WO2011151939A1 - 電力システム - Google Patents

電力システム Download PDF

Info

Publication number
WO2011151939A1
WO2011151939A1 PCT/JP2010/070086 JP2010070086W WO2011151939A1 WO 2011151939 A1 WO2011151939 A1 WO 2011151939A1 JP 2010070086 W JP2010070086 W JP 2010070086W WO 2011151939 A1 WO2011151939 A1 WO 2011151939A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
load
output
detection unit
Prior art date
Application number
PCT/JP2010/070086
Other languages
English (en)
French (fr)
Inventor
山根 俊博
沼田 茂生
英介 下田
守弘 木下
Original Assignee
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清水建設株式会社 filed Critical 清水建設株式会社
Priority to US13/062,085 priority Critical patent/US8896151B2/en
Priority to SG2011015641A priority patent/SG176542A1/en
Publication of WO2011151939A1 publication Critical patent/WO2011151939A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power system including a small distributed power source in which the concept of a microgrid is introduced.
  • the power fluctuation amount includes various frequency components from a very rapid fluctuation to a relatively gentle fluctuation depending on the load and the power generation state of the small distributed power source.
  • distributed power sources having various load following characteristics with respect to these power fluctuations, fluctuations in all frequency components can be suppressed.
  • storage equipment such as storage batteries and power storage equipment for high frequency component fluctuations (very rapid fluctuations), and gas engine for low frequency component fluctuations (relatively gentle fluctuations) It is possible to suppress power fluctuations when such power generation equipment is used.
  • Patent Document 1 a system (for example, see Patent Document 1) that realizes load follow-up operation by linking power demand in a building by linking a commercial power receiving / transforming facility and a distributed power source, or a power storage facility when it differs significantly from the initial operation plan.
  • Patent Document 2 A method (for example, see Patent Document 2) that realizes stable system operation by utilizing the method is known. JP 2005-160286 A JP 2007-215290 A
  • FIG. 7 shows an example of a system configuration for supplying power by combining the emergency generator 190 and solar power generation by the solar cell 140 at the time of a power failure.
  • the part enclosed with the dashed-dotted line in the figure is a structure of the uninterruptible power supply 100.
  • FIG. 7 shows an example of a system configuration for supplying power by combining the emergency generator 190 and solar power generation by the solar cell 140 at the time of a power failure.
  • the part enclosed with the dashed-dotted line in the figure is a structure of the uninterruptible power supply 100.
  • the first circuit breaker 191 and the ACSW AC semiconductor switch
  • the second circuit breaker 192 is opened during the linked operation with the commercial system.
  • a peak cut operation is performed by controlling the output of the storage battery 130 in accordance with fluctuations in photovoltaic power generation or power load.
  • the circuit breaker 1 is opened, the ACSW is opened by the status signal of the first circuit breaker 191, and the emergency generator 190 starts to be activated at the same time.
  • the second circuit breaker 192 is turned on to perform the self-sustaining operation while utilizing the photovoltaic power generation output.
  • the maximum charge / discharge power of the storage battery 130 is ⁇ 90 kW to 90 kW
  • the maximum generated power of the solar battery 140 is 90 kW
  • the maximum power consumption of the important load 150 is 50 kW.
  • the maximum power flow in the forward and reverse directions of the ACSW 120 in FIG. 7 is as follows. The definition of the forward direction (+) and the reverse direction ( ⁇ ) is as shown in the figure.
  • the tolerance of ACSW 120 is in the range of ⁇ 90 kW to 90 kW
  • the power flow in ACSW 120 is ⁇ 180 kW to 140 kW depending on the output of storage battery 130, solar battery 140, and the size of important load 150. There is a problem that the flowing current becomes excessive and the ACSW 120 is damaged.
  • the invention which concerns on Claim 1 is an AC switch provided between a commercial power supply and the output part, a storage battery, and between the said AC switch and the said storage battery.
  • An uninterruptible power supply device equipped with an inverter installed in a power source, an important load connected to the output unit, a distributed power source connected to the output unit, and a total load including the important load are detected.
  • Total load power consumption detection means charge / discharge power detection means for detecting charge / discharge power in the storage battery, output power detection means for detecting output power from the distributed power source, and detection of power consumption by the important load
  • the detected value by the important load power consumption detecting means, the total load power consumption detecting means, the charge / discharge power detecting means, the output power detecting means and the important load power consumption detecting means is inputted.
  • a control unit that outputs a control command value for controlling the storage battery, wherein the control unit includes the total load power consumption detection unit, the charge / discharge power detection unit, and the output power detection.
  • a control command value for operating the storage battery is determined based on a detected value by the means and the important load power consumption detecting means.
  • the power system of the present invention by controlling the output of the storage battery, it is possible to appropriately control the power flow flowing through the AC switch (ACSW) constituting the uninterruptible power supply, and damage the AC switch.
  • the cost can be suppressed without requiring an AC switch having a large withstand capability.
  • the storage battery is charged when the output of a distributed power source such as a solar battery is large and the power consumption of an important load is small, the capacity of the storage battery can be reduced.
  • FIG. 1 is a diagram showing an outline of a power system according to an embodiment of the present invention.
  • 100 is an uninterruptible power supply
  • 101 is an input unit
  • 111 is a power detection unit
  • 102 is an output unit
  • 110 is a control unit
  • 120 is an AC switch (ACSW)
  • 130 is a storage battery
  • 131 is a power detection unit
  • 135 is an inverter
  • 140 is a solar cell
  • 145 is a power conditioner
  • 150 is an important load
  • 160 is a safety load
  • 170 is a disaster prevention load
  • 180 is a general load
  • 181 is a power detection unit
  • 190 is an emergency generator
  • 191 is a first generator
  • Reference numeral 1 is a circuit breaker
  • 192 is a second circuit breaker
  • 200 is a commercial power source.
  • FIG. 1 shows only a single phase connection, that is, a connection for one phase and a control system. Further, in the power system according to the present embodiment, the range (A) that includes the most important load (150) and is self-supporting immediately after a power failure, or the range that is self-supporting during operation of the emergency generator 190 during a power failure. A range (B) is defined.
  • the maximum charge / discharge power of the storage battery 130 is ⁇ 90 kW to 90 kW
  • the maximum generated power of the solar battery 140 is 90 kW
  • the maximum power consumption of the important load 150 is 50 kW
  • the tolerance of ACSW 120 is in the range of ⁇ 90 kW to 90 kW.
  • the forward direction (+) and reverse direction ( ⁇ ) of the ACSW 120 are defined as shown in the figure.
  • a general load 180 is connected to a power supply line by a commercial power source 200 that is a commercial system, and power supply is cut off when the power supply line falls into a power failure or other abnormal state.
  • the safety load 160 and the disaster prevention load 170 are loads of safety use, disaster prevention use, and the like and are highly important loads, and are connected to the power supply line via the first circuit breaker 191.
  • An emergency generator 190 is further connected to the connection line of the safety load 160 and the disaster prevention load 170 via a second circuit breaker 192, and an important load 150 is connected via an AC switch (ACSW) 120, When the power supply line fails, power is supplied from the emergency generator 190.
  • ACSW AC switch
  • the important load 150 is a load having higher importance than the security load 160 and the disaster prevention load 170 such as a server.
  • a storage battery 130 is connected to the connection line of the important load 150 via an inverter (INV) 135 in order to enable a self-sustained operation even when the power supply line is interrupted or the emergency generator 190 is stopped.
  • the solar cell 140 is connected via a power conditioner (PCS) 145.
  • PCS power conditioner
  • the emergency generator 190 is started when heavy oil or other fuel is used as a power source when the power supply line of the commercial power supply 200 is in an abnormal state (at the time of a power failure), and is continuously operated during the occurrence of the abnormality. Instead of the commercial power source 200, the power supply is continued to the safety load 160, the disaster prevention load 170, and the important load 150. However, if the power supply line of the commercial power supply 200 continues to be in an abnormal state for a long time and the emergency generator 190 continues to operate for a long time, the fuel is exhausted (run out of fuel) and the operation is stopped. Even after the emergency generator 190 runs out of fuel, as long as the power generation by the solar cell 140 is maintained and the storage battery 130 is storing power, the power supply to the important load 150 is continued.
  • the storage battery 130 is a capacitor or a secondary battery that can be repeatedly charged and discharged, and is connected to the connection line of the important load 150 via the inverter 135, and appropriately used by the commercial power source 200, the solar battery 140, and the emergency generator 190. It is charged and discharged to the general load 180, the safety load 160, the disaster prevention load 170, and the important load 150.
  • the storage battery 130 has a built-in control circuit (charge / discharge control circuit) for controlling charge / discharge of the secondary battery. A control command value from the control unit 110 described later is input to the control circuit, and charging / discharging of the secondary battery constituting the storage battery 130 is controlled accordingly.
  • the inverter 135 is a bidirectional power conversion device that performs bidirectional power conversion between AC and DC, and an operation mode for charging the storage battery 130 from the commercial power source 200, the solar battery 140, and the emergency generator 190. Then, alternating current is converted into direct current, and direct current is converted into alternating current in the operation mode when discharging the important load 150 from the storage battery 130.
  • the solar cell 140 is connected to the connection line of the important load 150 via the power conditioner 145, and supplies power generation output independently to the general load 180, the safety load 160, the disaster prevention load 170, and the important load 150.
  • the power conditioner 145 converts the direct current output of the solar cell 140 that does not conform to the predetermined frequency and voltage of the connection line of the important load 150 into predetermined alternating current power, and adapts the frequency and voltage to the power of the power supply line.
  • the output portion of the power conditioner 145 is provided with a current control type inverter so that, for example, power can be supplied to the maximum.
  • the first circuit breaker 191 is turned on during a normal load operation in which the power supply line of the commercial power supply 200 to which the general load 180 is connected is in a power supply state, and is opened (cut off) when the power supply line of the commercial power supply 200 is in a power failure state. .
  • the second circuit breaker 192 is opened when the first circuit breaker 191 is turned on and the power supply line of the commercial power supply 200 is in a power supply state, and is turned on when the power supply line of the commercial power supply 200 is in a power failure state.
  • the emergency generator 190 is activated, and the power generation output is supplied to the safety load 160, the disaster prevention load 170, and the important load 150.
  • the emergency generator 190 stops the second breaker is turned on.
  • the vessel 192 is also opened.
  • the power detection unit 181 detects a power failure in the power supply line of the commercial power supply 200, and controls the on / off of the first circuit breaker 191 and the second circuit breaker 192 and the start / stop of the emergency generator 190. is there.
  • the power failure detection control unit 11 opens the first circuit breaker 191 and turns on the second circuit breaker 192 to start the emergency generator 190.
  • the power failure detection control unit 11 turns on the first circuit breaker 191 and opens the second circuit breaker 192 to stop the emergency generator 190.
  • the power system in the self-supporting range immediately after the power failure includes an AC switch (ACSW) 120, an inverter 135, the storage battery 3, and an important load 150.
  • An AC switch (ACSW) 120 arranged between the commercial power supply AC6 and the inverter 135 corresponds to one phase, and includes two thyristors Th1 and Th2 (not shown) connected in reverse parallel. Composed.
  • a tidal current flows in the AC switch (ACSW) 120 in the forward direction, and the storage battery 130 and the important load 150 Is supplied with AC power from a commercial power source 200 via an AC switch (ACSW) 120.
  • ACSW AC switch
  • the AC switch (ACSW) 120 is cut off and the supply of AC power from the commercial power source 200 is stopped. Further, when an abnormality occurs in the commercial power source 200, the AC switch (ACSW) 120 is cut off as in the power failure state, and the supply of AC power from the commercial power source 200 is stopped.
  • the storage battery 130 when the storage battery 130 is discharged or the solar battery 140 is outputting, and surplus power is generated within the range (A), the current flows in the reverse direction in the AC switch (ACSW) 120.
  • ACSW AC switch
  • the uninterruptible power supply 100 includes an AC switch (ACSW) 120 provided between the commercial power supply 200 and the output unit 102, a storage battery 130, and an inverter 135 installed between the AC switch 120 and the storage battery 130. It is provided at least. Moreover, although the control part 110 is provided in the uninterruptible power supply 100, this control part 110 can also be comprised so that control by a higher-order controller etc. may be received.
  • AC switch AC switch
  • the control unit 110 is a main controller for performing each control of the power system according to the present invention.
  • a control unit 110 a general-purpose information processing apparatus including a CPU, a RAM, a ROM, and the like is used, and a program for causing the CPU to execute an operation for outputting a command to a predetermined block based on input predetermined information. This can be realized by storing in the ROM in advance.
  • a power detection unit 131 is provided between the inverter (INV) 135 and the storage battery 130, and the power detection unit 131 can detect charging / discharging power in the storage battery 130. The detection value detected by the power detection unit 131 is transmitted to the control unit 110.
  • a power detection unit 111 is provided between the power conditioner (PCS) 145 and the AC switch (ACSW) 120, and the power detection unit 111 detects the total power amount of the solar cell 140 and the important load 150. Be able to. The detection value detected by the power detection unit 111 is transmitted to the control unit 110.
  • a power detection unit 181 is provided in the power supply line by the commercial power source 200, and the total load including the important load 150 (however, the power supply from the storage battery 130, the solar battery 140, and the emergency generator 190 is excluded). ) To function as a total load power consumption detecting means for detecting the power consumption. The detection value detected by the power detection unit 181 is transmitted to the control unit 110.
  • control unit 110 outputs control signals for at least the AC switch (ACSW) 120, the inverter 135 in the storage battery 130, the power conditioner 145, and the storage battery 130 (charging / discharging circuit), respectively. It can be controlled.
  • FIG. 2 for explaining the control of the power system of the present invention configured as described above is a diagram showing a control block diagram in the power system according to the embodiment of the present invention. Processing based on such a control block diagram is executed in the control unit 110.
  • the detection value W Load obtained from the detection unit 181 and the detection value W BAT obtained from the detection unit 131 are input, and after adding these, the band-pass filter is passed.
  • This band-pass filter is a filter for removing negligible power fluctuation within a predetermined time.
  • the signal that has passed through the bandpass filter is input to the limiter.
  • the input value is limited by the upper limit value (W ACSWmax ) and lower limit value (W ACSWmin ) of the ACSW power flow.
  • the signal W ACSWref that has passed through the limiter is used as a command value for the AC switch (ACSW) 120, and important load power consumption W Important Load that is a detection value in the power detection unit 151 is added to this W ACSWref .
  • the solar cell output voltage W PV that is a detection value in the power detection unit 141 is subtracted and output to the storage battery 130 as a control signal W BATref for the storage battery 130 (charge / discharge circuit).
  • the output command value of the storage battery 130 is a value represented by the following expression.
  • (W BATref ) (command value W ACSWref ) ⁇ (solar cell 140 output) + (important load 150 power consumption)
  • the value obtained from the detection value from the power detection unit 141 is used for (solar cell 140 output)
  • the value obtained by the power detection unit 151 is used for (important power 150 power consumption).
  • the AC switch (ACSW) 120 is not damaged, and the cost can be suppressed without requiring an AC switch with a large withstand capability.
  • the storage battery is charged when the output of a distributed power source such as a solar battery is large and the power consumption of an important load is small, the capacity of the storage battery can be reduced.
  • FIG. 3 is a diagram illustrating an example of power flow during clear weather based on the control according to the prior art
  • FIG. 4 is a diagram illustrating an example of power flow during rainy / cloudy weather based on the control according to the prior art
  • FIG. 6 is a diagram showing an example of a power flow during clear weather based on control according to the power system of the present invention
  • FIG. 6 is a diagram showing an example of a power flow during rainy / cloudy weather based on control according to the power system of the present invention. is there.
  • a thin one-dot chain line indicates the power consumption by the total load
  • a thin solid line indicates the power flow in the AC switch (ACSW) 120
  • a thin dotted line indicates the power charged / discharged by the storage battery 130.
  • the thin two-dot chain line indicates the output of the solar cell 140
  • the thick one-dot chain line indicates the power consumption of the important load 150.
  • the storage battery 130 is appropriately controlled by the output of the solar cell 140 and the load power of the important load 150 by the power system of the present invention.
  • the power flow of the AC switch (ACSW) 120 is always within the range of ⁇ 90 to 90 kW, which is its withstand capability.
  • the solar cell 140 is used as the distributed power source for configuring the microgrid.
  • the wind power generation, the storage battery, and the rotating machine are used as the distributed power source.
  • Type generators, fuel cells, waste power generation, cogeneration, etc. are used. Note that these distributed power sources can be used alone or in combination.
  • the power system by controlling the output of the storage battery 130, it is possible to appropriately control the power flow flowing in the AC switch (ACSW) 120 that constitutes the uninterruptible power supply 100,
  • the AC switch (ACSW) 120 is not damaged, and the cost can be suppressed without requiring an AC switch having a large withstand capability.
  • the storage battery since the storage battery is charged when the output of a distributed power source such as a solar battery is large and the power consumption of an important load is small, the capacity of the storage battery can be reduced.
  • the power system of the present invention it is possible to appropriately control the power flow flowing in the AC switch (120) that constitutes the uninterruptible power supply, so that without using an expensive AC switch (120) with a large withstand capability, An electric power system can be constructed at low cost, and industrial applicability is very large.

Abstract

 無停電電源を構成する交流スイッチ(120)に流れる潮流を適切に制御することが可能な電力システムを提供するため、本発明に電力システムは、商用電源(200)と出力部(102)との間に設けられた交流スイッチ(120)と、蓄電池(130)と、前記交流スイッチ(120)と前記蓄電池(130)との間に設置されたインバーター(135)とを備えた無停電電源装置(100)と、前記出力部(102)に接続される重要負荷(150)と、前記出力部(102)に接続される太陽電池(140)と、前記重要負荷(150)を含む総負荷による消費電力を検出する電力検出(181)と、前記蓄電池(130)における充放電電力を検出する電力検出部(131)と、前記太陽電池(140)からの出力電力を検出する電力検出部(141)と、前記重要負荷(150)による消費電力を検出する電力検出部(151)と、前記電力検出(181)及び前記電力検出部(131)及び前記出力電力検出手段及び前記電力検出部(151)による検出値が入力されると共に、前記蓄電池(130)を制御する制御指令値を出力する制御部(110)と、を有する電力システムであって、前記制御部(110)は、前記電力検出(181)及び前記電力検出部(131)及び前記電力検出部(141)及び前記電力検出部(151)による検出値に基づいて、前記蓄電池(130)を動作させる制御指令値を決定することを特徴とする。

Description

電力システム
 本発明は、マイクログリッドの考え方が導入された小型分散型電源を含む電力システムに関する。
 従来の電力システムにおいては、原子力・火力・水力などの発電所から大規模な送電網によってエネルギー供給を行うようにしていたが、近年、小型分散型電源(太陽光、風力、バイオマスなど)を連結することによって電力ネットワークを構成し、これにより所定域内におけるエネルギー供給を行うマイクログリッドなる概念が提唱され、普及しつつある。このようなマイクログリッドの思想を取り込んだ小型分散型電源によるエネルギー供給システムでは、通常時は系統連系により商用系統からの買電量が一定となるように発電量を制御する連係運転を行い、停電等の非常時はマイクログリッド系統内に高品質な(電圧・周波数の変動が小さい)電力を供給する自立運転を行う負荷追従運転が求められている。
 マイクログリッドを構築する際、いかに時々刻々変動する電力の供給バランスを取るかが最重要課題となる。電力供給を変動させる要素としては、負荷変動や、風力発電・太陽光発電のような小型分散型電源の発電量変動(以下、両方の変動をあわせて「電力変動」と記述する)などが挙げられる。
 電力変動量は、負荷や小型分散型電源の発電の状態によって、非常に急激な変動から比較的緩やかな変動まで様々な周波数成分を含んでいる。これらの電力変動に対して、様々な負荷追従特性を有する分散型電源を組み合わせることによりすべての周波数成分の変動を抑制することが可能となる。具体的には、高い周波数成分の変動(非常に急激な変動)に対しては蓄電池や電力貯蔵設備のような蓄電設備、低い周波数成分の変動(比較的緩やかな変動)に対してはガスエンジンのような発電設備が対応することによって電力変動の抑制が可能となる。
 また、建物における電力需要を商用系統の受変電設備と分散型電源の連係によって負荷追従運転を実現するシステム(例えば、特許文献1参照)や、当初の運用計画から大幅に異なる場合に蓄電設備を活用することにより安定した系統運用を実現する方法(例えば、特許文献2参照)が知られている。
特開2005-160286号公報 特開2007-215290号公報
 図7を参照して従来のマイクログリッドの構成例を説明する。停電時において、非常用発電機190と、太陽電池140による太陽光発電を組み合わせて電力供給を行うシステム構成の一例を図7に示す。なお、図中一点鎖線で囲まれた部分は無停電電源100の構成である。
 図7に示すような電力システムにおいては、商用系統との連係運転時は、第1遮断器191とACSW(交流半導体スイッチ)が投入状態、第2遮断器192が開放状態となっており、太陽光発電や電力負荷の変動に応じて蓄電池130の出力制御を行うことにより、ピークカット運転を行う。
 一方、停電時は遮断器1を開放し、第1遮断器191の状態信号によってACSWを開放すると同時に非常用発電機190の起動を開始する。非常用発電機190の起動後は、第2遮断器192を投入することによって太陽光発電出力を活用しながら自立運転を行う。
 ここで、図7に示す電力システムにおいて、蓄電池130の最大充放電電力が-90kW~90kWで、太陽電池140の最大発電電力が90kWで、重要負荷150の最大消費電力が50kWであるものとすると、図7中のACSW120の順方向と、逆方向の最大潮流は以下の通りである。なお、順方向(+)、逆方向(-)の定義は図に示すとおりである。
 逆方向の最大潮流(晴天時)は、蓄電池130の最大放電電力(-90kW)+太陽電池140の最大出力(-90kW)―重量負荷150の最小値(0kW)=-180(kW)となる。
 順方向の最大潮流(雨天・曇天時)は、蓄電池130の最大放電電力(90kW)+太陽電池140の最大出力(0kW)―重量負荷150の最小値(50kw)=140(kW)となる。
 例えば、ACSW120の耐量が-90kW~90kWの範囲であるとすると、蓄電池130や、太陽電池140の出力、重要負荷150の大きさによってはACSW120における潮流は、-180kW~140kWとなるので、ACSW120に流れる潮流が過大となり、ACSW120が損傷してしまう、と問題があった。
 ここで、無停電電源100におけるACSW120をより耐量が大きいものに交換することも考えられるが、耐量が大きいACSW120は高価であり、ACSW120をより耐量が大きいものに交換すると、電力システムを構成するためのコストが上昇する、という問題があった。
 この発明は、上記課題を解決するものであって、請求項1に係る発明は、商用電源と出力部との間に設けられた交流スイッチと、蓄電池と、前記交流スイッチと前記蓄電池との間に設置されたインバーターとを備えた無停電電源装置と、前記出力部に接続される重要負荷と、前記出力部に接続される分散型電源と、前記重要負荷を含む総負荷による消費電力を検出する総負荷消費電力検出手段と、前記蓄電池における充放電電力を検出する充放電電力検出手段と、前記分散型電源からの出力電力を検出する出力電力検出手段と、前記重要負荷による消費電力を検出する重要負荷消費電力検出手段と、前記総負荷消費電力検出手段及び前記充放電電力検出手段及び前記出力電力検出手段及び前記重要負荷消費電力検出手段による検出値が入力されると共に、前記蓄電池を制御する制御指令値を出力する制御部と、を有する電力システムであって、前記制御部は、前記総負荷消費電力検出手段及び前記充放電電力検出手段及び前記出力電力検出手段及び前記重要荷消費電力検出手段による検出値に基づいて、前記蓄電池を動作させる制御指令値を決定することを特徴とする。
 本発明に係る電力システムによれば、蓄電池の出力制御を行うことで、無停電電源を構成する交流スイッチ(ACSW)に流れる潮流を適切に制御することが可能となり、交流スイッチを損傷させることがないし、耐量が大きい交流スイッチを要することもなくコストを抑制することができる。また、太陽電池などの分散型電源の出力が大きく、重要負荷の消費電力が小さい場合、蓄電池を充電するので、蓄電池の設備容量の削減も可能となる。
本発明の実施形態に係る電力システムの概要を示す図である。 本発明の実施形態に係る電力システムにおける制御ブロック図を示す図である。 従来技術に係る制御に基づく晴天時における電力潮流の例を示す図である。 従来技術に係る制御に基づく雨天・曇天時における電力潮流の例を示す図である。 本発明の電力システムに係る制御に基づく晴天時における電力潮流の例を示す図である。 本発明の電力システムに係る制御に基づく雨天・曇天時における電力潮流の例を示す図である。 従来のマイクログリッドの構成例を説明する図である。
 以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明の実施形態に係る電力システムの概要を示す図である。図1において、100は無停電電源装置、101は入力部、111は電力検出部、102は出力部、110は制御部、120は交流スイッチ(ACSW)、130は蓄電池、131は電力検出部、135はインバーター、140は太陽電池、145はパワーコンディショナー、150は重要負荷、160は保安負荷、170は防災負荷、180は一般負荷、181は電力検出部、190は非常用発電機、191は第1遮断器、192は第2遮断器、200は商用電源をそれぞれ示している。なお、図1には単相分即ち一相分の結線と制御系だけを図示してある。また、本実施形態に係る電力システムにおいては、最も重要な負荷(150)を含み停電直後においても自立する範囲である範囲(A)や、停電時には非常用発電機190の運転中に自立する範囲である範囲(B)が定義されている。
 なお、本実施形態においては例示的に、蓄電池130の最大充放電電力が-90kW~90kWであり、太陽電池140の最大発電電力が90kWであり、重要負荷150の最大消費電力が50kWであり、ACSW120の耐量が-90kW~90kWの範囲であるものとする。また、ACSW120の順方向(+)、逆方向(-)の定義は図に示すとおりとする。
 図1において、一般負荷180は、商用系統である商用電源200による給電ラインに接続され、給電ラインが停電その他の異常状態に陥った時には給電が遮断される。保安負荷160・防災負荷170は、保安用途の負荷や防災用途の負荷などであり重要度の高い負荷であって、第1遮断器191を介して給電ラインに接続されている。この保安負荷160・防災負荷170の接続ラインには、さらに第2遮断器192を介して非常用発電機190が接続されるとともに、交流スイッチ(ACSW)120を介して重要負荷150が接続され、給電ラインが停電したときには非常用発電機190から電力供給される。重要負荷150は、例えばサーバーなど、保安負荷160・防災負荷170よりさらに重要度の高い負荷である。この重要負荷150の接続ラインには、給電ラインが停電しても、非常用発電機190が停止しても自立運転を可能にするため、インバーター(INV)135を介して蓄電池130が接続されるとともに、パワーコンディショナー(PCS)145を介して太陽電池140が接続される。
 非常用発電機190は、重油やその他の燃料を動力源として商用電源200の給電ラインが異常状態に陥った時(停電時)に起動され、異常発生中は継続して運転されるものであり、商用電源200に代わって保安負荷160・防災負荷170及び重要負荷150に電力供給を継続する。しかし、商用電源200の給電ラインが長時間にわたり異常状態が継続して、非常用発電機190が長時間運転を継続すると、燃料枯渇(燃料切れ)になり、運転停止に至る。なお、非常用発電機190の燃料切れ後においても、太陽電池140による発電が維持され、蓄電池130が蓄電している状態である限りは、重要負荷150への電力供給が継続される。
 蓄電池130は、繰り返し充放電が可能なコンデンサや二次電池などであり、インバーター135を介して重要負荷150の接続ラインに接続して、商用電源200や太陽光電池140、非常用発電機190により適宜充電され、一般負荷180や保安負荷160・防災負荷170、重要負荷150に放電する。なお、この蓄電池130は、二次電池の充放電を制御するための制御回路(充放電制御回路)を内蔵してなるものである。この制御回路に対しては、後述する制御部110からの制御指令値が入力され、それに応じて蓄電池130を構成する二次電池の充放電がコントロールされる。
 インバーター135は、交流と直流との間を双方向に電力変換する双方向型の電力変換装置であり、商用電源200や太陽光電池140、非常用発電機190から蓄電池130を充電するときの動作モードでは交流を直流に変換し、重要負荷150に蓄電池130から放電するときの動作モードでは直流を交流に変換する。
 太陽光電池140は、パワーコンディショナー145を介して重要負荷150の接続ラインに接続して、一般負荷180や保安負荷160・防災負荷170、重要負荷150に独立して発電出力を供給するものである。パワーコンディショナー145は、重要負荷150の接続ラインの所定の周波数や電圧に適合していない太陽光電池140の直流出力を所定の交流電力に変換し、周波数や電圧を給電ラインの電力に適合させる。パワーコンディショナー145の出力部には、例えば電力を最大限に供給できるように電流制御方式のインバーターを備えている。
 第1遮断器191は、一般負荷180が接続される商用電源200の給電ラインが給電状態にある通常の負荷運転時に投入され、商用電源200の給電ラインが停電状態になると開放(遮断)される。第2遮断器192は、第1遮断器191が投入され商用電源200の給電ラインが給電状態にあると開放され、商用電源200の給電ラインが停電状態になると投入される。この第2遮断器192が投入されると、非常用発電機190が起動されて発電出力が保安負荷160・防災負荷170や重要負荷150に給電され、非常用発電機190が停止すると第2遮断器192も開放される。
 電力検出部181は、商用電源200の給電ラインの停電の検出を行い、第1遮断器191、第2遮断器192の投入/開放、非常用発電機190の起動/停止の制御を行うものである。商用電源200の給電ラインが停電すると、停電検出制御部11により、第1遮断器191を開放するとともに、第2遮断器192を投入して非常用発電機190を起動する。商用電源200の給電ラインの停電が復旧すると、停電検出制御部11により、第1遮断器191を投入するとともに、第2遮断器192を開放して非常用発電機190を停止する。
 停電直後自立範囲内における電力システムとしては、交流スイッチ(ACSW)120、インバーター135、蓄電池3及び重要負荷150を備えて構成される。商用電源AC6とインバーター135との間に配置された交流スイッチ(ACSW)120は、一相分に対応するものであり、逆並列接続された2つのサイリスタTh1及びTh2(図示せず)を備えて構成される。
 商用電源200が健全な状態(復帰状態も含む)であり、範囲(A)に電力供給が必要であるときには、交流スイッチ(ACSW)120における順方向に潮流が流れ、蓄電池130や、重要負荷150には交流スイッチ(ACSW)120を介して商用電源200から交流電力が供給される。
 一方、商用電源200が停電状態になると交流スイッチ(ACSW)120が遮断状態になって商用電源200から交流電力の供給を停止する。また、商用電源200に異常が発生すると、停電状態と同様に交流スイッチ(ACSW)120が遮断状態になって商用電源200から交流電力の供給を停止する。
 また、蓄電池130が放電したり、太陽電池140が出力したりしており、範囲(A)内で余剰電力が発生しているような場合には、交流スイッチ(ACSW)120における逆方向に潮流が流れ、蓄電池130や太陽電池140から保安負荷160・防災負荷170や一般負荷180に対する給電を行うことができるようになっている。
 無停電電源装置100は、商用電源200と出力部102との間に設けられた交流スイッチ(ACSW)120と、蓄電池130と、交流スイッチ120と蓄電池130との間に設置されたインバーター135とを少なくとも備えてなるものである。また、無停電電源装置100には制御部110が設けられているが、この制御部110はより上位のコントローラなどによる制御を受けるように構成することもできる。
 制御部110は本発明に係る電力システムの各制御を行うためのメインコントローラである。このような制御部110としては、CPUやRAM、ROM等を備える汎用の情報処理装置を用い、入力された所定情報に基づいて所定ブロックへの命令を出力する動作を前記CPUに実行させるプログラムを予め前記ROMに記憶させることによって実現することが可能である。
 インバーター(INV)135と蓄電池130との間には、電力検出部131が設けられており、この電力検出部131によって蓄電池130における充放電電力を検出することができるようになっている。電力検出部131によって検出された検出値は制御部110に送信される。
 パワーコンディショナー(PCS)145と交流スイッチ(ACSW)120との間には電力検出部111が設けられており、この電力検出部111によって太陽電池140と重要負荷150との合算の電力量を検出することができるようになっている。電力検出部111によって検出された検出値は制御部110に送信される。
 また、商用電源200による給電ライン中には電力検出部181が設けられており、重要負荷150を含む総負荷(ただし、蓄電池130、太陽電池140、非常用発電機190からの電力供給分は除く)による消費電力を検出する総負荷消費電力検出手段として機能するようになっている。この電力検出部181によって検出された検出値は制御部110に送信される。
 本発明に係る電力システムにおいては、制御部110は少なくとも交流スイッチ(ACSW)120と、蓄電池130におけるインバーター135と、パワーコンディショナー145と、蓄電池130(充放電回路)に対する制御信号を出力し、それぞれを制御することができるようになっている。
 次に、以上のように構成される本発明の電力システムの制御について説明する図2は本発明の実施形態に係る電力システムにおける制御ブロック図を示す図である。このような制御ブロック図に基づく処理は、制御部110において実行される。
 制御部110における制御においては、検出部181から得られる検出値WLoad及び、検出部131から得られる検出値WBATが入力され、これらの加え合わせが行われた上で、バンドパスフィルターを通過させる。このバンドパスフィルターは、所定時間内の無視し得る電力変動を除去するためのフィルターである。
 次に、バンドパスフィルターを通過した信号はリミッターに入力される。このリミッターにおいては、入力値がACSW潮流の上限値(WACSWmax)と下限値(WACSWmin)によって制限される。リミッターを通過した信号WACSWrefは、交流スイッチ(ACSW)120に対する指令値とされると共に、このWACSWrefに対しては、電力検出部151における検出値である重要負荷消費電力WImportant Loadが加算され、電力検出部141における検出値である太陽電池出力電圧WPVが減算され、蓄電池130(充放電回路)に対する制御信号WBATrefとして、蓄電池130に対して出力される。
 すなわち、蓄電池130の出力指令値は下式で表す値となる。
(WBATref)=(指令値WACSWref)-(太陽電池140出力)+(重要負荷150消費電力)
 ここで、(太陽電池140出力)は電力検出部141からの検出値により得られる値を用い、(重要負荷150消費電力)は電力検出部151により得られる値を用いる。
 以上のような本発明に係る電力システムによれば、本発明に係る電力システムによれば、蓄電池130の出力制御を行うことで、無停電電源100を構成する交流スイッチ(ACSW)120に流れる潮流を適切に制御することが可能となり、交流スイッチ(ACSW)120を損傷させることがないし、耐量が大きい交流スイッチを要することもなくコストを抑制することができる。また、太陽電池などの分散型電源の出力が大きく、重要負荷の消費電力が小さい場合、蓄電池を充電するので、蓄電池の設備容量の削減も可能となる。
 ここで、上記のような本発明の電力システムに基づく制御例を説明する。
図3は従来技術に係る制御に基づく晴天時における電力潮流の例を示す図であり、図4は従来技術に係る制御に基づく雨天・曇天時における電力潮流の例を示す図であり、図5は本発明の電力システムに係る制御に基づく晴天時における電力潮流の例を示す図であり、図6は本発明の電力システムに係る制御に基づく雨天・曇天時における電力潮流の例を示す図である。
 全ての図において、細い一点鎖線は総負荷による消費電力を示しており、細い実線は交流スイッチ(ACSW)120における潮流を示しており、細い点線は蓄電池130で充放電される電力を示しており、細い二点鎖線は太陽電池140の出力を示しており、太い一点鎖線は重要負荷150の消費電力を示している。
 図3と図5との対比、及び、図4と図6との対比から、本発明の電力システムによって、蓄電池130が太陽電池140の出力や重要負荷150の負荷電力によって適切に制御されることにより、常に交流スイッチ(ACSW)120の潮流がその耐量である-90~90kWの範囲内となっていることがわかる。
 次に、本発明の他の実施形態について説明する。先の実施形態においては、マイクログリッドを構成するための分散型電源として、太陽電池140が用いられる構成であったが、他の実施形態においては、分散型電源として、風力発電、蓄電池、回転機型発電機、燃料電池、廃棄物発電、コージェネレーションなどを用いるものである。なお、これらの分散型電源としては、それぞれ単独に用いることもできるし、組み合わせて用いることも可能である。
 太陽電池140以外の分散型電源を用いた本実施形態においても、図2のリミッターにおける上限値、下限値を以下の
(WBATref)=(指令値WACSWref)-(分散型電源出力)+(重要負荷150消費電力)
によって算出することによって、先の実施形態と同様に、蓄電池130(充放電回路)に対する制御信号WBATrefを算出する。
 このような他の実施形態に係る電力システムによっても、蓄電池130の出力制御を行うことで、無停電電源100を構成する交流スイッチ(ACSW)120に流れる潮流を適切に制御することが可能となり、交流スイッチ(ACSW)120を損傷させることがないし、耐量が大きい交流スイッチを要することもなくコストを抑制することができる。また、太陽電池などの分散型電源の出力が大きく、重要負荷の消費電力が小さい場合、蓄電池を充電するので、蓄電池の設備容量の削減も可能となる。
産業上の利用性
 本発明の電力システムによれば、無停電電源を構成する交流スイッチ(120)に流れる潮流を適切に制御することが可能となるので、耐量が大きい高価な交流スイッチ(120)を用いることなく、安価に電力システムを構築することができるようになり、産業上の利用性が非常に大きい。

Claims (1)

  1. 商用電源と出力部との間に設けられた交流スイッチと、蓄電池と、前記交流スイッチと前記蓄電池との間に設置されたインバーターとを備えた無停電電源装置と、
    前記出力部に接続される重要負荷と、
    前記出力部に接続される分散型電源と、
    前記重要負荷を含む総負荷による消費電力を検出する総負荷消費電力検出手段と、
    前記蓄電池における充放電電力を検出する充放電電力検出手段と、
    前記分散型電源からの出力電力を検出する出力電力検出手段と、
    前記重要負荷による消費電力を検出する重要負荷消費電力検出手段と、
    前記総負荷消費電力検出手段及び前記充放電電力検出手段及び前記出力電力検出手段及び前記重要負荷消費電力検出手段による検出値が入力されると共に、前記蓄電池を制御する制御指令値を出力する制御部と、を有する電力システムであって、
    前記制御部は、前記総負荷消費電力検出手段及び前記充放電電力検出手段及び前記出力電力検出手段及び前記重要荷消費電力検出手段による検出値に基づいて、前記蓄電池を動作させる制御指令値を決定することを特徴とする電力システム。
PCT/JP2010/070086 2010-05-31 2010-11-11 電力システム WO2011151939A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/062,085 US8896151B2 (en) 2010-05-31 2010-11-11 Electric power system
SG2011015641A SG176542A1 (en) 2010-05-31 2010-11-11 Electric power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-123825 2010-05-31
JP2010123825A JP5614626B2 (ja) 2010-05-31 2010-05-31 電力システム

Publications (1)

Publication Number Publication Date
WO2011151939A1 true WO2011151939A1 (ja) 2011-12-08

Family

ID=45066333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070086 WO2011151939A1 (ja) 2010-05-31 2010-11-11 電力システム

Country Status (3)

Country Link
JP (1) JP5614626B2 (ja)
SG (1) SG176542A1 (ja)
WO (1) WO2011151939A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128947A1 (ja) * 2012-03-02 2013-09-06 京セラ株式会社 電力制御システム、電力制御装置、及び電力制御方法
CN105098954A (zh) * 2015-08-31 2015-11-25 成都科创城科技有限公司 一种智能家居系统的混合电源供能装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858529B2 (ja) * 2011-12-19 2016-02-10 パナソニック株式会社 電力供給システム、および充放電ユニット
JP6054670B2 (ja) * 2012-08-02 2016-12-27 大和ハウス工業株式会社 電力供給システム
JP5813028B2 (ja) * 2013-03-18 2015-11-17 三菱電機株式会社 分散型電源装置
JP2014212659A (ja) * 2013-04-19 2014-11-13 清水建設株式会社 電力供給システム及びその方法
JP6289123B2 (ja) * 2014-01-28 2018-03-07 大阪瓦斯株式会社 発電システム
JP6027067B2 (ja) * 2014-08-27 2016-11-16 大和ハウス工業株式会社 電力供給システム
JP5963326B2 (ja) * 2014-09-08 2016-08-03 東芝エレベータ株式会社 蓄電池装置および蓄電池制御システム
JP6487223B2 (ja) * 2015-01-28 2019-03-20 日本電産サンキョー株式会社 電気錠システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325832A (ja) * 1991-04-25 1992-11-16 Kandenko Co Ltd 多機能電力変換システム
JP2000092720A (ja) * 1998-09-17 2000-03-31 Nissin Electric Co Ltd 分散型電源装置
JP2001161098A (ja) * 1999-11-30 2001-06-12 Tokyo Gas Co Ltd 逆潮流が認められる瞬時受電電力制御システム
JP2002374629A (ja) * 2001-06-13 2002-12-26 Osaka Gas Co Ltd 受電電力調整装置ならびに自家発電装置およびその制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428242B2 (ja) * 1995-08-18 2003-07-22 富士電機株式会社 無停電電源装置
JPH09135541A (ja) * 1995-11-06 1997-05-20 Hitachi Ltd 給電システム
JP2006254634A (ja) * 2005-03-11 2006-09-21 Tokyo Electric Power Co Inc:The 分散型電源装置
JP4770795B2 (ja) * 2007-05-23 2011-09-14 東芝三菱電機産業システム株式会社 無停電電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325832A (ja) * 1991-04-25 1992-11-16 Kandenko Co Ltd 多機能電力変換システム
JP2000092720A (ja) * 1998-09-17 2000-03-31 Nissin Electric Co Ltd 分散型電源装置
JP2001161098A (ja) * 1999-11-30 2001-06-12 Tokyo Gas Co Ltd 逆潮流が認められる瞬時受電電力制御システム
JP2002374629A (ja) * 2001-06-13 2002-12-26 Osaka Gas Co Ltd 受電電力調整装置ならびに自家発電装置およびその制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128947A1 (ja) * 2012-03-02 2013-09-06 京セラ株式会社 電力制御システム、電力制御装置、及び電力制御方法
JP2013183577A (ja) * 2012-03-02 2013-09-12 Kyocera Corp 電力制御システム、電力制御装置、及び電力制御方法
US10164436B2 (en) 2012-03-02 2018-12-25 Kyocera Corporation Power control system, power control apparatus and power control method
CN105098954A (zh) * 2015-08-31 2015-11-25 成都科创城科技有限公司 一种智能家居系统的混合电源供能装置

Also Published As

Publication number Publication date
SG176542A1 (en) 2012-01-30
JP2011250650A (ja) 2011-12-08
JP5614626B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5626563B2 (ja) 電力システム
JP5614626B2 (ja) 電力システム
JP5311153B2 (ja) 電力制御装置および電力制御方法
US8896151B2 (en) Electric power system
JP5717172B2 (ja) 電力供給システム
JP6011845B2 (ja) 分散型電源の自立運転システム
WO2011114422A1 (ja) 電力供給システム、電力供給方法、プログラム、記録媒体及び電力供給制御装置
AU2009212260A1 (en) Backup power system and method
JP2011010412A (ja) 重要負荷の自立運転制御システム
WO2015001800A1 (ja) マイクログリッドの制御装置及びその制御方法
JP2008148443A (ja) 蓄電部を備えた自然エネルギー利用発電システム
JP2002218654A (ja) 太陽光発電システム
JP6089565B2 (ja) 非常用電源システム
JP6599700B2 (ja) 系統連系装置
JP5851276B2 (ja) 自立給電システム
JP2017099235A (ja) 電力変換システム及び制御装置
JP2016116428A (ja) 分散型電源の自律運転システム
TWI685179B (zh) 供電系統
WO2014024731A1 (ja) 連系系統切替装置及び電力制御システム
JP2015057022A (ja) 分散電源装置、電力切替装置及び電力供給システム
JP6391473B2 (ja) 蓄電池システム
JP2009219310A (ja) 電力供給装置
JP6412777B2 (ja) 電力貯蔵システム
JP2003092831A (ja) 電力供給システムおよびその運転方法
JP2016181976A (ja) 電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13062085

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852543

Country of ref document: EP

Kind code of ref document: A1