WO2013125366A1 - 電力用スイッチング回路 - Google Patents

電力用スイッチング回路 Download PDF

Info

Publication number
WO2013125366A1
WO2013125366A1 PCT/JP2013/053000 JP2013053000W WO2013125366A1 WO 2013125366 A1 WO2013125366 A1 WO 2013125366A1 JP 2013053000 W JP2013053000 W JP 2013053000W WO 2013125366 A1 WO2013125366 A1 WO 2013125366A1
Authority
WO
WIPO (PCT)
Prior art keywords
sense
switching element
overcurrent
circuit
reverse
Prior art date
Application number
PCT/JP2013/053000
Other languages
English (en)
French (fr)
Inventor
中山 靖
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014500648A priority Critical patent/JP5717915B2/ja
Priority to DE112013001123.9T priority patent/DE112013001123B4/de
Priority to CN201380005896.6A priority patent/CN104205591B/zh
Priority to US14/364,092 priority patent/US9281680B2/en
Publication of WO2013125366A1 publication Critical patent/WO2013125366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/025Current limitation using field effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Definitions

  • the present invention relates to a power switching circuit for protecting a diode connected in parallel to a switching element in a power semiconductor element when an overcurrent flows in the power semiconductor element having a sense switching element. is there.
  • Patent Document 1 discloses a protection circuit for overcurrent protection of an inverter device.
  • the gate voltage control circuit is activated when an overcurrent flows, and the output interruption signal is prevented from suddenly interrupting the current during the operation. All switching elements are turned off during the overcurrent protection operation.
  • Patent Document 2 when driving an inductive load, the switching element is turned on in a reflux mode in which a current flows in a direction opposite to the forward direction of the switching element, and a voltage drop in the switching element is reduced as much as possible.
  • a synchronous rectification method is described. Further, it is described that in this synchronous rectification method, the dead time can be shortened to the minimum, thereby reducing the free wheel diode.
  • the power semiconductor element may be destroyed when an overcurrent exceeding a certain current flows, and a protection function from overcurrent is required.
  • an overcurrent protection function there is generally known a system that has a main switching element through which a main current flows and a sense switching element that shunts a part of the main current, detects the current flowing through the sense switching element, and interrupts the current.
  • Patent Document 3 discloses a method in which a main transistor that is a main switching element and a gate of a sense transistor that is a sense switching element are independent.
  • a common gate is used. Etc. are also described.
  • Patent Document 1 when all switching elements are turned off at the time of overcurrent, overcurrent flows only in a diode connected in parallel with the switching element, and the diode may be deteriorated. Further, when using the synchronous rectification method as shown in Patent Document 2, especially when the free wheel diode is reduced and the current is passed through the body diode, the overcurrent withstand capability of the diode connected in parallel with the switching element is reduced. If it is low, there is a possibility of deterioration of the diode, or in the worst case, destruction. Furthermore, Patent Document 3 discloses a method in which overcurrent is detected by a current flowing through a sense transistor and the current is cut off. However, when an inductive load is used, the overcurrent flows through the diode after the cut-off.
  • the present invention has been made to solve the above-described problems. Even when an overcurrent occurs, the present invention suppresses the current flowing through the diode connected in parallel with the switching element, and in particular, a diode caused by an overcurrent. It aims at obtaining the switching circuit for electric power which can be protected from deterioration and destruction of the.
  • the present invention relates to a power semiconductor device including a main switching element having a main body diode connected in parallel, a sense switching element having a sense body diode connected in parallel, and a parallel arrangement of the sense switching element and the sense body diode.
  • a reverse overcurrent detection circuit for detecting an overcurrent flowing in the reverse direction of the current flowing through the body, and a control circuit for driving the gate of the power semiconductor element, the reverse overcurrent detection circuit being reverse When the direction overcurrent is detected, the main switching element and the sense switching element are controlled to be turned on.
  • the main switching element when a reverse overcurrent is detected, the main switching element is turned on. Therefore, the reverse overcurrent flows in a divided manner between the main switching element and the body diode, and the body diode is protected from the reverse overcurrent. can do.
  • FIG. 1 is a circuit diagram showing a power switching circuit according to a first embodiment of the present invention.
  • FIG. It is a figure which shows an example of the power converter device which applies the switching circuit for electric power by this invention. It is a time chart explaining operation
  • FIG. 1 is a circuit diagram showing a power switching circuit according to Embodiment 1 of the present invention.
  • a power switching circuit 100 using a MOSFET as a power semiconductor element will be described as an example.
  • the power semiconductor element 10 in the power switching circuit 100 includes a main MOSFET 1 as a main switching element, a main body diode 3 connected in parallel to the main MOSFET 1, a sense MOSFET 2 as a sense switching element, and the sense MOSFET 2.
  • a sense body diode 4 connected in parallel is provided.
  • the power switching circuit 100 includes a control circuit 5 that controls the on / off operation of the main MOSFET 1 and the sense MOSFET 2.
  • the power switching circuit 100 inputs a voltage drop due to the current flowing through the sense resistor 6, and reverses the forward direction of the MOSFET indicated by the arrows of the main MOSFET 1 and the sense MOSFET 2 (hereinafter referred to as the forward direction).
  • a reverse overcurrent detection circuit 7 for detecting an overcurrent flowing in the direction is provided.
  • the main MOSFET 1 is composed of a larger number of MOSFET cells than the sense MOSFET 2, and the ratio is, for example, thousands to tens of thousands to one. Therefore, the current flowing through the switching element is divided and flows to the main MOSFET 1 and the sense MOSFET 2 according to the ratio.
  • the current flowing in the sense MOSFET 2 can be detected by the voltage drop of the sense resistor 6 connected in series to the sense MOSFET 2, and the main current can be detected from the shunt ratio according to the sense cell ratio.
  • main MOSFET 1 and the sense MOSFET 2 include the main body diode 3 and the sense body diode 4, respectively, the currents flowing through these body diodes when the main MOSFET 1 and the sense MOSFET 2 are in the off state, that is, the reverse current can be detected. it can.
  • the reverse overcurrent detection circuit 7 detects whether or not an overcurrent flows in the reverse direction based on a voltage drop of the sense resistor 6, and can be constituted by a general comparison circuit. For example, it can be configured by a comparator or the like that compares the reference voltage for setting the overcurrent detection level with the voltage of the sense resistor.
  • the sense resistor is used to convert the current flowing through the sense body diode into a voltage, but it is sufficient that the current flowing through the sense body diode can be detected.
  • a circuit using an imaginary short of an operational amplifier may be used.
  • FIG. 2 shows a three-phase inverter using six power switching circuits 100 shown in FIG. 1, that is, power switching circuits (hereinafter referred to as arms) 100a, 100b, 100c, 100d, 100e, and 100f.
  • This is an example of a power converter that converts direct current from the direct current power source 9 into alternating current and supplies current to the inductive load 8.
  • an overcurrent flows in the forward direction of the switching element of the single arm 100a, and the switching element in which the overcurrent flows is turned off for protection, and the overcurrent is cut off.
  • an overcurrent flows through the diode of the reverse arm 100b after the interruption.
  • the overcurrent withstand capability of the diode is low, the diode may be deteriorated or in the worst case, it may be destroyed. Therefore, it is necessary to protect the diode.
  • 2 is shown as an example of a power conversion device to which the present invention is applied, and the present invention can also be applied to circuits other than the inverter, such as a converter and a chopper.
  • the reverse overcurrent detection circuit 7 can detect the overcurrent, and the detection signal is controlled. Input to the circuit 5, the control circuit 5 turns on the main MOSFET 1 and the sense MOSFET 2. When these switching elements are turned on, the overcurrent flows through the main MOSFET 1, the sense MOSFET 2, the main body diode 3, and the sense body diode 4.
  • the reverse overcurrent detection circuit 7 stops detecting the reverse overcurrent, and the control circuit 5 turns off the switching element, thereby interrupting the current without flowing in the forward direction again. be able to.
  • the reverse overcurrent detection circuit 7 may be provided with hysteresis so that the level at which the reverse overcurrent detection is stopped is set lower than the level at which the reverse overcurrent is detected.
  • FIG. 3 is a time chart for explaining the operation of the arm 100a of the upper arm and the arm 100b of the lower arm connected to the same output terminal as the arm 100a.
  • the reference numerals of FIG. 1 are added to the reference numerals of the constituent elements of the arm 100a, and b is added to the reference numerals of the constituent elements of the arm 100b.
  • the control circuit of the arm 100a is expressed as a control circuit 5a.
  • the input signals of the arm 100a and the arm 100b shown in FIG. 3 are on / off signals in a normal operation state, and are input to the input terminal 50a of the control circuit 5a and the input terminal 50b of the control circuit 5b.
  • the control circuit 5a and the control circuit 5b control ON / OFF of the MOSFETs that are the respective switching elements according to these input signals.
  • MOSFETs 1a and 2a of arm 100a are turned on, and a current flows.
  • MOSFETs 1a and 2a of arm 100a are turned off at time t2, the current of arm 100a becomes 0, and the current flows through body diodes 3b and 4b of arm 100b of the lower arm.
  • the control circuit 5b of the arm 100b turns on the MOSFETs 1b and 2b of the arm 100b at the same time as current starts to flow through the body diodes 3b and 4b.
  • the MOSFETs 1b and 2b of the arm 100b are turned on after a slight dead time so that the MOSFETs 1a and 2a of the arm 100a and the MOSFETs 1b and 2b of the arm 100b are not turned on at the same time. .
  • the diode current during the dead time period is larger than that when the MOSFET is not turned on, but is ignored in FIG. 3 because the time is short.
  • the on / off operations of the MOSFETs 1a and 2a of the arm 100a and the MOSFETs 1b and 2b of the arm 100b are repeated as described above.
  • the control circuit 5a forcibly turns off the MOSFET at time t4 in order to protect the MOSFETs 1a and 2a of the arm 100a.
  • the detection of overcurrent may be detected by the output current of the inverter in addition to the detection by the forward overcurrent detection circuit as in the third embodiment or the fourth embodiment described later.
  • the input signal of the arm 100a remains on even when an overcurrent is detected, but a signal for detecting an overcurrent by an external circuit and turning it off may be input.
  • FIG. 3 shows the current flowing through the sense resistor 6b of the arm 100b, that is, the sense current, as the sense current of the arm 100b.
  • the reverse overcurrent detection circuit 7b detects that the reverse overcurrent has flowed through the body diodes 3b and 4b, and the detection signal is output from the arm 100b.
  • the control circuit 5b of the arm 100b turns on the MOSFETs 1b and 2b of the arm 100b regardless of the input signal of the arm 100b.
  • the time t5 when the MOSFETs 1b and 2b are turned on is not simultaneous from the time t4 when the overcurrent is detected, but it is a very short time, for example, about several hundred ns to several ⁇ s. Since the MOSFETs 1b and 2b can be turned on with the time lag, the body diodes 3b and 4b are protected.
  • the MOSFETs 1b and 2b of the arm 100b When the MOSFETs 1b and 2b of the arm 100b are turned on, as shown by the diode current of the arm 100b and the MOSFET current of the arm 100b shown in FIG. 3, the current is shunted to both the body diode and the MOSFET. The body diode can be protected. Thereafter, the MOSFETs 1b and 2b of the arm 100b are turned off at a time point t6 when the absolute value of the sense current is attenuated to become smaller than Ith2. By turning off the MOSFETs 1b and 2b, the current can be cut off without the current flowing again in the forward direction.
  • the switching element may be formed of a wide band gap semiconductor having a band gap larger than that of silicon, in addition to the switching element formed of silicon.
  • the wide band gap semiconductor include silicon carbide (SiC), a gallium nitride material, and diamond.
  • the present invention is effective when the overcurrent resistance of the body diode of the switching element is low.
  • FIG. FIG. 4 shows a circuit diagram of a power switching circuit according to the second embodiment of the present invention.
  • the power switching circuit 100 includes a freewheel diode 20 connected in parallel with the main MOSFET 1 and the main body diode 3.
  • the freewheel diode 20 When the freewheel diode 20 is used, the current flows in a divided manner to the main body diode 3, the sense body diode 4, and the freewheel diode 20, so that there is a merit that the entire loss can be reduced. Further, when applied to a synchronous rectification circuit, the current also flows in parallel with the main MOSFET 1, so that the freewheel diode 20 can be downsized.
  • the reverse overcurrent flows in a divided manner to the freewheel diode 20, the main body diode 3, and the sense body diode 4. Therefore, since the current flowing through sense body diode 4 is smaller than that in the first embodiment, the level for detecting the reverse overcurrent may be set lower than that in the first embodiment. Also in the second embodiment, protection is possible from reverse overcurrent, and the freewheel diode and the body diode can be protected from deterioration and destruction.
  • the freewheel diode 20 may be formed of a wide band gap semiconductor having a band gap larger than that of silicon, in addition to the one formed of silicon.
  • the wide band gap semiconductor include silicon carbide, a gallium nitride-based material, and diamond.
  • the withstand voltage of the Schottky barrier diode is increased, and the application to the high voltage region is possible.
  • the effect of the present invention is particularly great because the on-voltage during overcurrent is high.
  • FIG. 5 shows a circuit diagram of a power switching circuit according to the third embodiment of the present invention.
  • the power switching circuit 100 includes a forward overcurrent detection circuit 11 in addition to the first embodiment.
  • the forward overcurrent detection circuit 11 detects whether or not forward overcurrent flows from the voltage drop of the sense resistor 6, and compares, for example, a reference voltage for setting an overcurrent detection level with the voltage of the sense resistor. Comparator etc.
  • the forward overcurrent detection circuit 11 detects the overcurrent, and the control circuit 5 turns off the main MOSFET 1 and the sense MOSFET 2.
  • the off speed may be slower than the off speed during normal operation.
  • the forward overcurrent detection circuit 11 may be provided in a circuit in which the freewheel diode 20 is provided in parallel as shown in FIG.
  • the freewheel diode 20 is provided in parallel as shown in FIG.
  • only one sense MOSFET and sense body diode may be used. Simplified.
  • FIG. 7 shows a circuit diagram of a power switching circuit according to the fourth embodiment of the present invention.
  • reverse overcurrent is detected by sense MOSFET 2, sense body diode 4, and sense resistor 6, and forward overcurrent is detected by sense MOSFET 12, sense body diode 13, and sense resistor 14. Is going.
  • separate sense MOSFETs and sense body diodes are used for forward overcurrent detection and reverse overcurrent detection.
  • the sense switching element is constituted by a plurality of chips
  • the forward overcurrent and the reverse overcurrent may be detected using separate chips.
  • chips having the same structure may be used for forward overcurrent detection and reverse overcurrent detection, or different structures, for example, cells having different cell ratios may be used.
  • the forward overcurrent detection circuit 11 may be provided in a circuit in which the free wheel diode 20 is provided in parallel also in the fourth embodiment.
  • the forward overcurrent and the reverse overcurrent are detected by separate sense MOSFETs and sense diodes. Settings can be made individually, making settings easier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

並列にメインボディダイオード(3)が接続されたメインスイッチング素子(1)と、並列にセンスボディダイオード(4)が接続されたセンススイッチング素子(2)とを備えた電力用半導体素子(10)と、センススイッチング素子(2)とセンスボディダイオード(4)との並列体に流れる電流のうち逆方向に流れる過電流を検出する逆方向過電流検出回路(7)と、電力用半導体素子(10)のゲートを駆動する制御回路(5)とを備え、この制御回路(5)は逆方向過電流検出回路(7)が逆方向過電流を検出した場合に、メインスイッチング素子(1)およびセンススイッチング素子(2)をオンするように制御するようにした。

Description

電力用スイッチング回路
 この発明は、センススイッチング素子を備えた電力用半導体素子に過電流が流れた場合に、電力用半導体素子中のスイッチング素子と並列に接続されたダイオードを保護するための電力用スイッチング回路に関するものである。
 従来の電力用スイッチング回路の保護に関して、例えば、特許文献1には、インバータ装置の過電流保護に関するものが示されている。この特許文献1では、過電流が流れた場合にはゲート電圧制御回路が作動し、作動中は出力遮断信号が電流を急激に遮断しないようにしている。また、過電流保護動作時には、全スイッチング素子をオフするようにしている。
 また、例えば特許文献2には、誘導性負荷を駆動する場合において、スイッチング素子の順方向とは逆方向に電流が流れる還流モード時にスイッチング素子をオン駆動させ、スイッチング素子における電圧降下を極力低減する同期整流方式が記載されている。また、この同期整流方式において、デッドタイムを最小限に短縮し、それにより、フリーホイールダイオードを削減することが可能であることが記載されている。
 電力用半導体素子は一定電流以上の過電流が流れた場合に素子が破壊する可能性があり、過電流からの保護機能が必要とされる。過電流保護機能としては、主電流が流れるメインスイッチング素子と主電流の一部を分流するセンススイッチング素子を有し、センススイッチング素子に流れる電流を検出して、電流を遮断する方式が一般に知られている。例えば特許文献3では、メインスイッチング素子であるメイントランジスタとセンススイッチング素子であるセンストランジスタのゲートを独立させた方式を開示しているが、特許文献3の従来例には、ゲートを共通にした場合等も記載されている。
特開平06-054552号公報 特開2008-211703号公報 特開平6-77796号公報
 特許文献1のように、過電流時に全スイッチング素子をオフすると、スイッチング素子と並列に接続されたダイオードにのみ過電流が流れ、ダイオードが劣化する可能性がある。また、特許文献2に示されたような同期整流方式を用いる場合、特にフリーホイールダイオードを削減し、ボディダイオードに電流を流す場合には、スイッチング素子と並列に接続されたダイオードの過電流耐量が低いと、ダイオードの劣化や、最悪の場合、破壊に至る可能性がある。さらに、特許文献3では過電流をセンストランジスタに流れる電流により検知し、電流を遮断する方式が示されているが、誘導性負荷を用いる場合には、遮断後に過電流がダイオードを通して流れてしまう。
 この発明は、上記のような問題点を解決するためになされたものであり、過電流が発生した場合でも、スイッチング素子と並列に接続されたダイオードに流れる電流を抑制し、特に過電流によるダイオードの劣化や破壊から保護することが可能な電力用スイッチング回路を得ることを目的としている。
 この発明は、並列にメインボディダイオードが接続されたメインスイッチング素子と、並列にセンスボディダイオードが接続されたセンススイッチング素子とを備えた電力用半導体素子と、センススイッチング素子とセンスボディダイオードとの並列体に流れる電流のうち逆方向に流れる過電流を検出する逆方向過電流検出回路と、電力用半導体素子のゲートを駆動する制御回路とを備え、この制御回路は逆方向過電流検出回路が逆方向過電流を検出した場合に、メインスイッチング素子およびセンススイッチング素子をオンするように制御するようにしたものである。
 この発明によれば、逆方向過電流を検出した場合に、メインスイッチング素子をオンするため、逆方向過電流はメインスイッチング素子とボディダイオードに分流して流れ、ボディダイオードを逆方向過電流から保護することができる。
この発明の実施の形態1による電力用スイッチング回路を示す回路図である。 この発明による電力用スイッチング回路を適用する電力変換装置の一例を示す図である。 この発明の実施の形態1による電力用スイッチング回路の動作を説明するタイムチャートである。 この発明の実施の形態2による電力用スイッチング回路を示す回路図である。 この発明の実施の形態3による電力用スイッチング回路を示す回路図である。 この発明の実施の形態3による別の電力用スイッチング回路を示す回路図である。 この発明の実施の形態4による電力用スイッチング回路を示す回路図である。 この発明の実施の形態4による別の電力用スイッチング回路を示す回路図である。
実施の形態1.
 図1は本発明の実施の形態1による電力用スイッチング回路を示す回路図である。ここでは、電力用半導体素子としてMOSFETを用いた電力用スイッチング回路100を例として説明する。電力用スイッチング回路100における電力用半導体素子10は、メインスイッチング素子としてのメインMOSFET1と、このメインMOSFET1に並列に接続されたメインボディダイオード3、およびセンススイッチング素子としてのセンスMOSFET2と、このセンスMOSFET2に並列に接続されたセンスボディダイオード4を備えている。電力用スイッチング回路100は、メインMOSFET1、センスMOSFET2のオン、オフ動作を制御する制御回路5を備えている。さらに、電力用スイッチング回路100は、センス抵抗6に流れる電流による電圧降下を入力して、メインMOSFET1、センスMOSFET2の、矢印で示すMOSFETの順方向(以下順方向とする)とは逆の、逆方向に流れる過電流を検出する逆方向過電流検出回路7を備えている。
 メインMOSFET1はセンスMOSFET2に比べて多数のMOSFETセルより構成されており、その比は例えば数千~数万対1である。そのため、スイッチング素子を流れる電流はその比に応じてメインMOSFET1とセンスMOSFET2に分流して流れる。センスMOSFET2に直列に接続されたセンス抵抗6の電圧降下により、センスMOSFET2に流れる電流を検出し、センスセル比に応じた分流比から、主電流を検出することができる。また、メインMOSFET1、センスMOSFET2はそれぞれメインボディダイオード3、センスボディダイオード4を備えているため、メインMOSFET1、センスMOSFET2がオフ状態の時にこれらボディダイオードに流れる電流、すなわち逆方向電流も検出することができる。
 逆方向過電流検出回路7はセンス抵抗6の電圧降下によって、逆方向に過電流が流れているか否かを検出するもので、一般的な比較回路で構成できる。例えば、過電流検知レベルを設定する基準電圧とセンス抵抗の電圧を比較するコンパレータ等で構成することができる。なお、ここではセンスボディダイオードを流れる電流を電圧に変換するためにセンス抵抗を用いているが、センスボディダイオードに流れる電流を検出できればよく、必ずしもセンス抵抗を用いた回路である必要はなく、例えばオペアンプのイマジナリーショートを利用した回路などでも良い。
 本実施の形態1による電力用スイッチング回路の動作について、図1、図2および図3を用いて説明する。図2は、図1に示す電力用スイッチング回路100を6個、すなわち電力用スイッチング回路(以下アームと称する。)100a、100b、100c、100d、100e、100fを用いて、三相インバータを構成し、直流電源9からの直流を交流に変換し、誘導性負荷8に電流を供給する電力変換装置の例である。このように誘導性負荷を駆動する電力変換装置では、例えば片アーム100aのスイッチング素子の順方向に過電流が流れ、保護のために過電流が流れているスイッチング素子をオフし、過電流を遮断した場合には、遮断後逆アーム100bのダイオードに過電流が流れる。そのため、ダイオードの過電流耐量が低いと、ダイオードの劣化や、最悪の場合、破壊に至る可能性があるため、ダイオードを保護する必要がある。なお、図2の三相インバータは、本発明を適用する電力変換装置の一例として示したものであり、本発明は、コンバータやチョッパ等、インバータ以外の回路に適用することもできる。
 図1に示す回路において、逆方向過電流が流れた場合、電流はメインボディダイオード3、センスボディダイオード4に分流して流れる。この時のセンス抵抗6の電圧降下は、正常動作時に逆方向に流れる電流によって生ずる電圧降下よりも大きくなるため、逆方向過電流検出回路7が過電流を検出することができ、検出信号が制御回路5に入力されて、制御回路5がメインMOSFET1、センスMOSFET2をオンする。これらのスイッチング素子のオンにより、過電流はメインMOSFET1、センスMOSFET2、メインボディダイオード3、センスボディダイオード4に分流して流れる。その結果、メインボディダイオード3、センスボディダイオード4に流れる電流は低下し、各ボディダイオードを過電流から保護することができる。また、電流が減衰すると、逆方向過電流検出回路7は逆方向過電流の検出を止め、制御回路5がスイッチング素子をオフすることで、再び順方向に電流が流れることなく、電流を遮断することができる。逆方向過電流検出回路7にヒステリシスを持たせて、逆方向過電流を検出するレベルよりも逆方向過電流の検出を止めるレベルを低く設定しても良い。
 以上の動作を図3のタイムチャートを用いて詳しく説明する。図3は、上アームのアーム100aと、アーム100aと同じ出力端子に接続されている下アームのアーム100bの動作を説明するタイムチャートである。ここで、アーム100aの各構成要素の符号には、図1の符号にaを、アーム100bの各構成要素の符号には図1の符号にbを付加して説明する。例えば、アーム100aの制御回路は制御回路5aと表現する。
 図3に示すアーム100aおよびアーム100bの入力信号は、動作が正常な状態のオン-オフ信号であり、制御回路5aの入力端子50a、および制御回路5bの入力端子50bに入力される。動作が正常な場合は、制御回路5aおよび制御回路5bはこれらの入力信号に従ってそれぞれのスイッチング素子であるMOSFETのオン-オフを制御する。時刻t1でアーム100aのMOSFET1aおよび2aがオンとなり、電流が流れる。時刻t2でアーム100aのMOSFET1aおよび2aをオフすると、アーム100aの電流は0となり、下アームのアーム100bのボディダイオード3bおよび4bを通じて電流が流れる。アーム100bの制御回路5bは、ボディダイオード3bおよび4bを通じて電流が流れ始めると同時にアーム100bのMOSFET1bおよび2bをオンさせる。ただし、アーム100aのMOSFET1aおよび2aとアーム100bのMOSFET1bおよび2bとが同時にオンしている時間が無いように、アーム100bのMOSFET1bおよび2bは、若干のデッドタイムを設けたのちにオンするようにする。なお、デッドタイム期間中のダイオード電流はMOSFETがオンしていない場合に比べて大きいが、時間が短いため、図3では無視している。動作が正常な場合は、以上のような、アーム100aのMOSFET1aおよび2aとアーム100bのMOSFET1bおよび2bのオン-オフ動作が繰り返される。
 図3に示すアーム100aのMOSFET電流の波形のように、時刻t3においてアーム100aのMOSFET1aおよび2aがオンした後、負荷の短絡などの何らかの異常のため、過電流が検出された場合、アーム100aの制御回路5aは、時刻t4においてアーム100aのMOSFET1aおよび2aを保護するために、このMOSFETを強制的にオフする。なお、過電流の検出は、後述の実施の形態3や実施の形態4のような順方向過電流検出回路による検出の他、インバータの出力電流により検出しても良く、過電流を検出する周知の種々の方法を用いることができる。なお、図3ではアーム100aの入力信号は過電流検出時もオンのままであるが、外部回路によって過電流を検出し、オフする信号が入力されてもよい。
 アーム100aのMOSFET1aおよび2aがオフすると、下アームのアーム100bのボディダイオード3bおよび4bに過電流が流れる。図3に、アーム100bのセンス抵抗6bに流れる電流、すなわちセンス電流を、アーム100bのセンス電流として示している。このセンス電流の逆方向の値が所定の閾値Ith1よりも大きくなった場合に、逆方向過電流検出回路7bはボディダイオード3bおよび4bに逆方向過電流が流れたと検知し、検知信号がアーム100bの制御回路5bに入力される。これにより、アーム100bの制御回路5bは、アーム100bの入力信号とは関係なく、アーム100bのMOSFET1bおよび2bをオンする。過電流を検知した後にMOSFET1bおよび2bをオンするため、過電流を検知した時刻t4からMOSFET1bおよび2bをオンする時刻t5は同時とはならないが、非常に短い時間、例えば数百ns~数μs程度のタイムラグでMOSFET1bおよび2bをオンできるため、ボディダイオード3bおよび4bは保護される。
 アーム100bのMOSFET1bおよび2bがオンすると、図3に示すアーム100bのダイオード電流およびアーム100bのMOSFET電流で示すように、ボディダイオードとMOSFETの両方に電流が分流するため、ダイオードに流れる電流値が低下し、ボディダイオードを保護することができる。その後、センス電流の絶対値がIth2より小さくなるまで減衰した時点t6でアーム100bのMOSFET1bおよび2bをオフする。MOSFET1bおよび2bをオフすることで、再び順方向に電流が流れることなく、電流を遮断することができる。
 なお、スイッチング素子としてはMOSFETを用いた例を示したが、双方向にスイッチング可能な素子であれば良く、必ずしもMOSFETである必要はない。また、スイッチング素子は珪素によって形成されたものの他、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成しても良い。ワイドバンドギャップ半導体としては、例えば、炭化珪素(SiC)、窒化ガリウム系材料またはダイヤモンドがある。ワイドバンドギャップ半導体を用いた場合、許容電流密度が高く、電力損失も低いため、電力用半導体素子を用いた装置の小型化が可能となる。また、スイッチング素子にワイドバンドギャップ半導体を用いた場合、MOSFET等、双方向にスイッチング可能な素子の耐電圧が上がり、高電圧領域まで適用が可能となる。特に、スイッチング素子のボディダイオードの過電流耐量が低い場合には、本発明が有効となる。
実施の形態2.
 図4に本発明の実施の形態2による電力用スイッチング回路の回路図を示す。実施の形態2では、実施の形態1の図1の回路に加え、電力用スイッチング回路100は、フリーホイールダイオード20がメインMOSFET1、メインボディダイオード3と並列に接続されている。フリーホイールダイオード20を用いる場合には電流はメインボディダイオード3、センスボディダイオード4、およびフリーホイールダイオード20に分流して流れるため、全体の損失を小さくできる等のメリットがある。また、同期整流の回路に適用した場合、電流はメインMOSFET1にも並列に流れるため、フリーホイールダイオード20の小型化も可能となる。
 フリーホイールダイオード20を用いる場合、逆方向過電流はフリーホイールダイオード20とメインボディダイオード3、センスボディダイオード4に分流して流れる。そのため、センスボディダイオード4に流れる電流は実施の形態1に比べ、小さくなるため、逆方向過電流を検出するレベルも実施の形態1に比べ低く設定してもよい。本実施の形態2においても、逆方向過電流より、保護が可能となり、フリーホイールダイオード、ボディダイオードを劣化や破壊から保護することが可能となる。
 なお、フリーホイールダイオード20にはPiNダイオードやショットキーバリアダイオードが用いられる。また、スイッチング素子同様、フリーホイールダイオードも珪素によって形成されたものの他、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成しても良い。ワイドバンドギャップ半導体としては、例えば、炭化珪素、窒化ガリウム系材料またはダイヤモンドがある。ワイドバンドギャップ半導体を用いた場合、許容電流密度が高く、電力損失も低いため、電力用半導体素子を用いた装置の小型化が可能となる。また、フリーホイールダイオードにワイドバンドギャップ半導体を用いた場合、ショットキーバリアダイオードの耐電圧が上がり、高電圧領域まで適用が可能となる。ショットキーバリアダイオードを用いる場合、過電流時のオン電圧が高いため、特に本発明の効果が大きくなる。
実施の形態3. 
 図5に本発明の実施の形態3による電力用スイッチング回路の回路図を示す。本実施の形態3では、電力用スイッチング回路100は、実施の形態1に加え順方向過電流検出回路11を備えている。順方向過電流検出回路11はセンス抵抗6の電圧降下より、順方向の過電流が流れているか否かを検出するもので、例えば過電流検知レベルを設定する基準電圧とセンス抵抗の電圧を比較するコンパレータ等で構成される。メインMOSFET1、センスMOSFET2の順方向に過電流が流れた場合、順方向過電流検出回路11が過電流を検出し、制御回路5がメインMOSFET1、センスMOSFET2をオフする。オフする速度は正常動作時のオフの速度よりも遅い速度であっても良い。
 なお、図6に示すように、フリーホイールダイオード20を並列に設けた回路に、順方向過電流検出回路11を備えても良いのは言うまでもない。本実施の形態3では、逆方向過電流に加え、順方向過電流からも保護が可能となる。また、本実施の形態3では順方向過電流と逆方向過電流を検出するために同一のセンスMOSFET、センスボディダイオードを用いているため、センスMOSFET、センスボディダイオードは一つで良く、回路が簡素化される。
実施の形態4.
 図7に本発明の実施の形態4による電力用スイッチング回路の回路図を示す。本実施の形態4では逆方向過電流の検出は、センスMOSFET2、センスボディダイオード4、およびセンス抵抗6によって行い、順方向過電流の検出は、センスMOSFET12、センスボディダイオード13、およびセンス抵抗14によって行っている。このように、順方向過電流の検出と逆方向過電流の検出に別々のセンスMOSFET、センスボディダイオードを用いている。このように、センススイッチング素子が複数のチップで構成される場合には、順方向過電流と逆方向過電流とを別々のチップを用いて検出する構成としても良い。また、その場合、順方向過電流検出と逆方向過電流検出とで同一構造のチップを用いても良いし、別構造、例えばセル比が異なるものを用いても良い。
 なお、図8に示すように、本実施の形態4においても、フリーホイールダイオード20を並列に設けた回路に、順方向過電流検出回路11を備えても良いのは言うまでもない。本実施の形態4では、順方向、逆方向過電流からの保護が可能になることに加え、順方向過電流と逆方向過電流を別々のセンスMOSFET、センスダイオードによって検出するため、センス抵抗の設定等が個別にでき、設定が容易になる。
1:メインMOSFET(メインスイッチング素子)
2、12:センスMOSFET(センススイッチング素子)
3:メインボディダイオード    4、13:センスボディダイオード
5:制御回路           6、14:センス抵抗
7:逆方向過電流検出回路     10:電力用半導体素子
11:順方向過電流検出回路    20:フリーホイールダイオード
100、100a、100b、100c、100d、100e、100f:電力用スイッチング回路

Claims (8)

  1.  並列にメインボディダイオードが接続されたメインスイッチング素子と、並列にセンスボディダイオードが接続されたセンススイッチング素子とを備えた電力用半導体素子と、前記センススイッチング素子と前記センスボディダイオードとの並列体に流れる電流のうち逆方向に流れる過電流を検出する逆方向過電流検出回路と、前記電力用半導体素子のゲートを駆動する制御回路とを備え、この制御回路は前記逆方向過電流検出回路が逆方向過電流を検出した場合に、前記メインスイッチング素子および前記センススイッチング素子をオンするように制御することを特徴とする電力用スイッチング回路。
  2.  前記メインスイッチング素子と並列にフリーホイールダイオードが接続されたことを特徴とする請求項1に記載の電力用スイッチング回路。
  3.  前記制御回路は、前記メインスイッチング素子および前記センススイッチング素子をオンする制御後、前記逆方向過電流検出回路が、逆方向過電流が所定の値以下に減衰したことを検知した信号を受けて、前記メインスイッチング素子および前記センススイッチング素子をオフすることを特徴とする請求項1に記載の電力用スイッチング回路。
  4.  前記センススイッチング素子と前記センスボディダイオードとの並列体に流れる電流のうち順方向に流れる過電流を検出する順方向過電流検出回路を備えたことを特徴とする請求項1に記載の電力用スイッチング回路。
  5.  前記逆方向過電流検出回路に接続される、前記センススイッチング素子と前記センスボディダイオードとの並列体と、前記順方向過電流検出回路に接続される、前記センススイッチング素子と前記センスボディダイオードとの並列体とは、別の並列体であることを特徴とする請求項4に記載の電力用スイッチング回路。
  6.  前記電力用半導体素子の少なくとも一部が珪素よりバンドギャップが大きいワイドバンドギャップ半導体により形成されていることを特徴とする請求項1~5のいずれか1項に記載の電力用スイッチング回路。
  7.  前記フリーホイールダイオードが珪素よりバンドギャップが大きいワイドバンドギャップ半導体により形成されていることを特徴とする請求項2に記載の電力用スイッチング回路。
  8.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料、ダイヤモンドのいずれかの半導体であることを特徴とする請求項6または請求項7に記載の電力用スイッチング回路。
PCT/JP2013/053000 2012-02-24 2013-02-08 電力用スイッチング回路 WO2013125366A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014500648A JP5717915B2 (ja) 2012-02-24 2013-02-08 電力用スイッチング回路
DE112013001123.9T DE112013001123B4 (de) 2012-02-24 2013-02-08 Leistungsschaltung
CN201380005896.6A CN104205591B (zh) 2012-02-24 2013-02-08 功率用开关电路
US14/364,092 US9281680B2 (en) 2012-02-24 2013-02-08 Power switching circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012038118 2012-02-24
JP2012-038118 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013125366A1 true WO2013125366A1 (ja) 2013-08-29

Family

ID=49005554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053000 WO2013125366A1 (ja) 2012-02-24 2013-02-08 電力用スイッチング回路

Country Status (5)

Country Link
US (1) US9281680B2 (ja)
JP (1) JP5717915B2 (ja)
CN (1) CN104205591B (ja)
DE (1) DE112013001123B4 (ja)
WO (1) WO2013125366A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021652A (ja) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 半導体装置及び電力変換装置
WO2016194487A1 (ja) * 2015-06-02 2016-12-08 株式会社日立産機システム 電力変換装置およびモータ装置
JP2017511103A (ja) * 2014-02-28 2017-04-13 クリー インコーポレイテッドCree Inc. 電力変換電子機器
JP2017189083A (ja) * 2016-04-01 2017-10-12 富士電機株式会社 チョッパ回路
JP2019161856A (ja) * 2018-03-13 2019-09-19 株式会社デンソー スイッチの駆動回路

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065597B2 (ja) * 2013-01-16 2017-01-25 富士電機株式会社 電力変換装置
EP2843496A1 (en) * 2013-08-30 2015-03-04 Nxp B.V. Current control circuit with current sense FETs in parallel
CN106533142B (zh) * 2016-10-18 2023-05-26 成都前锋电子仪器有限责任公司 一种防倒灌电路
US9960705B1 (en) 2016-12-14 2018-05-01 Infineon Technologies Ag Rectifier device with stand-by detection capability
US10381919B2 (en) 2016-12-14 2019-08-13 Infineon Technologies Ag Rectifier device with safety threshold
US10033297B2 (en) * 2016-12-14 2018-07-24 Infineon Technologies Ag Rectifier device
US10498131B2 (en) * 2016-12-30 2019-12-03 Infineon Technologies Ag Electronic switch and protection circuit
US10291146B2 (en) * 2017-03-30 2019-05-14 Infineon Technologies Ag Gate driver circuit for a rectifier device including a cascade of transistor stages
JP2018182944A (ja) * 2017-04-18 2018-11-15 富士電機株式会社 電力変換装置
US10128736B1 (en) * 2017-06-23 2018-11-13 Infineon Technologies Ag Rectifier device
DE102018113145B4 (de) * 2018-06-01 2020-06-04 Infineon Technologies Ag Gleichrichtereinrichtung
US11463082B2 (en) * 2020-01-22 2022-10-04 Delta Electronics, Inc. Waveform conversion circuit for gate-driving circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167813A (ja) * 1990-10-31 1992-06-15 Fujitsu Ltd 半導体集積回路装置
JP2009268336A (ja) * 2007-09-05 2009-11-12 Denso Corp 半導体装置
WO2011048845A1 (ja) * 2009-10-20 2011-04-28 三菱電機株式会社 半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907116A (en) * 1988-06-09 1990-03-06 Rca Licensing Corporation Power supply fault protection circuit
JP3095289B2 (ja) 1992-07-24 2000-10-03 株式会社日立製作所 静電誘導形自己消弧素子の保護回路
JP3136788B2 (ja) 1992-08-25 2001-02-19 株式会社豊田自動織機製作所 電流検出機能付電界効果トランジスタのドライブ回路
US6768623B1 (en) * 2000-11-17 2004-07-27 Texas Instruments Incorporated IC excess current detection scheme
JP2002325438A (ja) 2001-04-24 2002-11-08 Fujitsu Ltd 同期整流コンバータ
JP4671275B2 (ja) 2005-01-26 2011-04-13 ルネサスエレクトロニクス株式会社 電源制御装置、電源用電子部品及び電源装置
JP4434065B2 (ja) * 2005-04-22 2010-03-17 株式会社デンソー 点火装置
WO2008020408A2 (en) * 2006-08-15 2008-02-21 Koninklijke Philips Electronics N.V. Low voltage electronic module interface
JP5022668B2 (ja) * 2006-10-25 2012-09-12 オンセミコンダクター・トレーディング・リミテッド Dc/dcコンバータ
US20080204958A1 (en) * 2007-02-27 2008-08-28 Intersil Americas Inc. Back-current protection circuit
JP4946508B2 (ja) 2007-02-28 2012-06-06 株式会社日立製作所 半導体回路
JP4924578B2 (ja) * 2007-09-05 2012-04-25 株式会社デンソー 半導体装置
JP5129701B2 (ja) * 2008-09-12 2013-01-30 ルネサスエレクトロニクス株式会社 過電流検出回路
ES2384426T3 (es) * 2009-08-06 2012-07-04 Sma Solar Technology Ag Sensor de corriente de retorno para módulos solares conectados en paralelo
TWI414119B (zh) 2009-10-30 2013-11-01 Delta Electronics Inc 電源供應器以及具有複數個電源供應器之供電系統
WO2012056766A1 (ja) 2010-10-27 2012-05-03 三菱電機株式会社 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167813A (ja) * 1990-10-31 1992-06-15 Fujitsu Ltd 半導体集積回路装置
JP2009268336A (ja) * 2007-09-05 2009-11-12 Denso Corp 半導体装置
WO2011048845A1 (ja) * 2009-10-20 2011-04-28 三菱電機株式会社 半導体装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017511103A (ja) * 2014-02-28 2017-04-13 クリー インコーポレイテッドCree Inc. 電力変換電子機器
JP2016021652A (ja) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 半導体装置及び電力変換装置
WO2016194487A1 (ja) * 2015-06-02 2016-12-08 株式会社日立産機システム 電力変換装置およびモータ装置
JP2017189083A (ja) * 2016-04-01 2017-10-12 富士電機株式会社 チョッパ回路
JP2019161856A (ja) * 2018-03-13 2019-09-19 株式会社デンソー スイッチの駆動回路
JP7043903B2 (ja) 2018-03-13 2022-03-30 株式会社デンソー スイッチの駆動回路

Also Published As

Publication number Publication date
US9281680B2 (en) 2016-03-08
DE112013001123T5 (de) 2014-11-06
CN104205591A (zh) 2014-12-10
JPWO2013125366A1 (ja) 2015-07-30
US20140321012A1 (en) 2014-10-30
CN104205591B (zh) 2016-10-26
DE112013001123B4 (de) 2023-12-21
JP5717915B2 (ja) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5717915B2 (ja) 電力用スイッチング回路
US8791744B2 (en) Semiconductor switching system
JP5752234B2 (ja) 電力変換装置
US9209677B2 (en) Power conversion apparatus
JP6223494B2 (ja) 半導体装置
JP6398872B2 (ja) 駆動装置
WO2014136252A1 (ja) 半導体装置
CN110311664B (zh) 驱动装置以及功率模块
JP5939908B2 (ja) 同期整流回路
US8570780B2 (en) Semiconductor device
JP6606993B2 (ja) 直流−直流変換装置
JP2009011117A (ja) 電力変換装置
JP2004129378A (ja) 電力用半導体素子のゲート駆動回路
JP4946103B2 (ja) 電力変換装置
JP6590437B2 (ja) 半導体電力変換装置
JP6207669B2 (ja) 同期整流回路
WO2016194487A1 (ja) 電力変換装置およびモータ装置
RU2763377C1 (ru) Управление полевым транзистором металл-оксид-полупроводник
US11183834B2 (en) Semiconductor module and power conversion apparatus having a diode bridge circuit and a protection circuit
US20230336170A1 (en) Control device, and switching device
JP7292401B2 (ja) モータ駆動システムおよび空気調和機
JP4742313B2 (ja) 電力変換装置の保護方式
KR20170009344A (ko) 전력 스위치용 단락방지 회로
JPH03236280A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500648

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14364092

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013001123

Country of ref document: DE

Ref document number: 1120130011239

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751964

Country of ref document: EP

Kind code of ref document: A1