WO2013125023A1 - 遊星歯車減速機 - Google Patents

遊星歯車減速機 Download PDF

Info

Publication number
WO2013125023A1
WO2013125023A1 PCT/JP2012/054527 JP2012054527W WO2013125023A1 WO 2013125023 A1 WO2013125023 A1 WO 2013125023A1 JP 2012054527 W JP2012054527 W JP 2012054527W WO 2013125023 A1 WO2013125023 A1 WO 2013125023A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
eccentric
sun gear
planetary gear
planetary
Prior art date
Application number
PCT/JP2012/054527
Other languages
English (en)
French (fr)
Inventor
行雄 久保田
美千広 亀田
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Priority to EP12869274.6A priority Critical patent/EP2818758A4/en
Priority to PCT/JP2012/054527 priority patent/WO2013125023A1/ja
Priority to US13/985,175 priority patent/US8900091B2/en
Priority to KR1020137025108A priority patent/KR20140128858A/ko
Priority to CN2012800186989A priority patent/CN103477118A/zh
Priority to JP2012531150A priority patent/JP5840614B2/ja
Publication of WO2013125023A1 publication Critical patent/WO2013125023A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H2001/2881Toothed gearings for conveying rotary motion with gears having orbital motion comprising two axially spaced central gears, i.e. ring or sun gear, engaged by at least one common orbital gear wherein one of the central gears is forming the output

Definitions

  • the present invention is a technology related to a planetary gear reducer that can realize a small and free reduction ratio and generate a larger reduction ratio, and particularly a technology related to a wonder gear reducer.
  • the planetary gear mechanism of Patent Document 1 below is an improvement of a mysterious gear reducer called 3K type.
  • the conventional 3K-type wonder gear reducer has an advantage that a higher reduction ratio can be obtained as the difference in the number of teeth between the fixed ring gear and the driven ring gear is reduced. If the number is not an integral multiple of the number of installed gears, there is a limitation that the planetary gear cannot properly mesh with two ring gears having different numbers of teeth.
  • the conventional 3K-type wonder gear reducer As the number of installed planetary gears increases, the force acting on the sun gear, planetary gear, and each ring gear is dispersed to improve the durability of each gear, but the difference in the number of teeth also increases. Therefore, there is a problem in that the reduction ratio is lowered.
  • the maximum reduction ratio can be obtained by setting the difference in the number of teeth to 1, but for that, only one planetary gear can be installed. There was a problem that durability of each gear was lowered.
  • the planetary gear mechanism of Patent Document 1 can achieve the highest reduction ratio by setting the difference in the number of teeth between the fixed ring gear and the driven ring gear to 1, even if a plurality of planetary gears are provided to improve durability. It is intended to be.
  • the difference in the number of teeth between the fixed ring gear and the driven ring gear is obtained by using a planetary gear formed by integrating a pair of gears of the same shape in the axial direction with a predetermined phase difference. Even when the number of planetary gears is equal to or less than an integral multiple of the number of installed planetary gears, that is, 1, the planetary gear can properly mesh with both the fixed ring gear and the driven ring gear having different numbers of teeth.
  • Patent Document 1 In planetary gear speed reducers, further downsizing and generation of a high reduction ratio are required. However, the planetary gear reducer of Patent Document 1 has the following problems.
  • the reduction ratio is determined by the number of teeth of the fixed ring gear, the driven ring gear, and the sun gear.
  • the planetary gear and sun gear modules and the number of teeth that mesh with each other are also limited to fit inside each ring gear.
  • the reduction ratio obtained is increased as the gear ratio of the ring gear on the output shaft side to the sun gear on the input shaft side is increased.
  • the installation space for the planetary gear becomes wider.
  • the tooth shape of the ring gear may have to be formed in a special shape.
  • the formation of a specially shaped gear is difficult to process and increases manufacturing costs, which causes problems in miniaturization of the ring gear.
  • the present invention provides a planetary gear reducer that can realize a small and flexible reduction ratio and that can generate a larger reduction ratio.
  • the planetary gear reducer according to claim 1 has a shape in which the first gear and the second gear having the same shape are integrated in the axial direction (a third rotation center axial direction to be described later) with a predetermined phase difference.
  • a planetary gear reducer having a driven sun gear coaxially integrated with the shaft, wherein the fixed sun gear and the driven sun gear are external gears, and the input shaft has a first rotation center of the input shaft.
  • An eccentric rotating plate that is rotatable about a second rotation center axis that is eccentric from the axis by a predetermined distance is provided, and the planetary gear is eccentric from the third rotation center axis of each planetary gear by the predetermined distance and is eccentrically rotated.
  • a shaft mechanism is provided at a position eccentric in the direction, and the shaft mechanism is coupled to the eccentric rotation plate so as to be eccentrically rotated around a third rotation center axis in synchronization with the eccentric rotation plate. .
  • the fixed sun gear and the driven sun gear corresponding to the fixed ring gear and the driven ring gear of Patent Document 1 are external gears, and the planetary gears are circumscribed.
  • the eccentric gear plate is used instead of the sun gear and the input shaft because the eccentric gear shaft is used for the mechanism that inputs the operation to the planetary gear.
  • the reduction ratio can be increased by reducing the number of teeth of the planetary gear and reducing the outer diameter.
  • the strength surface can be improved and the size can be made compact.
  • the degree of freedom in setting the number of teeth and the modules of the fixed sun gear, the driven sun gear and the planetary gear is increased.
  • the number of installed planetary gears can be increased.
  • the structure of the gear can be simplified and contribute to cost reduction.
  • the planetary gear is synchronously rotated by the shaft mechanism that rotates eccentrically in the same manner as the eccentric rotation plate by the eccentric rotation plate.
  • the rotation of the planetary gear is greatly decelerated when the rotational torque is transmitted from the input shaft to the planetary gear based on the number of teeth of the first gear and the fixed sun gear.
  • each gear can be reduced in size without maintaining a specific module and forming a special tooth shape.
  • each gear can be reduced in size without maintaining a specific module and forming a special tooth shape.
  • each gear is made smaller with an involute tooth profile, there is no problem in meshing, so that various reduction ratios can be realized while facilitating processing and reducing manufacturing costs.
  • a second aspect of the present invention is the planetary gear reducer according to the first aspect, wherein the plurality of planetary gears have a third rotational center axis as a symmetry axis and are symmetrical with respect to a center axis of the shaft mechanism.
  • a second eccentric rotating plate that is rotatably supported around the central axis of the second shaft mechanism is provided by the second shaft mechanism that is provided at an eccentric position.
  • a small and free speed reducer can be realized, and a larger speed reduction ratio can be generated.
  • the planetary gear and the third and driven sun gears rotate smoothly.
  • the planetary gear speed reducer 1 includes a pair of planetary gears 4a to 4d and a planetary gear 4 that support an input shaft 2, an eccentric rotating plate 3, and first gears 5a to 5d integrated with second gears 6a to 6d, respectively.
  • a support plate 7, a fixed sun gear 9, a driven sun gear 10, a center shaft 11, a sprocket 12 connected to the output shaft side, and a fixing screw 13 are provided.
  • the input shaft 2 includes a main body 14 and a cylindrical eccentric shaft 15.
  • the eccentric shaft 15 in FIG. 1 is integrated with the back surface of the main body portion 14, and the second rotation center axis O2 of the eccentric shaft 15 is eccentric from the first rotation center axis O1 of the main body portion 14 by a distance L1. .
  • the eccentric rotating plate 3 is formed in a disc shape and has a circular hole 16 and a plurality of circular holes 17. By inserting and engaging the eccentric shaft 15 through the circular hole 16, the eccentric rotating plate 3 is supported rotatably around the second rotation center axis O2. As a result, the eccentric rotating plate 3 rotates eccentrically around the first rotation center axis O1 of the input shaft 2 as the input shaft 2 rotates around the first rotation center axis O1.
  • the circular hole 17 is formed so that the center O3 is located on the circular orbit C1 centered on the second rotation center axis O2.
  • the shape of the eccentric rotating plate 3 is not limited to a disc as long as it is a plate shape.
  • the four planetary gears 4a to 4d provided in the first embodiment are formed by the first gears 5a to 5d, the second gears 6a to 6d, the partition disk 18, the base disk 19, and the eccentric shaft 20.
  • the first gears 5 a to 5 d and the second gears 6 a to 6 d are gears having the same shape, and are integrated before and after the partition disk 18.
  • a basic disc 19 is integrated with the front portions of the first gears 5a to 5d.
  • the first gears 5a to 5d, the second gears 6a to 6d, the partition disk 18 and the base disk 19 are arranged coaxially around the third rotation center axis O3.
  • the second gears 6a to 6d are integrated with the first gears 5a to 5d with a predetermined phase difference to be described later. Further, the planetary gears 4a to 4d are arranged at a plurality of locations on the outer periphery of the fixed sun gear 9 and the driven sun gear 10 described later, and mesh with these.
  • the driven sun gear 10 in this embodiment is formed so as to have a tooth number one less than that of the fixed sun gear 9.
  • the predetermined phase difference is the angular difference formed between the first gears 5a to 5d and the second gears 6a to 6d corresponding to the third rotation center axis O3.
  • Each angle difference is determined by the angle ⁇ of teeth adjacent to the third rotation center axis O3 and the number n of installed planetary gears.
  • the angle difference between the reference gear in the first embodiment, the first gear 5a and the second gear 6a
  • the other gears in the first embodiment,
  • the respective angle differences are increased by ⁇ / n (when equally divided at a plurality of locations) along the revolution direction of the gears. .
  • the planetary gear speed reducer of the first embodiment even if the difference in the number of teeth between the fixed sun gear 9 and the driven sun gear 10 is not an integral multiple of the number of installed planetary gears,
  • the first gears 5a to 5d and the second gears 6a to 6d of the planetary gears 4a to 4d can be meshed with both the gear 9 and the driven sun gear 10, respectively.
  • an eccentric shaft 20 is provided on the front surface of the base disk 19.
  • the fourth rotation center axis O4 of the eccentric shaft 20 is eccentric by a distance L1 upward from the third rotation center axis O3.
  • the eccentric shaft 20 and the circular hole 17 of the eccentric rotating plate 3 constitute a shaft mechanism 21, and each eccentric shaft 20 is engaged with the corresponding circular hole 17.
  • the planetary gears 4a to 4d are supported by the eccentric rotary plate 3 via the shaft mechanism 21 so as to be eccentrically rotatable about the fourth rotation center axis O4. Further, the planetary gears 4a to 4d are supported by the pair of support plates 7 so as to be rotatable around the third rotation center axis O3.
  • the pair of support plates 7 have a disc shape, and a circular hole 22 centered on O1 is provided in the center of each support plate 7.
  • a circular hole 22 centered on O1 is provided in the center of each support plate 7.
  • the pair of support plates 7 are arranged before and after a fixed sun gear 9 fixed to a base member (not shown) that houses the planetary gear mechanism.
  • the fixed sun gear 9 includes a tooth portion 26, and a front cylindrical portion 25 and a rear cylindrical portion (not shown) protruding from the front and rear surfaces of the tooth portion 26.
  • a rear cylindrical portion (not shown) has the same shape as the front cylindrical portion 25.
  • a circular hole 24 centered on O1 is provided in the center of the fixed sun gear 9, a circular hole 24 centered on O1 is provided.
  • the support plate 7 disposed in front of the fixed sun gear 9 is rotatably supported by the front cylindrical portion 25 around O 1 by engaging the front cylindrical portion 25 with the circular hole 22, and is located behind the fixed sun gear 9.
  • the support plate 7 disposed in the base plate is rotatably supported by the rear cylindrical portion around O1 by engaging a rear cylindrical portion (not shown) with the circular hole 22.
  • the planetary gears 4a to 4d are respectively inserted into the circular holes 23 of the respective support plates 7 arranged at the front and rear, and the first gears 5a to 5d are engaged with the teeth 26 of the fixed sun gear 9, and the second gear 6a. ⁇ 6d meshes with a tooth portion 27 to be described later of the driven sun gear 10.
  • the base disk 19 engages with the circular hole 23 of the front support plate 7 and is rotatably supported.
  • the partition disk 18 engages with the circular hole 23 of the rear support plate 7 and rotates. Supported as possible.
  • the planetary gears 4a to 4d are supported by the pair of support plates 7 so as to be rotatable around the third rotation center axis O3.
  • a driven sun gear 10 is disposed behind the fixed sun gear 9 with a support plate 7 on the rear side therebetween, and a sprocket 12 is disposed behind the driven sun gear 10.
  • the driven sun gear 10 is integrated with a tooth portion 27 having a smaller number of teeth than the tooth portion 26 on the outer periphery of the fixed sun gear 9 (one less in the first embodiment) and coaxially (center axis O1) on the rear surface of the tooth portion 27.
  • the flange portion 28 is formed.
  • a circular hole 29 having the same inner diameter as that of the circular hole 24 and a circular hole 30 communicating with the rear of the circular hole 29 are provided.
  • the flange portion 28 is provided with a plurality of female screw holes 31 (six locations in the first embodiment) penetrating rearward.
  • the sprocket 12 has a circular hole 32 having a central axis O1 at the center.
  • a step circular hole 33 for engaging the flange portion 28 of the driven sun gear 10 is provided on the front surface of the sprocket 12.
  • the bottom 34 of the stepped circular hole 33 is provided with insertion holes 35 (six locations in the first embodiment) at positions corresponding to the female screw holes 31 of the flange portion 28 of the driven sun gear 10.
  • the fixed sun gear 9, the driven sun gear 10, and the sprocket 12 are supported coaxially (center axis O1) and rotatable by the center shaft 11.
  • the center shaft 11 includes a front cylinder part 36, a flange part 37, and a rear cylinder part 38 that are integrated in order from the front.
  • the fixed sun gear 9 is fixed to the front tube portion 36 by fitting the front tube portion 36 of the center shaft 11 into the circular hole 24.
  • the driven sun gear 10 is engaged with the front cylindrical portion 36 and the flange portion 37 by engaging the front cylindrical portion 36 of the center shaft 11 with the circular hole 29 and engaging the flange portion 37 with the circular hole 30. It is rotatably supported around the central axis O1.
  • the sprocket 12 is supported by the rear cylinder portion 38 so as to be rotatable around the central axis O ⁇ b> 1 by engaging the rear cylinder portion 38 with the circular hole 32. Further, the sprocket 12 is inserted into the corresponding insertion hole 35 from behind and the sprocket 12 is screwed into the female screw hole 31 of the flange portion 28 that engages with the stepped circular hole 33, thereby driving the driven sun gear. 10.
  • the integrated driven sun gear 10 and sprocket 12 are rotatably supported by the center shaft 11.
  • the planetary gears 4a to 4d include the eccentric rotary plate 3 adjacent to the front surface of the base disc 19, and the flange portion of the driven sun gear 10 adjacent to the rear surface of the second gears 6a to 6d. 28, it is positioned back and forth. As a result, the partition disk 18 and the base disk 19 rotate in the circular hole 23 without falling back and forth from the circular holes 23 of the pair of support plates 7.
  • the rotational torque input to the input shaft 2 is transmitted in the order of the eccentric rotating plate 3, the planetary gears 4a to 4d, the fixed sun gear 9, the driven sun gear 10, and the sprocket 12, and is connected to the sprocket 12 as follows. Rotate the output shaft.
  • the eccentric shaft 15 that is eccentric upward by a distance L1 from the first rotation center axis O1 of the main body 14 rotates eccentrically around the first rotation center axis O1.
  • the planetary gears 4a to 4d are rotatably supported by the pair of support plates 7 through the circular holes 23, respectively, and the eccentric shaft 20 of the planetary gears 4a to 4d is a third one like the eccentric shaft 15 of the input shaft 2. It is disposed at a position eccentric from the rotation center axis O3 upward by a distance L1 and is engaged with the circular hole 17 of the eccentric rotation plate 3.
  • the eccentric rotating plate 3 rotates eccentrically around the first rotation center axis O1 together with the eccentric shaft 15
  • the eccentric shaft 20 rotates eccentrically around the third rotation center axis O3 in synchronization with the rotation of the eccentric rotating plate 3.
  • the planetary gears 4a to 4d are rotated around the third rotation center axis O3.
  • the planetary gears 4a to 4d revolve around the outer periphery of the fixed sun gear 9 while rotating by the first gears 5a to 5d that mesh with the fixed sun gear 9 because the fixed sun gear 9 is fixed to a base (not shown).
  • the driven sun gear 10 on the output shaft side rotates together with the sprocket 12 by the second gears 6a to 6d that rotate integrally with the first gears 5a to 5d.
  • the fixed ring gear and the driven ring gear in the conventional 3K-type wonder gear reducer are replaced with the fixed sun gear 9 and the driven sun gear 10 respectively, and rotational torque is input to the planetary gear.
  • the sun gear as a means is replaced with the eccentric rotary plate 3 and the shaft mechanism 21. Therefore, in the planetary gear speed reducer 1 of the first embodiment, the rotation is decelerated even when the rotation is transmitted from the second gears 6a to 6d of the planetary gears 4a to 4b to the driven sun gear 10.
  • the reduction ratio U2 at that time is expressed as follows.
  • the driven sun gear 10 of the present embodiment is rotated with respect to the fixed sun gear 9 at a rotation angle that is a difference in the number of teeth from the fixed sun gear 9. Relative rotation.
  • the number of teeth of the driven sun gear 10 is one less than the number of teeth of the fixed sun gear 9.
  • the first gears 5a to 5d of FIGS. 3 and 4 constituting the planetary gears 4a to 4d revolve around the fixed sun gear 9 in the counterclockwise direction D2 and mesh with the 52 teeth of the fixed sun gear 9.
  • the second gears 6a to 6d have the same number of teeth as that of the first gears 5a to 5d and the number of teeth of the driven sun gear 10 is 51. Only revolve. As a result, the driven sun gear 10 rotates relative to the fixed sun gear 9 by a rotation angle (360 / 52 ⁇ 6.92 °) for one tooth of the fixed sun gear 9 in the clockwise direction D1.
  • the driven sun gear 10 of this embodiment rotates relatively by one tooth of the fixed sun gear 9 when the planetary gears 4a to 4d revolve around the fixed sun gear 9 one revolution. Accordingly, the planetary gears 4 a to 4 d revolve around the fixed sun gear 9 having 52 teeth, thereby rotating the driven sun gear 10 relative to the fixed sun gear 9.
  • the relative rotation angle of the driven sun gear 10 with respect to the fixed sun gear 9 is an angle obtained by multiplying the relative rotation angle when the number of teeth difference is 1 by the number of teeth difference.
  • the relative rotation angle is twice that when the number of teeth difference is 1 (360/52 ⁇ 2 ⁇ 13. 8 °).
  • the second gears 6a to 6d revolve around the driven sun gear 10 by one turn (360 °) -the difference in the number of teeth. To do.
  • the driven sun gear 10 rotates relative to the fixed sun gear 9 in the counterclockwise direction D2 by the angle corresponding to the difference in the number of teeth.
  • the obtained reduction ratio U2 is not different from the case where the tooth number difference ⁇ ZSG is a positive value.
  • the relative rotation direction (counterclockwise D2 direction) of the driven sun gear 10 with respect to the fixed sun gear 9 is the same as the rotation direction (clockwise D2 direction) of the input shaft 2.
  • the rotation transmitted at the reduction ratio U1 is decelerated.
  • the speed reduction ratio U2 is further multiplied by the speed reduction ratio U2, so that the transmission is transmitted from the input shaft 2 to the sprocket 12 on the output shaft side (not shown). The rotation that is done is greatly decelerated.
  • the planetary gear speed reducer 1 of the first embodiment the planetary gears 4a to 4d are rotated by the eccentric rotating plate 3 and the eccentric shaft 20, so that the ring gear mechanism as in Patent Document 1 can be replaced with a pair of sun gear mechanisms. I can do it.
  • the planetary gear speed reducer 1 can be reduced in size by reducing the installation space.
  • the abolition of the ring gear mechanism improves the degree of freedom in designing each gear, and allows the planetary gear reducer 1 to realize various reduction ratios.
  • the planetary gears 4a to 4d can be downsized, and a larger reduction ratio can be obtained as the number of teeth of the planetary gears 4a to 4d is reduced. I can do it.
  • the downsizing of the planetary gear enables an increase in the number of installed planetary gears and improves the durability of the planetary gear reducer.
  • the fixed and driven sun gears (9, 10) that are external teeth, unlike the internal gear ring gear, contact between adjacent teeth does not occur even if the size is reduced. Therefore, in the planetary gear speed reducer 1 of the first embodiment, the fixed and driven sun gears (9, 10) do not need to have a special tooth shape, and can be formed into a general involute tooth shape, so that the manufacturing cost is low. Various reduction ratios can be realized.
  • the planetary gear reducer 49 of the second embodiment is different from the planetary gear reducer 1 of the first embodiment in that the planetary gears 50a to 50d, the driven sun gear 51, and the center shaft 52 are different in shape from the planetary gear reducer 1 of the first embodiment.
  • the eccentric rotating plate 53 and the flanged cylinder 54 are provided in order, and the configuration is the same as that of the first embodiment.
  • the planetary gears 50a to 50d include first gears 55a to 55d, second gears 56a to 56d, a partition disk 57, a base disk 58, and an eccentric shaft 59.
  • a second basic disc 60 is provided on the rear surfaces of the second gears 56a to 56d, and an eccentric shaft 61 is provided on the rear surface of the second basic disc 60 so as to protrude rearward.
  • the second basic disc 60 and the eccentric shaft 61 have the same shape as the basic disc 58 and the eccentric shaft 61.
  • the eccentric shaft 61 is provided at a position symmetric with respect to the eccentric shaft 59 with the third rotation center axis O3 ′ of the planetary gears 50a to 50d as the symmetry axis, and similarly to the eccentric shaft 59, the third rotation center axis O3 ′. (See the positions of the center O4 ′ of the eccentric shaft 59 and the center O5 of the eccentric shaft 61 in the small figure on the upper right of FIG. 5).
  • the driven sun gear 51 has a shape in which the flange portion 28 is eliminated from the driven sun gear 10 and has a circular hole 51a centered on the central axis O1.
  • the center shaft 52 has a front cylinder part 52a formed longer than the front cylinder part 36 of the center shaft 11 of the first embodiment, and a flange part 52b and a rear cylinder having the same shape as the flange part 37 and the rear cylinder part 38. It is comprised by the part 52c.
  • the flanged cylinder 54 is formed by a cylindrical main body portion 54a and a flange portion 54b provided coaxially at the base end portion of the main body portion 54a.
  • a circular hole 54c at the center of the main body portion 54a is formed to open to the rear of the flange portion 54b and to have the same inner diameter as the outer diameter of the front cylinder portion 52a.
  • the flange portion 54b is provided with a plurality of female screw holes 54d (six locations in the second embodiment) penetrating rearward at positions corresponding to the insertion holes 35 of the sprocket 12.
  • the second eccentric rotating plate 53 is formed in a ring shape having a large circular hole 53a at the center.
  • circular holes 63 having the same inner diameter as the outer diameter of the eccentric shaft 61 are formed at positions corresponding to the eccentric shaft 61 of the planetary gears 50a to 50d.
  • the center of each circular hole 63 is arranged on a circular orbit centering on a central axis (not shown) arranged in parallel with the central axis O1 at a position eccentric by a distance L1 downward from the central axis O1 of the eccentric rotating plate. Is done.
  • the inner diameter of the large circular hole 53a is formed larger than the outer diameter of the main body 54a of the flanged cylinder 54.
  • the second eccentric rotary plate 53 is formed to have the same weight as the eccentric rotary plate 3 by adjusting the outer diameter and the plate thickness.
  • the shape of the second eccentric rotating plate 53 is such that the center of gravity position of the second eccentric rotating plate 53 with respect to the position of the center of gravity of the eccentric rotating plate 3 is symmetrical with the center axis O1 in between. If formed, it is not limited to a disk shape.
  • the flanged cylinder 54 is fixed to the driven sun gear 51 by inserting the tip of the main body 54a into the large circular hole 53a of the second eccentric rotating plate 53 and fitting into the circular hole 51a. Further, the front cylinder portion 52 a of the center shaft 52 is engaged with the circular hole 54 c of the flanged cylinder 54, and the rear cylinder portion 52 c is engaged with the circular hole 32 of the sprocket 12.
  • the sprocket 12 is fixed to the flanged cylinder 54 by screwing a plurality of fixing screws 13 inserted through the insertion holes 35 into the corresponding female screw holes 54d. As a result, the flanged cylinder 54 and the sprocket 12 are held by the center shaft 52 so as to be rotatable around the center axis O1.
  • the fixed sun gear 9 is fitted to the front cylindrical portion 36 on the center shaft 52 by fitting the front cylindrical portion 52a of the center shaft 52 protruding forward from the circular hole 22 of the support plate 7 on the rear side into the circular hole 24. Fixed.
  • the planetary gears 50a to 50d are respectively inserted into the circular holes 23 of the two support plates 7.
  • the first gears 55a to 55d are arranged at equal intervals along the outer periphery of the fixed sun gear 9 and mesh with the tooth portion 26, and the second gears 56a to 56d are equally spaced along the outer periphery of the driven sun gear 51. It meshes with the tooth part 62 while being arranged at.
  • the partition disk 57 and the base disk 58 are engaged with the circular holes 23 of the two support plates 7 and are rotatably held.
  • the eccentric shaft 61 and the circular hole 63 constitute a second shaft mechanism 65, and the eccentric shaft 61 is rotatably engaged with the corresponding circular hole 63 of the second eccentric rotating plate 53, respectively.
  • the eccentric rotating plate 53 is supported.
  • the second eccentric rotation plate 53 When the eccentric rotation plate 3 rotates eccentrically around the first rotation center axis O1 by the rotation of the input shaft 2, the second eccentric rotation plate 53 also has the first rotation center axis O1 as the axis of symmetry as the eccentric rotation plate 3. At an symmetric position from the center of rotation about the first rotation center axis O1. Since the eccentric rotary plate 3 and the second eccentric rotary plate 53 have the same weight and are arranged at positions where their respective centers of gravity are symmetrical with the first rotation center axis O1 in between, the input shaft 2 side The eccentric rotating plate 3 is easy to rotate because the centrifugal force is canceled by the second eccentric rotating plate 53.
  • the number of planetary gears installed in each embodiment is not limited to four as long as at least one planetary gear is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

 【課題】 大きな減速比を自在に発生可能で、かつ小型の遊星歯車減速機の提供 【解決手段】 同形状の第1及び第2の歯車を軸方向に所定の位相差をもって一体化した形状を有し、入力軸によって回転する1以上の遊星歯車と、第1の歯車に噛み合う固定太陽歯車と、固定太陽歯車と異なる歯数に形成されて第2の歯車に噛み合い、かつ出力軸に同軸に一体化される従動太陽歯車と、を有する遊星歯車減速機において、固定及び従動太陽歯車は、外接歯車であり、入力軸には、その回転中心軸線から所定距離偏心した中心軸線回りに回転可能な偏心回転板が設けられ、遊星歯車には、その回転中心軸線から前記所定距離偏心し、かつ偏心回転板の偏心方向と同一方向に偏心した軸機構が設けられ、軸機構は、偏心回転板に同期して遊星歯車の回転中心軸線回りに偏心回動するよう偏心回転板に連結される。 

Description

遊星歯車減速機
 本発明は、小型で自在な減速比を実現でき、かつより大きな減速比を発生させる遊星歯車減速機に関する技術であり、特に不思議歯車減速機に関する技術である。
 下記特許文献1の遊星歯車機構は、3K型と言われる不思議歯車減速機を改良したものである。従来の3K型の不思議歯車減速機には、特許文献1に示される通り、固定リングギヤと従動リングギヤの歯数差が少ないほど高い減速比を得られるという利点がある反面、前記歯数差をプラネタリギヤの設置数の整数倍にしない場合、プラネタリギヤが歯数の異なる二つのリングギヤに適切に噛み合わないという制限がある。
 従来の3K型の不思議歯車減速機においては、プラネタリギヤの設置数が増えるほど、サンギヤ、プラネタリギヤ及び各リングギヤに作用する力が分散して各ギヤの耐久性が向上する反面、前記歯数差も増えるため、減速比が低下する点で問題があった。具体的には、従来の3K型の不思議歯車減速機においては、前記歯数差を1にすることで最大の減速比を得ることが出来るが、そのためにはプラネタリギヤを1つしか設置できないため、各ギヤの耐久性が低下する問題があった。
 特許文献1の遊星歯車機構は、上記問題を解決するため、遊星歯車を複数設けて耐久性を向上させたとしても、固定リングギヤと従動リングギヤの歯数差を1にして最も高い減速比を得られるようにしたものである。具体的には、特許文献1の遊星歯車機構においては、同形状の一対の歯車を所定の位相差をもって軸方向に一体化してなるプラネタリギヤを利用することにより、固定リングギヤと従動リングギヤの歯数差がプラネタリギヤの設置個数の整数倍以下、つまり1となった場合でも、プラネタリギヤが歯数の異なる固定リングギヤ及び従動リングギヤの双方に適切に噛み合えるようにしたものである。
特許第3560286号
 遊星歯車減速機においては、更なる小型化と高減速比の発生が求められている。しかし、特許文献1の遊星歯車減速機においては、以下の問題が生じる。
 まず、特許文献1の遊星歯車減速機においては、固定リングギヤ、従動リングギヤ及びサンギヤの歯数によって減速比が決定される。リングギヤの内歯のモジュールと歯数が決定された場合、その内側で噛み合うプラネタリギヤとサンギヤのモジュール及び歯数も各リングギヤの内側に収まるように限定される。特許文献1の遊星歯車減速機においては、入力軸側のサンギヤに対する出力軸側のリングギヤの歯数比を大きくするほど得られる減速比が高くなる。しかし、リングギヤに対してモジュールの等しいサンギヤの歯数を少なくした場合、遊星ギヤの設置空間は、広くなる。従って、遊星歯車をリングギヤとサンギヤの双方に噛み合わせるためには、遊星歯車の外径を大きくしなければならない。一方、隣り合う遊星歯車の大型化は、隣接する遊星歯車同士を干渉させるため、特許文献1の遊星歯車減速機においては、前記干渉を避けるために遊星歯車の設置数が限られてしまう点で問題がある。
 一方、第1に特許文献1の遊星歯車減速機において内歯歯車であるリングギヤを小型化する場合、リングギヤの歯形は、特殊な形状に形成されなければならないことがある。特殊形状の歯車の形成は、加工が難しく、製造コストを増加させるため、リングギヤの小型化において問題を生じさせる。
 本発明は、上記問題に鑑みて、小型で自在な減速比を実現でき、かつより大きな減速比を発生可能な遊星歯車減速機を提供するものである。
 請求項1の遊星歯車減速機は、同形状である第1の歯車及び第2の歯車を所定の位相差をもって軸方向(後述する第3の回転中心軸線方向)に一体化した形状を有し、入力軸によって回転する少なくとも1以上の遊星歯車と、遊星歯車の第1の歯車に噛み合う固定太陽歯車と、固定太陽歯車と異なる歯数に形成されて遊星歯車の第2の歯車に噛み合うと共に出力軸に同軸に一体化される従動太陽歯車と、を有する遊星歯車減速機において、前記固定太陽歯車及び従動太陽歯車は、外接歯車であり、前記入力軸には、入力軸の第1の回転中心軸線から所定距離偏心した第2の回転中心軸線回りに回転可能な偏心回転板が設けられ、前記遊星歯車には、各遊星歯車の第3の回転中心軸線から前記所定距離偏心し、かつ偏心回転板の偏心方向と同一方向に偏心した位置に軸機構が設けられ、前記軸機構は、前記偏心回転板に同期して第3の回転中心軸線回りに偏心回動するように前記偏心回転板に連結されるようにした。
 (作用)請求項1の遊星歯車減速機においては、特許文献1の固定リングギヤ及び従動リングギヤに相当する固定太陽歯車及び従動太陽歯車を外歯歯車とし、遊星歯車を外接させている。また、特許文献1と異なり、遊星歯車へ動作を入力する機構に偏心させた遊星歯車軸を使用するため、サンギヤと入力軸の代わりに偏心回転板と偏心軸での構成となっている。請求項1の遊星歯車減速機においては遊星歯車が太陽ギヤにのみ噛み合うため、遊星歯車の歯数を減らして外径を小さくすることによって減速比を高くすることができる。また、請求項1の遊星歯車減速機においては、小型化した多数の遊星歯車を設置することで強度面が向上し、かつ大きさをコンパクトにすることができる。請求項1の遊星歯車減速機においては、リングギヤの内側に遊星歯車と更にサンギヤを設置する場合と異なり、固定太陽歯車、従動太陽歯車及び遊星歯車のモジュールと歯数の設定の自由度が増加し、遊星歯車の設置数を増加させることができる。更に、歯車の構成も簡素化されコストダウンに貢献できる。
 更に、請求項1の遊星歯車減速機においては、偏心回転板により、偏心回転板と同一の態様で偏心回動する軸機構によって遊星歯車が同期回転する。遊星歯車の回転は、第1の歯車及び固定太陽歯車の歯数に基づき、入力軸から遊星歯車に回転トルクが伝達される際にも大幅に減速される。
 また、請求項1の遊星歯車減速機においては、内歯歯車を設けていないため、特定のモジュールを維持し、かつ特殊形状の歯形に形成しなくても各歯車を小型化できる。言い換えると、インボリュート歯形で各歯車を小さくしても、噛み合いに問題が出ないため、加工を容易にし、製造コストを安価にしつつ多彩な減速比を実現できる。
 また、請求項2は、請求項1に記載の遊星歯車減速機であって、前記複数の遊星歯車には、第3の回転中心軸線を対称軸とし、軸機構の中心軸線に対して対称となるように偏心する位置に設けられた第2の軸機構により、第2の軸機構の中心軸線回りに回転可能に支持される第2の偏心回転板が設けられるようにした。
 (作用)請求項2の遊星歯車減速機においては、入力軸側の偏心回転板の偏心回転時に第2の偏心回転板が、第1の回転中心軸線を対称軸として対称に偏心回転する。その結果、入力軸側の偏心回転板は、第2の偏心回転板によって遠心力が相殺されて回転しやすくなる。
 請求項1の遊星歯車減速機によれば、小型で自在な減速機を実現でき、かつ従来より大きな減速比を発生させることができる。
 請求項2の遊星歯車減速機によれば、遊星歯車と第3及び従動太陽歯車の回転がなめらかになる。
第1実施例の遊星歯車減速機に関する正面図である。 第1実施例の遊星歯車減速機に関する斜視図である。 第1実施例の遊星歯車減速機に関する分解斜視図である。 入力軸側から見た偏心回転板、遊星歯車及び2つの太陽歯車の配置説明図である。 (a)第2実施例の遊星歯車減速機に関する分解斜視図である。(b)入力軸側から見た第1及び第2の偏心回転板と遊星歯車の配置説明図である。 第3実施例の遊星歯車減速機のブレーキ機構を側方から見た説明図である。
 次に、遊星歯車減速機の第1実施例を図1から図4によって説明する。尚、以降の説明においては、各図に示される遊星歯車減速機の前方:後方:上方:下方:左方:右方=Fr:Re:Up:Dw:Le:Riとして説明する。
 遊星歯車減速機1は、入力軸2、偏心回転板3,第1の歯車5a~5dを第2の歯車6a~6dにそれぞれ一体化した遊星歯車4a~4d、遊星歯車4を支持する一対の支持板7,固定太陽歯車9、従動太陽歯車10,センターシャフト11、出力軸側に連結されるスプロケット12、固定ネジ13を有する。
 入力軸2は、本体部14と、円柱形状の偏心軸15によって構成される。図1の偏心軸15は、本体部14の裏面に一体化され、偏心軸15の第2の回転中心軸線O2は、本体部14の第1の回転中心軸線O1から上方に距離L1偏心している。
 偏心回転板3は、円板状に形成され、円孔16と、複数の円孔17を有する。円孔16に偏心軸15を挿通させ、かつ係合させることにより、偏心回転板3は、第2の回転中心軸線O2周りに回転可能に支持される。その結果、偏心回転板3は、入力軸2が第1の回転中心軸線O1周りに回転することによって、入力軸2の第1の回転中心軸線O1周りを偏心回転する。円孔17は、第2の回転中心軸線O2を中心とする円軌道C1上に中心O3が位置するように形成される。尚、偏心回転板3の形状は、板状であれば円板に限られない。
 第1実施例において4つ設けられた遊星歯車4a~4dは、第1の歯車5a~5d、第2の歯車6a~6d、仕切円板18、基礎円板19、及び偏心軸20によって形成される。第1の歯車5a~5dと第2の歯車6a~6dは、同一形状の歯車であり、仕切円板18の前後に一体化される。第1の歯車5a~5dの前部には、基礎円板19が一体化される。第1の歯車5a~5d、第2の歯車6a~6d、仕切円板18及び基礎円板19は、第3の回転中心軸線O3周りに同軸に配置される。第2の歯車6a~6dは、後述する所定の位相差をもって、第1の歯車5a~5dに一体化される。また、遊星歯車4a~4dは、後述する固定太陽歯車9及び従動太陽歯車10の外周の複数箇所に配置され、これらに噛み合う。本実施例における従動太陽歯車10は、固定太陽歯車9よりも1少ない歯数を有するように形成されている。
 尚、所定の位相差とは、第3の回転中心軸線O3を中心として第1の歯車5a~5dと、これに対応する第2の歯車6a~6dとの間に形成されるそれぞれの角度差を表す。それぞれの角度差は、第3の回転中心軸線O3を中心として隣接する歯の角度θと、遊星歯車の設置数nによって決定される。第1実施例においては、基準となる歯車(第1実施例においては、第1の歯車5aと第2の歯車6a)の角度差を0°とし、その他の歯車(第1実施例においては、第1の歯車5b~5dと第2の歯車6b~6d)については、それぞれの角度差を歯車の公転方向に沿って順番にθ/n(等分複数箇所に配置した場合)ずつ拡げていく。第1実施例においては、図4に示すとおりθ=36°(第1及び第2の歯車の歯数が10であるため)、遊星歯車の設置数は4である。従って、第1の歯車5a~5dと第2の歯車6a~6dの角度差をそれぞれθa~θdとすると、θa=0°、θb=36°/4=9°、θc=18°、θd=27°となり、公転方向に360°進んだ位置において36°、つまり1歯分の角度差となって位相差が0になる。その結果、第1実施例の遊星歯車減速機においては、固定太陽歯車9と従動太陽歯車10の歯数差が遊星歯車の設置数の整数倍にならなくても、歯数差1の固定太陽歯車9と従動太陽歯車10の双方に遊星歯車4a~4dの第1の歯車5a~5dと第2の歯車6a~6dをそれぞれ噛み合わせることができる。
 また、基礎円板19の前面には、それぞれ偏心軸20が設けられる。偏心軸20の第4の回転中心軸線O4は、第3の回転中心軸線O3から上方に距離L1偏心している。偏心軸20と偏心回転板3の円孔17は、軸機構21を構成し、各偏心軸20は、対応する円孔17に係合する。遊星歯車4a~4dは、遊星歯車4a~4dは、軸機構21を介し、偏心回転板3により、第4の回転中心軸線O4周りに偏心回転可能支持される。更に、遊星歯車4a~4dは、一対の支持板7により、第3の回転中心軸線O3周りに回転可能に支持される。
 一対の支持板7は、円板形状を有し、各支持板7の中央には、O1を中心とする円孔22が設けられる。一対の支持板7の円孔22の周囲には、円軌道C1と同じ大きさで中心軸線O1を中心とする円軌道上に中心を有する遊星歯車4a~4dと同数の円孔23が設けられる。
 一対の支持板7は、遊星歯車機構を収容する図示しないベース部材に固定された固定太陽歯車9の前後に配置される。固定太陽歯車9は、歯部26と、歯部26の前後面に突設された前側円筒部25及び後側円筒部(図示せず)によって構成される。図示しない後側円筒部は、前側円筒部25と同じ形状を有する。固定太陽歯車9の中央には、O1を中心とする円孔24が設けられる。固定太陽歯車9の前方に配置される支持板7は、前側円筒部25を円孔22に係合させることによりO1を中心として前側円筒部25に回転可能に支持され、固定太陽歯車9の後方に配置される支持板7は、図示しない後側円筒部を円孔22に係合させることにより、O1を中心として後側円筒部に回転可能に支持される。
 遊星歯車4a~4dは、前後に配置された各支持板7の円孔23にそれぞれ挿通され、第1の歯車5a~5dは、固定太陽歯車9の歯部26に噛み合い、第2の歯車6a~6dは、従動太陽歯車10の後述する歯部27に噛み合う。また、基礎円板19は、前方の支持板7の円孔23に係合し、回転可能に支持され、仕切円板18は、後方の支持板7の円孔23に係合し、かつ回転可能に支持される。その結果、遊星歯車4a~4dは、一対の支持板7により、第3の回転中心軸線O3周りに回転可能に支持される。
 固定太陽歯車9の後方には、後方側の支持板7を間に配置して従動太陽歯車10が配置され、従動太陽歯車10の後方には、スプロケット12が配置される。従動太陽歯車10は、固定太陽歯車9の外周の歯部26よりも歯数が少ない(第1実施例では1少ない)歯部27と、歯部27の後面に同軸(中心軸線O1)に一体化されたフランジ部28によって構成される。従動太陽歯車10の中央には、O1を中心とし、円孔24と同じ内径の円孔29と、円孔29の後方に連通する円孔30が設けられる。フランジ部28には、後方に貫通する複数の雌ねじ孔31(第1実施例では6箇所)が設けられる。
 また、スプロケット12は、中央に中心軸線をO1とする円孔32を有する。スプロケット12の前面には、従動太陽歯車10のフランジ部28を係合させる段差円孔33が設けられる。段差円孔33の底部34には、従動太陽歯車10のフランジ部28の雌ねじ孔31に対応する位置にそれぞれ挿通孔35(第1実施例では6箇所)が設けられる。
 固定太陽歯車9,従動太陽歯車10及びスプロケット12は、センターシャフト11によって同軸(中心軸線O1)かつ回転可能に支持される。センターシャフト11は、前から順に一体化された前筒部36,フランジ部37及び後筒部38によって構成される。固定太陽歯車9は、センターシャフト11の前筒部36を円孔24に嵌合させることにより前筒部36に固定される。また、従動太陽歯車10は、センターシャフト11の前筒部36を円孔29に係合させ、かつフランジ部37を円孔30に係合させることにより、前筒部36及びフランジ部37によって、中心軸線O1周りに回転可能に支持される。
 スプロケット12は、後筒部38を円孔32に係合させることにより、後筒部38によって中心軸線O1周りに回転可能に支持される。また、スプロケット12は、その後方から固定ネジ13を対応する位置の挿通孔35に挿通させ、かつ段差円孔33に係合するフランジ部28の雌ねじ孔31に螺着させることにより、従動太陽歯車10に一体化される。一体化された従動太陽歯車10とスプロケット12は、センターシャフト11によって回転可能に支持される。
 尚、遊星歯車4a~4dは、図2に示すように基礎円板19の前面に隣接する偏心回転板3と、と第2の歯車6a~6dの後面に隣接する従動太陽歯車10のフランジ部28により、前後に位置決めされる。その結果、仕切円板18と基礎円板19は、一対の支持板7の円孔23から前後に抜け落ちることなく円孔23内を回転する。
 次に、第1実施例の遊星歯車減速機による入力軸と出力軸の減速動作を説明する。入力軸2に入力された回転トルクは、偏心回転板3、遊星歯車4a~4d、固定太陽歯車9,従動太陽歯車10、スプロケット12の順で伝達され、以下のようにスプロケット12に連結された出力軸を回転させる。
 まず、入力軸2が回転すると、本体部14の第1の回転中心軸線O1から距離L1だけ上方に偏心する偏心軸15が第1の回転中心軸線O1周りに偏心回転する。遊星歯車4a~4dは、それぞれ円孔23を介して一対の支持板7に回転可能に支持され、遊星歯車4a~4dの偏心軸20は、入力軸2の偏心軸15と同様に第3の回転中心軸線O3から上方に距離L1上方に偏心した位置に配置され、かつ偏心回転板3の円孔17に係合している。従って、偏心軸15と共に偏心回転板3が第1の回転中心軸線O1周りに偏心回転すると、偏心軸20は、偏心回転板3の回転に同期して第3の回転中心軸線O3周りに偏心回転し、遊星歯車4a~4dを第3の回転中心軸線O3周りに回転させる。遊星歯車4a~4dは、固定太陽歯車9が図示しないベースに固定されているため、固定太陽歯車9に噛み合う第1の歯車5a~5dにより、自転しつつ固定太陽歯車9の外周を公転する。その結果、第1の歯車5a~5dに一体となって回転する第2の歯車6a~6dにより、出力軸側の従動太陽歯車10がスプロケット12と共に回転する。
 第1実施例の遊星歯車減速機においては、まず入力軸から偏心回転板3と軸機構21を介して遊星歯車4a~4dに回転が伝達される際に、伝達される回転が大幅に減速される。その際の減速比U1は、固定太陽歯車9の歯数をZSG1、遊星歯車4a~4dの第1の歯車5a~5dの歯数をZPG1とすると、U1=(ZSG1/ZPG1)+1で表される。減速比U1は、図4に示される通り、ZPG1=10、ZSG1=52であるため、U1=52/10+1=6.2となる。
 一方、第1実施例の遊星歯車減速機1は、従来の3K型の不思議歯車減速機における固定リングギヤと従動リングギヤをそれぞれ固定太陽歯車9と従動太陽歯車10に置き換え、プラネタリギヤへ回転トルクを入力する手段であるサンギヤを偏心回転板3と軸機構21に置き換えたものである。従って、第1実施例の遊星歯車減速機1においては、遊星歯車4a~4bの第2の歯車6a~6dから従動太陽歯車10に回転が伝達される場合においても回転が減速される。その際の減速比U2は、以下のように表される。
 本実施例の従動太陽歯車10は、遊星歯車4a~4dが固定太陽歯車9の周りを一周公転する際に、固定太陽歯車9との歯数差分の回転角で、固定太陽歯車9に対して相対回転する。本実施例においては、前述したとおり、従動太陽歯車10の歯数が固定太陽歯車9の歯数よりも1少ない。遊星歯車4a~4dを構成する図3及び図4の第1の歯車5a~5dが、固定太陽歯車9の周りを反時計回りD2方向に一公転して固定太陽歯車9の52の歯に噛み合うと、第2の歯車6a~6dは、第1の歯車5a~5dと歯数が等しく、かつ従動太陽歯車10の歯数が51であるため、従動太陽歯車10の周りを1周+1歯分だけ公転する。その結果、従動太陽歯車10は、固定太陽歯車9に対し、時計回りD1方向に固定太陽歯車9の1歯分の回転角(360/52≒6.92°)だけ相対回転する。
 本実施例の従動太陽歯車10は、遊星歯車4a~4dが固定太陽歯車9の周りを1公転することで、固定太陽歯車9の1歯分だけ相対回転する。従って、遊星歯車4a~4dは、歯数52の固定太陽歯車9の周りを公転することにより、従動太陽歯車10を固定太陽歯車9に対して相対回転させる。この場合の減速比U2は、固定太陽歯車9の歯数から従動太陽歯車10の歯数を引いた歯数差をΔZSGとすると、U2=ZSG1/|ΔZSG|によって表される。本実施例においては、減速比U2=52/1=52となり、固定太陽歯車9に対する従動太陽歯車10の相対回転方向(時計回りD1方向)は、入力軸2の回転方向(反時計回りD2方向)に対して逆向きとなる。
 以上により、入力軸から出力軸に回転が伝達される際の減速比Uは、
U=U1×U2=6.2×52=322.4
となり、従来よりも大きな減速比を得ることが出来る。
 尚、固定太陽歯車9に対する従動太陽歯車10の相対回転角は、歯数差が1の場合の相対回転角に歯数差数を乗じた角度となる。例えば、本実施例における従動太陽歯車10の歯数が固定太陽歯車9より2少ないと仮定した場合、相対回転角は、歯数差が1の場合の2倍(360/52×2≒13.8°)となる。
 また、仮に従動太陽歯車10の歯数が固定太陽歯車9よりも多い場合、第2の歯車6a~6dは、従動太陽歯車10の周りを1周(360°)-歯数差分の角度だけ公転する。その結果、従動太陽歯車10は、固定太陽歯車9に対し、反時計回りD2方向に前記歯数差分の角度だけ相対回転する。従動太陽歯車10の歯数が固定太陽歯車9よりも多く、歯数差ΔZSGが負の値となる場合、得られる減速比U2は、歯数差ΔZSGが正の値となる場合と変わらない一方、固定太陽歯車9に対する従動太陽歯車10の相対回転方向(反時計回りD2方向)は、入力軸2の回転方向(時計回りD2方向)と同じ向きとなる。
 第1実施例においては、まず入力軸から偏心回転板3と軸機構21を介して遊星歯車4a~4dに回転が伝達される際に減速比U1で伝達される回転が減速され、更に遊星歯車4a~4dから固定太陽歯車9を介して従動太陽歯車10に回転が伝達される際に減速比U1に更に減速比U2が乗ぜられるため、入力軸2から図示しない出力軸側のスプロケット12に伝達される回転が大幅に減速される。
 第1実施例の遊星歯車減速機1においては、偏心回転板3と偏心軸20によって遊星歯車4a~4dを回転させるため、特許文献1のようなリングギヤ機構を一対の太陽歯車機構に置き換えることが出来る。リングギヤ機構を廃止した結果、第1実施例においては、設置スペースの削減により、遊星歯車減速機1を小型化できる。
 また、リングギヤ機構の廃止は、各歯車の設計の自由度を向上させて、遊星歯車減速機1に多彩な減速比を実現させる。第1実施例の遊星歯車減速機1においては、遊星歯車4a~4dの小型化が可能になり、遊星歯車4a~4dの歯数を減らして小型化するほど、より大きな減速比を得ることが出来る。また、遊星歯車の小型化は、遊星歯車の設置数の増加を可能にし、遊星歯車減速機の耐久性を向上させる。
 また、外歯である固定及び従動太陽歯車(9,10)においては、内歯のリングギヤと異なり、小型化しても隣接する歯同士の接触が起こらない。従って、第1実施例の遊星歯車減速機1においては、固定及び従動太陽歯車(9,10)の歯形を特殊形状にする必要が無く、一般的なインボリュート歯形に形成できるため、製造コストを安価にしつつ多彩な減速比を実現できる。
 次に、図5により、第2実施例の遊星歯車減速機49を説明する。遊星歯車減速機49は、遊星歯車50a~50dと、従動太陽歯車51と、センターシャフト52の形状が第1実施例の遊星歯車減速機1と異なることと、従動太陽歯車51の後方に第2の偏心回転板53とフランジ付円筒54とが順に設けられていることの他、第1実施例と構成が共通する。
 遊星歯車50a~50dは、第1の歯車55a~55d、第2の歯車56a~56d、仕切円板57、基礎円板58、偏心軸59を有し、これらの形状と構成は、第1の歯車5a~5d、第2の歯車6a~6d、仕切円板18、基礎円板19、及び偏心軸20と同一である。一方、第2の歯車56a~56dの後面には、第2の基礎円板60が設けられ、第2の基礎円板60の後面には、後方に向けて偏心軸61が突設されている。第2の基礎円板60と偏心軸61は、基礎円板58及び偏心軸61と同一の形状を有する。偏心軸61は、遊星歯車50a~50dの第3の回転中心軸線O3’を対称軸として偏心軸59から対称になる位置に設けられて、偏心軸59と同様に第3の回転中心軸線O3’から距離L1偏心している(図5右上の小図における、偏心軸59の中心O4’と偏心軸61の中心O5の位置を参照)。
 従動太陽歯車51は、従動太陽歯車10からフランジ部28を無くした形状を有すると共に中心軸O1を中心とした円孔51aを有する。
 センターシャフト52は、第1実施例のセンターシャフト11の前筒部36よりも前後に長く形成された前筒部52aと、フランジ部37及び後筒部38と同形状のフランジ部52b及び後筒部52cによって構成される。
 フランジ付円筒54は、円筒形状の本体部54aと、本体部54aの基端部に同軸に設けられたフランジ部54bによって形成される。本体部54aの中央の円孔54cは、フランジ部54bの後方に開口し、かつ前筒部52aの外径と同一の内径を有するように形成される。またフランジ部54bには、後方に貫通する複数の雌ねじ孔54d(第2実施例では6箇所)が、スプロケット12の挿通孔35と対応する位置にそれぞれ設けられる。
 また、第2の偏心回転板53は、中央に大円孔53aを有するリング形状に形成される。大円孔53aの周囲には、遊星歯車50a~50dの偏心軸61に対応する位置において、偏心軸61の外径と同一の内径を有する円孔63がそれぞれ形成される。各円孔63の中心は、偏心回転板の中心軸線O1から下方に距離L1だけ偏心した位置において中心軸線O1と平行に配置される中心軸線(図示せず)を中心とする円軌道上に配置される。大円孔53aの内径は、フランジ付円筒54の本体部54aの外径よりも大きく形成される。尚、第2の偏心回転板53は、外径や板厚を調整することによって偏心回転板3と同じ重量を有するように形成される。また、第2の偏心回転板53の形状は、偏心回転板3の重心位置に対する第2の偏心回転板53の重心位置が中心軸線O1を間に挟んで対称となる位置に配置されるように形成されるのであれば、円板形状に限られない。
 フランジ付円筒54は、本体部54aの先端部を第2の偏心回転板53の大円孔53aに挿通させ、かつ円孔51aに嵌入することにより、従動太陽歯車51に固定される。また、センターシャフト52の前筒部52aは、フランジ付円筒54の円孔54cに係合し、後筒部52cは、スプロケット12の円孔32に係合する。スプロケット12は、各挿通孔35に挿通した複数の固定ネジ13を対応する雌ねじ孔54dに螺着することによってフランジ付円筒54に固定される。その結果、フランジ付円筒54とスプロケット12は、センターシャフト52によって中心軸線O1周りに回転可能に保持される。
 一方、固定太陽歯車9は、後方側の支持板7の円孔22から前方に突出するセンターシャフト52の前筒部52aを円孔24に嵌合させることによりセンターシャフト52に前筒部36に固定される。
 また、遊星歯車50a~50dは、2枚の支持板7の円孔23にそれぞれ挿通される。第1の歯車55a~55dは、固定太陽歯車9の外周に沿って等間隔で配置されつつ歯部26に噛み合い、第2の歯車56a~56dは、従動太陽歯車51の外周に沿って等間隔で配置されつつ歯部62に噛み合う。また、仕切円板57と基礎円板58は、それぞれ2枚の支持板7の円孔23に係合し、かつ回転可能に保持される。
 また、偏心軸61と円孔63は、第2の軸機構65を構成し、偏心軸61は、第2の偏心回転板53の対応する円孔63にそれぞれ回転可能に係合し、第2の偏心回転板53を支持する。
 入力軸2の回転により、偏心回転板3が第1の回転中心軸線O1周りに偏心回転すると、第2の偏心回転板53もまた、第1の回転中心軸線O1を対称軸として偏心回転板3から対称となる位置において、第1の回転中心軸線O1周りを偏心回転する。偏心回転板3と第2の偏心回転板53は、重量が同じで、かつそれぞれの重心が第1の回転中心軸線O1を間に挟んで対称になる位置に配置されるため、入力軸2側の偏心回転板3は、第2の偏心回転板53によって遠心力が相殺されて回転しやすくなる。
 尚、各実施例の遊星歯車の設置数は、少なくとも1以上設けられていれば、4つに限られない。
 1           遊星歯車減速機
 2           入力軸
 3           偏心回転板
 4a~4d       遊星歯車
 5a~5d       第1の歯車
 6a~6d       第2の歯車
 9           固定太陽歯車
 10          従動太陽歯車
 14          本体部
 15          入力軸の偏心軸
 17          偏心回転板の円孔
 20          遊星歯車の偏心軸
 21          軸機構
 49          遊星歯車減速機
 50a~50d     遊星歯車
 61          遊星歯車の偏心軸
 63          第2の偏心回転板の円孔
 65          第2の軸機構
 O1          第1の回転中心軸線
 O2          第2の回転中心軸線
 O3、O3’、O3’’ 第3の回転中心軸線
 O4、O4’、O4’’ 第4の回転中心軸線
 O5          第2の軸機構の回転中心軸線
 L1         所定の偏心距離

Claims (2)

  1.  同形状である第1の歯車及び第2の歯車を所定の位相差をもって軸方向に一体化した形状を有し、入力軸によって回転する少なくとも1以上の遊星歯車と、遊星歯車の第1の歯車に噛み合う固定太陽歯車と、固定太陽歯車と異なる歯数に形成されて遊星歯車の第2の歯車に噛み合うと共に出力軸に同軸に一体化される従動太陽歯車と、を有する遊星歯車減速機において、
     前記固定太陽歯車及び従動太陽歯車は、外接歯車であり、
     前記入力軸には、入力軸の第1の回転中心軸線から所定距離偏心した第2の回転中心軸線回りに回転可能な偏心回転板が設けられ、
     前記遊星歯車には、各遊星歯車の第3の回転中心軸線から前記所定距離偏心し、かつ偏心回転板の偏心方向と同一方向に偏心した位置に軸機構が設けられ、
     前記軸機構は、前記偏心回転板に同期して第3の回転中心軸線回りに偏心回動するように前記偏心回転板に連結されることを特徴とする、遊星歯車減速機。
  2.  前記複数の遊星歯車には、第3の回転中心軸線を対称軸とし、軸機構の中心軸線に対して対称となるように偏心する位置に設けられた第2の軸機構により、第2の軸機構の中心軸線回りに回転可能に支持される第2の偏心回転板が設けられたことを特徴とする、請求項1に記載の遊星歯車減速機。
PCT/JP2012/054527 2012-02-24 2012-02-24 遊星歯車減速機 WO2013125023A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12869274.6A EP2818758A4 (en) 2012-02-24 2012-02-24 PLANETARY GEAR REDUCER
PCT/JP2012/054527 WO2013125023A1 (ja) 2012-02-24 2012-02-24 遊星歯車減速機
US13/985,175 US8900091B2 (en) 2012-02-24 2012-02-24 Planetary gear reduction mechanism
KR1020137025108A KR20140128858A (ko) 2012-02-24 2012-02-24 유성 기어 감속기
CN2012800186989A CN103477118A (zh) 2012-02-24 2012-02-24 行星齿轮减速机
JP2012531150A JP5840614B2 (ja) 2012-02-24 2012-02-24 遊星歯車減速機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054527 WO2013125023A1 (ja) 2012-02-24 2012-02-24 遊星歯車減速機

Publications (1)

Publication Number Publication Date
WO2013125023A1 true WO2013125023A1 (ja) 2013-08-29

Family

ID=49005242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054527 WO2013125023A1 (ja) 2012-02-24 2012-02-24 遊星歯車減速機

Country Status (6)

Country Link
US (1) US8900091B2 (ja)
EP (1) EP2818758A4 (ja)
JP (1) JP5840614B2 (ja)
KR (1) KR20140128858A (ja)
CN (1) CN103477118A (ja)
WO (1) WO2013125023A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016948A1 (ja) * 2014-07-29 2016-02-04 日鍛バルブ株式会社 ギヤボックス
WO2016037271A1 (en) * 2014-09-10 2016-03-17 Stocco Leo Hybrid orbitless gearbox

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488265B2 (en) 2011-09-06 2016-11-08 Eaton Corporation Compact planetary differential gear set arrangement
JP6604820B2 (ja) * 2015-08-07 2019-11-13 日本電産サンキョー株式会社 遊星歯車減速機および駆動機構
US20170126159A1 (en) * 2015-10-29 2017-05-04 Hamilton Sundstrand Corporation Generation system with braking mechanism
US9845864B2 (en) * 2016-01-28 2017-12-19 Deere & Company Planet carrier, output gear and spindle assembly
JP6686695B2 (ja) * 2016-05-20 2020-04-22 株式会社デンソー 偏心揺動型減速装置
EP3339236B1 (en) * 2016-12-21 2020-06-17 Otis Elevator Company Self-braking gear and people conveyor comprising a self-braking gear
WO2018232121A1 (en) * 2017-06-14 2018-12-20 Dana Automotive Systems Group, Llc Actuation mechanism
US20190083217A1 (en) * 2017-09-15 2019-03-21 Goodwell Inc. Battery-Free Powered Toothbrush
US20200085552A1 (en) * 2017-09-15 2020-03-19 Goodwell Inc. Hand-wound powered toothbrush with replaceable brush head
KR101972892B1 (ko) * 2018-03-12 2019-04-26 진성이엔씨 주식회사 평판패널 청소장치
US11060589B2 (en) * 2019-10-30 2021-07-13 Deere & Company Work vehicle reduction drive assemblies containing high contact ratio, configurable gearbox reductions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290262A (ja) * 1985-06-18 1986-12-20 Kikai Shinko Kyokai 非円形歯車を用いた遊星差動歯車装置
JPS6292341U (ja) * 1986-11-20 1987-06-12
JP3560286B2 (ja) 2001-03-16 2004-09-02 西研グラフィックス株式会社 アプセッティング鍛造プレス装置
JP2009138928A (ja) * 2007-11-15 2009-06-25 Asmo Co Ltd ギヤードモータ及びこれを備えた画像形成装置
JP2010060095A (ja) * 2008-09-05 2010-03-18 Hiroshi Mizuno 遊星歯車減速装置
JP2011043224A (ja) * 2009-08-24 2011-03-03 Ricoh Co Ltd 回転伝達装置及びこれを備えた画像形成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211146A (ja) * 1984-04-04 1985-10-23 Ebara Corp 歯車減速装置
CN1109567A (zh) * 1994-03-30 1995-10-04 肖有义 齿轮式无级变速器
KR100304140B1 (ko) * 1999-05-20 2001-09-24 배명순 감속장치
JP4365070B2 (ja) * 2002-06-20 2009-11-18 本田技研工業株式会社 遊星歯車減速機
DE10261588A1 (de) * 2002-12-24 2004-07-15 Lothar Strach Selbsthemmendes Zahnrad-Kreisschub-Getriebe mit maximalem Überdeckungsgrad
DE10359575A1 (de) * 2003-12-18 2005-07-28 Robert Bosch Gmbh Getriebe
JP4227157B2 (ja) * 2006-08-02 2009-02-18 住友重機械工業株式会社 単純遊星歯車装置の製造方法及び単純遊星歯車装置のシリーズ
CN102022490A (zh) * 2009-09-22 2011-04-20 李睿 无压力摩擦传动的无级变速机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290262A (ja) * 1985-06-18 1986-12-20 Kikai Shinko Kyokai 非円形歯車を用いた遊星差動歯車装置
JPS6292341U (ja) * 1986-11-20 1987-06-12
JP3560286B2 (ja) 2001-03-16 2004-09-02 西研グラフィックス株式会社 アプセッティング鍛造プレス装置
JP2009138928A (ja) * 2007-11-15 2009-06-25 Asmo Co Ltd ギヤードモータ及びこれを備えた画像形成装置
JP2010060095A (ja) * 2008-09-05 2010-03-18 Hiroshi Mizuno 遊星歯車減速装置
JP2011043224A (ja) * 2009-08-24 2011-03-03 Ricoh Co Ltd 回転伝達装置及びこれを備えた画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2818758A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016948A1 (ja) * 2014-07-29 2016-02-04 日鍛バルブ株式会社 ギヤボックス
JPWO2016016948A1 (ja) * 2014-07-29 2017-04-27 日鍛バルブ株式会社 ギヤボックス
WO2016037271A1 (en) * 2014-09-10 2016-03-17 Stocco Leo Hybrid orbitless gearbox

Also Published As

Publication number Publication date
CN103477118A (zh) 2013-12-25
JPWO2013125023A1 (ja) 2015-07-30
JP5840614B2 (ja) 2016-01-06
EP2818758A4 (en) 2016-08-03
EP2818758A1 (en) 2014-12-31
US8900091B2 (en) 2014-12-02
US20140031165A1 (en) 2014-01-30
KR20140128858A (ko) 2014-11-06

Similar Documents

Publication Publication Date Title
JP5840614B2 (ja) 遊星歯車減速機
KR101408203B1 (ko) 유성기어 방식의 rv감속기
WO2012029756A1 (ja) 多段減速機
JP4997574B2 (ja) 減速装置
WO2010047189A1 (ja) 歯車伝動装置
JP2004019900A (ja) 遊星歯車減速機
JP2013142459A (ja) ハイポサイクロイド装置
TWI608186B (zh) 用於輪體的傳動裝置及動力輔助輪組
JP2020524768A (ja) 中空型ハイポサイクロイド遊星減速機
JP2013002601A (ja) ウォームギア減速機構の減速比を備えるエピサイクリック歯車列の変速装置
JP3565279B2 (ja) 内接噛合遊星歯車構造
US8303450B2 (en) Eccentric dual stepping gear roller bearing system
TWI428520B (zh) 行星齒輪傳動機構
CN114542684A (zh) 差动装置
JP6240330B2 (ja) ギヤボックス
CN107701667B (zh) 一种复合减速器
WO2021214541A1 (zh) 传动机构
JP2010196860A (ja) 減速装置
WO2016154925A1 (zh) 用于窗帘及门帘驱动的减速器
RU2345257C1 (ru) Планетарная зубчатая передача
JP2019078343A (ja) 内接式遊星歯車機構を組み合わせた回転伝達装置
TW202018209A (zh) 具動力源之減速裝置
KR20130026058A (ko) 감속기
JP2014052063A (ja) 減速機及びこれを備えたモータ回転力伝達装置
CN211231451U (zh) 一种大速比轮系输出机构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012531150

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985175

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012869274

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012869274

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137025108

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE