間の短縮を実施する請求項8から10いずれか一の制御装置。
  12.  前記蓄電池の充電を行う期間として、余剰電力が大きい期間を選択する請求項11の制御装置。
  13.  前記発電装置が、前記発電量の抑制指示による抑制期間中において、前記抑制指示による出力指示電力と、前記負荷設備にて消費される電力とのいずれか大きい方を上限として出力を抑制する機能を備える、
     請求項8から12いずれか一の制御装置。
  14.  前記蓄電池の空き容量が所定値以上となっている場合、前記蓄電池の最大充電電力を超えた余剰電力が零となるように、前記発電装置の出力を抑制する請求項8から13いずれか一の制御装置。
  15.  前記蓄電池に配置され、前記蓄電池の充放電を制御する充電制御部として機能する請求項8から12いずれか一の制御装置。
  16.  前記発電装置に配置され、前記発電装置の出力を制御するパワーコンディショニングシステムとして機能する請求項8から12いずれか一の制御装置。
  17.  負荷設備に電力を供給又は余剰電力を系統側に供給する発電装置と、
     前記発電装置からの余剰電力を蓄電可能な蓄電池と、
     発電量の抑制指示を受信し、前記発電装置に対し出力指示を伝達する制御部と、を含む充放電制御システムの前記制御部が、
     前記発電量の抑制指示を受信するステップと、
     前記発電量の抑制指示を受信した際に、前記蓄電池の空き容量が所定値未満である場合、前記発電装置に前記発電量の抑制指示を送信するステップと、
     を含む充放電制御方法。
  18.  負荷設備に電力を供給又は余剰電力を系統側に供給する発電装置と、
     前記発電装置からの余剰電力を蓄電可能な蓄電池と、
     発電量の抑制指示を受信し、前記発電装置に対し出力指示を伝達する制御部と、を含む充放電制御システムの前記制御部を構成するコンピュータに、
     前記発電量の抑制指示を受信する処理と、
     前記発電量の抑制指示を受信した際に、前記蓄電池の空き容量が所定値未満である場合、前記発電装置に前記発電量の抑制指示を送信する処理と、 
     を実行させるプログラム。
PCT/JP2017/004888 2016-02-12 2017-02-10 充放電制御システム、充放電制御方法及びプログラム WO2017138629A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/076,168 US20210194262A1 (en) 2016-02-12 2017-02-10 Charge and discharge control system, charge and discharge control method, and program
JP2017567007A JP7069722B2 (ja) 2016-02-12 2017-02-10 充放電制御システム、充放電制御方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-024426 2016-02-12
JP2016024426 2016-02-12

Publications (1)

Publication Number Publication Date
WO2017138629A1 true WO2017138629A1 (ja) 2017-08-17

Family

ID=59563327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004888 WO2017138629A1 (ja) 2016-02-12 2017-02-10 充放電制御システム、充放電制御方法及びプログラム

Country Status (3)

Country Link
US (1) US20210194262A1 (ja)
JP (1) JP7069722B2 (ja)
WO (1) WO2017138629A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163823A (ja) * 2016-03-09 2017-09-14 トヨタ自動車株式会社 プラグイン電気自動車の充放電の最適化
JP2019047612A (ja) * 2017-08-31 2019-03-22 京セラ株式会社 太陽光発電装置および太陽光発電装置の制御方法
JP2019161912A (ja) * 2018-03-14 2019-09-19 株式会社カネカ 電力供給システム
JP2020202702A (ja) * 2019-06-12 2020-12-17 東京電力ホールディングス株式会社 需要制御方法、制御装置、プログラム及び電力システム
JP2021045042A (ja) * 2017-11-29 2021-03-18 オムロン株式会社 蓄電システム
WO2021166575A1 (ja) * 2020-02-20 2021-08-26 三菱パワー株式会社 電力調整システム及び発電プラント、並びに電力調整方法、並びに電力調整プログラム
US11444473B2 (en) 2019-10-15 2022-09-13 Inventus Holdings, Llc Dynamic battery charging for maximum wind/solar peak clipping recapture
JP2023112674A (ja) * 2022-02-01 2023-08-14 株式会社村田製作所 電力制御システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220185144A1 (en) * 2019-03-18 2022-06-16 Tvs Motor Company Limited Battery charging system for a hybrid electric vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010505A (ja) * 2009-06-29 2011-01-13 Tdk Corp 複数電源制御システムおよび電力変換装置
JP2012075224A (ja) * 2010-09-28 2012-04-12 Shikoku Res Inst Inc 再生可能エネルギーの蓄電システム
WO2013128947A1 (ja) * 2012-03-02 2013-09-06 京セラ株式会社 電力制御システム、電力制御装置、及び電力制御方法
JP2015037352A (ja) * 2013-08-12 2015-02-23 シャープ株式会社 パワーコンディショナ
JP2015080359A (ja) * 2013-10-18 2015-04-23 株式会社日立パワーソリューションズ ウィンドファームの制御方法および制御装置
JP2015111978A (ja) * 2013-12-06 2015-06-18 三菱重工業株式会社 制御装置、それを備えた発電システム、及び制御方法並びに制御プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034162A (ja) * 2000-07-14 2002-01-31 Nippon Telegr & Teleph Corp <Ntt> 分散電源システムとその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010505A (ja) * 2009-06-29 2011-01-13 Tdk Corp 複数電源制御システムおよび電力変換装置
JP2012075224A (ja) * 2010-09-28 2012-04-12 Shikoku Res Inst Inc 再生可能エネルギーの蓄電システム
WO2013128947A1 (ja) * 2012-03-02 2013-09-06 京セラ株式会社 電力制御システム、電力制御装置、及び電力制御方法
JP2015037352A (ja) * 2013-08-12 2015-02-23 シャープ株式会社 パワーコンディショナ
JP2015080359A (ja) * 2013-10-18 2015-04-23 株式会社日立パワーソリューションズ ウィンドファームの制御方法および制御装置
JP2015111978A (ja) * 2013-12-06 2015-06-18 三菱重工業株式会社 制御装置、それを備えた発電システム、及び制御方法並びに制御プログラム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163823A (ja) * 2016-03-09 2017-09-14 トヨタ自動車株式会社 プラグイン電気自動車の充放電の最適化
JP2019047612A (ja) * 2017-08-31 2019-03-22 京セラ株式会社 太陽光発電装置および太陽光発電装置の制御方法
JP2021045042A (ja) * 2017-11-29 2021-03-18 オムロン株式会社 蓄電システム
JP7322866B2 (ja) 2017-11-29 2023-08-08 オムロン株式会社 蓄電システム
JP2019161912A (ja) * 2018-03-14 2019-09-19 株式会社カネカ 電力供給システム
JP2020202702A (ja) * 2019-06-12 2020-12-17 東京電力ホールディングス株式会社 需要制御方法、制御装置、プログラム及び電力システム
JP7234819B2 (ja) 2019-06-12 2023-03-08 東京電力ホールディングス株式会社 需要制御方法、制御装置、プログラム及び電力システム
US11444473B2 (en) 2019-10-15 2022-09-13 Inventus Holdings, Llc Dynamic battery charging for maximum wind/solar peak clipping recapture
WO2021166575A1 (ja) * 2020-02-20 2021-08-26 三菱パワー株式会社 電力調整システム及び発電プラント、並びに電力調整方法、並びに電力調整プログラム
JP2023112674A (ja) * 2022-02-01 2023-08-14 株式会社村田製作所 電力制御システム
JP7375964B2 (ja) 2022-02-01 2023-11-08 株式会社村田製作所 電力制御システム

Also Published As

Publication number Publication date
JPWO2017138629A1 (ja) 2018-12-06
US20210194262A1 (en) 2021-06-24
JP7069722B2 (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2017138629A1 (ja) 充放電制御システム、充放電制御方法及びプログラム
KR102536670B1 (ko) 건물 및 계통의 충방전 우선순위를 고려하는 v2x­ess 연계 시스템 및 방법
Sechilariu et al. Supervision control for optimal energy cost management in DC microgrid: Design and simulation
JP6420912B2 (ja) 管理サーバ、管理方法及び管理システム
JP6430041B2 (ja) 管理装置、及び、制御方法
WO2013015256A1 (ja) 電力管理システム及び管理方法
CN202134924U (zh) 一种太阳能电力并网自用多功能系统的构造
US20170161656A1 (en) Risk preparation device, risk preparation method, and risk preparation system
US10326270B2 (en) DC power transmission device, DC power reception device, and DC power transmission system
JP5178783B2 (ja) 電力需給調整システム及び電力需給調整方法
JP6359472B2 (ja) 電力変換装置及び電力管理システム
JP2013017284A (ja) 電力制御システム、電気機器、および充放電制御部
JP6746935B2 (ja) 充放電制御システム、充放電制御方法及びプログラム
WO2015001767A1 (ja) 制御装置、電力管理システム
WO2022158124A1 (ja) 分散型電源システム、電力変換装置
JP2016158435A (ja) 電力変換装置、電力管理システム及び電力変換方法
JP7098865B2 (ja) 電力システムおよび蓄電池パワーコンディショナ
JP7419916B2 (ja) 電力取引支援装置および電力取引方法
JP2020058101A (ja) 電力供給システム
JP2019047612A (ja) 太陽光発電装置および太陽光発電装置の制御方法
JP6625181B2 (ja) 管理装置、及び、制御方法
JP2013162560A (ja) 需給調整システム
JP2020089200A (ja) 充放電制御装置及び充放電制御方法
JP2017050903A (ja) エネルギ管理システム、エネルギ管理装置およびエネルギ管理方法
JP2016126983A (ja) 燃料電池制御装置、燃料電池制御システム、燃料電池制御方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017567007

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750350

Country of ref document: EP

Kind code of ref document: A1