WO2013123808A1 - 驱动电路、移位寄存器、阵列基板栅极驱动器及显示装置 - Google Patents

驱动电路、移位寄存器、阵列基板栅极驱动器及显示装置 Download PDF

Info

Publication number
WO2013123808A1
WO2013123808A1 PCT/CN2012/087093 CN2012087093W WO2013123808A1 WO 2013123808 A1 WO2013123808 A1 WO 2013123808A1 CN 2012087093 W CN2012087093 W CN 2012087093W WO 2013123808 A1 WO2013123808 A1 WO 2013123808A1
Authority
WO
WIPO (PCT)
Prior art keywords
pull
thin film
signal
film transistor
driving circuit
Prior art date
Application number
PCT/CN2012/087093
Other languages
English (en)
French (fr)
Inventor
崔文海
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Publication of WO2013123808A1 publication Critical patent/WO2013123808A1/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit

Definitions

  • the present invention relates to the field of display, and more particularly to a drive circuit, a shift register, an array substrate gate driver, and a display device. Background technique
  • a TFT Thin Film FET
  • Go A gate driver on Array
  • the circuit structure diagram of the Nth stage driving circuit (N>2) of the prior art shift register includes a first thin film transistor M1, a second thin film transistor M2, a third thin film transistor M3, and a fourth Thin film transistor M4 and capacitor C1, where:
  • the source and the gate of the first thin film transistor M1 are both connected to the signal output terminal N-1 of the upper driving circuit (N-1th stage) of the driving circuit of the current stage, and the drains are respectively connected to the gate of the second thin film transistor M2. a first end of the capacitor C1 and a drain of the third thin film transistor M3 are connected;
  • the source of the second thin film transistor M2 is connected to the output end of the CLK clock signal, the gate is connected to the first end of the capacitor C1, and the drain is connected to the source of the signal output terminal N and the fourth thin film transistor M4;
  • the source of the third thin film transistor M3 is connected to the first end of the capacitor C1, and the gate receives the feedback signal of the signal output terminal N+1 of the lower stage driving circuit (N+1th stage) of the driving circuit of the current stage, and the source is grounded;
  • the source of the fourth thin film transistor M4 is connected to the signal output terminal N and the second end of the capacitor C1, and the gate receives the feedback signal of the signal output terminal N+1 of the lower stage driving circuit of the driving circuit of the current stage, and the drain is grounded.
  • the output signal of the signal output terminal N-1 of the upper stage drive circuit is at a high level, and the CLK signal is low.
  • Level the output signal of the signal output terminal N+1 of the lower stage driving circuit is at a low level, at which time the first thin film transistor M1 and the second thin film transistor M2 are turned on, and the third thin film transistor M3 and the fourth thin film transistor M4 are turned off.
  • the output signal Pu of the first thin film transistor M1 is at a high level, and the capacitor C1 is charged under the driving of Pu;
  • the output signal of the signal output terminal N-1 of the upper driving circuit is a low level
  • the CLK signal is a high level
  • the signal output terminal N+1 of the lower driving circuit The output signal is low, at which time the first thin film transistor M1, the third thin film transistor M3 and the fourth thin film transistor M4 are turned off, the second thin film transistor M2 is turned on, and a high level signal is output at the signal output terminal N;
  • the output signal of the signal output terminal N-1 of the upper stage drive circuit is low level, and the CLK signal is low.
  • Level the output signal of the signal output terminal N+1 of the lower stage driving circuit is at a high level, at this time, the third thin film transistor M3 and the fourth thin film transistor M4 are turned on, and the first thin film transistor M1 and the second thin film transistor M2 are turned off; After the third thin film transistor M3 is turned on, the capacitor C1 is grounded and discharged, and the fourth thin film transistor M4 is turned on to ground the output terminal N and discharge.
  • the capacitor C1 Since the discharge time of the capacitor C1 is only the N+1th cycle, the capacitor C1 cannot be discharged subsequently, and since the period of one cycle is short, the power of the capacitor C1 cannot be ensured, so the capacitor C1 is The subsequent period may also generate a driving voltage to the second thin film transistor M2, so that the second thin film transistor M2 is turned on, so that the signal output terminal of the second thin film transistor M2 is at a high level when the CLK signal is at a high level, but this The time period is the non-working period of the driving circuit of the stage. Therefore, the output signal of the second thin film transistor M2 will interfere with the display of the entire picture, affecting the picture quality. Summary of the invention
  • Embodiments of the present invention provide a driving circuit capable of discharging a capacitor and an output terminal in a non-working area, thereby ensuring that a signal output by the driving circuit in a non-working area is zero, and the entire screen is not displayed. Interference, improve the quality of the picture display.
  • the driving circuit includes: a capacitor, receiving a trigger signal, charging under the control of the trigger signal to provide a first driving control voltage to the first pull-up unit; and a first pull-up unit receiving the first a driving control voltage, and is connected to the first clock signal output end, performing a switching operation under the control of the first driving control voltage, thereby controlling the output of the first clock signal from the output end, the output end of the first pull-up unit a signal output end of the driving circuit; a first pull-down control unit connected to the trigger signal input end of the trigger signal to receive the trigger signal, and connected to the first clock signal output end and the second clock signal output end In the trigger signal, the first clock signal And providing a periodic first pull-down control signal to the first pull-down unit under control of the second clock signal to control the first pull-down unit to periodically discharge the capacitor; the first pull-down unit, The first pull-down control unit is connected to discharge the capacitor under the control of the first pull-down control signal; the second pull-down control unit is connected to the first clock signal output end
  • the driving circuit further includes: a third pull-down unit connected to the reset signal input end to receive the reset signal, and performing a switching operation under the control of the reset signal, thereby controlling the first pull-up The output of the unit is discharged.
  • the driving circuit further includes: a second pull-up unit connected between the trigger signal input end and the first end of the capacitor, receiving the trigger signal, and in the triggering The signal is turned on under control to charge the capacitor.
  • the first pull-down control unit includes: a first switch unit connected to the second clock signal output, turned on under the control of the second clock signal, providing a second drive Controlling a voltage such that the first pull-down unit is turned on under the control of the second driving control voltage; and a second switching unit connected to the first clock signal output end, at the first clock signal Controlling the conduction to control the grounding of the output end of the first switching unit; the third switching unit is connected to the trigger signal input end, and is turned on under the control of the trigger signal to control the first switch The output of the unit is grounded.
  • the second pull-down control unit includes: a fourth switch unit connected to the second clock signal output, turned on under the control of the second clock signal, and providing a third drive control a voltage, such that the second pull-down unit is turned on under the control of the third driving control voltage; a fifth switching unit connected to the first clock signal output, under the control of the first clock signal Turning on to control the output end of the fourth switching unit to be grounded.
  • the first pull-up unit includes a first thin film transistor
  • the second pull-up unit includes a second thin film transistor
  • a drain and a gate of the second thin film transistor are both coupled to the trigger
  • the signal input end is connected, the source is connected to the first end of the capacitor; the drain of the first thin film transistor is connected to the first clock signal output end, and the gate is connected to the first end of the capacitor to receive
  • the first driving control voltage is connected to a signal output end of the driving circuit.
  • the first switching unit includes a third thin film transistor
  • the second switch The unit includes a fourth crystal thin film transistor
  • the third switching unit includes a fifth thin film transistor
  • the first pull-down unit includes a sixth thin film transistor
  • the drain and the gate of the third thin film transistor are both the second clock
  • the signal output ends are connected, and the source is respectively connected to the drain of the fourth thin film transistor, the drain of the fifth thin film transistor, and the gate of the sixth thin film transistor
  • the gate of the fourth thin film transistor and the first The clock signal output end is connected, the drain is connected to the source of the third thin film transistor, and the source is grounded
  • the gate of the fifth thin film transistor is connected to the trigger signal input end, the drain and the a source of the third thin film transistor is connected, a source is grounded
  • a gate of the sixth thin film transistor is connected to a source of the third thin film transistor, and receives a second driving control voltage, a drain and the capacitor The first end is connected and the source is grounded.
  • the fourth switching unit includes a seventh thin film transistor
  • the fifth switching unit includes an eighth thin film transistor
  • the second pull-down unit includes a ninth thin film transistor; a drain and a gate of the seventh thin film transistor a pole is connected to the output end of the second clock signal, and a source is respectively connected to a drain of the eighth thin film transistor and a gate of the ninth thin film transistor; a drain of the eighth thin film transistor and a seventh thin film transistor The source is connected, the gate is connected to the first clock signal output, and the source is grounded; the drain of the ninth thin film transistor is connected to the source of the first thin film transistor, and the gate is The source of the seventh thin film transistor is connected and receives a third driving control voltage, and the source is grounded.
  • the third pull-down unit includes a tenth thin film transistor, and a drain of the tenth thin film transistor is connected to a source of the first thin film transistor, and a gate and the reset signal are input. The terminals are connected and the source is grounded.
  • a shift register comprising the M-level driving circuit, wherein the N-th driving circuit receives the output signal of the N-1th driving circuit as a trigger signal and receives the N+1th
  • the output signal of the stage driving circuit is used as a reset signal
  • the Nth stage driving circuit also supplies its output signal to the N-1th stage driving circuit as a reset signal of the N-1th stage driving circuit and supplies the output signal thereof to the
  • the N+1 stage driving circuit is used as a trigger signal of the (N+1)th driving circuit, where M>N>2.
  • the first stage driving circuit receives the shift register trigger signal as a trigger signal and receives the output signal of the second stage driving circuit as a reset signal, and the first stage driving circuit also supplies its output signal to the second stage driving
  • the circuit serves as a trigger signal of the second-stage driving signal;
  • the M-th driving circuit receives the output signal of the M-1th driving circuit as a trigger signal, and the M-th driving circuit also supplies the output signal to the M-1th stage
  • the drive circuit is used as the M-1th stage drive circuit Reset signal.
  • an array substrate gate driver is also provided, including the shift register.
  • a display device comprising the array substrate gate driver.
  • the first pull-down unit periodically discharges the capacitance in each stage of the driving circuit under the control of the first pull-down control unit, and the second pull-down unit is cycled under the control of the second pull-down control unit.
  • the discharge of the output of each stage of the drive circuit is ensured, so that the power of the capacitors in each stage of the drive circuit can be cleaned, and the output of each stage of the drive circuit can be grounded, so that each stage of the drive circuit is not
  • the working area does not output any signal, and it will not interfere with the display of the entire screen, improving the display quality of the screen.
  • FIG. 1 is a specific circuit diagram of an Nth stage driving circuit of a shift register in the prior art
  • FIG. 2A is a schematic structural view of a driving circuit in a first embodiment of the present invention
  • FIG. 2B is a schematic structural view of a driving circuit according to a second embodiment of the present invention.
  • FIG. 2C is a schematic structural view of a driving circuit in a third embodiment of the present invention.
  • 2D is a schematic structural view of a driving circuit in a fourth embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first pull-down control unit and a second pull-down control unit of a driving circuit according to a fourth embodiment of the present invention
  • FIG. 4 is a specific circuit diagram of a driving circuit in an embodiment of the present invention.
  • FIG. 5 is a timing diagram of signals of a driving circuit in an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a driving circuit capable of periodically discharging a capacitor and an output terminal in a non-working area, thereby ensuring that a signal output by the driving circuit in a non-working area is zero, and the entire screen is not displayed. Generates interference and improves the quality of the picture display.
  • the driving circuit comprises: a capacitor, receiving a trigger signal, charging under the control of the trigger signal to provide a first driving control voltage to the first pull-up unit; and a first pull-up unit connected to the first clock signal output terminal for Performing a switching operation under the control of the first driving control voltage, thereby controlling the output of the first clock signal from the output end, and the output end of the first pull-up unit is a signal output end of the driving circuit; the first pull-down control unit, The trigger signal input end of the trigger signal, the first clock signal output end and the second clock signal output end are connected, and are provided to the first pull-down unit under the control of the trigger signal, the first clock signal and the second clock signal a first pull-down control signal periodically to control the first pull-down unit to periodically discharge the capacitor; a first pull-down unit connected to the first pull-down control unit, in the first pull-down control signal The capacitor is discharged under control; the second pull-down control unit is connected to the first clock signal output end and the second clock signal output end, a second pull
  • the drive circuit includes:
  • the capacitor 21 receives a trigger signal and is charged under the control of the trigger signal to provide a first driving control voltage to the first pull-up unit 22;
  • the first pull-up unit 22 is connected to the first clock signal output end for performing a switching operation under the control of the first driving control voltage, thereby controlling a first clock signal to be output from the signal output end;
  • the control unit 31 is connected to the trigger signal input end of the trigger signal, the first clock signal output end and the second clock signal output end, under the control of the trigger signal, the first clock signal and the second clock signal.
  • the first pull-down unit 23 provides a periodic first pull-down control signal to control the first pull-down unit 23 to periodically discharge the capacitor 21;
  • the first pull-down unit 23 is connected to the first pull-down control unit 31, and discharges the capacitor 21 under the control of the first pull-down control signal;
  • the second pull-down control unit 32 is connected to the first clock signal output end and the second clock signal output end, and provides a second periodic pulldown to the second pull-down unit 24 under the control of the first clock signal and the second clock signal. control signal;
  • the second pull-down unit 24 is connected to the second pull-down control unit 32, and periodically discharges the output end of the first pull-up unit 22 under the control of the second pull-down control signal.
  • the phases of the first clock signal and the second clock signal are opposite.
  • Another pull-down unit may be added on the basis of the driving circuit of the first embodiment of the present invention shown in FIG. 2A to further discharge the signal output end.
  • the driving circuit of the second embodiment of the present invention is further provided. Including the ⁇ three pull-down unit 25, where:
  • a third pull-down unit 25 connected to the signal output end and the reset signal input end, receiving a reset signal (hereinafter referred to as N+1 signal), performing a switching operation under the control of the reset signal, thereby controlling the first
  • N+1 signal a reset signal
  • a pull-up unit may be added to the driving circuit of the first embodiment of the present invention shown in FIG. 2A and/or the driving circuit of the second embodiment of the present invention shown in FIG. 2B to control the capacitance 21 One end is connected to the trigger signal input.
  • the driving circuit of the third embodiment of the present invention adds a second pull-up unit 26 to the driving circuit of the first embodiment of the present invention shown in Fig. 2A.
  • the driving circuit of the fourth embodiment of the present invention adds a second pull-up unit 26 to the driving circuit of the second embodiment of the present invention shown in Fig. 2B.
  • a second pull-up unit 26 is connected between the trigger signal input terminal N-1 and the first end of the capacitor 21, receives the trigger signal, and is turned on under the control of the trigger signal;
  • the capacitor 21 is charged when the second pull-up unit 26 is turned on.
  • the structures of the first pull-down control unit 31 and the second pull-down control unit 32 may be as shown in FIG. 3.
  • the first pull-down control unit 31 may include:
  • a first switching unit 311 connected to the second clock signal output terminal, turned on under the control of the second clock signal, and providing a second driving control voltage, so that the first pull-down unit 23 is in the second driving control Conducted under the control of voltage;
  • the second switching unit 312 is connected to the first clock signal output end and is turned on under the control of the first clock signal to control the output end of the first switching unit 311 to be grounded;
  • the third switching unit 313 is connected to the trigger signal input terminal N-1, and is turned on under the trigger signal control to control the output end of the first switching unit 311 to be grounded.
  • the second pull-down control unit 32 may include:
  • the fourth switching unit 321 is connected to the second clock signal output end and is turned on under the control of the second clock signal to provide a third driving control voltage, so that the second pull-down unit 24 is at the third driving control voltage Conducted under the control;
  • a fifth switching unit 322 connected to the first clock signal output end, in the first clock signal The number is controlled to be turned on to control the output end of the fourth switching unit 321 to be grounded.
  • the structure of the switching unit 322, the first pull-down unit 23, the second pull-down unit 24, and the third pull-down unit 25 may be a field effect transistor or a triode, or may be a combination of a field effect transistor and a triode; however, it is not limited to the foregoing
  • the field effect transistor, the triode or a combination of the two may also be other components capable of functioning as a switch.
  • the structures of the first pull-down unit 23, the second pull-down unit 24, and the third pull-down unit 25 are all examples of thin film transistors, as shown in FIG.
  • the first pull-up unit 22 includes a first thin film transistor M1
  • the second pull-up unit 26 includes a second thin film transistor M2
  • the first switching unit 311 includes a third thin film transistor M3
  • the second switching unit 312 includes The fourth crystal thin film tube M4,
  • the third switching unit 313 includes a fifth thin film transistor M5
  • the first pull-down unit 23 includes a sixth thin film transistor M6,
  • the fourth switching unit 321 includes a seventh thin film transistor M7
  • a fifth switching unit 322 includes an eighth thin film transistor M8,
  • the second pull-down unit 24 includes a ninth thin film transistor M9
  • the third pull-down unit 25 includes a tenth thin film transistor M10
  • the trigger signal input terminal is N1
  • the reset signal input terminal is N+l
  • the driving circuit The signal output terminal is N;
  • the first driving control voltage is Pu
  • the second driving control voltage is P0;
  • the first clock signal is CLK, and the second clock signal is CLKB, where:
  • the drain and the gate of the second thin film transistor M2 are both connected to the trigger signal input terminal N-1, and the source is connected to the first end of the capacitor 21;
  • the drain of the first thin film transistor M1 is connected to the first clock signal output terminal, the gate is connected to the first end of the capacitor 21 to receive the first driving control voltage, and the source is connected to the signal output end.
  • the drain and the gate of the third thin film transistor M3 are both connected to the second clock signal output terminal, and the source is respectively connected to the drain of the fourth thin film transistor M4, the drain of the fifth thin film transistor M5, and the sixth thin film transistor.
  • the gates of M6 are connected;
  • the gate of the fourth thin film transistor M4 is connected to the output end of the first clock signal, the drain is connected to the source of the third thin film transistor M3, and the source is grounded;
  • a gate of the fifth thin film transistor M5 is connected to the input end of the trigger signal, a drain is connected to a source of the third thin film transistor M3, and a source is grounded; a gate of the sixth thin film transistor M6 is connected to a source of the third thin film transistor M3 to receive a second driving control voltage, a drain is connected to a first end of the capacitor 21, and a source is grounded;
  • the drain and the gate of the seven thin film transistor M7 are both connected to the output end of the second clock signal, and the source is respectively connected to the drain of the eighth thin film transistor M8 and the gate of the thin film transistor M9;
  • the drain of the transistor M8 is connected to the source of the seventh thin film transistor M7, the gate is connected to the output end of the first clock signal, and the source is grounded;
  • a drain of the ninth thin film transistor M9 is connected to the signal output end (ie, a source of the first thin film transistor M1), and a gate is connected to a source of the seventh thin film transistor M7 to receive a third Drive control voltage, source grounded;
  • the drain of the tenth thin film transistor M10 is connected to the signal output terminal (i.e., the source of the first thin film transistor M1), the gate is connected to the signal output terminal of the lower stage driving circuit, and the source is grounded.
  • a first end of the capacitor C1 is connected to a source of the second thin film transistor M2 and a gate of the first thin film transistor M1, and a second end of the capacitor C1 is opposite to a source of the first thin film transistor
  • the drain of the ninth thin film transistor is connected to the drain of the tenth thin film transistor, that is, to the signal output terminal of the driving circuit of the present stage.
  • the trigger signal input terminal N-1 is high level, CLK is low level, and CLKB is high level.
  • Ml, M2, M3, M5, M7, M9 are turned on, M4, M8, M6.
  • M10 is cut off, since Pu is at a high level, the CI is charged;
  • the trigger signal input terminal N-1 is low level
  • CLK is high level
  • CLKB low level
  • M2 is off
  • C1 provides driving control voltage for M1
  • M4, M8, Ml are turned on, M7, M3, M5, M10, M9 and M6 are cut off, and the output of the source of M1 is high level, that is, the output signal of the signal output terminal N of the driving circuit is high level;
  • the trigger signal input terminal N-1 is low level
  • the reset signal input terminal N+1 is high level
  • CLK is ⁇ level
  • CLKB is high level
  • M6, M9, M10, M3 And M7 is turned on
  • Ml, M2, M5, M4, M8 are turned off
  • the M9 and M10 are turned on to make the source of M1 ground to discharge the output end of Ml
  • the first end of the capacitor C1 is grounded through M6 conduction.
  • the trigger signal input terminal N-1 is at a low level
  • the reset signal input terminal N+1 is at a low level.
  • Level, CLK is high
  • CLKB is low
  • M4 and M8 are on
  • Ml, M2, M3, M5, M6, M7, M9 and M10 are off.
  • the trigger signal input terminal N-1 is low level
  • the reset signal input terminal N+1 is low level
  • CLKB is high level
  • CLK is low level
  • M3, M6, M7 and M9 are turned on.
  • Ml, M2, M10, M5, M4 and M8 are cut off, the source of M1 is grounded through M9 conduction, so that the source of M1 (ie, the signal output end of the driving circuit) is discharged, and the capacitor is turned on by M6.
  • the first end of C1 is grounded to discharge capacitor C1.
  • the second time period After the first time period, the second time period, the third time period, the fourth time period, and the fifth time period appear sequentially.
  • the fourth time period and the fifth time period are repeated until the first time period appears again.
  • the M-level driving circuits may be cascade-connected to constitute a shift register, M > 3.
  • the trigger signal input end of the Nth stage driving circuit is connected with the output signal end of the N-1th stage driving circuit to receive the output signal of the N-1th stage driving circuit as a trigger signal
  • the reset signal input of the Nth stage driving circuit The terminal is connected to the output signal terminal of the N+1th driving circuit to receive the output signal of the N+1th driving circuit as a reset signal.
  • the signal input end of the Nth stage driving circuit is connected to the reset signal input end of the N-1th stage driving circuit to provide its output signal as a reset signal of the N-1th stage driving circuit and output the signal thereof, and also
  • the trigger signal input terminal of the N+1th stage driving circuit is connected to provide its output signal as a trigger signal of the N+1th stage driving circuit, where M>N>2.
  • the driving circuit shown in Figs. 2A - 2D, Fig. 3 and Fig. 4 can be used as the Nth stage driving circuit of the shift register.
  • the trigger signal input terminal N-1 may be the first
  • the signal output end of the N-1 stage driving circuit, the reset signal input terminal N+1 may be the signal output end of the N+1th stage driving signal.
  • the capacitor 21 receives an output signal of a signal output end of the upper stage (N-1th stage) driving circuit as a trigger signal (hereinafter referred to as an N-1 signal), and performs charging under the control of the trigger signal.
  • a trigger signal hereinafter referred to as an N-1 signal
  • the first pull-down control unit 31 is connected to the signal output end of the upper driving circuit, the first clock signal output end and the second clock signal output end, and the output signal, the first clock signal and the second clock signal of the upper stage driving circuit Providing a periodic first pull-down control signal to the first pull-down unit 23 to control the first pull-down unit 23 to periodically discharge the capacitor 21;
  • the third pull-down unit 25 is connected to the signal output end of the driving circuit of the first stage and the signal output end of the lower driving circuit, and receives the output signal of the signal output end of the lower driving circuit as a reset signal (hereinafter referred to as N+1 signal).
  • the switching operation is performed under the control of the reset signal, thereby controlling the discharge of the output terminal of the first pull-up unit 22 (i.e., the signal output terminal of the driving circuit of the present stage).
  • the second pull-up unit 26 is connected between the signal output end of the upper-level driving circuit and the first end of the capacitor 21, receives the output signal of the signal output end of the upper-level driving circuit as a trigger signal, and controls the trigger signal Turn on.
  • the trigger signal input end ie, the signal output end of the upper stage drive circuit
  • the reset signal input end ie, the signal output end of the lower stage drive circuit
  • the signal output end of the drive circuit is N
  • the first driving control voltage Pu
  • the second driving control voltage is P0
  • the first clock signal is CLK
  • the second clock signal is CLKB
  • the drain and the gate of the second thin film transistor M2 are both connected to the signal output end of the upper driving circuit, and the source is connected to the first end of the capacitor 21;
  • the gate of the fifth thin film transistor M5 is connected to the signal output end of the upper driving circuit, the drain is connected to the source of the third thin film transistor M3, and the source is grounded;
  • the drain of the tenth thin film transistor M10 is connected to the signal output end of the driving circuit of the first stage (ie, the source of the first thin film transistor M1), and the gate is connected to the signal output end of the lower driving circuit, the source Extremely grounded.
  • the first stage driving circuit receives the shift register trigger signal as a trigger signal and receives an output signal of the second stage driving circuit as a reset signal, and the first stage driving circuit The output signal is also supplied to the second stage drive circuit as a trigger signal for the second stage drive signal.
  • the Mth stage driving circuit receives the output signal of the M-1th stage driving circuit as a trigger signal, and the Mth stage driving circuit also supplies its output signal to the M-1th stage driving circuit as the M-1th stage driving circuit. Reset signal.
  • the output signal terminal N-1 of the N-1th drive circuit is high level, CLK is low level, and CLKB is high power.
  • Ml, M2, M3, M5, M7, M9 are turned on, M4, M8, M6, M10 are turned off, and since Pu is at a high level, the CI is charged;
  • the N-1th driving circuit When the Nth cycle arrives (the duty cycle of the Nth stage driving circuit), the N-1th driving circuit
  • the output signal terminal Nl is low level
  • CLK high level
  • CLKB low level
  • M2 is off
  • C1 provides driving control voltage for M1
  • M4, M8, Ml are turned on, M7, M3, M5, M10 M9 and M6 are cut off, and the output of the source of M1 is high, that is, the output signal of the signal output terminal N of the Nth stage (the current stage) is high level, and the output signal is the trigger signal of the lower stage driving circuit.
  • the output signal terminal N-1 of the N-1th stage driving circuit is a low level, and the output of the (N+1)th stage driving circuit
  • Signal terminal N+1 is high level
  • CLK is ⁇ level
  • CLKB is high level
  • ⁇ 6, ⁇ 9, ⁇ 10, ⁇ 3 and ⁇ 7 are turned on
  • Ml, ⁇ 2, ⁇ 5, ⁇ 4, ⁇ 8 are cut off
  • pass ⁇ 9 and M10 are turned on to make the source of M1 be grounded to discharge the output end of M1, and the first end of the capacitor C1 is grounded through M6 conduction, thereby discharging the capacitor C1;
  • the output signal terminal N-1 of the N-1th stage driving circuit is at a low level.
  • the output signal terminal N+1 of the N+1th driving circuit is low level, CLK is high level, CLKB is low level, M4 and M8 are turned on, Ml, M2, M3, M5, M6, M7, M9 And M10 deadline.
  • the output signal terminal N-1 of the N-1th stage driving circuit is Low level
  • the output signal terminal N+1 of the N+1th driving circuit is low level
  • CLKB is high level
  • CLK is low level
  • M3, M6, M7 and M9 are turned on
  • Ml, M2, M10 M5, M4, and M8 are turned off
  • the source of M1 is grounded through M9 conduction, thereby discharging the source of M1 (ie, the signal output end of the driving circuit of the current stage), and the first of the capacitor C1 is turned on by M6.
  • the terminal is grounded to discharge the capacitor C1.
  • the output signal terminal of the Nth stage driving circuit is 4 ⁇ level. details as follows:
  • the N-1th stage drive circuit The output signal terminal N-1 is low level, the output signal terminal N+1 of the N+1th driving circuit is low level, CLK is high level, CLKB is low level, M4 and M8 are turned on, Ml, M2, M3, M5, M6, M7, M9 and M10 are cut off.
  • the N-1th stage The output signal terminal N-1 of the driving circuit is at a low level, and the output signal terminal N+1 of the N+1th driving circuit is at a low level, and CLKB is at a high level.
  • CLK is low, M3, M6, M7 and M9 are on, Ml, M2, M10, M5, M4 and
  • an array substrate gate driver is also provided, the array substrate gate driver comprising a shift register as described above.
  • a display device comprising the array substrate gate driver as described above.
  • the present invention has been described above by taking the field of liquid crystal display as an example, it should be understood that the present invention can be applied not only to a liquid crystal display device but also to other display devices including a pixel array and driven in a row or column manner, such as an OLED display device. .
  • the first pull-down unit periodically discharges the capacitance in each stage of the driving circuit under the control of the first pull-down control unit, and the second pull-down unit is cycled under the control of the second pull-down control unit.
  • the discharge of the signal output of each stage of the drive circuit is ensured, so that the power of the capacitors in each stage of the drive circuit can be cleaned, and the signal output end of each stage of the drive circuit can be grounded, so that each stage of the drive circuit is Its non-working area does not output any signal, it will not interfere with the display of the entire picture, and improve the picture display quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Shift Register Type Memory (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种驱动电路、移位寄存器、阵列基板栅极驱动电路及显示装置。所述驱动电路包括:电容(21),在触发信号的控制下进行充电以提供第一驱动控制电压(Pu);第一上拉单元(22),在第一驱动控制电压(Pu)的控制下控制第一时钟信号(CLK)输出;第一下拉单元(23),周期性的对电容(21)进行放电;第一下拉控制单元(31),在触发信号、第一时钟信号(CLK)和第二时钟信号(CLKB)的控制下控制第一下拉单元(23)对电容(21)进行周期性放电;第二下拉单元(24),周期性的对第一上拉单元(22)的输出端进行放电;第二下拉控制单元(32),在第一时钟信号(CLK)和第二时钟信号(CLKB)的控制下控制第二下拉单元(32)对第一上拉单元(22)的输出端进行放电。

Description

驱动电路、 移位寄存器、 阵列基板栅极驱动器及显示装置 技术领域
本发明涉及显示领域, 特別是一种驱动电路、 移位寄存器、 阵列基板栅 极驱动器及显示装置。 背景技术
目前采用 TFT ( Thin Film Transistor, 薄膜场效应晶体管)来设置 Go A ( Gate Driver on Array, 阵列基板栅极驱动器)电路; TFT的特性为门槛电压 受其栅源电压的影响, 占空比越高, 门槛电压上升越高, 电流驱动能力越弱。
如图 1所示, 为现有技术移位寄存器的第 N级驱动电路( N > 2 )的电路 结构图, 包括第一薄膜晶体管 Ml、 第二薄膜晶体管 M2、 第三薄膜晶体管 M3和第四薄膜晶体管 M4和电容 C1 , 其中:
第一薄膜晶体管 Ml 的源极和栅极均与本级驱动电路的上级驱动电路 (第 N-1级) 的信号输出端 N-1相连接, 漏极分別与第二薄膜晶体管 M2的 栅极、 电容 C1的第一端、 第三薄膜晶体管 M3的漏极相连接;
第二薄膜晶体管 M2的源极与 CLK时钟信号输出端相连接,栅极与电容 C1的第一端相连接, 漏极与信号输出端 N、 第四薄膜晶体管 M4的源极相连 接;
笫三薄膜晶体管 M3的源极与电容 C1的第一端连接,栅极接收本级驱动 电路的下级驱动电路(第 N+1级)的信号输出端 N+1的反馈信号,源极接地; 第四薄膜晶体管 M4的源极与信号输出端 N与电容 C1的第二端相连, 栅极接收本级驱动电路的下级驱动电路的信号输出端 N+1的反馈信号, 漏极 接地。
上述图 1的驱动电路的工作原理如下:
在第 N-1周期(本级驱动电路的上级驱动电路(第 N-1级 )的工作周期) 时, 上级驱动电路的信号输出端 N-1的输出信号为高电平, CLK信号为低电 平, 下级驱动电路的信号输出端 N+1的输出信号为低电平, 此时第一薄膜晶 体管 Ml和第二薄膜晶体管 M2导通,第三薄膜晶体管 M3和第四薄膜晶体管 M4截止, 第一薄膜晶体管 Ml的输出信号 Pu为高电平, 电容 C1在 Pu的驱 动下充电; 在第 N周期(本级驱动电路的工作周期)时, 上级驱动电路的信号输出 端 N-1的输出信号为低电平, CLK信号为高电平, 下级驱动电路的信号输出 端 N+1的输出信号为低电平, 此时第一薄膜晶体管 Ml、 第三薄膜晶体管 M3 和第四薄膜晶体管 M4截止, 笫二薄膜晶体管 M2导通, 并在信号输出端 N 输出高电平信号;
在第 N+1周期 (本级驱动电路的下级驱动电路(第 N+1级) 的工作周 期) 时, 上级驱动电路的信号输出端 N-1的输出信号为低电平, CLK信号为 低电平, 下级驱动电路的信号输出端 N+1的输出信号为高电平, 此时第三薄 膜晶体管 M3和第四薄膜晶体管 M4导通,第一薄膜晶体管 Ml和第二薄膜晶 体管 M2截止; 第三薄膜晶体管 M3导通后使得电容 C1接地并放电, 第四薄 膜晶体管 M4导通后使得输出端 N接地并放电。
现有技术的上述驱动电路虽然筒单, 但是存在以下技术缺陷:
由于对电容 C1进行放电的时间仅为第 N+1周期,后续则不能对电容 C1 进行放电, 并且由于一个周期的时间较短, 因此并不能确保电容 C1的电量放 干净, 因此, 电容 C1在后续的周期也可能会对第二薄膜晶体管 M2产生驱动 电压, 使得第二薄膜晶体管 M2导通, 从而当 CLK信号为高电平时使得第二 薄膜晶体管 M2的信号输出端为高电平, 但是这个时间段为本级驱动电路的 非工作时间段, 因此, 第二薄膜晶体管 M2的输出信号将会对整个画面的显 示产生干扰, 影响画面质量。 发明内容
本发明实施例提供一种驱动电路, 以在非工作区域时能够对电容和输出 端进行放电, 从而确保所述驱动电路在非工作区域时输出的信号为零, 不会 对整个画面的显示产生干扰, 提高画面显示质量。
所述驱动电路, 包括: 一电容, 接收一触发信号, 在所述触发信号的控 制下进行充电, 以提供第一驱动控制电压至第一上拉单元; 第一上拉单元, 接收所述第一驱动控制电压, 并且与第一时钟信号输出端相连接, 在所述第 一驱动控制电压的控制下进行开关操作, 从而控制第一时钟信号从输出端输 出, 第一上拉单元的输出端作为驱动电路的信号输出端; 第一下拉控制单元, 与所述触发信号的触发信号输入端相连接以接收所述触发信号, 与第一时钟 信号输出端和第二时钟信号输出端相连接, 在所述触发信号、 第一时钟信号 和第二时钟信号的控制下向第一下拉单元提供周期性的第一下拉控制信号, 以控制所述第一下拉单元对所述电容进行周期性放电; 第一下拉单元, 与第 一下拉控制单元相连, 在第一下拉控制信号的控制下对所述电容进行放电; 笫二下拉控制单元, 与笫一时钟信号输出端和第二时钟信号输出端相连接, 在第一时钟信号和第二时钟信号的控制下向第二下拉单元提供周期性的第二 下拉控制信号; 第二下拉单元, 与第二下拉控制单元相连, 在第二下拉控制 信号的控制下周期性的对所述第一上拉单元的输出端进行放电。
在一个具体示例中, 所述驱动电路还包括: 第三下拉单元, 与复位信号 输入端相连接以接收复位信号, 并且在该复位信号的控制下进行开关操作, 从而控制所述第一上拉单元的输出端放电。
在另一具体示例中, 所述驱动电路还包括: 第二上拉单元, 连接在所述 触发信号输入端和所述电容的第一端之间, 接收所述触发信号, 并在所述触 发信号的控制下导通, 以对所述电容进行充电。
在另一具体示例中, 所述第一下拉控制单元包括: 第一开关单元, 与所 述第二时钟信号输出端相连接, 在所述第二时钟信号控制下导通, 提供第二 驱动控制电压, 以使所述第一下拉单元在所述第二驱动控制电压的控制下导 通; 第二开关单元, 与所述第一时钟信号输出端相连接, 在所述第一时钟信 号控制下导通, 以控制所述第一开关单元的输出端接地; 第三开关单元, 与 所述触发信号输入端相连接, 在所述触发信号控制下导通, 以控制所述第一 开关单元的输出端接地。
在另一具体示例中, 所述第二下拉控制单元包括: 第四开关单元, 与所 述第二时钟信号输出端相连接, 在所述第二时钟信号控制下导通, 提供第三 驱动控制电压, 以使所述第二下拉单元在所述第三驱动控制电压的控制下导 通; 第五开关单元, 与所述第一时钟信号输出端相连接, 在所述第一时钟信 号控制下导通, 以控制所述第四开关单元的输出端接地。
在另一具体示例中, 所述第一上拉单元包括第一薄膜晶体管, 所述第二 上拉单元包括第二薄膜晶体管; 所述第二薄膜晶体管的漏极和栅极均与所述 触发信号输入端相连, 源极与所述电容的第一端相连; 所述第一薄膜晶体管 的漏极与所述第一时钟信号输出端相连, 栅极与所述电容的第一端相连以接 收所述第一驱动控制电压, 源极与该驱动电路的信号输出端相连。
在另一具体示例中, 所述第一开关单元包括第三薄膜晶体管, 第二开关 单元包括第四晶体薄膜管, 第三开关单元包括第五薄膜晶体管, 所述第一下 拉单元包括第六薄膜晶体管; 所述第三薄膜晶体管的漏极和栅极均与所述第 二时钟信号输出端相连接, 源极分别与第四薄膜晶体管的漏极、 第五薄膜晶 体管的漏极以及第六薄膜晶体管的栅极相连接; 所述第四薄膜晶体管的栅极 与所述第一时钟信号输出端相连接, 漏极与所述第三薄膜晶体管的源极相连 接, 源极接地; 所述第五薄膜晶体管的栅极与所述触发信号输入端相连接, 漏极与所述第三薄膜晶体管的源极相连接, 源极接地; 所述第六薄膜晶体管 的栅极与所述第三薄膜晶体管的源极相连接, 并接收第二驱动控制电压, 漏 极与所述电容的第一端相连接, 源极接地。
在另一具体示例中, 所述第四开关单元包括第七薄膜晶体管, 第五开关 单元包括第八薄膜晶体管, 第二下拉单元包括第九薄膜晶体管; 所述第七薄 膜晶体管的漏极和柵极均与所述第二时钟信号输出端相连接, 源极分別与第 八薄膜晶体管的漏极、 第九薄膜晶体管的栅极相连接; 所述第八薄膜晶体管 的漏极与第七薄膜晶体管的源极相连接, 栅极与所述第一时钟信号输出端相 连接, 源极接地; 所述第九薄膜晶体管的漏极与所述第一薄膜晶体管的源极 相连接,栅极与所述第七薄膜晶体管的源极相连接并接收第三驱动控制电压, 源极接地。
在另一具体示例中, 所述第三下拉单元包括第十薄膜晶体管, 且所述第 十薄膜晶体管的漏极与所述第一薄膜晶体管的源极相连接, 栅极与所述复位 信号输入端相连接, 源极接地。
根据本发明实施例,还提供了一种移位寄存器,包括 M级所述驱动电路, 其中, 第 N级驱动电路接收第 N-1级驱动电路的输出信号作为触发信号并接 收第 N+1级驱动电路的输出信号作为复位信号,并且第 N级驱动电路还将其 输出信号提供给第 N-1级驱动电路以作为第 N-1级驱动电路的复位信号并将 其输出信号提供给第 N+1级驱动电路以作为第 N+1级驱动电路的触发信号, 其中 M〉N > 2。
在一个示例中, 第 1级驱动电路接收移位寄存器触发信号作为触发信号 并接收第 2级驱动电路的输出信号作为复位信号, 并且第 1级驱动电路还将 其输出信号提供给第 2级驱动电路以作为第 2级驱动信号的触发信号; 第 M 级驱动电路接收第 M-1级驱动电路的输出信号作为触发信号,并且第 M级驱 动电路还将其输出信号提供给第 M-1级驱动电路以作为第 M-1级驱动电路的 复位信号。
根据本发明实施例, 还提供了一种阵列基板栅极驱动器, 包括所述移位 寄存器。
根据本发明实施例, 还提供了一种显示装置, 包括所述阵列基板栅极驱 动器。
本发明实施例中, 第一下拉单元在第一下拉控制单元的控制下周期性的 对每级驱动电路中的电容进行放电, 以及第二下拉单元在第二下拉控制单元 的控制下周期性的对每级驱动电路的输出端进行放电, 从而能够确保将每级 驱动电路中电容的电量放干净, 也能确保每级驱动电路的输出端能够接地, 从而使得每级驱动电路在其非工作区域不输出任何信号, 不会对整个画面的 显示产生干扰, 提高画面显示质量。 附图说明
图 1为现有技术中移位寄存器的第 N级驱动电路的具体电路图; 图 2A为本发明第一实施例中驱动电路的结构示意图;
图 2B为本发明第二实施例中驱动电路的结构示意图;
图 2C为本发明第三实施例中驱动电路的结构示意图;
图 2D为本发明第四实施例中驱动电路的结构示意图;
图 3为本发明第四实施例中驱动电路的第一下拉控制单元和第二下拉控 制单元的结构示意图;
图 4为本发明实施例中驱动电路的具体电路图;
图 5为本发明实施例中驱动电路的信号时序图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种驱动电路, 其在非工作区域时能够对电容和输出 端进行周期性放电, 从而确保该驱动电路在非工作区域时输出的信号为零, 不会对整个画面的显示产生千扰, 提高画面显示质量。 该驱动电路包括: 一 电容, 接收一触发信号, 在所述触发信号的控制下进行充电以提供第一驱动 控制电压至第一上拉单元; 第一上拉单元, 与第一时钟信号输出端相连接, 用于在所述第一驱动控制电压的控制下进行开关操作, 从而控制第一时钟信 号从输出端输出, 第一上拉单元的输出端作为驱动电路的信号输出端; 第一 下拉控制单元, 与所述触发信号的触发信号输入端、 第一时钟信号输出端和 第二时钟信号输出端相连接, 在所述触发信号、 第一时钟信号和第二时钟信 号的控制下向第一下拉单元提供周期性的第一下拉控制信号, 以控制所述第 一下拉单元对所述电容进行周期性放电; 第一下拉单元, 与第一下拉控制单 元相连, 在第一下拉控制信号的控制下对所述电容进行放电; 第二下拉控制 单元, 与第一时钟信号输出端和第二时钟信号输出端相连接, 在第一时钟信 号和第二时钟信号的控制下向第二下拉单元提供周期性的第二下拉控制信 号; 第二下拉单元, 与第二下拉控制单元相连, 在第二下拉控制信号的控制 下周期性的对所述第一上拉单元的输出端进行放电。
下面结合附图对本发明提供的栅极驱动电路进行详细描述。
参见图 2A, 为本发明第一实施例中的驱动电路的结构示意图。所述驱动 电路包括:
电容 21, 接收一触发信号, 在所述触发信号的控制下进行充电, 以提供 第一驱动控制电压至第一上拉单元 22;
第一上拉单元 22, 与第一时钟信号输出端相连接, 用于在所述第一驱动 控制电压的控制下进行开关操作,从而控制笫一时钟信号从信号输出端输出; 第一下拉控制单元 31, 与所述触发信号的触发信号输入端、 第一时钟信 号输出端和第二时钟信号输出端相连接, 在所述触发信号、 第一时钟信号和 第二时钟信号的控制下向第一下拉单元 23提供周期性的第一下拉控制信号, 以控制所述第一下拉单元 23对所述电容 21进行周期性放电;
第一下拉单元 23 , 与第一下拉控制单元 31相连, 在第一下拉控信号的 控制下对所述电容 21进行放电;
第二下拉控制单元 32, 与第一时钟信号输出端和第二时钟信号输出端相 连接,在第一时钟信号和第二时钟信号的控制下向第二下拉单元 24提供周期 性的第二下拉控制信号;
第二下拉单元 24, 与第二下拉控制单元 32相连, 在第二下拉控制信号 的控制下周期性的对所述第一上拉单元 22的输出端进行放电。 在本发明实施例中, 第一时钟信号和第二时钟信号的相位相反。
可以在图 2A所示的本发明第一实施例的驱动电路的基础上增加另一下 拉单元, 以便进一步对信号输出端进行放电, 如图 2B所示, 本发明第二实施 例的驱动电路还包括笫三下拉单元 25, 其中:
第三下拉单元 25 , 与所述信号输出端和复位信号输入端连接, 接收复位 信号(后续称为 N+1 信号), 在所述复位信号的控制下进行开关操作, 从而 控制所述第一上拉单元 22的输出端放电。
此外,可以在上述图 2A所示的本发明第一实施例的驱动电路和 /或图 2B 所示的本发明第二实施例的驱动电路的基础上增加上拉单元, 以便控制电容 21的第一端与所述触发信号输入端的连接。 如图 2C所示, 本发明第三实施 例的驱动电路在图 2A所示的本发明第一实施例的驱动电路的基础上增加了 第二上拉单元 26。如图 2D所示, 本发明第四实施例的驱动电路在图 2B所示 的本发明第二实施例的驱动电路的基础上增加了第二上拉单元 26。
第二上拉单元 26, 连接在所述触发信号输入端 N-1与所述电容 21的第 一端之间, 接收所述触发信号, 并在所述触发信号的控制下导通;
所述电容 21 , 在所述第二上拉单元 26导通时进行充电。
在本发明实施例中, 所述第一下拉控制单元 31和第二下拉控制单元 32 的结构可如图 3所示。
在本发明实施例中, 第一下拉控制单元 31可以包括:
笫一开关单元 311, 与第二时钟信号输出端相连接, 在第二时钟信号控 制下导通, 提供第二驱动控制电压, 以使所述第一下拉单元 23在所述第二驱 动控制电压的控制下导通;
第二开关单元 312 , 与第一时钟信号输出端相连接, 在第一时钟信号控 制下导通, 以控制所述第一开关单元 311的输出端接地;
第三开关单元 313 , 与触发信号输入端 N-1相连接, 在所述触发信号控 制下导通, 以控制所述第一开关单元 311的输出端接地。
在本发明实施例中, 第二下拉控制单元 32可以包括:
第四开关单元 321, 与第二时钟信号输出端相连接, 在第二时钟信号控 制下导通, 提供第三驱动控制电压, 以使所述第二下拉单元 24在所述第三驱 动控制电压的控制下导通;
第五开关单元 322 , 与第一时钟信号输出端相连接, 在所述第一时钟信 号控制下导通, 以控制所述第四开关单元 321的输出端接地。
在本发明实施例的一个示例中, 第一上拉单元 22、 第二上拉单元 26、 第 一开关单元 311、 第二开关单元 312、 第三开关单元 313、 第四开关单元 321、 笫五开关单元 322、 第一下拉单元 23、 第二下拉单元 24和第三下拉单元 25 的结构均可为场效应晶体管或三极管, 或者还可以为场效应晶体管与三极管 的组合; 但是并不仅限于前述场效应晶体管、 三极管或者两者组合, 还可以 是其他能够起到开关作用的元件。 在本发明实施例中, 以第一上拉单元 22、 第二上拉单元 26、第一开关单元 311、第二开关单元 312、第三开关单元 313、 第四开关单元 321、 第五开关单元 322、 第一下拉单元 23、 第二下拉单元 24 和第三下拉单元 25的结构均为薄膜晶体管为例进行说明, 如图 4所示。
图 4中, 第一上拉单元 22包括第一薄膜晶体管 Ml , 所述第二上拉单元 26包括第二薄膜晶体管 M2, 第一开关单元 311包括第三薄膜晶体管 M3 , 第 二开关单元 312包括第四晶体薄膜管 M4,第三开关单元 313包括第五薄膜晶 体管 M5, 所述第一下拉单元 23包括第六薄膜晶体管 M6, 第四开关单元 321 包括第七薄膜晶体管 M7, 第五开关单元 322包括第八薄膜晶体管 M8, 第二 下拉单元 24包括第九薄膜晶体管 M9,第三下拉单元 25包括第十薄膜晶体管 M10 , 触发信号输入端为 N-l, 复位信号输入端为 N+l, 驱动电路的信号输 出端为 N; 第一驱动控制电压为 Pu, 第二驱动控制电压为 P0; 第一时钟信号 为 CLK, 第二时钟信号为 CLKB , 其中:
所述第二薄膜晶体管 M2的漏极和栅极均与所述触发信号输入端 N-1相 连, 源极与所述电容 21的第一端相连;
所述第一薄膜晶体管 Ml的漏极与第一时钟信号输出端相连, 栅极与所 述电容 21的第一端相连接以接收所述第一驱动控制电压,源极与信号输出端 相连。
所述第三薄膜晶体管 M3 的漏极和栅极均与第二时钟信号输出端相连 接, 源极分别与第四薄膜晶体管 M4的漏极、 第五薄膜晶体管 M5的漏极以 及第六薄膜晶体管 M6的栅极相连接;
所述第四薄膜晶体管 M4的栅极与第一时钟信号输出端相连接, 漏极与 所述第三薄膜晶体管 M3的源极相连接, 源极接地;
所述第五薄膜晶体管 M5的栅极与所述触发信号输入端相连接, 漏极与 所述第三薄膜晶体管 M3的源极相连接, 源极接地; 所述第六薄膜晶体管 M6的栅极与所述第三薄膜晶体管 M3的源极相连 接以接收第二驱动控制电压,漏极与所述电容 21的第一端相连接,源极接地; 第七薄膜晶体管 M7的漏极和栅极均与第二时钟信号输出端相连接, 源 极分别与第八薄膜晶体管 M8的漏极、 笫九薄膜晶体管 M9的栅极相连接; 所述第八薄膜晶体管 M8的漏极与第七薄膜晶体管 M7的源极相连接, 栅极与第一时钟信号输出端相连接 , 源极接地;
所述第九薄膜晶体管 M9的漏极与所述信号输出端 (即, 第一薄膜晶体 管 Ml的源极)相连接, 栅极与所述第七薄膜晶体管 M7的源极相连接以接 收第三驱动控制电压, 源极接地;
所述第十薄膜晶体管 M10的漏极与所述信号输出端(即, 第一薄膜晶体 管 Ml 的源极)相连接, 栅极与下级驱动电路的信号输出端相连接, 源极接 地。
所述电容 C1的第一端与所述第二薄膜晶体管 M2的源极和所述第一薄膜 晶体管 Ml的栅极相连接,而所述电容 C1的第二端与第一薄膜晶体管的源极 第九薄膜晶体管的漏极和第十薄膜晶体管的漏极相连接, 即, 与本级驱动电 路的信号输出端相连接。
结合图 5所示的信号时序图, 对如图 4所示的驱动电路工作原理进行详 细的描述:
在第一时段, 触发信号输入端 N-1为高电平、 CLK为低电平、 CLKB为 高电平, 此时 Ml、 M2、 M3、 M5、 M7、 M9导通, M4、 M8、 M6、 M10截 止, 由于 Pu为高电平, 所以对 CI进行充电;
在第二时段, 触发信号输入端 N-1为低电平、 CLK为高电平、 CLKB为 低电平, M2截止, C1为 Ml提供驱动控制电压, 此时 M4、 M8、 Ml导通, M7、 M3、 M5、 M10、 M9和 M6截止, 在 Ml的源极输出高电平, 即驱动电 路的信号输出端 N的输出信号为高电平;
在第三时段, 触发信号输入端 N-1为低电平、 复位信号输入端 N+1为高 电平、 CLK为氐电平、 CLKB为高电平, 此时 M6、 M9、 M10、 M3 和 M7 导通, Ml、 M2、 M5、 M4、 M8截止, 通过 M9和 M10导通使得 Ml的源极 接地从而对 Ml的输出端进行放电,通过 M6导通使得电容 C1的第一端接地, 从而对电容 C1进行放电;
在第四时段, 触发信号输入端 N-1为低电平, 复位信号输入端 N+1为低 电平, CLK为高电平, CLKB为低电平, M4和 M8导通, Ml、 M2、 M3、 M5、 M6、 M7、 M9和 M10截止。
在第五时段, 触发信号输入端 N-1为低电平, 复位信号输入端 N+1为低 电平, CLKB为高电平, CLK为低电平, M3、 M6、 M7和 M9导通, Ml、 M2、 M10、 M5、 M4和 M8截止, 通过 M9导通使得 Ml的源极接地, 从而 对 Ml的源极(即, 驱动电路的信号输出端)进行放电, 通过 M6导通使得 电容 C1的第一端接地, 从而对电容 C1进行放电。
在第一时段之后, 依序出现所述第二时段、 第三时段、 第四时段和第五 时段。
在第五时段之后, 重复出现所述第四时段和第五时段, 直至第一时段再 次出现。
根据本发明实施例, 可以将 M级驱动电路级联连接以构成移位寄存器, M > 3。其中,第 N级驱动电路的触发信号输入端与第 N-1级驱动电路的输出 信号端连接以接收第 N-1级驱动电路的输出信号作为触发信号, 第 N级驱动 电路的复位信号输入端与第 N+1级驱动电路的输出信号端连接以接收第 N+1 级驱动电路的输出信号作为复位信号。 而且, 第 N级驱动电路的信号输入端 与第 N-1级驱动电路的复位信号输入端连接以提供其输出信号作为第 N-1级 驱动电路的复位信号并将其输出信号, 并且还与第 N+1级驱动电路的触发信 号输入端连接以提供其输出信号作为第 N+1 级驱动电路的触发信号, 其中 M>N > 2。
在此情况下, 如图 2A - 2D、 图 3和图 4所示的驱动电路可以作为所述 移位寄存器的第 N级驱动电路。 而且, 所述触发信号输入端 N-1 可以为第
N-1级驱动电路的信号输出端, 所述复位信号输入端 N+1可以为第 N+1级驱 动信号的信号输出端。
在此情况下 , 所述电容 21接收上級(第 N-1级)驱动电路的信号输出端 的输出信号作为触发信号(后续称为 N-1信号), 在所述触发信号的控制下进 行充电, 以提供第一驱动控制电压至第一上拉单元 22;
第一下拉控制单元 31, 与上级驱动电路的信号输出端、 第一时钟信号输 出端和第二时钟信号输出端相连接, 在上级驱动电路的输出信号、 第一时钟 信号和第二时钟信号的控制下向第一下拉单元 23 提供周期性的第一下拉控 制信号, 以控制所述第一下拉单元 23对所述电容 21进行周期性放电; 第三下拉单元 25 , 与本级驱动电路的信号输出端和下级驱动电路的信号 输出端连接, 接收下级驱动电路的信号输出端的输出信号作为复位信号 (后 续称为 N+1 信号), 在所述复位信号的控制下进行开关操作, 从而控制所述 笫一上拉单元 22的输出端 (即, 本级驱动电路的信号输出端)放电。
第二上拉单元 26, 连接在上级驱动电路的信号输出端与所述电容 21 的 第一端之间, 接收上级驱动电路的信号输出端的输出信号作为触发信号, 并 在所述触发信号的控制下导通。
在图 4中, 触发信号输入端 (即上级驱动电路的信号输出端) 为 N-1 , 复位信号输入端 (即下级驱动电路的信号输出端)为 N+1 , 驱动电路的信号 输出端为 N; 第一驱动控制电压为 Pu, 第二驱动控制电压为 P0; 第一时钟信 号为 CLK, 第二时钟信号为 CLKB, 其中:
所述第二薄膜晶体管 M2的漏极和栅极均与上级驱动电路的信号输出端 相连, 源极与所述电容 21的第一端相连;
所述第五薄膜晶体管 M5的栅极与上级驱动电路的信号输出端相连接, 漏极与所述第三薄膜晶体管 M3的源极相连接, 源极接地;
所述第十薄膜晶体管 M10 的漏极与本级驱动电路的所述信号输出端 (即, 第一薄膜晶体管 Ml 的源极)相连接, 栅极与下级驱动电路的信号输 出端相连接, 源极接地。
此外, 在根据本发明实施例的所述移位寄存器中, 第 1级驱动电路接收 移位寄存器触发信号作为触发信号并接收第 2级驱动电路的输出信号作为复 位信号, 并且第 1级驱动电路还将其输出信号提供给第 2级驱动电路以作为 第 2级驱动信号的触发信号。第 M级驱动电路接收第 M-1级驱动电路的输出 信号作为触发信号,并且第 M级驱动电路还将其输出信号提供给第 M-1级驱 动电路以作为第 M-1级驱动电路的复位信号。
下面将简要描述根据本发明实施例的移位寄存器的第 N级驱动电路的工 作过程:
当第 N-1周期到来时(第 N-1级驱动电路的工作周期), 第 N-1級驱动 电路的输出信号端 N-1 为高电平、 CLK为低电平、 CLKB 为高电平, 此时 Ml、 M2、 M3、 M5、 M7、 M9导通, M4、 M8、 M6、 M10截止, 由于 Pu为 高电平, 所以对 CI进行充电;
当第 N周期到来时(第 N级驱动电路的工作周期), 第 N-1级驱动电路 的输出信号端 N-l为低电平、 CLK为高电平、 CLKB为低电平, M2截止, C1为 Ml提供驱动控制电压, 此时 M4、 M8、 Ml导通, M7、 M3、 M5、 M10、 M9和 M6截止, 在 Ml的源极输出高电平, 即第 N级(本级)驱动电路的信 号输出端 N的输出信号为高电平, 该输出信号为下级驱动电路的触发信号, 以启动下级驱动电路;
当第 N+1周期到来时(第 N+1级驱动电路的工作周期;), 第 N-1级驱动 电路的输出信号端 N-1为低电平、第 N+1级驱动电路的输出信号端 N+1为高 电平、 CLK为^ ί氐电平、 CLKB为高电平, 此时 Μ6、 Μ9、 Μ10、 Μ3 和 Μ7 导通, Ml、 Μ2、 Μ5、 Μ4、 Μ8截止, 通过 Μ9和 M10导通使得 Ml的源极 接地从而对 Ml的输出端进行放电,通过 M6导通使得电容 C1的第一端接地, 从而对电容 C1进行放电;
当第 N+2周期、 第 N+4周期、 第 N+6周期 第 Ν+2η (η>1)周期 到来时, 第 N-1级驱动电路的输出信号端 N-1为低电平, 第 N+1级驱动电路 的输出信号端 N+1为低电平, CLK为高电平, CLKB为低电平, M4和 M8 导通, Ml、 M2、 M3、 M5、 M6、 M7、 M9和 M10截止。
当第 N+3周期、 第 N+5周期、 第 N+7周期 第 Ν+(2η+1) (η>1 ) 周期到来时, 第 N-1级驱动电路的输出信号端 N-1为低电平, 第 N+1级驱动 电路的输出信号端 N+1为低电平, CLKB为高电平, CLK为低电平, M3、 M6、 M7和 M9导通, Ml、 M2、 M10、 M5、 M4和 M8截止, 通过 M9导通 使得 Ml的源极接地, 从而对 Ml的源极(即, 本级驱动电路的信号输出端) 进行放电, 通过 M6导通使得电容 C1的第一端接地, 从而对电容 C1进行放 电。
此外, 对于第 N-1周期之前的周期, 第 N级驱动电路的输出信号端均为 4氐电平。 具体如下:
当第 N- 2周期、 第 N- 4周期、 第 N- 6周期、 ...、 第 N- 2m (m>l 且 N- 2m>l )周期到来时, 第 N-1级驱动电路的输出信号端 N-1为低电平, 第 N+1级驱动电路的输出信号端 N+1为低电平, CLK为高电平, CLKB为 低电平, M4和 M8导通, Ml、 M2、 M3、 M5、 M6、 M7、 M9和 M10截止。
当第 N- 3周期、 第 N- 5周期、 第 N- 7周期 第 N- (2m+l) (m > 1且 N- (2m+l)> 1 )周期到来时, 第 N-1级驱动电路的输出信号端 N-1为 低电平, 第 N+1级驱动电路的输出信号端 N+1为低电平, CLKB为高电平, CLK为低电平, M3、 M6、 M7和 M9导通, Ml、 M2、 M10、 M5、 M4和
M8截止, 通过 M9导通使得 Ml的源极接地, 从而对 Ml的源极(即, 本级 驱动电路的信号输出端)进行放电,通过 M6导通使得电容 C1的第一端接地, 从而对电容 C1进行放电。
在本发明实施例中, 还提供一种阵列基板栅极驱动器, 该阵列基板栅极 驱动器包括如上所述的移位寄存器。
根据本发明实施例, 还提供了一种显示装置, 包括如上所述的阵列基板 栅极驱动器。
尽管上面以液晶显示领域为例描述了本发明, 然而应了解本发明不仅可 以应用于液晶显示装置, 而且还可以应用于包括像素阵列且按照行或列方式 驱动的其它显示装置, 诸如 OLED显示装置。
本发明实施例中, 第一下拉单元在第一下拉控制单元的控制下周期性的 对每级驱动电路中的电容进行放电, 以及第二下拉单元在第二下拉控制单元 的控制下周期性的对每级驱动电路的信号输出端进行放电, 从而能够确保将 每级驱动电路中电容的电量放干净, 也能确保每级驱动电路的信号输出端能 够接地, 从而使得每级驱动电路在其非工作区域不输出任何信号, 不会对整 个画面的显示产生干扰, 提高画面显示质量。 发明的精神和范围。 这样, 倘若对本发明的这些修改和变型属于本发明权利 要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求 书
1、 一种驱动电路, 包括:
一电容, 接收一触发信号, 在所述触发信号的控制下进行充电, 以提供 第一驱动控制电压至第一上拉单元;
第一上拉单元, 接收所述第一驱动控制电压, 并且与第一时钟信号输出 端相连接, 在所述第一驱动控制电压的控制下进行开关操作, 从而控制第一 时钟信号从输出端输出,第一上拉单元的输出端作为驱动电路的信号输出端; 第一下拉控制单元, 与所述触发信号的触发信号输入端相连接以接收所 述触发信号, 与第一时钟信号输出端和第二时钟信号输出端相连接, 在所述 触发信号、 第一时钟信号和第二时钟信号的控制下向第一下拉单元提供周期 性的第一下拉控制信号, 以控制所述第一下拉单元对所述电容进行周期性放 电;
第一下拉单元, 与第一下拉控制单元相连, 在第一下拉控制信号的控制 下对所述电容进行放电;
第二下拉控制单元, 与第一时钟信号输出端和第二时钟信号输出端相连 接, 在第一时钟信号和第二时钟信号的控制下向第二下拉单元提供周期性的 第二下拉控制信号;
第二下拉单元, 与第二下拉控制单元相连, 在第二下拉控制信号的控制 下周期性的对所述第一上拉单元的输出端进行放电。
2、 如权利要求 1所述的驱动电路, 还包括:
第三下拉单元, 与复位信号输入端相连接以接收复位信号, 并且在该复 位信号的控制下进行开关操作, 从而控制所述第一上拉单元的输出端放电。
3、 如权利要求 1所述的驱动电路, 还包括:
第二上拉单元, 连接在所述触发信号输入端和所述电容的第一端之间, 接收所述触发信号, 并在所述触发信号的控制下导通, 以对所述电容进行充 电。
4、如权利要求 1〜3任一项所述的驱动电路,所述第一下拉控制单元包括: 第一开关单元, 与所述第二时钟信号输出端相连接, 在所述第二时钟信 号控制下导通, 提供第二驱动控制电压, 以使所述第一下拉单元在所述第二 驱动控制电压的控制下导通; 第二开关单元, 与所述第一时钟信号输出端相连接, 在所述第一时钟信 号控制下导通, 以控制所述第一开关单元的输出端接地;
第三开关单元, 与所述触发信号输入端相连接, 在所述触发信号控制下 导通, 以控制所述第一开关单元的输出端接地。
5、 如权利要求 4所述的驱动电路, 所述第二下拉控制单元包括: 第四开关单元, 与所述第二时钟信号输出端相连接, 在所述第二时钟信 号控制下导通, 提供第三驱动控制电压, 以使所述第二下拉单元在所述第三 驱动控制电压的控制下导通;
第五开关单元, 与所述第一时钟信号输出端相连接, 在所述第一时钟信 号控制下导通, 以控制所述第四开关单元的输出端接地。
6、如权利要求 5所述的驱动电路,所述第一上拉单元包括第一薄膜晶体 管, 所述第二上拉单元包括第二薄膜晶体管;
所述第二薄膜晶体管的漏极和栅极均与所述触发信号输入端相连, 源极 与所述电容的第一端相连;
所述第一薄膜晶体管的漏极与所述第一时钟信号输出端相连, 栅极与所 述电容的第一端相连以接收所述第一驱动控制电压, 源极与该驱动电路的信 号输出端相连。
7、如权利要求 6所述的驱动电路,所述第一开关单元包括第三薄膜晶体 管, 第二开关单元包括第四晶体薄膜管, 第三开关单元包括第五薄膜晶体管, 所述第一下拉单元包括笫六薄膜晶体管;
所述第三薄膜晶体管的漏极和栅极均与所述第二时钟信号输出端相连 接, 源极分别与第四薄膜晶体管的漏极、 第五薄膜晶体管的漏极以及第六薄 膜晶体管的栅极相连接;
所述第四薄膜晶体管的柵极与所述第一时钟信号输出端相连接, 漏极与 所述第三薄膜晶体管的源极相连接, 源极接地;
所述第五薄膜晶体管的柵极与所述触发信号输入端相连接, 漏极与所述 第三薄膜晶体管的源极相连接, 源极接地;
所述第六薄膜晶体管的栅极与所述第三薄膜晶体管的源极相连接, 并接 收第二驱动控制电压, 漏极与所述电容的第一端相连接, 源极接地。
8、如权利要求 7所述的驱动电路,所述第四开关单元包括第七薄膜晶体 管, 第五开关单元包括第八薄膜晶体管, 第二下拉单元包括第九薄膜晶体管; 所述第七薄膜晶体管的漏极和栅极均与所述第二时钟信号输出端相连 接, 源极分别与第八薄膜晶体管的漏极、 第九薄膜晶体管的栅极相连接; 所述第八薄膜晶体管的漏极与第七薄膜晶体管的源极相连接, 栅极与所 述第一时钟信号输出端相连接, 源极接地;
所述第九薄膜晶体管的漏极与所述第一薄膜晶体管的源极相连接, 栅极 与所述第七薄膜晶体管的源极相连接并接收第三驱动控制电压 , 源极接地。
9、如权利要求 8所述的驱动电路,所述第三下拉单元包括第十薄膜晶体 管, 且所述第十薄膜晶体管的漏极与所述第一薄膜晶体管的源极相连接, 栅 极与所述复位信号输入端相连接, 源极接地。
10、 一种移位寄存器, 包括 M级如权利要求 2 - 9任一项所述的驱动电 路, 其中, 第 N级驱动电路接收第 N-1级驱动电路的输出信号作为触发信号 并接收第 N+1级驱动电路的输出信号作为复位信号,并且第 N级驱动电路还 将其输出信号提供给第 N-1级驱动电路以作为第 N-1级驱动电路的复位信号 并将其输出信号提供给第 N+1级驱动电路以作为第 N+1级驱动电路的触发信 号, 其中 M>N > 2。
11、如权利要求 10所述的移位寄存器, 其中, 第 1级驱动电路接收移位 寄存器触发信号作为触发信号并接收第 2级驱动电路的输出信号作为复位信 号, 并且第 1级驱动电路还将其输出信号提供给第 2级驱动电路以作为第 2 级驱动信号的触发信号;
笫 M级驱动电路接收第 M-1级驱动电路的输出信号作为触发信号, 并 且第 M级驱动电路还将其输出信号提供给第 M-1 级驱动电路以作为第 M-1 级驱动电路的复位信号。
12、 一种阵列基板栅极驱动器, 包括如权利要求 10所述的移位寄存器。
13、 一种显示装置, 包括如权利要求 12所述的阵列基板栅极驱动器。
PCT/CN2012/087093 2012-02-21 2012-12-21 驱动电路、移位寄存器、阵列基板栅极驱动器及显示装置 WO2013123808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210041352.2 2012-02-21
CN2012100413522A CN102629461A (zh) 2012-02-21 2012-02-21 移位寄存器、阵列基板驱动电路及显示装置

Publications (1)

Publication Number Publication Date
WO2013123808A1 true WO2013123808A1 (zh) 2013-08-29

Family

ID=46587713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087093 WO2013123808A1 (zh) 2012-02-21 2012-12-21 驱动电路、移位寄存器、阵列基板栅极驱动器及显示装置

Country Status (2)

Country Link
CN (1) CN102629461A (zh)
WO (1) WO2013123808A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629461A (zh) * 2012-02-21 2012-08-08 北京京东方光电科技有限公司 移位寄存器、阵列基板驱动电路及显示装置
CN102800289B (zh) * 2012-08-10 2015-02-18 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动装置与显示装置
CN103021321B (zh) * 2012-12-29 2016-08-03 深超光电(深圳)有限公司 移位寄存器与液晶显示装置
CN104575420B (zh) * 2014-12-19 2017-01-11 深圳市华星光电技术有限公司 一种扫描驱动电路
CN104517577B (zh) * 2014-12-30 2016-10-12 深圳市华星光电技术有限公司 液晶显示装置及其栅极驱动器
CN105575349B (zh) * 2015-12-23 2018-03-06 武汉华星光电技术有限公司 Goa电路及液晶显示装置
CN109256078B (zh) * 2018-11-14 2021-02-26 成都中电熊猫显示科技有限公司 栅极驱动电路和栅极驱动器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364392A (zh) * 2007-08-06 2009-02-11 三星电子株式会社 栅极驱动电路和具有该栅极驱动电路的显示装置
CN101546607A (zh) * 2008-03-26 2009-09-30 北京京东方光电科技有限公司 移位寄存器及液晶显示器栅极驱动装置
CN101604551A (zh) * 2008-06-10 2009-12-16 北京京东方光电科技有限公司 移位寄存器及其栅线驱动装置
US20100017702A1 (en) * 2008-07-16 2010-01-21 International Business Machines Corporation Asynchronous Partial Page Updates Based On Dynamic Dependency Calculation
CN101779252A (zh) * 2007-09-12 2010-07-14 夏普株式会社 移位寄存器
CN101785065A (zh) * 2007-09-12 2010-07-21 夏普株式会社 移位寄存器
CN101861625A (zh) * 2007-12-27 2010-10-13 夏普株式会社 移位寄存器
TW201123730A (en) * 2009-12-30 2011-07-01 Au Optronics Corp Shift register circuit
CN102629461A (zh) * 2012-02-21 2012-08-08 北京京东方光电科技有限公司 移位寄存器、阵列基板驱动电路及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101217177B1 (ko) * 2006-06-21 2012-12-31 삼성디스플레이 주식회사 게이트 구동회로 및 이를 갖는 표시 장치
CN101533623A (zh) * 2009-02-26 2009-09-16 深圳华映显示科技有限公司 可抑制临界电压漂移的闸极驱动电路

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364392A (zh) * 2007-08-06 2009-02-11 三星电子株式会社 栅极驱动电路和具有该栅极驱动电路的显示装置
CN101779252A (zh) * 2007-09-12 2010-07-14 夏普株式会社 移位寄存器
CN101785065A (zh) * 2007-09-12 2010-07-21 夏普株式会社 移位寄存器
CN101861625A (zh) * 2007-12-27 2010-10-13 夏普株式会社 移位寄存器
CN101546607A (zh) * 2008-03-26 2009-09-30 北京京东方光电科技有限公司 移位寄存器及液晶显示器栅极驱动装置
CN101604551A (zh) * 2008-06-10 2009-12-16 北京京东方光电科技有限公司 移位寄存器及其栅线驱动装置
US20100017702A1 (en) * 2008-07-16 2010-01-21 International Business Machines Corporation Asynchronous Partial Page Updates Based On Dynamic Dependency Calculation
TW201123730A (en) * 2009-12-30 2011-07-01 Au Optronics Corp Shift register circuit
CN102629461A (zh) * 2012-02-21 2012-08-08 北京京东方光电科技有限公司 移位寄存器、阵列基板驱动电路及显示装置

Also Published As

Publication number Publication date
CN102629461A (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
JP6599463B2 (ja) 正逆方向に走査可能なゲート駆動回路
WO2013123808A1 (zh) 驱动电路、移位寄存器、阵列基板栅极驱动器及显示装置
US7436923B2 (en) Shift register circuit and image display apparatus containing the same
EP3133583B1 (en) Shift register unit, driving method therefor, shift register circuit, and display device
US7492853B2 (en) Shift register and image display apparatus containing the same
US7372300B2 (en) Shift register and image display apparatus containing the same
WO2017028488A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动装置和显示装置
TWI410944B (zh) 顯示裝置之移位暫存器
JP6227530B2 (ja) ゲートドライバ集積回路、シフトレジスタ及びディスプレイスクリーン
TWI404036B (zh) 液晶顯示器
TWI433459B (zh) 雙向移位暫存器
WO2016070543A1 (zh) 移位寄存器单元、栅极驱动电路及显示装置
WO2016197531A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
TWI415099B (zh) 液晶顯示器驅動電路及相關驅動方法
WO2016161726A1 (zh) 移位寄存器单元、栅极驱动装置以及显示装置
US20070195053A1 (en) Shift register circuit and image display apparatus containing the same
WO2017012305A1 (zh) 移位寄存器单元、栅极驱动电路和显示装置
CN102930814A (zh) 移位寄存器及其驱动方法、栅极驱动装置与显示装置
WO2016161727A1 (zh) 移位寄存器单元及其驱动方法、阵列基板栅极驱动装置、以及显示面板
CN110782940B (zh) 移位寄存单元、栅极驱动电路、阵列基板及显示装置
WO2016000280A1 (zh) 用于平板显示的互补型goa电路
WO2020177541A1 (zh) 栅极驱动单元、栅极驱动电路及其驱动方法、显示装置
WO2016138734A1 (zh) 移位寄存器及其驱动方法、栅极驱动电路
WO2018192326A1 (zh) 栅极驱动单元及其驱动方法、栅极驱动电路和显示装置
WO2018161806A1 (zh) 移位寄存器、其驱动方法、栅线集成驱动电路及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869055

Country of ref document: EP

Kind code of ref document: A1