WO2013122074A1 - 凝固スラグ製造装置、コンクリート用粗骨材の製造装置、凝固スラグ製造方法およびコンクリート用粗骨材の製造方法 - Google Patents

凝固スラグ製造装置、コンクリート用粗骨材の製造装置、凝固スラグ製造方法およびコンクリート用粗骨材の製造方法 Download PDF

Info

Publication number
WO2013122074A1
WO2013122074A1 PCT/JP2013/053331 JP2013053331W WO2013122074A1 WO 2013122074 A1 WO2013122074 A1 WO 2013122074A1 JP 2013053331 W JP2013053331 W JP 2013053331W WO 2013122074 A1 WO2013122074 A1 WO 2013122074A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
mold
solidified
solidified slag
poured
Prior art date
Application number
PCT/JP2013/053331
Other languages
English (en)
French (fr)
Inventor
勇樹 萩尾
博幸 當房
恵太 田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201380009214.9A priority Critical patent/CN104114969B/zh
Priority to JP2013530474A priority patent/JP5413542B1/ja
Priority to KR1020147022557A priority patent/KR101587371B1/ko
Publication of WO2013122074A1 publication Critical patent/WO2013122074A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0273Cooling with means to convey the charge on a rotary hearth
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/04Specific shape of slag after cooling
    • C21B2400/044Briquettes or moulded bodies other than sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a solidified slag producing apparatus for producing a solidified slag (hereinafter referred to as solidified slag) by solidifying molten slag (hereinafter referred to as molten slag), and a coarse bone for concrete comprising the solidified slag producing apparatus.
  • the present invention relates to a material manufacturing apparatus, a solidified slag manufacturing method using the solidified slag manufacturing apparatus, and a method for manufacturing a coarse aggregate for concrete.
  • Patent Document 1 As an apparatus for producing solidified slag using such a small mold, there is a continuous solidification apparatus for slag disclosed in Patent Document 1, for example.
  • the continuous solidification device for slag disclosed in Patent Document 1 connects a plurality of metal molds in an endless manner and moves them in one linear direction while pouring molten slag into the mold to solidify the solidified slag. It is to discharge continuously from the mold.
  • Another example of manufacturing solidified slag using a small mold is an iron metallurgical iron processing apparatus described in Patent Document 2, for example.
  • the iron metallurgical iron processing apparatus of Patent Document 2 uses a rotary table, and the casting vessel is continuously horizontal on a curved track while always maintaining the casting surface in each casting vessel in a horizontal position. It moves and goes around a plurality of times to solidify the slag thinly per turn, and thickens the slag by a plurality of turns (see the upper right column on page 2 of Patent Document 2).
  • JP 2003-207281 A Japanese Unexamined Patent Publication No. 53-32828
  • the continuous solidification device for slag described in Patent Document 1 connects a plurality of molds endlessly, and after pouring molten slag into a mold on one end side of endless shape, linearly moves to the other end of endless shape.
  • the mold is inverted at the other end, the solidified slag is discharged from the mold, and the mold in the inverted state is linearly moved to the one end side and returned.
  • the molten slag is poured into the mold and moved (going process) time. And the time for discharging the solidified slag and moving the mold in an empty state (return stroke) becomes the same.
  • the time for pouring and moving the molten slag into the mold is the time required for solidifying the molten slag, and therefore the number of connected molds and the moving speed are determined based on this time. For this reason, the moving time after inverting the mold is wasted.
  • the iron metallurgical iron processing apparatus described in Patent Document 2 always moves the casting container (mold) in a horizontal state, and thins the thickness of the casting layer at the time of one turn in order to solidify the hot metal early. And it is an apparatus which obtains a casting layer of desired thickness by circulating a casting container in multiple times and laminating a casting layer in multiple layers. Therefore, except for discharging the lump with the desired thickness, it is necessary to move horizontally between multiple rounds with the concave portion of the casting container always facing upward, and casting with molten iron poured Air or steam is blown over the hot metal to quickly solidify the layer.
  • Patent Document 2 since the solidified lump is tilted in the radial direction of the circulation direction and discharged from the casting container, the center of gravity shifts with respect to the rotation center and the balance of the entire rotating device is lost. It was easy and it was difficult to stably obtain a coagulated lump.
  • the present invention has been made to solve the above-described problems, and provides a solidified slag production apparatus that can efficiently obtain a solidified slag that has few pores and can be easily adjusted to a particle size of about 20 mm by crushing.
  • the purpose is to provide.
  • it aims at providing the manufacturing method of the coarse aggregate for concrete provided with the said solidification slag manufacturing apparatus, the manufacturing method of the solid aggregate slag using the said solidification slag manufacturing apparatus, and the concrete aggregate for concrete.
  • a solidified slag manufacturing apparatus that has a plurality of metal molds having concave portions into which molten slag is poured, and that solidifies the molten slag poured into the concave portions to produce solidified slag.
  • a circular movement mechanism for circularly moving in a horizontal direction in a state in which the mold is brought close to and supported, and the circular movement mechanism sequentially rotates the mold while holding the molten slag poured in the concave portion in the circumferential direction.
  • An air-cooled moving part that moves in a direction and air-cools and melts the molten slag held in the recessed part, a reversing discharge part that discharges the solidified slag by reversing the mold so that the recessed part faces downward.
  • a reversal moving part that moves the mold in an inverted state, and a re-inversion part that reinverts the mold in the inverted state so that the recessed part faces upward.
  • the length (angle) occupied by the air-cooled moving part is more than 1/2 (180 degrees) and less than 3/4 (270 degrees) of the total length of the orbiting track (full angle 360 degrees) of the orbiting moving mechanism.
  • the reversal moving unit includes a cooling device that cools the reversal mold by injecting a coolant onto both upper and lower surfaces of the mold.
  • a solidified slag production method for producing a solidified slag using the solidified slag production apparatus according to any one of (1) to (5), wherein molten slag is poured into the concave portion of the mold, While the mold in which the molten slag was poured into the concave portion was moved around, the molten slag poured into the concave portion was air-cooled, and the solidified slag solidified into a plate having a thickness of 20 to 40 mm by inverting the mold.
  • a method for producing a coarse aggregate for concrete wherein the solidified slag produced by the method for producing solidified slag as described in (7) above is crushed and the crushed solidified slag is classified into 5 to 20 mm.
  • the solidification slag manufacturing apparatus which has few pores and can obtain efficiently the solidification slag which is easy to adjust to the particle size of about 20 mm by crushing can be provided.
  • the manufacturing apparatus of the coarse aggregate for concrete provided with the said solidification slag manufacturing apparatus, the solidification slag manufacturing method using the said solidification slag manufacturing apparatus, and the manufacturing method of the coarse aggregate for concrete are provided. it can.
  • a solidified slag manufacturing apparatus 1 (see FIG. 1) according to an embodiment of the present invention includes a plurality of metal molds 5 having recessed portions 5a (see FIG. 2) into which molten slag 3 is poured, and the recessed portions.
  • the orbiting movement mechanism 7 moves the casting mold 5 in the orbiting direction in a state where the poured molten slag 3 is held in the recessed portion 5a in order in the surrounding direction, and the molten slag 3 held in the recessed portion 5a is air-cooled and solidified.
  • An air-cooling moving unit 9 a reversing discharge unit 11 for reversing the mold 5 so that the recessed part 5 a faces downward, and discharging the solidified slag 18, and a reversing moving unit for moving the reversed mold 5 in an inverted state 13 and a re-inversion part 15 that re-inverts the mold 5 in the inverted state so that the recessed part 5a faces upward, and the molten slag 3 is poured into the re-inverted mold 5 as necessary.
  • the re-inversion moving unit 17 is provided for moving to a part to be moved.
  • the molten slag 3 is poured into the recessed portion 5a to produce the solidified slag, and the operation for each round is circulated continuously. Can be done automatically.
  • the coagulated slag manufacturing apparatus 1 may be provided with a gutter 20 so that the molten slag 3 can be easily poured into the mold 5.
  • the mold 5 has a shallow concave portion 5a into which the molten slag 3 is poured. More specifically, as shown in FIG. 2, the mold 5 is preferably a metal container having a substantially trapezoidal recessed portion 5a. As shown in FIG. 1, the mold 5 of the present embodiment is arranged close to each other so that a plurality of molds 5 form a circumference. Therefore, in order to arrange them efficiently in a circumferential shape, the side portion on the outer peripheral side has a lower trapezoid and the side portion on the inner peripheral side has a substantially trapezoidal shape.
  • the shape of the mold 5 is substantially trapezoidal in plan view, but the shape can be efficiently arranged according to the shape of the orbit. You only have to set it.
  • the mold 5 is preferably rectangular.
  • the inner wall of the mold 5 may have an inclined surface 5b that is inclined outward from the bottom toward the top. This is to make the solidified slag easy to release when the mold 5 is inverted.
  • the mold 5 may be provided with a slag fall prevention portion 5c for preventing the molten slag 3 from dropping into the gap between the adjacent molds 5 when the molten slag 3 is poured (see FIG. 2).
  • the material of the mold 5 is made of a metal having excellent heat resistance such as cast steel or stainless steel.
  • the thickness of the mold 5 is preferably about 40 mm, for example. If the thickness of the mold 5 is too thin, it is likely to be deformed by the heat of the high-temperature slag, causing troubles in conveyance. Therefore, it is preferable to set it to at least 20 mm or more, and conversely, if it becomes too thick, the weight increases. In this case, it is preferable that the thickness is 80 mm or less.
  • the thickness of the solidified slag is preferably 20 to 40 mm.
  • the depth of the recessed portion 5a of the mold 5 is preferably about 60 to 200 mm, which is about 3 to 5 times the solidified thickness. If the depth is about 3 to 5 times the solidification thickness, the molten slag will not overflow from the mold even if the flow rate of the molten slag fluctuates.
  • the circular movement mechanism 7 supports the plurality of molds 5 in a circular shape in the proximity state and moves them around.
  • the support mechanism for supporting the mold 5 is not particularly limited.
  • a shaft portion and a wheel are provided on the outer peripheral side and the inner peripheral side of the mold 5, and the wheel is supported on a rail extending in the circumferential direction. What is necessary is just to make it rotate at a predetermined speed with a drive mechanism.
  • the orbiting movement mechanism 7 sequentially turns in the air cooling movement unit 9, the reverse discharge unit 11, and the reverse movement as shown in FIG. 1 and FIG. A unit 13, a re-inversion unit 15, and a re-inversion moving unit 17 as necessary.
  • each part of the circular movement mechanism 7 will be described in detail.
  • the air-cooling moving unit 9 is a part that moves the casting mold 5 in the circumferential direction in a state where the poured molten slag 3 is held in the recessed portion 5a to air-cool and solidify the molten slag 3.
  • the air-cooling moving unit 9 requires time until the poured molten slag 3 is air-cooled and becomes a predetermined solidified state, but the orbiting moving mechanism 7 of the present embodiment circulates the mold 5 in the horizontal direction. Since it is made to move, there is no restriction that the half of the circular movement becomes the air-cooling moving part 9 for melting slag solidification as in the case where the mold 5 is linearly connected endlessly.
  • the air cooling moving unit 9 With a length excluding the circumferential length required for each part such as the reverse discharge unit 11 following the air cooling moving unit 9. As a result, useless time can be prevented from occurring during the round trip.
  • strength of the slag which solidified and solidified in the porous when water is sprinkled to slag and cooled watering is prohibited.
  • the length (angle) occupied by the air-cooling moving unit 9 is preferably set to be more than 1/2 (180 degrees) and less than 3/4 (270 degrees) of the ratio of the total length of the orbit (360 degrees).
  • the reverse discharge part 11 is a part which inverts the casting mold 5 so that the recessed part 5a faces downward, and discharges the solidified slag 18 solidified by the air-cooling moving part 9. As shown in FIG. 1, the reverse discharge unit 11 is disposed next to the air-cooling moving unit 9 and is provided below the mold 5 around which the pits 19 for storing the solidified slag 18 to be discharged circulate. Yes.
  • the mechanism for reversing the mold 5 is not particularly limited. For example, as described in the explanation of the circular movement mechanism 7 above, the mold 5 is rotatably supported when the shaft is supported on the rail via the wheels.
  • the air-cooling moving unit 9 is provided with a holding unit that holds the posture of the mold 5 so that the mold 5 does not rotate. Subsequently, when the mold 5 comes to the reverse discharge unit 11, the posture of the mold 5 is set. What is necessary is just to provide the guide part which guides so that it may reverse.
  • the direction of reversal of the mold 5 is preferably the direction in which the mold 5 is reversed by rotating in the circumferential direction. If the mold 5 is rotated in the rotating direction and reversed, the center of gravity shifts with respect to the center of rotation, for example, when the mold 5 of Patent Document 2 is tilted in the radial direction of the rotating direction, and the balance of the entire rotating device. There is no problem of collapse.
  • the rotation in the circumferential direction of the mold 5 may be either forward rotation or reverse rotation.
  • the inversion moving unit 13 is a part that moves the mold 5 that has been inverted by the inversion discharging unit 11 and discharged the solidified slag in an inverted state.
  • the reversal moving unit 13 is preferably provided with a cooling device 21 that cools the mold 5 by injecting a coolant from the upper side and the lower side of the mold 5.
  • a cooling device 21 that cools the mold 5 by injecting a coolant from the upper side and the lower side of the mold 5.
  • the mold 5 is inverted and cooled while the recessed portion 5a is positioned downward, so that the cooling water naturally falls and water does not remain in the mold 5 as it is. Accordingly, when the molten slag is poured again into the mold after re-inversion, as in the case where the cooling water remains in the mold 5, a large number of pores are generated in the solidified slag, so that it cannot be applied as a coarse aggregate for concrete. The problem disappears. Further, there is no danger of causing a steam explosion, and a high-quality solidified slag 18 can be manufactured safely.
  • the cooling time can be shortened as compared with cooling from only one side. Therefore, the length of the reversal moving unit 13 for mold cooling with respect to the entire round length is shortened. Therefore, the length of the air-cooling moving part 9 for slag solidification can be increased by that amount, and the length of the air-cooling moving part 9 can be more than 1 ⁇ 2 of the entire length of the orbit.
  • the length of the air-cooling moving part 9 needs to be a predetermined length because it is necessary to secure time for the molten slag 3 to solidify into a predetermined state. The fact that the ratio of the length of each part in can be reduced means that the entire apparatus can be miniaturized.
  • cooling the mold 5 from both the upper and lower surfaces greatly contributes to downsizing of the entire apparatus.
  • the mold 5 can be cooled evenly by cooling the mold 5 from both the upper and lower surfaces, there is an excellent effect that the mold 5 can be prevented from being deformed by heat shrinkage due to cooling. Since the deformation of the mold 5 becomes an important problem in performing these operations stably for the circular movement and reversal, sufficient cooling of the mold 5 is essential for the operation of this apparatus.
  • the cooling of the mold 5 is preferably performed from both the upper side and the lower side, but in the present invention, one-side cooling from only the upper side or only from the lower side is not excluded.
  • the re-inversion part 15 is a part that re-inverts the mold 5 in the inverted state moved by the inversion moving part 13 so that the recessed part 5a faces upward.
  • the re-inversion portion 15 is preferably provided after the inversion moving portion 13 and after the cooling water does not remain in the recessed portion 5 a of the mold 5. That is, as shown in FIG. 1, after cooling by the cooling device 21, it is preferably reversed by a predetermined distance and then reversed again. The reason for this is that by reversing and moving by a predetermined distance after cooling, the moisture remaining during cooling during the reversing movement partly falls spontaneously from the mold 5 and part of the mold 5 that has discharged hot solidified slag. It is because it evaporates by heat and is completely removed.
  • template 5 is re-inverted is not specifically limited, for example, the mechanism similar to the inversion discharge part 11 mentioned above is employable.
  • the re-reversing direction of the mold 5 is preferably re-reversed by rotating in the circumferential direction, as in the case of the reversing discharge unit 11. Further, the rotation of the mold 5 in the rotating direction may be either forward rotation or reverse rotation.
  • the reinversion moving unit 17 is a part that moves the reinverted mold 5 to a part into which the molten slag 3 is poured. Note that if the molten slag 3 is poured immediately after the mold 5 is re-inverted by the re-inversion unit 15, the re-inversion moving unit 17 may not be provided.
  • the casting mold 5 that has discharged the solidified slag 18 moves in the reversing movement unit 13 in a reversing state, and is cooled by the cooling device 21 in the middle of the movement.
  • the mold 5 that has passed through the inversion moving unit 13 rotates in the circumferential direction in the reinversion unit 15 and reinverts so that the recessed portion 5a faces upward.
  • the molten slag 3 is poured into the re-inverted mold 5 immediately after re-inversion or after moving the re-inversion moving part 17 again at the slag inflow part.
  • the solidified slag manufacturing apparatus 1 includes the circular movement mechanism 7 that moves in the horizontal direction in a state where the plurality of molds 5 are brought close to each other and supported, and the circular movement mechanism 7 is melted.
  • An air cooling moving part 9 for cooling and solidifying the slag 3 a reverse discharge part 11 for discharging the solidified slag 18 by inverting the mold 5 so that the recessed part 5 a faces downward, and a state where the inverted mold 5 is inverted
  • the entire peripheral length of the apparatus is not limited by the required length of the air cooling process for slag solidification as in the conventional example in which the molds are connected linearly and endlessly, and the reverse discharge part 11 etc. following the air cooling moving part 9 etc. It is possible to assign the length of the air-cooling moving unit 9 except for the length in the circulation direction required for each part, and no unnecessary time is generated in the circulation process. Further, in the present embodiment, the mold 5 is cooled from the upper and lower surfaces in the reversal moving unit 13, so that the mold 5 can be efficiently cooled, thereby shortening the length of the reversal moving unit 13. As a result, the circulation length can be shortened and the entire apparatus can be made compact.
  • the solidification thickness of slag should be 20-40mm. Is preferred. If the solidification thickness is less than 20 mm, the particle size distribution after crushing becomes fine and it is difficult to satisfy the standard. On the other hand, when the solidification thickness exceeds 40 mm, the water absorption rate becomes higher and tends to exceed 1.5%, and crushing is required to reduce the thickness to 20 mm or less, and the number of fine particles less than 5 mm increases and the yield increases. The problem is that it tends to decrease. As will be described later, the water absorption of the coarse aggregate is preferably 1% or less.
  • the solidified slag manufacturing apparatus 1 has been described.
  • an impact crusher such as an impact crusher or a hammer crusher that pulverizes the plate-shaped solidified slag manufactured by the solidified slag manufacturing apparatus 1
  • an impact By using a classifier that classifies the solidified slag crushed by the crushing apparatus into 20 to 5 mm that can be used as a coarse aggregate for concrete, the entire apparatus for producing coarse aggregate for concrete is obtained.
  • the circulation direction in the present invention is not limited to this, and the air-cooling movement unit, the reverse discharge unit, the reverse movement May be counterclockwise in the order of the part, the re-inversion part, and if necessary, the re-inversion movement part.
  • the shape of the circle may not be a circle but may be, for example, an ellipse or a rectangle.
  • the mold 5 is made of cast steel having a trapezoidal shape in plan view, the thickness thereof is 45 mm, the upper base short side of the trapezoid outer diameter is 0.7 m, and the length of the lower base short side of the trapezoid outer diameter is 1. 0.0 m, and the height of the trapezoid outer diameter was 2.7 m. Moreover, the depth of the recessed part 5a of the casting_mold
  • the circular movement mechanism 7 is the same as that shown in FIG. 1, and the conveyance speed for circular conveyance is 14 m / min at the center of the mold.
  • molten blast furnace slag 1360 ° C. or higher and 1410 ° C. or lower was allowed to flow into the mold 5 at about 2 t / min.
  • the mold 5 into which the molten slag 3 has been poured conveys the air-cooling moving part 9 for about 120 seconds ⁇ the length of the air-cooling moving part is 2/3 (240 degrees) of the entire circumference ⁇ , and the molten slag 3 is solidified by air cooling. .
  • the mold 5 is rotated in the circumferential direction with the support shaft as a rotation axis and reversed, and the solidified slag 18 is dropped into the pit 19 and discharged.
  • the casting mold 5 from which the solidified slag 18 was discharged was moved while the reversing movement unit 13 was in the reversing state, and cooled rapidly by jetting cooling water from the upper and lower surfaces at the site where the cooling device 21 was installed.
  • the surface of the mold 5 in the inverted state immediately after discharging the solidified slag was in a high temperature state exceeding 300 ° C. while being in contact with the solidified slag 18. It was possible to rapidly cool to a temperature of 200 ° C. or lower.
  • the mold 5 after cooling is conveyed through the reversal moving unit 13 with the recessed part 5a of the mold 5 facing downward, and during this time, water remaining during water cooling partly falls from the mold 5 and part of the mold 5 Evaporated by residual heat of 5 and removed completely.
  • the temperature of the mold becomes the highest temperature just before the slag is inverted and dropped.
  • the surface temperature of the mold back surface measured by the radiation thermometer (the upper surface of the inverted mold, that is, the back surface of the mold) is 300. If the temperature exceeds °C, the proof stress may be reduced and the mold 5 may be deformed. Therefore, the amount of water spray and water spray time are increased to increase the temperature drop of the mold due to cooling water injection. It is desirable that the surface temperature of the back surface of the glass be 300 ° C. or lower.
  • the mold 5 in the inverted state was re-inverted by the re-inversion part 15 and returned to the state in which the original recessed part 5a was directed upward again. Thereafter, molten slag was poured again into the returned mold. The above process was repeated 5 times for one slag pan, and 30 tons of molten slag was continuously processed.
  • the solidification thickness was measured to be 20 to 30 mm, and the average thickness was 25 mm.
  • the cooling rate is increased even with air cooling, and the solidified slag 18 has a dense crystalline with few pores. .
  • the plate-shaped solidified slag 10t was crushed using an impact crusher. And the crushed slag was classified with a 20 mm and 5 mm sieve. As a result, a coarse aggregate for concrete having a thickness of 20 to 5 mm could be produced.
  • the water absorption rate of the manufactured coarse aggregate is 0.9%, which is significantly smaller than the 3-4% water absorption rate of the conventional blast furnace slag coarse aggregate, which is equivalent to natural aggregate. It was.
  • the water absorption rate of the coarse aggregate is preferably 1% or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)
  • Processing Of Solid Wastes (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

 本発明に係る凝固スラグ製造装置1は、溶融スラグ3が流し込まれる凹陥部5aを有する複数の金属製の鋳型5を有し、凹陥部5aに流し込まれた溶融スラグ3を凝固させて凝固スラグ18を製造する凝固スラグ製造装置であって、複数の鋳型5を近接させ支持した状態で水平方向に周回移動させる周回移動機構7を備え、周回移動機構7は、周回方向に順に、流し込まれた溶融スラグ3を凹陥部5aに保持した状態で鋳型5を周回方向に移動させ、凹陥部5aに保持した溶融スラグ3を空冷して凝固させる空冷移動部9と、鋳型5を凹陥部5aが下方に向くように反転させて凝固スラグ18を排出する反転排出部11と、反転した鋳型5を反転した状態のままで移動させる反転移動部13と、反転状態にある鋳型5を凹陥部5aが上方に向くように再反転させる再反転部15と、を備える。

Description

凝固スラグ製造装置、コンクリート用粗骨材の製造装置、凝固スラグ製造方法およびコンクリート用粗骨材の製造方法
 本発明は、溶融状態のスラグ(以下、溶融スラグという)を凝固させて、凝固状態のスラグ(以下、凝固スラグという)を製造する凝固スラグ製造装置、上記凝固スラグ製造装置を備えるコンクリート用粗骨材の製造装置、上記凝固スラグ製造装置を用いた凝固スラグ製造方法およびコンクリート用粗骨材の製造方法に関する。
 金属の精錬工程などで発生する溶融スラグを凝固させるには、高圧の冷却水を溶融スラグに吹き付けて急冷する方法、あるいは、溶融スラグをドライピットやスラグヤードに放置して大気中で徐冷する方法が広く用いられている。
 溶融スラグを急冷すると、高圧の冷却水を大量に吹き付けるので、多数の気孔を有する粒径5mm以下の砂状の凝固スラグ(いわゆる水砕スラグ)となる。一方、溶融スラグを土間に流して徐冷すると、厚さが数mとなり、これを破砕して塊状の凝固スラグ(いわゆる徐冷スラグ)とする。
 近年、凝固スラグの再利用に伴って、砂利等に代わるコンクリート用粗骨材に凝固スラグの適用が図られている。凝固スラグをコンクリート用粗骨材に適用するには、スラグ中の気孔を低減し、スラグ粒径の最大値を20mm程度に調整する必要がある。従って、水砕スラグは、現状のままでは、気孔が多くて粒径が小さいことから、コンクリート用粗骨材には適用できず、一方、徐冷スラグは、数mの大きさの塊を20mm程度の粒径に破砕する時間が多大であって効率的でない。
 そこで、コンクリート用粗骨材として、気孔が少なく破砕が容易な凝固スラグを得るために、比較的小さい鋳型を用いて溶融スラグを凝固させる技術が種々提案されている。小さい鋳型の中でスラグを凝固させると、水砕スラグより大きくて、かつ、徐冷スラグより小さいサイズを容易に得ることができて、徐冷スラグより破砕の時間を短縮できて20mm程度の所望の凝固スラグを容易に得ることができる。
 このような小さい鋳型を用いて凝固スラグを製造する装置としては、例えば特許文献1に開示されたスラグの連続凝固装置がある。
 特許文献1に開示されたスラグの連続凝固装置は、複数個の金属製鋳型を無端状に連結して直線状一方向に移動させながら、溶融スラグを鋳型に流し込んで凝固させて、凝固スラグを鋳型から連続して排出するというものである。
 また、小さい鋳型を用いて凝固スラグを製造する他の例として、例えば特許文献2に記載された鉄冶金滓の処理装置がある。特許文献2の鉄冶金滓の処理装置は、回転テーブルを用いたものであって、個々の鋳造容器内の鋳造面を常に水平位置に維持しながら鋳造容器が曲線の軌道上を連続的に水平移動し、複数回周回して、1周当たり薄くスラグを凝固させ、複数回の周回によって厚くスラグを積層させるものである(特許文献2の第2頁右上欄参照)。
特開2003-207281号公報 特開昭53-32828号公報
 特許文献1に記載のスラグの連続凝固装置は、複数の鋳型を無端状に連結し、無端状の一端側にある鋳型に溶融スラグを流し込んだ後、無端状の他端まで直線的に移動させ、上記他端において鋳型を反転させて凝固スラグを鋳型から排出し、反転状態にある鋳型を上記一端側まで直線的に移動させて戻すというものである。
 上記のような複数の鋳型を直線的に無端状に連結する装置では、行きの行程と帰りの行程とが同じ長さになるため、鋳型に溶融スラグを流し込んで移動させる(行きの行程)時間と、凝固スラグを排出して空の状態で鋳型を移動させる(帰りの行程)時間とが同じになる。鋳型に溶融スラグを流し込んで移動させる時間は、溶融スラグを凝固させるのに必要な時間となるため、この時間を基準にして鋳型の連結個数や移動速度が決められることになる。このため、鋳型を反転させた後の移動時間には無駄が生じてしまうことになる。
 特許文献2に記載の鉄冶金滓の処理装置は、鋳造容器(鋳型)を常に水平状態で移動させるものであり、溶滓を早期に凝固させるため1回周回する際の鋳造層の厚みを薄くして、鋳造容器を複数回周回させて鋳造層を多層に積層させて所望する厚みの鋳造層を得る装置である。従って、所望する厚みとなった塊滓を排出する以外は、鋳造容器の凹部を常に上に向けたまま、複数回の周回の間を水平移動させる必要があり、また、溶滓を注いだ鋳造層を早期に凝固させるために空気または蒸気を溶滓の上から吹き付けている。また、鋳造容器の冷却については一切記載がなく、鋳造容器から塊滓を排出した後、鋳造容器はそのままの状態で溶滓を鋳込んでいると思われる。
 従って、特許文献2の方法および装置を採用すると、複数回の周回に時間が掛かり、効率良く凝固塊滓を得ることが難しい問題がある。また、特許文献2では、溶滓に空気または蒸気を吹き付けているため、溶滓に気孔が生じやすい。
 なお、複数回の周回を必要とし、その間、鋳造容器は全く強制冷却されないことから、鋳造容器が高温の溶滓の熱により歪んで装置の連続回転が不能になる問題が多々生じる。さらに、特許文献2の第1図に示すように凝固した塊滓を周回方向の径方向に傾動させて鋳造容器から排出させるため、周回中心に対して重心がずれて回転装置全体のバランスが崩れ易く、安定して凝固塊滓を得ることが難しくて問題であった。
 本発明は、上記のような問題を解決するためになされたものであり、気孔が少なく、破砕により20mm程度の粒径に調整しやすい凝固スラグを、効率良く得ることができる凝固スラグ製造装置を提供することを目的とする。
 また、上記凝固スラグ製造装置を備えるコンクリート用粗骨材の製造装置、上記凝固スラグ製造装置を用いた凝固スラグ製造方法およびコンクリート用粗骨材の製造方法を提供することを目的とする。
 (1)溶融スラグが流し込まれる凹陥部を有する複数の金属製の鋳型を有し、上記凹陥部に流し込まれた溶融スラグを凝固させて凝固スラグを製造する凝固スラグ製造装置であって、上記複数の鋳型を近接させ支持した状態で水平方向に周回移動させる周回移動機構を備え、上記周回移動機構は、周回方向に順に、流し込まれた溶融スラグを上記凹陥部に保持した状態で上記鋳型を周回方向に移動させ、上記凹陥部に保持した溶融スラグを空冷して凝固させる空冷移動部と、上記鋳型を上記凹陥部が下方に向くように反転させて凝固スラグを排出する反転排出部と、反転した上記鋳型を反転した状態のままで移動させる反転移動部と、反転状態にある上記鋳型を上記凹陥部が上方に向くように再反転させる再反転部と、を備える凝固スラグ製造装置。
 (2)上記空冷移動部の占める長さ(角度)を、上記周回移動機構の周回軌道全長(全角360度)の1/2(180度)超え、3/4(270度)未満とする、上記(1)に記載の凝固スラグ製造装置。
 (3)上記反転排出部は、上記鋳型を周回方向に向けて回転させることによって上記鋳型を反転させる、上記(1)または(2)に記載の凝固スラグ製造装置。
 (4)上記反転移動部は、反転状態の上記鋳型の上下両面に冷媒を噴射して冷却する冷却装置を備える、上記(1)~(3)のいずれかに記載の凝固スラグ製造装置。
 (5)上記冷却装置は、上記鋳型の背面の表面温度を300℃以下にするように上記鋳型を冷却する、上記(4)に記載の凝固スラグ製造装置。
 (6)上記(1)~(5)のいずれかに記載の凝固スラグ製造装置と、上記凝固スラグ製造装置によって製造された凝固スラグを破砕する衝撃破砕装置と、上記衝撃破砕装置によって破砕された凝固スラグを分級する分級装置と、を備えるコンクリート用粗骨材の製造装置。
 (7)上記(1)~(5)のいずれかに記載の凝固スラグ製造装置を用いて凝固スラグを製造する凝固スラグ製造方法であって、上記鋳型の上記凹陥部に溶融スラグを流し込み、上記凹陥部に溶融スラグが流し込まれた上記鋳型を周回移動させながら、上記凹陥部に流し込まれた溶融スラグを空冷し、上記鋳型を反転させて20~40mmの厚みの板状に凝固した凝固スラグを排出する、凝固スラグ製造方法。
 (8)上記(7)に記載の凝固スラグ製造方法によって製造された凝固スラグを破砕し、破砕された凝固スラグを5~20mmに分級する、コンクリート用粗骨材の製造方法。
 本発明によれば、気孔が少なく、破砕により20mm程度の粒径に調整しやすい凝固スラグを、効率良く得ることができる凝固スラグ製造装置を提供することができる。
 また、本発明によれば、上記凝固スラグ製造装置を備えるコンクリート用粗骨材の製造装置、上記凝固スラグ製造装置を用いた凝固スラグ製造方法およびコンクリート用粗骨材の製造方法を提供することができる。
本発明の一実施の形態に係る凝固スラグ製造装置の全体構成を模式的に示す模式図である。 本発明の一実施の形態に係る凝固スラグ製造装置の鋳型の説明図である。 本発明の一実施の形態に係る凝固スラグ製造装置における周回移動機構の各部の配置を説明する説明図である。
 本発明の一実施の形態に係る凝固スラグ製造装置1(図1参照)は、溶融スラグ3が流し込まれる凹陥部5a(図2参照)を有する複数の金属製の鋳型5を有し、凹陥部5aに流し込まれた溶融スラグ3を凝固させて凝固スラグ18を製造する凝固スラグ製造装置であって、複数の鋳型5を近接させ支持した状態で水平方向に周回移動させる周回移動機構7を備える。
 周回移動機構7は、周回方向に順に、流し込まれた溶融スラグ3を凹陥部5aに保持した状態で鋳型5を周回方向に移動させ、凹陥部5aに保持した溶融スラグ3を空冷して凝固させる空冷移動部9と、鋳型5をその凹陥部5aが下方に向くように反転させて凝固スラグ18を排出する反転排出部11と、反転した鋳型5を反転した状態のままで移動させる反転移動部13と、反転状態にある鋳型5を凹陥部5aが上方に向くように再反転させる再反転部15とを備えるものであり、必要に応じて、再反転させた鋳型5を溶融スラグ3が流し込まれる部位まで移動させる再反転移動部17を備える。
 凝固スラグ製造装置1によれば、鋳型5が凝固スラグ製造装置1を1周する間に、凹陥部5aに溶融スラグ3を流し込んで凝固スラグを製造し、1周ごとの操作を周回させて連続的に行うことができる。
 なお、凝固スラグ製造装置1には、鋳型5に溶融スラグ3を流し込みやすいように、樋20を設置するとよい。
 以下、各構成を詳細に説明する。
<鋳型>
 鋳型5は、溶融スラグ3が流し込まれる浅底の凹陥部5aを有している。より詳細には、図2に示すように、鋳型5は、ほぼ台形形状の凹陥部5aを有する金属製容器がよい。本実施の形態の鋳型5は、図1に示されるように、複数の鋳型5が円周を形成するように近接させて配置される。そのため、円周状に効率よく配置されるように外周側となる辺部が下底、内周側となる辺部が上底となる略台形をしている。
 なお、この例では、鋳型5を円周状に配置するため、鋳型5の形状を平面視で略台形になるようにしているが、周回軌道の形状に合わせて効率的な配置ができる形状に設定すればよい。例えば、周回軌道が矩形状であれば、鋳型5は矩形が好ましい。
 鋳型5の内壁は底から上に向かって外側に傾斜する傾斜面5bを有するとよい。これは、鋳型5を反転した際に凝固スラグが離型しやすくするためである。
 また、鋳型5には、溶融スラグ3を流し込む際に、隣接する鋳型5の隙間に溶融スラグ3が落下することを防止するためのスラグ落下防止部位5cを設けるとよい(図2参照)。
 鋳型5の材質は、鋳鋼またはステンレス鋼等の耐熱性に優れた金属からなる。また、鋳型5の厚みは、例えば40mm程度が良い。鋳型5の厚みが薄過ぎると高温のスラグの熱により変形しやすくなり、搬送に支障をきたすことになるため、少なくとも20mm以上にするのが好ましく、逆に、厚くなり過ぎると、重量が増加して、搬送や反転に支障をきたすことにもなりかねないので、80mm以下とするのが好ましい。
 なお、後述するように凝固スラグをコンクリート用粗骨材として使用する場合、凝固スラグの厚みは20~40mmが好ましい。このような凝固厚みの凝固スラグを製造するには、鋳型5の凹陥部5aの深さは、凝固厚みの3~5倍程度の60~200mm程度が好ましい。凝固厚みの3~5倍程度の深さがあれば、溶融スラグの流量が変動した場合でも、鋳型から溶融スラグが溢れることはない。
<周回移動機構> 
 周回移動機構7は、複数の鋳型5を近接状態で円周状に支持して周回移動させるものである。鋳型5を支持する支持機構は特に限定されるものではないが、例えば鋳型5の外周側および内周側に軸部および車輪を設け、上記車輪を周回方向に延びるレール上に支持し、車輪を駆動機構によって所定の速度で回転させるようにすればよい。
 周回移動機構7は、鋳型5が凝固スラグ製造装置1を1周する間に、図1および図3に示すように、周回方向に順に、空冷移動部9と、反転排出部11と、反転移動部13と、再反転部15と、必要に応じて再反転移動部17とを備えている。
 以下、周回移動機構7の各部を詳細に説明する。
《空冷移動部》
 空冷移動部9は、流し込まれた溶融スラグ3を凹陥部5aに保持した状態で鋳型5を周回方向に移動させて溶融スラグ3を空冷して凝固させる部位である。
 空冷移動部9は、流し込まれた溶融スラグ3が空冷されて所定の凝固状態になるまでの時間が必要とされるが、本実施の形態の周回移動機構7は、鋳型5を水平方向に周回移動させるようにしているので、鋳型5を直線的に無端状に連結する場合のように、周回移動の半分の行程が溶融スラグ凝固のための空冷移動部9になるというような制約がない。
 そのため、空冷移動部9に続く反転排出部11等の各部に必要とされる周回方向長さを除く長さを空冷移動部9に割り当てることも可能となる。これによって、周回行程の中に無駄な時間が生じないようにすることができる。
 なお、空冷移動部9では、スラグに散水して冷却すると多孔質に凝固して固化したスラグの強度が低下するため、散水を禁止している。
 また、空冷移動部9の占める長さ(角度)は、周回軌道全長(全角360度)に占める割合の1/2(180度)超え、3/4(270度)未満とするとよい。
《反転排出部》
 反転排出部11は、鋳型5をその凹陥部5aが下方に向くように反転させて、空冷移動部9で凝固した凝固スラグ18を排出する部位である。
 反転排出部11は、図1に示されるように、空冷移動部9の次に配置されるものであり、排出される凝固スラグ18を収容するピット19が周回する鋳型5の下方に設けられている。
 鋳型5を反転させる機構は特に限定されるものではないが、例えば上記の周回移動機構7の説明で述べたように、鋳型5をレール上に車輪を介して軸支持する際に回転可能に支持して、かつ空冷移動部9では鋳型5が回転しないように鋳型5の姿勢を保持する保持部を設けておき、続いて、反転排出部11に鋳型5が来たときに、鋳型5の姿勢が反転するようにガイドするガイド部を設けるようにすればよい。
 なお、鋳型5の反転方向は、図1に示すように、周回方向に向かって回転させて反転させる方向が好ましい。鋳型5を周回方向に回転させて反転させるようにすれば、例えば特許文献2の鋳型5を周回方向の径方向に傾動させる場合のような周回中心に対して重心がずれて回転装置全体のバランスが崩れるといった問題がない。鋳型5の周回方向の回転は順転または逆転のいずれでもよい。
《反転移動部》
 反転移動部13は、反転排出部11で反転し凝固スラグを排出した鋳型5を反転した状態のままで移動させる部位である。反転移動部13には、図1に示すように、鋳型5の上側および下側から冷媒を噴射して鋳型5を冷却する冷却装置21を設けるのが好ましい。
 具体的には、上側および下側から、ノズル等を用いて冷却水やミストや冷却ガスを反転させた鋳型5に吹き付けるとよいが、効率よく短時間で冷却するには、冷却水を上下双方から噴射して急冷するのがよい。
 本実施の形態では鋳型5を反転させ凹陥部5aを下方にしたまま冷却するので、冷却水が自然落下し、鋳型5の内部に水がそのまま残留することはない。従って、鋳型5内に冷却水が残留した場合のように、再反転後の鋳型に再び溶融スラグを流し込む際に、凝固したスラグに気孔が多数発生してコンクリート用粗骨材として適用できなくなるという問題はなくなる。また、水蒸気爆発を引き起こす危険性の問題も全くなくなり、品質のよい凝固スラグ18を安全に製造できる。
 なお、鋳型5を上側および下側の両面から冷却することで、片側のみからの冷却に比較すると冷却時間を短くでき、このため全周回長さに対する鋳型冷却の反転移動部13の長さを短くし、その分をスラグ凝固のための空冷移動部9の長さを長くすることができて、空冷移動部9の長さを、周回軌道全長の1/2超えとできるわけである。
 前述したように、空冷移動部9の長さは溶融スラグ3が所定の状態に凝固するための時間を確保する必要があるため、所定の長さが必要となるが、それ以外の周回長さにおける各部位の長さの割合を少なくできるということは、装置全体を小型化できることになる。その意味で、鋳型5を上下両面から冷却することは、装置全体の小型化に大きく寄与する。
 また、鋳型5を上下両面から冷却することで、鋳型5を満遍なく冷却できるので、冷却による熱収縮で鋳型5が変形するのを防止できるという優れた効果もある。鋳型5の変形は周回移動や反転にとって安定してこれら動作を行う上で重要な問題となるので、鋳型5の充分な冷却は本装置稼働の要である。
 なお、上述のように鋳型5の冷却は上側および下側の両面から行うのが好ましいが、本発明では、上側のみ、あるいは下側のみからの片側冷却を排除するものではない。
《再反転部》
 再反転部15は、反転移動部13を移動した反転状態にある鋳型5を凹陥部5aが上方に向くように再反転させる部位である。再反転部15は、反転移動部13の後であって、鋳型5の凹陥部5aに冷却水が残留しない状態の後に設けるのが好ましい。
 つまり、図1に示すように、冷却装置21によって冷却した後、所定の距離だけ反転移動させ、その後に再反転させるようにするのが好ましい。この理由は、冷却後に所定距離だけ反転移動させることで、反転移動中に冷却時に残留した水分が、一部は鋳型5から自然落下し、一部は高温の凝固スラグを排出した鋳型5の残留熱によって蒸発して、完全に除去されるからである。
 なお、鋳型5を再反転させる機構は特に限定されるものではなく、例えば上述した反転排出部11と同様の機構が採用可能である。また、鋳型5の再反転方向についても、図1に示すように、反転排出部11と同様に、周回方向に向かって回転させて再反転させるようにするのが好ましい。また、鋳型5の周回方向の回転は、順転あるいは逆転いずれでもよい。
《再反転移動部》
 再反転移動部17は、再反転させた鋳型5を溶融スラグ3が流し込まれる部位まで移動させる部位である。
 なお、再反転部15で鋳型5を再反転させた直後に溶融スラグ3を流し込むようにするのであれば、再反転移動部17は設けなくてもよい。
 以上のように構成された本実施の形態の凝固スラグ製造装置1を用いて凝固スラグを製造する方法の一例を、凝固スラグ製造装置1の動作と共に説明する。
 周回移動機構7を所定の速度で回転させ、溶融スラグ流入部位にて、周回している鋳型5に溶融スラグ3を流し込み、溶融スラグ3が流し込まれた鋳型5は空冷移動部9を移動し、溶融スラグ3は空冷されて凝固スラグになる。 
 反転排出部11に到着した鋳型5は、反転排出部11において周回方向に向けて回転して反転し、凝固スラグ18がピット19に排出される。凝固スラグ18を排出した鋳型5は反転状態で反転移動部13を移動し、上記移動途中において冷却装置21によって冷却される。
 反転移動部13を通過した鋳型5は再反転部15において周方向に向けて回転して凹陥部5aが上方に向くように再反転する。再反転した鋳型5には再反転直後または再反転移動部17を移動した後、再びスラグ流入部で溶融スラグ3が流し込まれる。
 以上のように、本実施の形態においては、凝固スラグ製造装置1が、複数の鋳型5を近接させ支持した状態で水平方向に周回移動させる周回移動機構7を備え、周回移動機構7が、溶融スラグ3を空冷して凝固させる空冷移動部9と、鋳型5をその凹陥部5aが下方に向くように反転させて凝固スラグ18を排出する反転排出部11と、反転した鋳型5を反転した状態のままで移動させる反転移動部13と、反転状態にある鋳型5を凹陥部5aが上方に向くように再反転させる再反転部15とを備える。これにより、鋳型を直線的に無端状に連結する従来例のようにスラグ凝固の空冷行程の必要長さによって装置の全周長さが限定されず、空冷移動部9に続く反転排出部11等の各部に必要とされる周回方向長さを除いて空冷移動部9の長さに割り当てることが可能となり、周回行程に無駄な時間が生じない。
 また、本実施の形態では、反転移動部13において鋳型5を上下両面から冷却するようにしているので、鋳型5を効率的に冷却することができ、これによって反転移動部13の長さを短くでき、その結果として周回長さを短くでき、装置全体をコンパクトにできる。
 なお、JIS A5011コンクリート用スラグ骨材-第1部:高炉スラグ骨材に規定される高炉スラグ粗骨材2005の粒径範囲のものを製造するため、スラグの凝固厚みは20~40mmにするのが好ましい。
 凝固厚みが20mm未満では、破砕後の粒度分布が細粒になり、規格を満たしにくい。
 一方、凝固厚みが40mm超になると、吸水率が高くなり1.5%を超えやすくなること、および、20mm以下にするために破砕の繰り返しが必要になり5mm未満の細粒が増え歩留が低下しやすいことが問題になる。後述するように、粗骨材の吸水率としては、1%以下が好ましい。
 なお、上記の実施の形態では、凝固スラグ製造装置1について説明したが、この凝固スラグ製造装置1で製造された板状の凝固スラグを粉砕するインパクトクラッシャーあるいはハンマークラッシャー等の衝撃破砕装置と、衝撃破砕装置で破砕された凝固スラグをコンクリート用粗骨材として使用できる20~5mmに分級する分級装置とを用いれば全体としてコンクリート用粗骨材の製造装置となる。
 なお、上述した実施の形態では、図1に示したように周回方向を右回りにする例を示したが、本発明における周回方向はこれに限られず、空冷移動部、反転排出部、反転移動部、再反転部、必要によっては再反転移動部の順に左回りであってもよい。
 また、周回の形状についても、円周状でなくても、例えば楕円、矩形等であってもよい。
 本実施の形態の凝固スラグ製造装置1による作用効果について、具体的な実施例に基づいて説明する。
 本実施例においては、鋳型5は平面視台形形状の鋳鋼製で、その厚みを45mmとし、台形外径の上底短辺を0.7m、台形外径の下底短辺の長さを1.0mとし、台形外径の高さを2.7mとした。また、鋳型5の凹陥部5aの深さを100mmとした。
 周回移動機構7は、図1に示したものと同様であり、周回搬送する搬送速度は鋳型中心で14m/minとした。
 スラグ流入部位において、鋳型5には、1360℃以上1410℃以下の溶融状態の高炉スラグを約2t/minで流入させた。
 溶融スラグ3が流し込まれた鋳型5は空冷移動部9を約120秒間{空冷移動部の長さが全周の2/3(240度)}搬送し、溶融スラグ3を空冷によって凝固スラグとした。
 反転排出部11では実施の形態で説明したように、鋳型5を、その支持軸を回転軸として周回方向に回転させて反転させ、凝固スラグ18をピット19に落下させ排出させた。 凝固スラグ18を排出した鋳型5を、反転移動部13を反転状態のまま移動させ、冷却装置21が設置されている部位にて上下両面から冷却水を噴射して急冷した。
 凝固スラグ排出直後の反転状態の鋳型5は凝固スラグ18に接触していた表面は300℃超えの高温状態であったが、反転させたまま冷却水を噴射することによって、鋳型5の表面温度を200℃以下の温度に急冷することができた。
 冷却後の鋳型5は、鋳型5の凹陥部5aを下方に向けたまま反転移動部13を搬送され、この間において水冷時に残留した水分が、鋳型5から一部は自然落下し、一部は鋳型5の残留熱によって蒸発して、完全に除去された。
 なお、鋳型の温度はスラグを反転して落下させる直前に最も高い温度になるが、そのときに放射温度計で測定した鋳型背面(反転した鋳型の上面、すなわち鋳型の裏面)の表面温度が300℃を超えると、耐力が低下して鋳型5が変形する場合があったので、散水量、散水時間を増加して冷却水噴射による鋳型の温度低下を大きくし、これによって鋳型反転直前の鋳型5の背面の表面温度を300℃以下にするのが望ましい。
 続いて、反転状態の鋳型5は、再反転部15によって再反転して、再び元の凹陥部5aが上方を向いた状態に戻された。その後、戻された鋳型に再び溶融スラグを流し込んだ。以上の工程を1回のスラグ鍋に対して5周繰り返し、30トンの溶融スラグを連続して処理した。
 反転した鋳型から落下したスラグをピット19から回収後、凝固厚み測定すると20~30mmであり、平均厚みは25mmであった。
 従来実施されていた土間に溶融スラグ3を流して数mの厚みとなる場合に比べて、空冷であっても冷却速度は大きくなり、凝固スラグ18は気孔が少ない緻密な結晶質になっていた。
 以上のように、凝固スラグ製造装置1によれば、気孔の含有率が極めて低い緻密で高品質な凝固スラグ18を効率よく且つ連続的に得ることができた。
 次に、上記のようにして製造された凝固スラグをコンクリート用粗骨材にするため、板状の凝固スラグ10tを、インパクトクラッシャーを用いて破砕した。そして、破砕したスラグを20mm、5mmの篩で分級した。これにより、20~5mmのコンクリート用粗骨材が製造できた。
 製造された粗骨材の吸水率を測定すると0.9%であり、従来の高炉スラグ粗骨材の吸水率である3~4%に比べ著しく小さく、天然骨材と同等のものが得られた。
 なお、粗骨材の吸水率としては、1%以下が好ましい。
  1 凝固スラグ製造装置
  3 溶融スラグ
  5 鋳型
  5a 凹陥部
  5b 傾斜面
  5c スラグ落下防止部位
  7 周回移動機構
  9 空冷移動部
 11 反転排出部
 13 反転移動部
 15 再反転部
 17 再反転移動部
 18 凝固スラグ
 19 ピット
 20 樋
 21 冷却装置

Claims (8)

  1.  溶融スラグが流し込まれる凹陥部を有する複数の金属製の鋳型を有し、前記凹陥部に流し込まれた溶融スラグを凝固させて凝固スラグを製造する凝固スラグ製造装置であって、
     前記複数の鋳型を近接させ支持した状態で水平方向に周回移動させる周回移動機構を備え、
     前記周回移動機構は、周回方向に順に、
     流し込まれた溶融スラグを前記凹陥部に保持した状態で前記鋳型を周回方向に移動させ、前記凹陥部に保持した溶融スラグを空冷して凝固させる空冷移動部と、
     前記鋳型を前記凹陥部が下方に向くように反転させて凝固スラグを排出する反転排出部と、
     反転した前記鋳型を反転した状態のままで移動させる反転移動部と、
     反転状態にある前記鋳型を前記凹陥部が上方に向くように再反転させる再反転部と、
    を備える凝固スラグ製造装置。
  2.  前記空冷移動部の占める長さ(角度)を、前記周回移動機構の周回軌道全長(全角360度)の1/2(180度)超え、3/4(270度)未満とする、請求項1に記載の凝固スラグ製造装置。
  3.  前記反転排出部は、前記鋳型を周回方向に向けて回転させることによって前記鋳型を反転させる、請求項1または2に記載の凝固スラグ製造装置。
  4.  前記反転移動部は、反転状態の前記鋳型の上下両面に冷媒を噴射して冷却する冷却装置を備える、請求項1~3のいずれかに記載の凝固スラグ製造装置。
  5.  前記冷却装置は、前記鋳型の背面の表面温度を300℃以下にするように前記鋳型を冷却する、請求項4に記載の凝固スラグ製造装置。
  6.  請求項1~5のいずれかに記載の凝固スラグ製造装置と、
     前記凝固スラグ製造装置によって製造された凝固スラグを破砕する衝撃破砕装置と、
     前記衝撃破砕装置によって破砕された凝固スラグを分級する分級装置と、
    を備えるコンクリート用粗骨材の製造装置。
  7.  請求項1~5のいずれかに記載の凝固スラグ製造装置を用いて凝固スラグを製造する凝固スラグ製造方法であって、
     前記鋳型の前記凹陥部に溶融スラグを流し込み、
     前記凹陥部に溶融スラグが流し込まれた前記鋳型を周回移動させながら、前記凹陥部に流し込まれた溶融スラグを空冷し、
     前記鋳型を反転させて20~40mmの厚みの板状に凝固した凝固スラグを排出する、
    凝固スラグ製造方法。
  8.  請求項7に記載の凝固スラグ製造方法によって製造された凝固スラグを破砕し、
     破砕された凝固スラグを5~20mmに分級する、
    コンクリート用粗骨材の製造方法。
PCT/JP2013/053331 2012-02-17 2013-02-13 凝固スラグ製造装置、コンクリート用粗骨材の製造装置、凝固スラグ製造方法およびコンクリート用粗骨材の製造方法 WO2013122074A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380009214.9A CN104114969B (zh) 2012-02-17 2013-02-13 凝固炉渣制造装置、混凝土用粗骨料的制造装置、凝固炉渣制造方法和混凝土用粗骨料的制造方法
JP2013530474A JP5413542B1 (ja) 2012-02-17 2013-02-13 凝固スラグ製造装置、コンクリート用粗骨材の製造装置、凝固スラグ製造方法およびコンクリート用粗骨材の製造方法
KR1020147022557A KR101587371B1 (ko) 2012-02-17 2013-02-13 응고 슬래그 제조 장치, 콘크리트용 조골재의 제조 장치, 응고 슬래그 제조 방법 및 콘크리트용 조골재의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012032834 2012-02-17
JP2012-032834 2012-02-17
JP2012-170321 2012-07-31
JP2012170321 2012-07-31

Publications (1)

Publication Number Publication Date
WO2013122074A1 true WO2013122074A1 (ja) 2013-08-22

Family

ID=48984184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053331 WO2013122074A1 (ja) 2012-02-17 2013-02-13 凝固スラグ製造装置、コンクリート用粗骨材の製造装置、凝固スラグ製造方法およびコンクリート用粗骨材の製造方法

Country Status (5)

Country Link
JP (1) JP5413542B1 (ja)
KR (1) KR101587371B1 (ja)
CN (1) CN104114969B (ja)
TW (1) TWI512257B (ja)
WO (1) WO2013122074A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080306A (ja) * 2012-10-15 2014-05-08 Jfe Steel Corp コンクリート用粗骨材の製造方法及び装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015593B2 (ja) * 2013-08-20 2016-10-26 Jfeスチール株式会社 凝固スラグ製造装置及び凝固スラグ製造方法
CN105907905B (zh) * 2016-06-22 2018-06-22 中冶东方工程技术有限公司 一种熔融炉渣余热回收装置
CN107166968B (zh) * 2017-07-21 2023-01-17 三河熙博机械制造有限公司 静密封环冷机双层送风系统
CN108675298B (zh) * 2018-06-23 2024-01-12 石嘴山市华兴源机械设备有限公司 环式电石出炉破碎一体机
KR102163183B1 (ko) 2018-12-03 2020-10-08 주식회사 포스코 슬래그 처리 장치
KR102201227B1 (ko) 2019-07-30 2021-01-11 주식회사 제이피에스 단위 고형화를 통한 슬래그 처리 시스템
CN113620631B (zh) * 2021-07-27 2022-11-01 湖北大学 一种用于混凝土大骨料生产熔炼过程均匀成型装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221295A (en) * 1975-08-12 1977-02-17 Kawasaki Heavy Ind Ltd Treating method for molten slag
JPS53129124A (en) * 1977-04-18 1978-11-10 Nagata Seisakusho Co Ltd Circular casting machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221595A (en) * 1975-08-13 1977-02-18 Hitachi Ltd Failure fuel detecting method
JPS5332828A (en) 1976-09-08 1978-03-28 Osaka Seikou Kk Method and device for disposing of iron metallurgy dross
JP3968995B2 (ja) * 2000-02-25 2007-08-29 Jfeスチール株式会社 粗粒硬質水砕スラグの製造方法
JP2003207281A (ja) * 2002-01-18 2003-07-25 Jfe Steel Kk スラグの連続凝固装置の操業方法
JP4822720B2 (ja) * 2005-03-17 2011-11-24 Jx日鉱日石金属株式会社 アノード鋳造方法及びアノード鋳造装置
JP5544684B2 (ja) * 2008-03-20 2014-07-09 Jfeスチール株式会社 溶融スラグの冷却処理装置および冷却処理方法
CN101259991B (zh) * 2008-05-09 2011-05-18 马鞍山钢铁股份有限公司 高温液态钢渣风碎水冷粒化方法、装置及其粒化钢渣和用途
CN201981212U (zh) * 2011-01-12 2011-09-21 宝山钢铁股份有限公司 一种高炉炉渣处理系统
CN102268495B (zh) * 2011-07-20 2013-01-02 北京中冶设备研究设计总院有限公司 高炉炉渣粒化与余热利用工艺技术与装备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221295A (en) * 1975-08-12 1977-02-17 Kawasaki Heavy Ind Ltd Treating method for molten slag
JPS53129124A (en) * 1977-04-18 1978-11-10 Nagata Seisakusho Co Ltd Circular casting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080306A (ja) * 2012-10-15 2014-05-08 Jfe Steel Corp コンクリート用粗骨材の製造方法及び装置

Also Published As

Publication number Publication date
KR20140112080A (ko) 2014-09-22
KR101587371B1 (ko) 2016-01-20
TW201403015A (zh) 2014-01-16
JP5413542B1 (ja) 2014-02-12
TWI512257B (zh) 2015-12-11
CN104114969A (zh) 2014-10-22
JPWO2013122074A1 (ja) 2015-05-11
CN104114969B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5413542B1 (ja) 凝固スラグ製造装置、コンクリート用粗骨材の製造装置、凝固スラグ製造方法およびコンクリート用粗骨材の製造方法
CN103261443B (zh) 冶金渣的粒化
JP5454747B1 (ja) ショットブラスト用研削材及びその製造方法
EA022193B1 (ru) Сухая грануляция металлургического шлака
JP4448945B2 (ja) 鋳型砂とその製造方法
JP6318982B2 (ja) 凝固スラグの熱回収方法および熱回収システム
JP5075902B2 (ja) 鋳型砂とその製造方法
JP5998845B2 (ja) 凝固スラグの熱回収システムおよび熱回収方法
JP5994558B2 (ja) コンクリート用粗骨材の製造方法及び装置
EA023119B1 (ru) Способ и устройство для изготовления стекловидного шлака
JP6015593B2 (ja) 凝固スラグ製造装置及び凝固スラグ製造方法
TWI613178B (zh) 凝固熔渣的製造方法、凝固熔渣、混凝土用粗骨材的製造方法以及混凝土用粗骨材
JP2004237288A (ja) 人工焼結砂およびその製造方法
JP5892143B2 (ja) 凝固スラグ製造装置、コンクリート用粗骨材の製造装置、凝固スラグ製造方法、コンクリート用粗骨材の製造方法
US3382911A (en) Casting ferroalloys
JP2004277191A (ja) コンクリート用粗骨材
JP2003221611A (ja) スラグの鋳造方法および装置
JP7173425B1 (ja) 粒状凝固スラグの製造方法及び製造設備
WO2022270480A1 (ja) 粒状凝固スラグの製造方法及び製造設備
JP5062604B2 (ja) 連続鋳造用フラックスの製造方法
RU2539234C2 (ru) Установка для получения шлакового щебня из расплава
JP2004315296A (ja) Cr含有合金鋼精錬スラグの粉化防止方法
JPS58179535A (ja) 減圧鋳造用鋳型
JPH0148219B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013530474

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147022557

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13748476

Country of ref document: EP

Kind code of ref document: A1