WO2013121879A1 - 含窒素環化合物の製造方法及び含窒素環化合物 - Google Patents

含窒素環化合物の製造方法及び含窒素環化合物 Download PDF

Info

Publication number
WO2013121879A1
WO2013121879A1 PCT/JP2013/051983 JP2013051983W WO2013121879A1 WO 2013121879 A1 WO2013121879 A1 WO 2013121879A1 JP 2013051983 W JP2013051983 W JP 2013051983W WO 2013121879 A1 WO2013121879 A1 WO 2013121879A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nitrogen
atom
reaction
iodide
Prior art date
Application number
PCT/JP2013/051983
Other languages
English (en)
French (fr)
Inventor
石原 一彰
ムハメット ウヤヌク
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Publication of WO2013121879A1 publication Critical patent/WO2013121879A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a nitrogen-containing ring compound, particularly a 4-membered to 6-membered nitrogen-containing ring compound such as azetidine, pyrrolidine, piperidine, and lactam.
  • a nitrogen-containing ring compound particularly a 4-membered to 6-membered nitrogen-containing ring compound such as azetidine, pyrrolidine, piperidine, and lactam.
  • Nitrogen-containing heterocyclic compounds such as azetidine, pyrrolidine, and piperidine are not only important skeletons of various natural products, pharmaceuticals, and physiologically active substances, but also key skeletons of asymmetric catalysts in many organic synthesis reactions, Its efficient asymmetric synthesis is extremely important. To date, enormous numbers of reports have been made on the methods for producing nitrogen-containing heterocyclic compounds, whether asymmetric or non-asymmetric.
  • Non-Patent Document 1 describes an intramolecular cyclized amination reaction using tert-butyl hypoiodite prepared in situ.
  • Non-Patent Document 2 describes an intramolecular cyclization reaction of an optically active amino acid derivative using potassium hexamethyldisilazide (KHMDS).
  • KHMDS potassium hexamethyldisilazide
  • Non-Patent Document 3 describes an intramolecular amination reaction using a gold catalyst.
  • Non-Patent Document 4 describes an intramolecular allylation reaction using a ruthenium complex.
  • Non-Patent Document 5 describes a method for synthesizing azetidine, pyrrolidine, and indoline by intramolecular oxidative amination reaction of picolinamide using palladium as a catalyst in the presence of a stoichiometric amount of hypervalent iodine. ing.
  • Non-Patent Document 6 the present inventors have already used an optically active spiro-quaternary ammonium iodide derived from binaphthyl as a catalyst precursor, hydrogen peroxide solution or tert-butyl hydroperoxide.
  • Asymmetric synthesis of 2-acyl-2,3-dihydrobenzofuran has been successfully achieved using a chiral iodate catalyst prepared in situ from (TBHP).
  • transition metal rare metal
  • ruthenium catalyst ruthenium catalyst
  • palladium catalyst ruthenium catalyst
  • transition metals is disadvantageous from an economic point of view, and it has been desired not to use them because of their scarce value and environmental concerns.
  • Non-Patent Document 1 the production method using tert-butyl hypoiodite described in Non-Patent Document 1 has a wide application range from a three-membered ring to a six-membered ring, but asymmetric synthesis has not been achieved. In addition, asymmetric synthesis has not been achieved in the methods described in Non-Patent Documents 4 and 5. Therefore, an optically active nitrogen-containing ring compound could not be obtained by the methods described therein. Furthermore, in the production method using potassium hexamethyldisilazide (KHMDS) described in Non-Patent Document 2, raw materials are limited to available amino acids, and the range of applicable compounds that can be produced is limited.
  • KHMDS potassium hexamethyldisilazide
  • An object of the present invention is to solve the above-described problems and to provide a method capable of producing various nitrogen-containing ring compounds without using a transition metal catalyst.
  • the present inventors By using an iodate catalyst prepared in situ from the iodide salt and a co-oxidant, the present inventors have prepared an amide compound as a molecule using the already developed iodide salt as a catalyst precursor. It has been found that various nitrogen-containing ring compounds can be obtained by an internal oxidative cyclization reaction, and the present invention has been completed.
  • a method for producing a nitrogen-containing ring compound represented by the following general formula (2): (In the formula, Ar is an aromatic ring, R 2 is an elementary atom or a monovalent hydrocarbon group, X is two H or O, and PG is a nitrogen atom when X is two H) A protective group having a sulfonyl group or a carbonyl group bonded to, or a protective group for a nitrogen atom when X is O, n 0 to 2)
  • nitrogen-containing ring compound of the present invention is represented, for example, by the following general formula (4).
  • an amide compound is subjected to intramolecular oxidative cyclization reaction in the presence of an iodide salt and a co-oxidant without using a transition metal catalyst, and the nitrogen-containing ring compound is converted into a nitrogen-containing ring compound.
  • an amide compound is subjected to intramolecular oxidative cyclization reaction in the presence of an iodide salt and a co-oxidant without using a transition metal catalyst, and the nitrogen-containing ring compound is converted into a nitrogen-containing ring compound.
  • various four-membered to six-membered nitrogen-containing ring compounds that is, azetidine, pyrrolidine, piperidine, and lactam, as well as 2-acylazetidine, 2-acylpyrrolidine, 2 -It has an effect that has never been obtained so far that acylpiperidine, 2-acyllactam, and the like can be produced.
  • the nitrogen-containing ring compound of the present invention is a novel compound as a 4- to 6-membered nitrogen-containing ring compound and can be useful as a pharmaceutical product, an intermediate thereof, a catalyst, etc. Can be used in the production of those analogs useful as.
  • the amide compound used is represented by the following general formula (2).
  • Ar is an aromatic ring
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group
  • X is two H or O
  • PG is a nitrogen atom when X is two H
  • a protective group having a sulfonyl group or a carbonyl group bonded to, or a protective group for a nitrogen atom when X is O, n 0 to 2)
  • Ar may be either an aryl group in which a ring is composed of only carbon atoms, or a heteroaryl group containing an element other than a carbon atom in the ring structure.
  • the aryl group may be a phenyl group, a naphthyl group in which a plurality of rings are condensed, or a biphenyl group in which a plurality of rings are connected. Of these, a phenyl group is particularly preferred as the aryl group.
  • heteroaryl group examples include heteroaryl groups containing N, S, or O as a hetero atom.
  • the heteroaryl group is preferably imidazole, benzimidazole, thiazole, triazole, tetraazole or the like that has no substituent or one or more substituents. Of these, those having an imidazole ring represented by the following general formula (6) are preferred.
  • R 1 is a hydrogen atom or a monovalent hydrocarbon group.
  • Examples of the monovalent hydrocarbon group include, but are not limited to, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and a cycloalkyl group. Any hydrocarbon group may have a substituent. Examples of the substituent include an amino group, a halogen atom, a nitro group, a cyano group, an alkoxy group, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, and an aryl group. In addition, as a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned. Examples of the alkoxy group include a methoxy group and an ethoxy group.
  • R 1 an aryl group or a heteroaryl group is preferably used.
  • a phenyl group is preferable because it can be easily produced.
  • a hydrogen atom, an alkyl group, or an aryl group is preferably used.
  • the alkyl group is a linear or branched alkyl group and is not particularly limited.
  • a linear alkyl group methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, A tetradecyl group, a pentadecyl group, an icosyl group, etc. are mentioned.
  • branched alkyl groups include isopropyl, isobutyl, sec-butyl, tert-butyl, 2-methyl-1-butyl, 1-propylbutyl, sec-amyl, isoamyl, tert-amyl, neopentyl Group, 3-pentyl group, 1-butylpentyl and the like.
  • PG is not particularly limited as long as it is a protecting group capable of protecting a highly reactive amine in the oxidative cyclization reaction.
  • PG includes 3,5-diphenylmethoxyphenyl group, 4-methoxyphenyl group, mesyl group (Ms), tosyl group (Ts), 2- Examples thereof include a nitrobenzenesulfonyl group (Ns) and a piperidyl group, and a mesyl group (Ms), a tosyl group (Ts), and a 2-nitrobenzenesulfonyl group (Ns) are particularly preferable.
  • X is an amide compound in which O is O (lactam cyclization reaction)
  • a mesyl group (Ms) and a tosyl group (Ts) are preferred.
  • a 2-nitrobenzenesulfonyl group (Ns) and a tosyl group (Ts) are preferable.
  • a protective group having a sulfonyl group or a carbonyl group bonded to a nitrogen atom is used as PG.
  • PG a protective group having a sulfonyl group or a carbonyl group bonded to a nitrogen atom
  • Ms mesyl group
  • Ts tosyl group
  • Boc tert-butoxycarbonyl group
  • 2-nitrobenzenesulfonyl group Ns
  • benzyloxycarbonyl group (Cbz) 9-fluorene Nylmethyloxycarbonyl group (Fmoc), 2,2,2-trichloroethoxycarbonyl group (Troc), allyloxycarbonyl group (Alloc), trifluoroacetyl group (CF 3 CO-), phthaloyl group (Pht), acetyl group (Ac), pivaloyl group (Piv) and the like.
  • X is two H or O. That is, the case where X is two Hs indicates that in the general formula (2), two Hs are separately bonded to the two bonds of X.
  • an amide compound in which X is 2 H nitrogen-containing heterocyclic compounds such as azetidine, pyrrolidine, and piperidine are obtained.
  • an amide compound in which X is O Lactams (or azetidin-4-one, pyrrolidin-5-one, and piperidin-6-one) such as membered rings, five-membered rings, and six-membered rings are obtained.
  • N is an arbitrary integer from 0 to 2.
  • n a four-membered nitrogen-containing ring compound is obtained.
  • examples of the iodide salt used in the present invention include ammonium iodide, phosphonium iodide, and alkali metal iodide.
  • the iodide salt when an achiral iodide salt is used as the iodide salt, the resulting compound is a racemic compound.
  • a chiral iodide salt when a chiral iodide salt is used, an optically active compound can be obtained. Therefore, various optically active nitrogen-containing ring compounds can be produced by using a chiral iodide salt.
  • tetraalkylammonium iodide the four alkyls in the tetraalkyl may be all the same, two or three may be the same or all may be different
  • Tetraarylammonium iodide four arylaryls in tetraaryl may all be the same, two or three may be the same or all different
  • tetraarylalkylammonium iodide The four arylalkyls in tetraarylalkyl may all be the same, two or three may be the same, or all may be different).
  • ammonium iodides include tetramethylammonium iodide, tetraethylammonium iodide, tetrapropylammonium iodide, tetrabutylammonium iodide, tetrapentylammonium iodide, tetrahexylammonium iodide, tetraheptylammonium iodide, tetran -Octylammonium iodide, tetraoctadecylammonium iodide, ethyltrimethylammonium iodide, ethyltripropylammonium iodide, trimethylphenylammonium iodide, triethylammonium iodide, triethyltrimethylammonium iodide, triethyltrimethylammonium io
  • tetraalkylammonium iodides having the same four alkyl groups are preferred. Particularly preferred are tetramethylammonium iodide, tetraethylammonium iodide, tetrapropylammonium iodide, tetrabutylammonium iodide, tetrapentylammonium iodide, and tetrahexylammonium iodide, most preferably tetrabutylammonium iodide.
  • Ar 1 and Ar 2 are each independently an aryl group which may have a substituent, and the substituent is substituted with a halogen atom, an alkyl group substituted with a halogen atom, or a halogen atom.
  • aryl group examples include a phenyl group, a naphthyl group, an anthracenyl group, and a phenanthrenyl group.
  • a phenyl group is particularly preferred because of its high activity and asymmetric yield.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom is preferable because a high activity and an asymmetric yield are obtained.
  • the alkyl group is a straight-chain or branched alkyl group and is not particularly limited.
  • a linear alkyl group methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, A tetradecyl group, a pentadecyl group, an icosyl group, etc. are mentioned.
  • isopropyl group, isobutyl group, sec-butyl group is tert-butyl group, 2-methyl-1-butyl group, 1-propylbutyl, sec-amyl group, isoamyl group, tert-amyl group, neopentyl Group, 3-pentyl group, 1-butylpentyl and the like.
  • a linear alkyl group is preferable, a linear alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group is particularly preferable.
  • examples of the alkenyl group include a vinyl group, an allyl group, and an isopropenyl group.
  • examples of the alkynyl group include an ethynyl group and a prop-2-yn-1-yl group.
  • examples of the cycloalkyl group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • Ar 1 and Ar 2 are preferably a phenyl group substituted with a halogen atom, a phenyl group having an alkyl group substituted with a halogen atom, or a phenyl group substituted with an alkyl group substituted with a halogen atom.
  • the number of halogen atoms to be substituted is not particularly limited.
  • an alkyl group substituted with a halogen atom it is preferable that all hydrogen atoms of the alkyl group are substituted with halogen atoms.
  • the alkyl group is a methyl group, it is preferably a trifluoromethyl group.
  • the number of halogen atom-substituted alkyl groups substituted in the aryl group is not particularly limited, but is preferably 1 to 3, more preferably 1 or 2, particularly 2.
  • the number of aryl groups substituted with the halogen atom-substituted alkyl group in the aryl group is not particularly limited, but is preferably 1 to 3, more preferably 1 or 2, and particularly 2.
  • Examples of the aryl group having an alkyl group substituted with a halogen atom used herein include 4- (CF 3 ) C 6 H 4 —, 3,5- (CF 3 ) 2 C 6 H 3 —, 2, 6- (CF 3 ) 2 C 6 H 3 —, 2,4,6- (CF 3 ) 3 C 6 H 2 —, and 2,3,4,5,6- (CF 3 ) 5 C—, etc. Is mentioned. Of these, 3,5- (CF 3 ) 2 C 6 H 3 — is particularly preferred because of its high activity and good asymmetric yield.
  • examples of the phenyl group having a phenyl group substituted with an alkyl group substituted with a halogen atom used herein include 3,5- [3,5- (CF 3 ) 2 C 6 H 3 ] 2.
  • C 6 H 3- 3,5- [4- (CF 3 ) C 6 H 4 ] 2 C 6 H 3- , 3,5- [2,4,6- (CF 3 ) 3 C 6 H 2 ] 2 C 6 H 3 —, 4- [4- (CF 3 ) C 6 H 4 ] C 6 H 4 —, 4- [3,5- (CF 3 ) 2 C 6 H 3 ] C 6 H 4 —, 4- [2,4,6- (CF 3 ) 3 C 6 H 2 ] C 6 H 4 —, 2,4,6- [3,5- (CF 3 ) 2 C 6 H 3 ] 3 C 6 H 2- , 2,4,6- [4- (CF 3 ) C 6 H 4 ] 3 C 6 H 2 —, and 2,4,6- [2,4,6- (CF 3 ) 3
  • Ar 1 and Ar 2 may be different from each other or the same. Preferably, the same is preferable because the activity and the asymmetric yield are good.
  • the combination of axial asymmetry in the two binaphthyl portions may be either (R, R) or (S, S).
  • the ammonium salt represented by the general formula (5) is a chiral salt, and is preferable in that it can asymmetrically oxidize an amide compound and has a particularly high catalytic activity. Therefore, it is suitable for producing an optically active nitrogen-containing ring compound.
  • Phosphonium iodide is the same as ammonium iodide.
  • Examples of the phosphonium iodide include tetraphenylphosphonium iodide, methyltriphenylphosphonium iodide, and tributylmethylphosphonium iodide. Of these, tetraphenylphosphonium iodide and methyltriphenylphosphonium iodide are particularly preferred.
  • alkali metal iodide examples include potassium iodide and sodium iodide.
  • potassium iodide is preferable because of its excellent reactivity.
  • a cyclic ether such as a crown ether capable of incorporating an alkali metal ion in order to increase the solubility.
  • an organic peroxide is preferable.
  • the organic peroxide include tert-butyl hydroperoxide (TBHP), di-tert-butyl peroxide, tert-amyl hydroperoxide, di-tert-amyl peroxide, cumene hydroperoxide, dicumyl peroxide, tert-butyl peroxide.
  • TBHP tert-butyl hydroperoxide
  • di-tert-butyl peroxide tert-amyl hydroperoxide
  • di-tert-amyl peroxide cumene hydroperoxide
  • dicumyl peroxide tert-butyl peroxide
  • examples include mill peroxide, tert-butyl peroxypivalate, benzoyl peroxide, lauroyl peroxide, ethylbenzene hydroperoxide, peracetic acid, and perbenzoic acid.
  • These cooxidants may be used alone or in combination of two or more
  • TBHP tert-butyl hydroperoxide
  • TBHP is relatively safe and inexpensive, and the only by-products are tert-butyl alcohol and water. Therefore, the load on the environment is greatly reduced.
  • the solvent is not particularly limited, and any conventionally known solvent can be used.
  • any conventionally known solvent can be used.
  • water, an ether solvent, an aromatic hydrocarbon solvent, an ester solvent, a nitrile solvent, or the like can be given.
  • suitable solvents include cyclopentyl methyl ether (CPME), toluene, diethyl ether, methyl t-butyl ether (MTBE), or o-xylene.
  • CPME cyclopentyl methyl ether
  • toluene diethyl ether
  • MTBE methyl t-butyl ether
  • o-xylene o-xylene.
  • an ether solvent particularly methyl t-butyl ether (MTBE) is preferable because of its high activity and asymmetric yield.
  • the solvent any of these may be used alone, or a mixture of two or more may be used.
  • a solvent in which water is used as a co-solvent and mixed with another solvent is preferable because the catalytic activity and selectivity are improved.
  • the ratio of water to be mixed as a co-solvent is preferably 1:10 to 10: 1, particularly 1: 5 in volume ratio of water to other solvent.
  • the reaction temperature may be appropriately set in consideration of the reaction rate, the asymmetric yield, etc., and can be set, for example, in the range of 0 to 80 ° C. It is preferable to set in the range of room temperature to 50 ° C. from the viewpoint of cost.
  • the reaction time may be appropriately set according to the reaction temperature, chemical yield, etc., but is usually from several hours to several tens of hours. Preferably, it is 1 to 50 hours, particularly 2 to 30 hours.
  • the amount of quaternary ammonium iodide used is appropriately selected depending on the type of amide compound, reaction temperature, reaction time, etc., and is not particularly limited, but is 1 to 30 mol%, preferably 5 to 20 mol, based on the amide compound. %, In particular 5 to 10 mol%. If it is less than this range, the activity is inferior. On the other hand, if it is more than this range, the reactivity is not improved and it is uneconomical.
  • the amount of the co-oxidant to be used is not particularly limited, but is appropriately selected according to the type of amide compound, the type of quaternary ammonium iodide, etc., and is not particularly limited, but is preferably 1.0 with respect to the amide compound. ⁇ 5 equivalents, more preferably 1-2 equivalents.
  • the amount of the solvent to be used is not particularly limited, but from the viewpoint of reaction efficiency, for example, a range in which the concentration of the amide compound is 0.001 to 0.5 mol / L, particularly 0.01 to 0.02 mol / L. It is preferable that
  • the atmosphere of the reaction system is not particularly limited, but can be performed under atmospheric pressure.
  • a generally known isolation method may be applied to isolate the target nitrogen-containing ring compound. For example, it can be easily isolated by neutralizing an oxidizing agent and the like, followed by extraction and column chromatography. The obtained nitrogen-containing ring compound can be purified by recrystallization or the like, if necessary.
  • the nitrogen-containing ring compound that can be produced as described above is represented by the following general formula (1).
  • Ar is an aromatic ring
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group
  • X is two H or O
  • PG is a nitrogen atom when X is two H
  • a protective group having a sulfonyl group or a carbonyl group bonded to, or a protective group for a nitrogen atom when X is O, n 0 to 2)
  • the obtained nitrogen-containing ring compounds are azetidine, pyrrolidine, piperidine, and lactam, particularly 2-acylazetidine, 2-acylpyrrolidine, 2-acylpiperidine, 2-acyllactam, and the like.
  • the resulting nitrogen-containing ring compound represented by the general formula (1) is an optically active compound.
  • the nitrogen-containing ring compound obtained by the present invention is a novel compound represented by the following general formula (4).
  • the resulting nitrogen-containing ring compound represented by the general formula (4) is an optically active compound.
  • the novel compound can be suitably produced by using a compound represented by the following general formula (3) as an amide compound.
  • R 1 and R 2 are each independently a hydrogen atom or a monovalent hydrocarbon group, X is two H or O, and PG is nitrogen when X is two H
  • a protecting group having a sulfonyl group or a carbonyl group bonded to an atom, or a protecting group for a nitrogen atom when X is O, and n 0 to 2)
  • Ar, R 1 , R 2 , PG, X, and n in the above formulas and preferred embodiments are the same as those in the amide compound.
  • an iodate catalyst is prepared in situ from this iodide salt and a co-oxidant using an iodide salt, and an amide serving as a starting material in the presence of this catalyst.
  • a compound is oxidized, its intramolecular oxidative cyclization reaction can be carried out.
  • the iodide ion I ⁇ ( ⁇ 1 monovalent iodine) of the iodide, which is the catalyst precursor is oxidized to a +1 valent hypoiodite anion (IO ⁇ ) by the co-oxidant.
  • IO ⁇ +1 valent hypoiodite anion
  • O IO ⁇
  • Synthesis Example 1 (Synthesis of amide derivative 1a): In a reactor, a solution of 5-oxo-5-phenylpentanoic acid (288 mg, 1.5 mmol) and dichloromethane (15 mL) was added to dicyclohexylcarbodiimide (DCC, 340 mg, 1.65 mmol) and 1-hydroxybenzotriazole (HOBt, 223 mg, 1.65 mmol) was added and stirred at room temperature for 10 minutes. Thereafter, the reaction vessel was cooled to 0 ° C., aniline (278 ⁇ L, 3 mmol) was added, and the mixture was stirred at 0 ° C. for 12 hours.
  • DCC dicyclohexylcarbodiimide
  • HOBt 1-hydroxybenzotriazole
  • Synthesis Example 2 (Synthesis of amide derivative 1b): The reactor was charged with 1-phenylimidazole (696 ⁇ L, 5.5 mmol) and tetrahydrofuran as a solvent (35 mL) to form a solution. Thereafter, this solution was brought to ⁇ 78 ° C. using dry ice, and a hexane solution (3.8 mL, 1.6 M, 6 mmol) of n-butyllithium (n-BuLi) was added, followed by stirring for 5 minutes. Next, the dry ice was removed, and the temperature of the reaction system was set to room temperature, followed by stirring for 1 hour. The mixture was then cooled again to -78 ° C.
  • Synthesis Example 5 (Synthesis of amide derivative 1e): N- (4-methoxyphenyl) -5- (1-methyl-1H-imidazole) was prepared in the same manner as in Synthesis Example 2 except that 1-methylimidazole was used instead of 1-phenylimidazole. 2-yl) -5-oxopentamide (1e) was obtained as a white solid (yield 67%). Analytical data of the obtained amide derivative (1e) are shown below.
  • Synthesis Example 6 (Synthesis of amide derivative 3a): A reaction vessel containing a solution of carboxylic acid S1 (774.8 mg, 3 mmol) in DMF (60 mL) was placed in an ice bath and cooled to 0 ° C., and NaH (312 mg, 7.8 mmol) was added. The reaction vessel was removed from the ice bath and stirred for 1 hour while slowly warming to room temperature. To the obtained reaction solution, MeI (486 ⁇ L, 7.8 mmol) was added at room temperature and stirred for 12 hours. After completion of the reaction, water was added to the reaction solution, and the reaction solution was extracted twice with ethyl acetate.
  • MgSO 4 anhydrous sodium sulfate
  • Synthesis Example 7 (Synthesis of amide derivative 3b): 4-methyl-N- (methylsulfonyl) -5-oxo-5- (1-phenyl-1H) was prepared in the same manner as in Synthesis Example 6 except that methanesulfonamide was used instead of 4-methylbenzenesulfonamide. -Imidazol-2-yl) pentamide (3b) was obtained as a white solid (yield 26%). The analytical data of the obtained amide derivative (3b) are shown below.
  • Synthesis Example 8 (Synthesis of amide derivative 5a): The reactor was charged with 2-piperidone (550 mg, 5 mmol) and tetrahydrofuran (10 mL) as a solvent. Thereafter, this solution was brought to ⁇ 78 ° C. using dry ice, and a hexane solution (3.4 mL, 1.6 M, 5.5 mmol) of n-butyllithium (n-BuLi) was added dropwise and stirred for 30 minutes. did.
  • Synthesis Example 9 (Synthesis of amide derivative 5b): 4-methyl-N- (5-oxo-5- (1) was prepared in the same manner as in Synthesis Example 8 except that 4-methylbenzene-1-sulfonyl chloride was used instead of 2-nitrobenzene-1-sulfonyl chloride. -Phenyl-1H-imidazol-2-yl) pentyl) benzenesulfonamide (5b) was obtained as a white solid (yield 16%). Analytical data of the obtained amide derivative (5b) are shown below.
  • Synthesis Example 10 (Synthesis of amide derivative 7): A reaction vessel containing a solution of lithium diisopropylamide (LDA, approximately 6.5 mmol) prepared in advance in tetrahydrofuran (25 mL) was cooled to ⁇ 78 ° C. using dry ice, and S5b (5 mmol, 1.27 g) and hexamethylphosphoric acid were cooled. A solution of triamide (HMPA, 870 ⁇ L, 5 mmol) in tetrahydrofuran (30 mL) was added by cannula and reacted at ⁇ 78 ° C. with stirring.
  • LDA lithium diisopropylamide
  • HMPA triamide
  • Synthesis Example 11 (Synthesis of amide derivative 9): 2-Nitro-N- (4-oxo-4- (1-phenyl-1H-imidazole-2-) was prepared in the same manner as in Synthesis Example 8 except that pyrrolidin-2-one was used instead of 2-piperidone. Yl) butyl) benzenesulfonamide (9) was obtained as a white solid (39% yield). Analytical data of the obtained amide derivative (9) are shown below.
  • Synthesis Example 12 (Synthesis of amide derivative 11): 2-Nitro-N- (6-oxo-6- (1-phenyl-1H-imidazole-2-) was prepared in the same manner as in Synthesis Example 8, except that azepan-2-one was used instead of 2-piperidone. Yl) hexyl) benzenesulfonamide (11) was obtained as a white solid (yield 6%). Analytical data of the obtained amide derivative (11) are shown below.
  • Synthesis Example 13 (Synthesis of amide derivative 13): N- (3,5-dimethoxyphenyl) -4-oxo-4- (1-phenyl-1H--) was synthesized in the same manner as in Synthesis Example 3 except that succinic anhydride was used in place of glutaric anhydride. Imidazole-2-yl) butanamide (13) was obtained as a white solid (yield 21%). Analytical data of the obtained amide derivative 13 are shown below.
  • Synthesis Example 14 (Synthesis of amide derivative 15): Except that 3-allyl-2-piperidone was used instead of 2-piperidone, and 4-nitrobenzene-1-sulfonyl chloride (4-NsCl) was used instead of 2-nitrobenzene-1-sulfonyl chloride (NsCl), In the same manner as in Synthesis Example 8, 3-allyl-1-((4-nitrophenyl) sulfonyl) piperidin-2-one (S15) was obtained as a white solid (yield 53%).
  • Synthesis Example 15 (Synthesis of amide derivative 17): The reactor was charged with 1-phenylimidazole (1.44 g, 10 mmol) and tetrahydrofuran (20 mL) as a solvent. Thereafter, this solution was brought to ⁇ 78 ° C. using dry ice, and a hexane solution (6.9 mL, 1.6 M, 11 mmol) of n-butyllithium (n-BuLi) was added dropwise, followed by stirring for 30 minutes.
  • the resulting solution was added by cannula and allowed to react for 12 hours with stirring.
  • the reaction was terminated by adding aqueous ammonium chloride solution.
  • the reaction product contained in the obtained reaction solution was extracted with ethyl acetate.
  • An excess amount of anhydrous sodium sulfate was added to the collected organic layer, and the solvent was distilled off under reduced pressure to obtain a concentrate containing a crude product.
  • the obtained compound was directly used in the next reaction.
  • the reactor was charged with the previously obtained compound and dichloromethane (1 mL) as a solvent. Thereafter, trifluoroacetic acid (30 ⁇ L, 0.40 mmol) was added to the reaction solution, and the mixture was reacted for 12 hours while stirring at room temperature.
  • the reaction was terminated by adding aqueous sodium bicarbonate solution.
  • the reaction product contained in the obtained reaction solution was extracted with chloroform.
  • An excess amount of anhydrous sodium sulfate was added to the collected organic layer, and the solvent was distilled off under reduced pressure to obtain a concentrate containing a crude product.
  • -Imidazol-2-yl) pentyl) -4-nitrobenzenesulfonamide was obtained as a white solid (total yield of 2 steps 16%).
  • Analytical data of the obtained amide derivative 17 are shown below.
  • Synthesis Example 16 (Synthesis of amide derivative 19): The prepared tetrahydrofuran solution of lithium diisopropylamide (15 mmol) was accommodated in the reactor. Thereafter, this solution was brought to ⁇ 78 ° C. using dry ice, cyclohexanecarbonitrile (1.8 mL, 15 mmol) was added, and the mixture was reacted for 1 hour with stirring. Then, ethyl 3-bromopropionate (2.1 mL, 16.5 mmol) was added to the mixture at ⁇ 78 ° C., the dry ice bath was removed, the reaction solution was brought to room temperature, and reacted for 12 hours with stirring. The reaction was terminated by adding aqueous ammonium chloride solution.
  • the reaction product contained in the obtained reaction solution was extracted with ethyl acetate. An excess amount of anhydrous sodium sulfate was added to the collected organic layer, and the solvent was distilled off under reduced pressure to obtain a concentrate containing a crude product.
  • the obtained compound was directly used in the next reaction. Thereafter, the compound obtained previously and dichloromethane (5 mL) as a solvent were accommodated. The solution was brought to 0 ° C. using ice, and Me (OMe) NH ⁇ HCl (1.2 g, 12 mmol) and AlMe 3 (1M hexane solution, 12 mL, 12.0 mmol) prepared in another container and dichloromethane as a solvent.
  • the reaction product contained in the obtained reaction solution was extracted with ethyl acetate. An excess amount of anhydrous sodium sulfate was added to the collected organic layer, and the solvent was distilled off under reduced pressure to obtain a concentrate containing a crude product. The obtained compound was directly used in the next reaction.
  • the reactor was charged with the compound obtained above and dichloromethane (3 mL) as a solvent, to which iodobenzene diacetate (0.11 g, 0.34 mmol) and 2,2,6,6-tetramethyl were added.
  • Piperidine-1-oxyl radical (TEMPO, 4.4 mg, 0.028 mmol) was added in that order, and the mixture was allowed to react at room temperature with stirring until no alcohol was present.
  • the reaction was terminated by adding aqueous sodium thiosulfate solution.
  • the reaction product contained in the obtained reaction solution was extracted with chloroform. An excess amount of anhydrous sodium sulfate was added to the collected organic layer, and the solvent was distilled off under reduced pressure to obtain a concentrate containing a crude product.
  • the analytical data of the obtained amide derivative 19 are shown below.
  • Example 3 Production of nitrogen-containing ring compound by intramolecular oxidative aminocyclization reaction using 1a
  • 1a (26.7 mg, 0.1 mmol)
  • 1a as a starting material
  • 10 mol% tetrabutylammonium iodide (3.7 mg, 0.01 mmol) and the solvent ethyl acetate (5 ml) were added, and then 2 equivalents to 1a (5.5 M-decane solution, manufactured by Aldrich) 36.4 ⁇ L, 0.2 mmol) of tert-butyl hydroperoxide (TBHP) was added. Then, it stirred for 24 hours and reacted.
  • TBHP tert-butyl hydroperoxide
  • Examples 3-2 to 3-6 were carried out in the same manner as in the above Example, except that the above Example was treated as Example 3-1, except for the reaction conditions shown in Table 1 below.
  • Example 4 Production of nitrogen-containing ring compound by intramolecular oxidative aminocyclization reaction using 1b to 11
  • the amide derivative obtained in Example 2 was used as a substrate compound in the form of quaternary ammonium.
  • Tetrabutylammonium iodide (Bu 4 N + I ⁇ ) 20 mol% was used as a salt, and in the same manner as in Example 3-1, a corresponding nitrogen-containing ring compound was produced as shown in the following formula. The yield was measured.
  • the products corresponding to 1b, 1c, 1d, 1e, 5a, 5b, 7, 9, 11 are 2b, 2c, 2d, 2e, 6a, 6b, 8, 10, and 12, respectively.
  • Each reaction time and chemical yield are shown in the following formula.
  • Example 5 Examination of catalytic activity of quaternary ammonium iodide Using the chiral quaternary ammonium iodides (A) to (D) prepared in Example 1 above as catalyst precursors, As shown in Table 2 below, a 5-membered lactam was produced from the amide compound 1b produced in Example 2, and the catalytic activity was examined.
  • Example 6 Examination of reaction solvent Next, a comparative examination of reaction solvents was performed. A 5-membered lactam was produced in the same manner as in Example 5-1, except for the changes shown in Table 3 below, using the solvents shown in Table 3 instead of the reaction solvent CPME in Example 5 above. .
  • the quaternary ammonium iodide the above (A) was used, and as the amide compound, the amide compound 1c in which the protective group of amide was replaced with a 4-methoxyphenyl group and a 3,5-dimethoxyphenyl group was used. .
  • Example 6-1 in Table 3 As compared to Example 5-1 above, the protecting group of amide is more chemically 3,5-dimethoxyphenyl group than 4-methoxyphenyl group. Good results were obtained in both yield and asymmetric yield. As is clear from Example 6-2 in Table 3, when the solvent was toluene, the asymmetric yield was improved. Furthermore, as is clear from Example 6-3, the asymmetric yield was improved to 85% when the temperature was lowered to 0 ° C. As is clear from Examples 6-4 and 6-5, when water was used as a cosolvent, the catalytic activity and the asymmetric yield were improved.
  • Example 7 Preparation of 2-acylpyrrolidin-5-one having a quaternary carbon
  • amide compounds 3a and 3b prepared in Example 2 above (having a methyl group at the ⁇ -position of the ketone)
  • the reaction was carried out in the same manner as in Example 6-1 except for the following changes.
  • the amide protecting group may be a tosyl (Ts) group, ie, 4-CH 3 —C 6 H 4 SO 2 , or a mesyl (Ms) group, ie, CH 3 SO, instead of the 3,5-dimethoxyphenyl group. 2 was used, and the reaction was carried out at the solvent types, solvent concentrations, reaction temperatures, and reaction times shown in Table 4 below.
  • the chemical yield and the asymmetric yield are shown in Table 4, respectively.
  • the solvent MTBE represents methyl tert-butyl ether.
  • Example 8 Asymmetric synthesis of acylpyrrolidine The asymmetric oxidative cyclization reaction of amide compound 5 in which the carbonyl group of the amide moiety of ketoamide is on the outside and X is two Hs, except for the following changes: Then, the reaction was carried out in the same manner as in Example 6-2.
  • amide protecting groups 2-nitrobenzenesulfonyl (Ns) groups shown in Table 5, that is, 2-NO 2 -C 6 H 4 SO 2 groups, and easily deprotecting Ts groups, respectively, were used at room temperature. The reaction time shown in Table 5 was used. Toluene (0.01M) was used as the solvent.
  • the chemical and asymmetric yields are also shown in Table 5.
  • Example 9 Production of 2-acylpyrrolidine having quaternary carbon
  • Other reaction conditions were the same as in Example 8-1.
  • the chemical yield and asymmetric yield are shown in Table 6.
  • the obtained 2-acylpyrrolidine can be usefully used as a pharmaceutical intermediate by removing Ts, carbonyl group, and 1-phenylimidazolyl group of the protecting group.
  • Example 11 Production of nitrogen-containing ring compound by intramolecular oxidative aminocyclization reaction using amide compounds 13, 15, 17, and 19
  • Example 5-1 instead of amide compound 1b, the above example was used.
  • Intramolecular oxidative aminocyclization reaction was carried out using amide compounds 13, 15, 17, and 19 synthesized in Synthesis Example 13-16 of 1 as starting materials.
  • the reaction solvent, reaction temperature, and reaction time were as shown in Table 8.
  • Table 8 in the reaction of 13, the ⁇ -lactam derivative 14 was obtained in a good asymmetric yield.
  • the corresponding pyrrolidine derivatives 16 and 18 have good chemistry and poor properties, respectively. Obtained in uniform yield.
  • the corresponding spiropyrrolidine derivative 20 was obtained with a good chemical yield and a high asymmetric yield.
  • Example 12 Derivation of product As shown in the following formula, the imidazolyl group of the product 6b obtained in Example 8-2 was prepared according to a literature method (Evans, et al. J. Am. Chem. Soc. 2007, vol.129, p10029) and succeeded in conversion to the known compound ester 21 while maintaining optical purity. At that time, the absolute configuration of the product was determined as R.
  • the derived chiral nitrogen heterocyclic compounds can be further converted into useful functional groups such as ketones, carboxylic acids and alcohols.
  • the present invention is useful in fields such as pharmaceuticals, catalysts, and the chemical industry where nitrogen-containing ring compounds are used.

Abstract

含窒素環化合物の製造方法は、一般式(3)(式(3)中、R1、及びR2はそれぞれ独立して水素原子又は一価の炭化水素基であり、PGはアミドの保護基であり、Xは2つのH、又はOであり、n=0~2である)で表されるアミド化合物を、下記一般式(5)(式(5)中、Ar1及びAr2は、-3,5-[3,5-(CF3263263である)で表される第四級アンモニウムヨージド及びtert-ブチルヒドロペルオキシドの存在下に反応させる工程を包含する。

Description

含窒素環化合物の製造方法及び含窒素環化合物
 本発明は、含窒素環化合物、特にアゼチジン、ピロリジン、ピペリジン、及びラクタム等の四員環から六員環の含窒素環化合物の製造方法に関する。
 アゼチジン、ピロリジン、及びピペリジン等の含窒素ヘテロ環化合物は、様々な天然物や医薬品、生理活性物質の重要な骨格であるだけでなく、多くの有機合成反応における不斉触媒の鍵骨格であり、その効率的な不斉合成は極めて重要である。これまでに含窒素ヘテロ環化合物の製造方法は、不斉、非不斉を問わず莫大な数の報告がなされている。
 例えば、非特許文献1には、その場で(in situ)で調製するtert-ブチル次亜ヨウ素酸塩を用いる分子内環化アミノ化反応が記載されている。
Figure JPOXMLDOC01-appb-C000007
 非特許文献2には、カリウムヘキサメチルジシラジド(KHMDS)を用いる光学活性アミノ酸誘導体の分子内環化反応が記載されている。
Figure JPOXMLDOC01-appb-C000008
 非特許文献3には、金触媒を用いる分子内アミノ化反応が記載されている。
Figure JPOXMLDOC01-appb-C000009
 非特許文献4には、ルテニウム錯体を用いる分子内アリル化反応が記載されている。
Figure JPOXMLDOC01-appb-C000010
 非特許文献5には、化学量論量の超原子価ヨウ素の存在下、パラジウムを触媒とするピコリンアミドの分子内酸化的アミノ化反応による、アゼチジン、ピロリジン、及びインドリンを合成する方法が記載されている。
 一方、本発明者らは、非特許文献6に示すように、既に、光学活性なビナフチル由来のスピロ型第四級アンモニウムヨージドを触媒前駆体として用い、過酸化水素水又はtert-ブチルヒドロペルオキシド(TBHP)からin situ(その場)で調製されるキラルヨウ素酸塩類触媒を用いて、2-アシルー2,3-ジヒドロベンゾフランの不斉合成に成功している。
Minakata et al.Org.Lett.2006,8,3335. Kawabata et al.J.Am.Chem.Soc.2003,125,13012. Widenhoefer et al.Angew.Chem.Int.Ed.2012,51,1405. Kitamura et al.Org.Lett.2012,14,608. Chen et al.J.Am.Chem.Soc.2011,134,3. M.Uyanik,H.Okamoto,T.Yasui,K.Ishihara,Science,2010,328,1376.
 含窒素ヘテロ環化合物の製造方法は、その多くは、例えば、非特許文献3~5に示されるように、高価な金触媒、ルテニウム触媒及びパラジウム触媒等の遷移金属(レアメタル)触媒を用いる不斉反応であった。遷移金属の使用は、経済的観点から不利であるとともに、その希少価値や環境に対する懸念から、使用しないことが望まれていた。
 一方、上記非特許文献1に記載のtert-ブチル次亜ヨウ素酸塩を用いる製造方法では、三員環から六員環まで適用範囲は広いが、不斉合成は達成されていない。また、非特許文献4及び5に記載の方法においても不斉合成は達成されていない。従って、これらに記載の方法では、光学活性な含窒素環化合物を得ることができなかった。さらに、非特許文献2に記載のカリウムヘキサメチルジシラジド(KHMDS)を用いる製造方法では、原料は入手可能なアミノ酸に限定されており、製造し得る化合物の適用範囲が限られていた。
 本発明は、上記課題を解決し、遷移金属触媒を使用せずに、種々の含窒素環化合物を製造することが可能な方法を提供することを目的とする。
 本発明者らは、既に開発したヨージド塩を触媒前駆体として、そのヨージド塩と共酸化剤とからその場で(in situ)で調製されるヨウ素酸塩類触媒を用いることにより、アミド化合物を分子内酸化的環化反応させ、種々の含窒素環化合物を得ることができることを見出し、本発明を完成するに至った。
 即ち、本発明の含窒素環化合物の製造方法は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000011
(式中、Arは芳香環であり、R2は水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
で表される含窒素環化合物の製造方法であって、下記一般式(2)
Figure JPOXMLDOC01-appb-C000012
(式中、Arは芳香環であり、R2は素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
で表されるアミド化合物を、ヨージド塩及び共酸化剤の存在下に反応させる工程を包含する。
 また、本発明の含窒素環化合物は、例えば、下記一般式(4)で表される。
Figure JPOXMLDOC01-appb-C000013
(式中、R1、及びR2はそれぞれ独立して水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
 本発明の含窒素環化合物の製造方法によれば、遷移金属触媒を用いずに、ヨージド塩及び共酸化剤の存在下に、アミド化合物を分子内酸化的環化反応させ、含窒素環化合物を製造することができる。特に、本発明の製造方法によれば、種々の四員環から六員環の含窒素環化合物、即ち、アゼチジン、ピロリジン、ピペリジン、及びラクタム、さらには、2-アシルアゼチジン、2-アシルピロリジン、2-アシルピペリジン、及び2-アシルラクタム等を製造することができるという、いまだかつて得られなかった効果を有する。
 また、本発明の含窒素環化合物は、四~六員環の含窒素環化合物として新規化合物であって、医薬品やその中間体、触媒等として有用となり得るばかりでなく、さらには医薬品や触媒等として有用なそれらの類縁体の製造に用いることができる。
 本発明の含窒素環化合物の製造方法において、使用されるアミド化合物は、下記一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000014
(式中、Arは芳香環であり、R2は水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
 ここで、Arとしては、炭素原子のみで環が構成されるアリール基、又は環構造に炭素原子以外の元素を含むヘテロアリール基のいずれであってもよい。アリール基としては、フェニル基の他、複数の環が縮合したナフチル基等であってもよく、複数の環が連なったビフェニル基等であってもよい。このうち特に、アリール基としては、フェニル基が好ましい。
 ヘテロアリール基としては、異原子としてN、S、又はOが含まれるヘテロアリール基が挙げられる。例えば、ヘテロアリール基としては、置換基を有しない、或は一つかそれ以上の置換基を有するイミダゾール、ベンジイミダゾール、チアゾール、トリアゾール、及びテトラアゾール等が好ましい。このうち特に、下記一般式(6)で示されるイミダゾール環を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000015
 ここで、R1は、水素原子又は一価の炭化水素基である。
 一価の炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、シクロアルキル基等が挙げられ、特に限定されない。いずれの炭化水素基も置換基を有していてもよい。その置換基としては、アミノ基、ハロゲン原子、ニトロ基、シアノ基、アルコキシ基、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基等が挙げられる。なお、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。アルコキシ基としては、メトキシ基、エトキシ基等が挙げられる。
 R1としては、アリール基、ヘテロアリール基が、好適に使用される。このうち特に、R1としては、容易に製造可能である点からフェニル基が好ましい。
 R2としては、水素原子、アルキル基、又はアリール基が、好適に使用される。アルキル基としては、直鎖状、又は分枝状のアルキル基であって、特に限定されない。例えば、直鎖状のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、イコシル基等が挙げられる。分岐アルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-メチル-1-ブチル基、1-プロピルブチル、sec-アミル基、イソアミル基、tert-アミル基、ネオペンチル基、3-ペンチル基、1-ブチルペンチル等が挙げられる。
 XがOの場合、PGとしては、酸化的環化反応において、反応性の高いアミンを保護することが可能な保護基であれば特に限定されない。例えば、3,5-ジフェニルメトキシフェニル基、4-メトキシフェニル基、メシル基(Ms)、トシル基(Ts)、ピペリジル基、tert-ブトキシカルボニル基(Boc)、ベンゾイル基(Bz)、2-ニトロベンゼンスルホニル基(Ns)、ベンジルオキシカルボニル基(Cbz)、9-フルオレニルメチルオキシカルボニル基(Fmoc)、2,2,2-トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)、トリフルオロアセチル基(CF3CO-)、フタロイル基(Pht)、ベンジル基(Bn)、tert-ブチル基、メトキシメチル基(MOM)、2-テトラヒドロピラニル基(THP)、エトキシエチル基(EE)、アセチル基(Ac)、及びピバロイル基(Piv)等が挙げられる。
 このうち、化学収率及び不斉収率が共に高いために、PGとしては、3,5-ジフェニルメトキシフェニル基、4-メトキシフェニル基、メシル基(Ms)、トシル基(Ts)、2-ニトロベンゼンスルホニル基(Ns)、及びピペリジル基等が挙げられるが、特にメシル基(Ms)、トシル基(Ts)、及び2-ニトロベンゼンスルホニル基(Ns)が好ましい。XがOであるアミド化合物である場合(ラクタムの環化反応)には、メシル基(Ms)、及びトシル基(Ts)、特にメシル基(Ms)が好ましい。一方、Xが2つのHであるアミド化合物である場合には、2-ニトロベンゼンスルホニル基(Ns)、及びトシル基(Ts)が好ましい。
 Xが2つのHの場合、PGとしては、窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基を用いる。例えば、メシル基(Ms)、トシル基(Ts)、tert-ブトキシカルボニル基(Boc)、ベンゾイル基(Bz)、2-ニトロベンゼンスルホニル基(Ns)、ベンジルオキシカルボニル基(Cbz)、9-フルオレニルメチルオキシカルボニル基(Fmoc)、2,2,2-トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)、トリフルオロアセチル基(CF3CO-)、フタロイル基(Pht)、アセチル基(Ac)、及びピバロイル基(Piv)等が挙げられる。
 Xは、2つのH、又はOである。即ち、Xが2つのHである場合とは、一般式(2)において、Xの2つの結合手に2つのHがそれぞれ別々に結合していることを示す。Xが2つのHであるアミド化合物を用いた場合には、アゼチジン、ピロリジン、及びピペリジン等の含窒素ヘテロ環化合物が得られ、一方、XがOであるアミド化合物を用いた場合には、四員環、五員環、及び六員環等のラクタム(又はアゼチジンー4-オン、ピロリジンー5-オン、及びピペリジンー6-オン)が得られる。
 nは、0~2のうちの任意の整数である。n=0であると、四員環の含窒素環化合物が得られる。n=1であると五員環、n=2であると六員環の含窒素環化合物がそれぞれ得られる。よって、所望の環の大きさに応じて、nの数を選択することができる。なお、産業上利用性を考慮すれば、n=1又はn=2であることが好ましい。
 次に、本発明において用いられるヨージド塩としては、アンモニウムヨージドやホスホニウムヨージド、アルカリ金属ヨージド等が挙げられる。本発明によれば、ヨージド塩として、アキラルなヨージド塩を用いると、得られる化合物はラセミ化合物となる。一方、キラルなヨージド塩を用いれば、光学活性な化合物が得られる。従って、キラルなヨージド塩を用いることにより、光学活性な種々の含窒素環化合物を製造することができる。
 アンモニウムヨージドとしては、テトラアルキルアンモニウムヨージド(テトラアルキルの4つのアルキルは、全て同じであってもよいし、2つ又は3つが同じであってもよいし、全て異なっていてもよい)、テトラアリールアンモニウムヨージド(テトラアリールの4つのアリールアリールは、全て同じであってもよいし、2つ又は3つが同じであってもよいし、全て異なっていてもよい)、テトラアリールアルキルアンモニウムヨージド(テトラアリールアルキルの4つのアリールアルキルは、全て同じであってもよいし、2つ又は3つが同じであってもよいし、全て異なっていてもよい)等の他、アルキルとアリールとが混在したり、アルキルとアリールアルキルとが混在したり、アリールとアリールアルキルとが混在したアンモニウムヨージド等が挙げられる。こうしたアンモニウムヨージドとしては、テトラメチルアンモニウムヨージド、テトラエチルアンモニウムヨージド、テトラプロピルアンモニウムヨージド、テトラブチルアンモニウムヨージド、テトラペンチルアンモニウムヨージド、テトラヘキシルアンモニウムヨージド、テトラへプチルアンモ二ウムヨージド、テトラーn-オクチルアンモニウムヨージド、テトラオクタデシルアンモニウムヨージド、エチルトリメチルアンモニウムヨージド、エチルトリプロピルアンモニウムヨージド、トリメチルフェニルアンモニウムヨージド、トリエチルフェニルアンモニウムヨージド、(1,2-ジフェニルプロピル)トリメチルアンモニウムヨージド、トリメチルー(1-フェニルエチル)アンモニウムヨージド、及びベンジルトリエチルアンモニウムヨージド等が挙げられる。このうち、4つのアルキル基が同じであるテトラアルキルアンモニウムヨージドが好ましい。特に、テトラメチルアンモニウムヨージド、テトラエチルアンモニウムヨージド、テトラプロピルアンモニウムヨージド、テトラブチルアンモニウムヨージド、テトラペンチルアンモニウムヨージド、及びテトラヘキシルアンモニウムヨージドが好ましく、最も好ましくはテトラブチルアンモニウムヨージドである。
 或いは、好適に使用できるキラルなアンモニウムヨージドとしては、下記一般式(5)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、Ar1、及びAr2はそれぞれ独立して置換基を有していてもよいアリール基であって、該置換基はハロゲン原子、ハロゲン原子で置換されたアルキル基、ハロゲン原子で置換されたアルケニル基、ハロゲン原子で置換されたアルキニル基、ハロゲン原子で置換されシクロアルキル基、若しくはハロゲン原子で置換されたアリール基であってもよく、又は、ハロゲン原子で置換されたアルキル基、ハロゲン原子で置換されたアルケニル基、ハロゲン原子で置換されたアルキニル基、ハロゲン原子で置換されたシクロアルキル基、若しくはハロゲン原子で置換されたアリール基で置換されたアリール基であってもよい。また、2つのビナフチル部における軸不斉の組み合わせは(R,R)又は(S,S)を表す。)
 ここで、アリール基としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基等が挙げられる。特に活性及び不斉収率が高いことから、フェニル基が好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。特に高い活性と不斉収率が得られることから、フッ素原子が好ましい。
 アルキル基としては、直鎖状、又は分枝状のアルキル基であって、特に限定されない。例えば、直鎖状のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、イコシル基等が挙げられる。分岐アルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基がtert-ブチル基、2-メチル-1-ブチル基、1-プロピルブチル、sec-アミル基、イソアミル基、tert-アミル基、ネオペンチル基、3-ペンチル基、1-ブチルペンチル等が挙げられる。このうち、直鎖状のアルキル基が好ましく、より好ましくは炭素数が1~3の直鎖状アルキル基であって、特にメチル基が好ましい。
 また、アルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基等が挙げられる。アルキニル基としては、エチニル基、プロパ-2-イン-1-イル基等が挙げられる。シクロアルキル基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。
 例えば、Ar1、及びAr2としては、好ましくは、ハロゲン原子で置換されたフェニル基、ハロゲン原子で置換されたアルキル基を有するフェニル基、ハロゲン原子で置換されたアルキル基で置換されたフェニル基を有するフェニル基が挙げられる。特に、触媒活性及び選択性に優れていることから、ハロゲン原子で置換されたアルキル基を有するフェニル基、又はハロゲン原子で置換されたアルキル基で置換されたフェニル基を有するフェニル基が好ましい。
 置換されるハロゲン原子の数は特に限定されないが、例えばハロゲン原子で置換されるアルキル基の場合、アルキル基の全ての水素原子がハロゲン原子で置換されていることが好ましい。例えば、アルキル基がメチル基である場合、トリフルオロメチル基であることが好ましい。アリール基において置換されるハロゲン原子置換アルキル基の数は特に限定されないが、好ましくは1~3個、より好ましくは1又は2個、特に2個である。また、アリール基において置換される、ハロゲン原子置換アルキル基が置換されたアリール基の数は特に限定されないが、好ましくは1~3個、より好ましくは1又は2個、特に2個である。
 ここで用いられるハロゲン原子で置換されたアルキル基を有するアリール基としては、例えば、4-(CF3)C64-、3,5-(CF3263-、2,6-(CF3263-、2,4,6-(CF3362-、及び2,3,4,5,6-(CF35C-、等が挙げられる。このうち特に、活性が高く、不斉収率も良好であるため、3,5-(CF3263-が好ましい。
 次に、ここで用いられるハロゲン原子で置換されたアルキル基で置換されたフェニル基を有するフェニル基としては、例えば、3,5-[3,5-(CF3263263-、3,5-[4-(CF3)C64263-、3,5-[2,4,6-(CF3362263-、4-[4-(CF3)C64]C64-、4-[3,5-(CF3263]C64-、4-[2,4,6-(CF3362]C64-、2,4,6-[3,5-(CF3263362-、2,4,6-[4-(CF3)C64362-、及び2,4,6-[2,4,6-(CF3362362-等が挙げられる。このうち、活性が高く、不斉収率も良好であるため、3,5-[3,5-(CF3263]C63-、4-[4-(CF3)C64]C64-、及び4-[3,5-(CF3263]C64-、特に3,5-[3,5-(CF3263263-が好ましい。
 Ar1及びAr2はそれぞれ異なっていてもよく、又は同じであってもよい。好ましくは、活性及び不斉収率が良好であることから、同じであることが好ましい。
 また、一般式(5)中、2つのビナフチル部における軸不斉の組み合わせは(R,R)又は(S,S)のいずれであってもよい。
 一般式(5)で表されるアンモニウム塩は、キラルな塩であって、アミド化合物を不斉酸化することができるとともに、特に高い触媒活性を有する点で、好ましい。従って、光学活性な含窒素環化合物を製造するために好適である。
 ホスホニウムヨージドについても、アンモニウムヨージドと同様である。ホスホニウムヨージドとしては、テトラフェニルホスホニウムヨージド、メチルトリフェニルホスホニウムヨージド、トリブチルメチルホスホニウムヨージド等が挙げられる。このうち特に、テトラフェニルホスホニウムヨージド、及びメチルトリフェニルホスホニウムヨージドが好ましい。
 アルカリ金属ヨージドとしては、ヨウ化カリウムやヨウ化ナトリウム等が挙げられる。特にヨウ化カリウムが、反応性に優れるために好ましい。こうしたアルカリ金属ヨージドを有機溶媒中で用いる場合には、溶解度を高めるために、アルカリ金属イオンを取り込むことが可能なクラウンエーテル等の環状エーテルを併用することが好ましい。例えば、ヨウ化カリウムと18-クラウンー6とを組み合わせて用いることが好ましい。
 本発明において用いられる共酸化剤としては、有機過酸化物が好ましい。有機過酸化物としては、例えば、tert-ブチルヒドロペルオキシド(TBHP)、ジ-tert-ブチルペルオキシド、tert-アミルヒドロペルオキシド、ジ-tert-アミルペルオキシド、クメンヒドロペルオキシド、ジクミルペルオキシド、tert-ブチルクミルペルオキシド、tert-ブチルペルオキシピバレート、過酸化ベンゾイル、過酸化ラウロイル、エチルベンゼンヒドロペルオキシド、過酢酸、及び過安息香酸等が挙げられる。これらの共酸化剤は、単独で用いてもよいし、2つ以上を組み合わせて用いてもよい。
 このうち、tert-ブチルヒドロペルオキシド(TBHP)が好ましい。TBHPは、比較的安全、安価であって、副生成物はtert-ブチルアルコールと水のみである。従って、極めて環境への負荷が軽減される。
 さらに、溶媒としては、特に限定されず、従来公知のいずれの溶媒を用いることができる。例えば、水、エーテル系溶媒、芳香族炭化水素系溶媒、エステル系溶媒、又はニトリル系溶媒等が挙げられる。好適な溶媒としては、例えば、シクロペンチルメチルエーテル(CPME)、トルエン、ジエチルエーテル、メチルt-ブチルエーテル(MTBE)、又はo-キシレン等が挙げられる。このうち特に、XがOであるアミド化合物の環化反応においては、不斉収率が高いことから、トルエンが好ましい。また、Xが2つのHであるアミド化合物の環化反応においては、活性及び不斉収率が高いことから、エーテル系溶剤、特にメチルt-ブチルエーテル(MTBE)が好ましい。溶媒としては、これらのいずれかを単独で用いてもよく、2種以上を混合したものであってもよい。特に、水を共溶媒として、他の溶媒と混合した溶媒は、触媒活性及び選択性が向上するために好ましい。共溶媒として混合する水の割合は、水と他の溶媒との容積比で好ましくは1:10~10:1、特に1:5である。
 含窒素環化合物の製造方法において、反応温度は、反応速度や不斉収率などを考慮して適宜設定すればよいが、例えば 0~80 ℃の範囲で設定することができ、特に 反応速度及びコスト面等から室温~50 ℃の範囲で設定することが好ましい。
 本発明の含窒素環化合物の製造方法において、反応時間は、反応温度、化学収率などに応じて適宜設定すればよいが、通常は数時間~数10時間である。好ましくは、1~50時間、特に2~30時間である。
 また、第四級アンモニウムヨージドの使用量は、アミド化合物の種類や反応温度、反応時間等により適宜選択され、特に限定されないが、アミド化合物に対して、1~30mol%、好ましくは5~20mol%、特に5~10mol%である。この範囲よりも少ないと活性に劣り、一方、この範囲よりも多くても反応性が向上せず、不経済である。
 用いる共酸化剤の量は、特に限定されないが、アミド化合物の種類や第四級アンモニウムヨージドの種類等に応じて適宜選択され、特に限定されないが、好ましくはアミド化合物に対して、1.0~5当量、より好ましくは、1~2当量である。
 用いる溶媒の使用量は、特に限定されないが、反応効率等の観点から、例えば、アミド化合物の濃度が、0.001~0.5mol/L、特に0.01~0.02mol/Lとなる範囲とすることが好ましい。
 また、反応系の雰囲気は、特に限定されないが、大気圧下に行うことができる。
 本発明の含窒素環化合物の製造方法において、目的とする含窒素環化合物を単離するには、通常知られている単離手法を適用すればよい。例えば、酸化剤等を中和した後抽出及びカラムクロマトグラフィーにより、容易に単離することができる。得られた含窒素環化合物は、必要に応じて、再結晶などで精製することができる。
 以上のようにして製造され得る含窒素環化合物は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000017
(式中、Arは芳香環であり、R2は水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である) 
 具体的には、得られる含窒素環化合物は、アゼチジン、ピロリジン、ピペリジン、及びラクタム、特に、2-アシルアゼチジン、2-アシルピロリジン、2-アシルピペリジン、及び2-アシルラクタム等である。
 好ましい態様において、キラルなヨージド塩を使用した場合に、得られる一般式(1)で表される含窒素環化合物は、光学活性な化合物である。特に好ましい態様において、本発明によって得られる含窒素環化合物は、下記一般式(4)で表される新規な化合物である。
Figure JPOXMLDOC01-appb-C000018
(式中、R1、及びR2はそれぞれ独立して水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
 この好ましい態様において、キラルなヨージド塩を使用した場合に、得られる一般式(4)で表される含窒素環化合物は、光学活性な化合物である。
 当該新規化合物は、アミド化合物として、下記一般式(3)で表されるものを用いることにより、好適に製造することができる。
Figure JPOXMLDOC01-appb-C000019
(式中、R1、及びR2はそれぞれ独立して水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
尚、上記各式中のAr、R1、R2、PG、X、及びnの説明、及び好ましい態様は、上記アミド化合物における説明と同様である。
 本発明の製造方法によれば、ヨージド塩を用い、このヨージド塩と共酸化剤とから、ヨウ素酸塩類触媒をその場で(in situ)調製し、この触媒の存在下に出発原料となるアミド化合物を酸化させるとその分子内酸化的環化反応を行うことができる。触媒前駆体であるヨージドのヨウ化物イオンI(―1価のヨウ素)は、共酸化剤によって、+1価の次亜ヨウ素酸アニオン(IO-)に酸化されると推理されている。さらに酸化されると、+3価の亜ヨウ素酸アニオン(O=IO-)になると推理されている。これらIO-イオン、及びO=IO-のいずれか、又は両方が触媒種として作用しているものと推測される。
 本発明の好適な製造方法によれば、次式に示すように、室温大気圧下といった温和な条件下に、及び副生成物もt-ブチルアルコールと水のみといった環境に優しい反応条件において、所望の四員環から六員環の含窒素環化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000020
[実施例1] 第四級アンモニウムヨージドの製造
 本実施例において用いたキラルな第四級アンモニウムヨージドは、非特許文献6に記載の製造方法に従って製造した。製造した第四級アンモニウムヨージドは、一般式(5)におけるAr1およびAr2がそれぞれともに以下に示すアリール基である。
(A):Ar=3,5-[3,5-(CF3263]C63
(B):Ar=3,5-(CF3263
(C):Ar=4-[4-(CF3)C64]C64
(D):Ar=4-[3,5-(CF3263]C64
[実施例2] アミド化合物の製造
 以下の合成例1~15により、下記の反応式に従って、アミド化合物(1a~1e、3a、3b、5a、5b、7、9、11、13、15、17、19)を製造した。
Figure JPOXMLDOC01-appb-C000021
合成例1(アミド誘導体1aの合成):
 反応器に、5-オキソ-5-フェニルペンタン酸(288mg,1.5mmol)とジクロロメタン(15mL)の溶液に、ジシクロヘキシルカルボジイミド(DCC,340mg,1.65mmol)及び、1-ヒドロキシベンゾトリアゾール(HOBt,223mg,1.65mmol)を加えて、室温で10分撹拌した。その後、反応容器を0℃に冷やしてからアニリン(278μL,3mmol)を加えて、そのまま0℃で12時間撹拌した。固形物をセライトろ過によって除いて、得られた溶液に水を加え、反応液を酢酸エチルで2回抽出した。得られた有機層を水及びNaCl水溶液により、順次、洗浄した後、無水硫酸ナトリウム(MgSO4)を投入した。その後、溶媒を減圧下、留去し、粗生成物を含む濃縮物を得た。次いで、この濃縮物をシリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=1/4)に供して、N-(4-メトキシフェニル)5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンタミド(1a)を白色固体物として得た(収率95%)。得られたアミド誘導体(1a)は既知化合物であり、分析データは文献値と一致した。
文献:T. Nishio, Helvetica Chim. Acta, 1998, 81, 1207.
合成例2(アミド誘導体1bの合成):
 反応器に、1-フェニルイミダゾ-ル(696μL, 5.5mmol)及び溶媒であるテトラヒドロフラン(35mL)を収容して溶液とした。その後、ドライアイスを用いてこの溶液を-78℃とし、n-ブチルリチウム(n-BuLi)のヘキサン溶液(3.8mL、1.6M、6mmol)を添加し、5分間攪拌した。次いで、ドライアイスを取り除き、反応系の温度を室温として、このまま1時間攪拌した。その後、この混合物を、再度-78℃に冷却した。そして、混合物に、グルタル酸無水物(571mg, 5mmol)とテトラヒドロフラン(35mL)とからなる溶液を、カニュラーにより添加し、攪拌しながら-78℃で反応させた。10時間後、1Nの塩酸水溶液を加えることにより、反応を終了した。得られた反応液に含まれる反応生成物を酢酸エチルで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。次いで、この濃縮物を、シリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=1/1)に供して、5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンタン酸(S1)を白色固体物として得た(収率55%)。得られたS1から、アニリンに代えて、4-メトキシアニリンを用いた以外は、合成例1と同様にして、N-(4-メトキシフェニル)5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンタミド(1b)を白色固体物として得た(収率90%)。得られたアミド誘導体(1b)の分析データを以下に示す。
1b: TLC, Rf = 0.45 (hexane-EtOAc = 1:8); 1H NMR (CDCl3, 400 MHz) δ 2.11 (quintet, J = 6.9 Hz, 2H), 2.40 (t, J =6.9 Hz, 2H), 3.24 (t, J = 6.9 Hz, 2H), 3.79 (s, 3H), 6.85 (d, J = 9.2 Hz, 2H), 7.20 (s, 1H ), 7.26-7.32 (m, 3H), 7.40-7.51 (m, 5H), 7.98 (brs, 1H).
合成例3(アミド誘導体1cの合成):
 4-メトキシアニリンに代えて、3,5-ジメトキシアニリンを用いた以外は、合成例2と同様にして、N-(3,5-ジメトキシフェニル)5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンタミド(1c)を白色固体物として得た(収率95%)。得られたアミド誘導体(1c)の分析データを以下に示す。
1c: TLC, Rf = 0.25 (hexane-EtOAc = 1:4); IR (KBr) 3258, 1682, 1666, 1614, 1537, 1449, 1415, 1206, 1155, 1068, 957 cm-11H NMR (CDCl3, 400 MHz) δ 2.11 (quintet, J = 6.9 Hz, 2H), 2.41 (t, J = 6.9 Hz, 2H), 3.23 (t, J = 6.9 Hz, 2H), 3.78 (s, 6H), 6.23 (t, J = 1.8 Hz, 1H), 6.83 (d, J = 1.8 Hz, 2H), 7.21 (d, J = 0.9 Hz,1H), 7.26-7.32 (m, 3H), 7.44-7.51 (m, 3H), 8.16 (brs, 1H); 13C NMR (CDCl3, 100 MHz) δ 20.4, 36.4, 38.0, 55.1 (2C), 96.2, 97.7 (2C), 125.6 (2C), 127.2, 128.7, 128.8 (2C), 129.3, 138.0, 139.9, 142.7, 160.7 (2C), 171.0, 190.9; HRMS (FAB+) m/z calcd for C22H24N3O4 (M+H), 394.1767 found 394.1759.
合成例4(アミド誘導体1dの合成):
 4-メトキシアニリンに代えて、ピリジン-4-アミンを用いた以外は、合成例2と同様にして、5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)-N-(ピリジン-4-イル)ペンタミド(1d)を白色固体物として得た(収率41%)。得られたアミド誘導体(1d)の分析データを以下に示す。
1d: TLC, Rf = 0.15 (hexane-EtOAc = 1:8); 1H NMR (CDCl3, 400 MHz) δ 2.12 (quintet, J = 6.9 Hz, 2H), 2.44 (t, J =6.9 Hz, 2H), 3.23 (t, J = 6.9 Hz, 2H), 7.23 (s, 1H), 7.26-7.31 (m, 2H), 7.32 (s, 1H), 7.44-7.55 (m, 5H), 8.47 (d, J = 6.0 Hz, 2H), 8.99 (brs, 1H).
合成例5(アミド誘導体1eの合成):
 1-フェニルイミダゾ-ルに代えて、1-メチルイミダゾ-ルを用いた以外は、合成例2と同様にして、N-(4-メトキシフェニル)-5-(1-メチル-1H-イミダゾール-2-イル)-5-オキソペンタミド(1e)を白色固体物として得た(収率67%)。得られたアミド誘導体(1e)の分析データを以下に示す。
1e: TLC, Rf = 0.35 (hexane-EtOAc = 1:8); 1H NMR (CDCl3, 400 MHz) δ 2.17 (quintet, J = 6.9 Hz, 2H), 2.43 (t, J =6.9 Hz, 2H), 3.20 (t, J = 6.9 Hz, 2H), 3.79 (s, 3H), 4.01 (s, 3H), 6.86 (d, J = 9.2 Hz, 2H), 7.06 (s, 1H), 7.16 (s, 1H), 7.49(d, J = 9.2 Hz, 2H), 8.36 (brs, 1H).
合成例6(アミド誘導体3aの合成):
 カルボン酸S1(774.8mg,3mmol)のDMF(60mL)溶液を含む反応容器を氷バスに入れて0℃に冷やし、NaH(312mg,7.8mmol)を加えた。反応容器を氷バスから離して、室温にゆっくり暖めながら、1時間撹拌した。得られた反応溶液に、MeI(486μL,7.8mmol)を室温で加えて、そのまま12時間撹拌した。反応終了後、反応溶液に水を加え、反応液を酢酸エチルで2回抽出した。得られた有機層を水及びNaCl水溶液により、順次、洗浄した後、無水硫酸ナトリウム(MgSO4)を投入した。その後、溶媒を減圧下、留去し、粗生成物を含む濃縮物を得た。次いで、この濃縮物をシリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=1/3)に供して、4-メチル-5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンタン酸メチルエステルを得た。得られたエステルに2M NaOH水溶液を室温で加えて、そのまま2時間撹拌してエステルの加水分解を行った。1M HCl水溶液を用いて反応を中和した後、反応液を酢酸エチルで2回抽出した。得られた有機層を水及びNaCl水溶液により、順次、洗浄した後、無水硫酸ナトリウム(Na2SO4)を投入した。その後、溶媒を減圧下、留去し、粗生成物を含む濃縮物を得た。次いで、この濃縮物をシリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=1/5)に供して、4-メチル-5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンタン酸(S3)を白色固体物として得た(収率54%)。得られたS3から、4-メトキシアニリンに代えて、4-メチルベンゼンスルホンアミドを用いた以外は、合成例2と同様にして、4-メチル-5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)N-トシルペンタミド(3a)を白色固体物として得た(収率33%)。得られたアミド誘導体(3a)の分析データを以下に示す。
3a: TLC, Rf = 0.45 (hexane-EtOAc = 1:4); 1H NMR (CDCl3, 400 MHz) δ 1.04 (d, J = 6.4 Hz, 3H), 1.56-1.62 (m, 1H), 2.15-2.24 (m, 1H), 2.35-2.42 (m, 2H), 2.44 (s, 3H), 3.56-3.65 (m, 1H), 7.27-7.31 (m, 3H), 7.33 (d, J = 7.8 Hz, 2H), 7.47-7.52 (m, 3H), 7.57 (s, 1H), 8.01 (d, J = 7.8 Hz, 2H).
合成例7(アミド誘導体3bの合成):
 4-メチルベンゼンスルホンアミドに代えて、メタンスルホンアミドを用いた以外は、合成例6と同様にして、4-メチル-N-(メチルスルホニル)-5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンタミド(3b)を白色固体物として得た(収率26%)。得られたアミド誘導体(3b)の分析データを以下に示す。
3b:TLC, Rf = 0.22 (hexane-EtOAc = 1:4); IR (CHCl3) 2953, 1719, 1680, 1499, 1447, 1405, 1337, 1144, 957 cm-11H NMR (CDCl3, 400 MHz) δ 1.15 (d, J = 6.4 Hz, 3H), 1.65-1.75 (m, 1H), 2.25-2.35 (m, 1H), 2.53 (t, J = 6.0 Hz, 2H), 3.37 (s, 3H), 3.68-3.78 (m, 1H), 7.24 (d, J = 0.9 Hz, 1H), 7.26-7.31 (m, 2H), 7.44 (d, J = 0.9 Hz, 1H), 7.47-7.53 (m, 3H); HRMS (FAB+) m/z calcd for C16H20N3O4S (M+H) 350.1175, found 350.1174.
合成例8(アミド誘導体5aの合成):
 反応器に、2-ピペリドン(550mg、5mmol)と、溶媒であるテトラヒドロフラン(10mL)とを収容した。その後、ドライアイスを用いてこの溶液を-78℃とし、n-ブチルリチウム(n-BuLi)のヘキサン溶液(3.4mL、1.6M、5.5mmol)を滴下させつつ添加し、30分間攪拌した。そして、混合物に、2-ニトロベンゼン-1-スルホニルクロリド(NsCl,1.22g、5.5mmol)とテトラヒドロフラン(5mL)とからなる溶液を、カニュラーにより添加し、攪拌しながら-78℃で反応させた。12時間後、塩化アンモニウム水溶液を加えることにより、反応を終了した。得られた反応液に含まれる反応生成物を酢酸エチルで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。次いで、この濃縮物を、シリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=4/1)に供して、1-((2-ニトロフェニル)スルホニル)ピペリジン-2-オン(S5a)を白色固体物として得た(収率70%)。反応器に、1-フェニルイミダゾ-ル(532μL,4.2mmol)及び溶媒であるテトラヒドロフラン(25mL)を収容して溶液とした。その後、ドライアイスを用いてこの溶液を-78℃とし、n-ブチルリチウム(n-BuLi)のヘキサン溶液(2.9mL、1.6M、4.6mmol)を添加し、5分間攪拌した。次いで、ドライアイスを取り除き、反応系の温度を室温として、このまま1時間攪拌した。その後、この混合物を、再度-78℃に冷却した。そして、混合物に、先に得られたS5a(1.08g,3.8mmol)とテトラヒドロフラン(25mL)とからなる溶液を、カニュラーにより添加し、攪拌しながら-78℃で反応させた。10時間後、1Nの塩酸水溶液を加えることにより、反応を終了した。得られた反応液に含まれる反応生成物を酢酸エチルで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。次いで、この濃縮物を、シリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=1/1)に供して、2-ニトロ-N-(5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンチル)ベンゼンスルホンアミド(5a)を白色固体物として得た(収率39%)。得られたアミド誘導体(5a)の分析データを以下に示す。
5a:TLC, Rf = 0.39 (hexane-EtOAc = 1:4); IR (CHCl3) 3343, 2936, 1685, 1541, 1408, 1340, 1164 cm-11H NMR (CDCl3, 400 MHz) δ 1.54-1.63 (m, 2H), 1.65-1.73 (m, 2H), 3.11 (t, J = 7.3 Hz, 2H), 3.13 (dd, J = 6.4, 13.1 Hz, 2H), 5.51 (t, J = 5.9 Hz, 1H), 7.18 (t, J =0.9 Hz, 1H), 7.24-7.28 (m, 3H), 7.45-7.48 (m, 3H), 7.68-7.74 (m, 1H), 7.81-7.86 (m, 1H), 8.10-8.15 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ 20.7, 28.9, 38.1, 43.4, 125.3, 125.8 (2C), 127.1, 128.8, 128.9 (2C), 129.5, 131.0, 132.7, 133.4, 133.7, 138.2, 142.6, 147.9, 190.5; HRMS (FAB+) m/z calcd for C20H21N4O5S (M+H) 429.1232, found 429.1235.
合成例9(アミド誘導体5bの合成):
 2-ニトロベンゼン-1-スルホニルクロリドに代えて、4-メチルベンゼン-1-スルホニルクロリドを用いた以外は、合成例8と同様にして、4-メチル-N-(5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンチル)ベンゼンスルホンアミド(5b)を白色固体物として得た(収率16%)。得られたアミド誘導体(5b)の分析データを以下に示す。
5b:TLC, Rf = 0.47 (hexane-EtOAc = 1:4); IR (CHCl3) 3270, 2915, 1685, 1494, 1407, 1329, 1158, 1093 cm-11H NMR (CDCl3, 400 MHz) δ 1.49-1.57 (m, 2H), 1.63-1.71 (m, 2H), 2.42 (s, 3H), 2.94-3.00 (m, 2H), 3.05 (t, J = 7.3 Hz, 2H), 4.95 (t, J = 6.0 Hz, 1H), 7.18 (d, J = 0.9 Hz, 1H), 7.23-7.33 (m, 5H), 7.44-7.51 (m,3H), 7.73 (d, J = 8.2 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 21.0, 21.5, 28.6, 38.1, 42.5, 125.8 (2C), 127.1 (2C), 127.1, 128.8, 129.0 (2C), 129.5, 130.0 (2C), 137.0, 138.2, 142.6, 143.2, 190.8; HRMS (FAB+) m/z calcd for C21H24N3O3S (M+H) 398.1538, found 398.1539.
合成例10(アミド誘導体7の合成):
 予め調製したリチウムジイソプロピルアミド(LDA,約6.5mmol)のテトラヒドロフラン(25mL)溶液を含む反応容器を、ドライアイスを用いて-78℃に冷やし、S5b(5mmol,1.27g)及びヘキサメチルリン酸トリアミド(HMPA,870μL,5mmol)のテトラヒドロフラン(30mL)溶液を、カニュラーにより添加し、攪拌しながら-78℃で反応させた。30分後、MeI(311μL,5mmol)を-78℃で加えて、そのまま12時間撹拌した。反応終了後、反応溶液に塩化アンモニウムの水溶液を加え、反応液を酢酸エチルで2回抽出した。得られた有機層を水及びNaCl水溶液により、順次、洗浄した後、無水硫酸ナトリウム(MgSO4)を投入した。その後、溶媒を減圧下、留去し、粗生成物を含む濃縮物を得た。次いで、この濃縮物をシリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=5/1)に供して、3-メチル-1-トシルピペリジン-2-オン(S7)を白色固体物として得た(収率43%)。得られたS7から、合成例8と同様にして、4-メチル-N-(4-メチル5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンチル)ベンゼンスルホンアミド(7)を白色固体物として得た(収率21%)。得られたアミド誘導体(7)の分析データを以下に示す。
7:TLC, Rf = 0.45 (hexane-EtOAc = 1:2); 1H NMR (CDCl3, 400 MHz) δ 1.04 (d, J =6.9 Hz, 3H), 1.28-1.39 (m, 1H), 1.46-1.58 (m, 1H), 1.58-1.72 (m, 1H), 1.89-2.01 (m, 1H), 2.42 (s, 3H), 2.92-3.02 (m, 1H), 3.08-3.18 (m, 1H), 3.58-3.68 (m, 1H), 6.54-6.61 (m, 1H), 7.20 (s, 1H), 7.23-7.28 (m, 2H), 7.29 (d, J = 8.2 Hz, 2H), 7.38 (s, 1H), 7.44-7.50 (m, 3H), 7.78 (d, J = 8.2 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 15.0, 21.4, 26.0, 30.2, 39.6, 41.7, 125.7 (2C), 126.9 (2C), 127.1, 128.7, 128.9 (2C), 129.3, 129.5 (2C), 137.2, 138.1, 141.8, 142.9, 194.0; HRMS(FAB+) m/z calcd for C22H26N3O3S (M+H) 412.1695, found 412.1690.
合成例11(アミド誘導体9の合成):
 2-ピペリドンに代えて、ピロリジン-2-オンを用いた以外は、合成例8と同様にして、2-ニトロ-N-(4-オキソ-4-(1-フェニル-1H-イミダゾール-2-イル)ブチル)ベンゼンスルホンアミド(9)を白色固体物として得た(収率39%)。得られたアミド誘導体(9)の分析データを以下に示す。
9: TLC, Rf = 0.36 (hexane-EtOAc = 1:4); IR (KBr) 3258, 1686, 1537, 1408, 1365,1164 cm-11H NMR (CDCl3, 400 MHz) δ 1.91 (quintet, J = 6.9 Hz, 2H), 3.13-3.23 (m, 4H), 5.85 (t, J = 6.0 Hz, 1H), 7.19 (s, 1H), 7.24-7.31 (m, 3H), 7.44-7.50 (m, 3H), 7.67-7.74 (m, 2H), 7.82-7.86 (m, 1H), 8.08-8.13 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ 24.2, 35.7, 42.9, 125.2, 125.7 (2C), 127.2, 128.7, 128.9 (2C), 129.6, 130.8, 132.6, 133.4, 133.7, 138.0, 142.6, 147.9, 190.3; HRMS (FAB+) m/zcalcd for C19H19N4O5S (M+H) 415.1076, found 415.1079.
合成例12(アミド誘導体11の合成):
 2-ピペリドンに代えて、アゼパン-2-オンを用いた以外は、合成例8と同様にして、2-ニトロ-N-(6-オキソ-6-(1-フェニル-1H-イミダゾール-2-イル)ヘキシル)ベンゼンスルホンアミド(11)を白色固体物として得た(収率6%)。得られたアミド誘導体(11)の分析データを以下に示す。
11: TLC, Rf = 0.42 (hexane-EtOAc = 1:4); IR (CHCl3) 2936, 1684, 1541, 1508, 1407, 1338, 1164 cm-11H NMR (CDCl3, 400 MHz) δ 1.30-1.40 (m, 2H), 1.50-1.65 (m, 4H), 3.09 (q, J = 6.8 Hz, 2H), 3.10 (t, J = 7.3 Hz, 2H), 5.26 (t, J = 6.0 Hz, 1H), 7.18 (s, 1H), 7.23-7.30 (m, 3H), 7.44-7.50 (m, 3H), 7.69-7.75 (m, 2H),7.81-7.85 (m, 1H), 8.10-8.14 (m, 1H); HRMS (FAB+) m/z calcd for C21H23N4O5S (M+H) 443.1389, found 443.1391.
合成例13(アミド誘導体13の合成):
 グルタル酸無水物に代えて、コハク酸無水物を用いた以外は、合成例3と同様にして、N-(3,5-ジメトキシフェニル)-4-オキソ-4-(1-フェニル-1H-イミダゾール-2-イル)ブタンアミド(13)を白色固体物として得た(収率21%)。得られたアミド誘導体13の分析データを以下に示す。
13: TLC, Rf = 0.38 (hexane-EtOAc = 1: 4); 1H NMR (CDCl3, 400 MHz) δ 2.69 (t, J = 6.0 Hz, 2H), 3.60 (t, J = 6.0 Hz, 2H), 3.75 (s, 6H), 6.20 (s, 1H), 6.70 (s, 2H), 7.19 (d, J = 0.92 Hz, 1H), 7.26-7.32 (m, 3H), 7.41-7.47 (m, 3H), 7.60 (brs, 1H).
合成例14(アミド誘導体15の合成):
 2-ピペリドンに代えて、3-アリル-2-ピペリドンを、2-ニトロベンゼン-1-スルホニルクロリド(NsCl)に代えて、4-ニトロベンゼン-1-スルホニルクロリド(4-NsCl)を用いた以外は、合成例8と同様にして、3-アリル-1-((4-ニトロフェニル)スルホニル)ピペリジン-2-オン(S15)を白色固体として得た(収率53%)。また、S5aに代えて、515を用いて、合成例8と同様にして、4-ニトロ-N-(4-(1-フェニル-1H-イミダゾール-2-カルボニル)ヘプタ-6-エン-1-イル)ベンゼンスルホンアミド(15)を白色固体物として得た(収率38%)。得られたアミド誘導体15の分析データを以下に示す。
15: TLC, Rf = 0.44 (hexane-EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 1.42-1.50 (m, 1H), 1.51-1.69 (m, 2H), 1.83-1.92 (m, 1H), 2.09-2.19 (m, 1H), 2.38-2.46 (m, 1H), 3.00-3.10 (m, 1H), 3.17-3.28 (m, 1H), 3.66-3.74 (m, 1H), 4.92-4.99 (m, 2H), 5.62-5.74 (m, 1H), 7.20-7.26 (m, 4H), 7.38 (d, J = 1.4 Hz, 1H), 7.45-7.51 (m, 3H), 8.08 (d, J = 8.7 Hz, 2H), 8.34 (d, J = 8.7 Hz, 2H).
合成例15(アミド誘導体17の合成):
 反応器に、1-フェニルイミダゾール(1.44g,10mmol)と溶媒であるテトラヒドロフラン(20mL)とを収容した。その後、ドライアイスを用いてこの溶液を-78℃とし、n-ブチルリチウム(n-BuLi)のヘキサン溶液(6.9mL、1.6M、11mmol)を滴下させつつ添加し、30分間攪拌した。そして、混合物に、エチルブロモアセテート(1.2mL,11mmol)とテトラヒドロフラン(5mL)とからなる溶液を、カニュラーにより添加し、攪拌しながら-78℃で反応させた。1時間後、塩化アンモニウム水溶液を加えることにより、反応を終了した。得られた反応液に含まれる反応生成物を酢酸エチルで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。得られた化合物は次の反応にそのまま用いた。その後、氷を用いてこの溶液を0℃とし、NaCN(0.66g,13.5mmol)を添加し、そして氷バスを外し、室温で反応させた。18時間後、再び氷を用いて反応液を0℃とし、濃塩酸(1mL)を滴下させつつ添加し、15分撹拌した。得られた反応液に含まれる反応生成物をクロロホルムで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。次いで、この濃縮物を、シリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=4/1)に供して、3-オキソ-3-(1-フェニル-1H-イミダゾール-2-イル)プロパンニトリル(S17)を得た(2ステップの総収率41%)。
 反応器に、NaH(33mg,0.82mmol)と溶媒であるN,N-ジメチルフォルムアミド(1mL)とを収容した。その後、氷を用いてこの溶液を0℃とし、先に得られたS17(0.17g,0.82mmol)とN,N-ジメチルフォルムアミド(1mL)とからなる溶液を、カニュラーにより添加し、攪拌しながら30分間反応させた。そして、混合物に、N-(3-ブロモプロピル)-N-(tert-ブチルラルボモイル)-4-ニトロベンゼンスルホンアミド(346mg,0.82mmol)とN,N-ジメチルフォルムアミド(1mL)とからなる溶液を、カニュラーにより添加し、攪拌しながら12時間反応させた。塩化アンモニウム水溶液を加えることにより、反応を終了した。得られた反応液に含まれる反応生成物を酢酸エチルで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。得られた化合物は次の反応にそのまま用いた。反応器に、先に得られた化合物と溶媒であるジクロロメタン(1mL)とを収容した。その後、反応液にトリフルオロ酢酸(30μL,0.40mmol)を添加し、室温で攪拌しながら12時間反応させた。炭酸水素ナトリウム水溶液を加えることにより、反応を終了した。得られた反応液に含まれる反応生成物をクロロホルムで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。次いで、この濃縮物を、シリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=4/1)に供して、N-(4-シアの-5-オキソ-5-(1-フェニル-1H-イミダゾール-2-イル)ペンチル)-4-ニトロベンゼンスルホンアミドを白色固体として得た(2ステップの総収率16%)。得られたアミド誘導体17の分析データを以下に示す。
17: TLC, Rf = 0.15 (hexane-EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ1.73-1.94 (m, 2H), 2.00-2.10 (m, 1H), 2.13-2.25 (m, 1H), 3.06-3.16 (m, 1H), 3.20-3.30 (m, 1H), 4.79 (dd, J = 7.1, 9.6 Hz, 1H), 5.90 (t, J = 6.0 Hz, 1H), 7.26-7.32 (m, 2H), 7.33 (d, J = 0.92 Hz, 1H), 7.41 (d, J = 0.92 Hz, 1H), 7.47-7.55 (m, 3H), 8.07 (d, J = 8.7 Hz, 2H), 8.37 (d, J = 8.7 Hz, 2H).
合成例16(アミド誘導体19の合成):
 反応器に、調製したリチウムジイソプロピルアミド(15mmol)のテトラヒドロフラン溶液を収容した。その後、ドライアイスを用いてこの溶液を-78℃とし、シクロヘキサンカルボニトリル(1.8mL,15mmol)を添加し、撹拌しながら1時間反応させた。そして、混合物に、3-ブロモプロピオン酸エチル(2.1mL,16.5mmol)を-78℃で添加し、ドライアイスバスを外して反応液を室温とし、攪拌しながら12時間反応させた。塩化アンモニウム水溶液を加えることにより、反応を終了した。得られた反応液に含まれる反応生成物を酢酸エチルで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。得られた化合物は次の反応にそのまま用いた。その後、先に得た化合物と溶媒であるジクロロメタン(5mL)とを収容した。氷を用いて、この溶液を0℃とし、別の容器で調製したMe(OMe)NH・HCl(1.2g,12mmol)とAlMe3(1Mヘキサン溶液,12mL,12.0mmol)と溶媒としてジクロロメタン(10mL)とからなる溶液を、カニュラーにより添加し、攪拌しながら室温で8時間反応させた。塩酸(1M)を加えることにより、反応を終了した。固形物は、セライトろ過により除き、得られた反応液に含まれる反応生成物を酢酸エチルで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。得られた化合物は次の反応にそのまま用いた。その後、グルタル酸無水物に代えて、先に得た化合物を用いた以外は、合成例2と同様にして、1-(3-オキソ-3-(1-フェニル-1H-イミダゾール-2-イル)プロピル)シクロヘキサン-1-カルボニトリル(S19)を白色固体物として得た(3ステップの収率8%)。
 その後、反応器に、LiAlH4(0.76g,2mmol)と溶媒であるジエチルエーテル(5mL)とを窒素雰囲気下で収容した。氷を用いて、この溶液を0℃とし、先に得た化合物(0.32g,1mmol)とジエチルエーテル(5mL)とからなる溶液を、カニュラーにより滴下させつつ添加し、氷バスを外し、室温で攪拌しながら反応させた。3時間後、水をゆっくり加えることにより、反応を終了した。固形物は、セライトろ過により除き、得られた反応液に含まれる反応生成物を酢酸エチルで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。得られた固体は次の反応にそのまま用いた。反応器に、先に得た化合物と溶媒であるアセトニトリル(5mL)とを収容し、そこに、トリエチルアミン(0.28mL,2mmol)と、DMAP(24mg,0.2mmol)と、4-ニトロベンゼンスルホニルクロリド(4-NsCl,0.22g,1mmol)をその順で添加し、撹拌しながら室温で8時間反応させた。塩酸(1M)を加えることにより、反応を終了した。得られた反応液に含まれる反応生成物を酢酸エチルで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。得られた化合物は次の反応にそのまま用いた。反応器に、先に得た化合物と溶媒であるジクロロメタン(3mL)とを収容し、そこに、ヨードベンゼンジアセテート(0.11g,0.34mmol)と、2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル(TEMPO,4.4mg,0.028mmol)をその順で添加し、アルコールがなくなるまで撹拌しながら室温で反応させた。チオ硫酸ナトリウム水溶液を加えることにより、反応を終了した。得られた反応液に含まれる反応生成物をクロロホルムで抽出した。回収した有機層に過剰量の無水硫酸ナトリウムを投入し、減圧下における溶媒の留去を行い、粗生成物を含む濃縮物を得た。次いで、この濃縮物を、シリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=4/1)に供して、4-ニトロ-N-((1-(3-オキソ-3-(1-フェニル-1H-イミダゾール-2-イル)プロピル)シクロヘキシル)メチル)ベンゼンスルホンアミドを白色固体として得た(3ステップの総収率6%)。得られたアミド誘導体19の分析データを以下に示す。
19: TLC, Rf = 0.41 (hexane-EtOAc = 2:1); 1H NMR (CDCl3, 400 MHz) δ 1.23-1.47 (m, 10H), 1.76 (t, J = 8.3 Hz, 2H), 2.68 (t, J = 8.3 Hz, 2H), 2.95 (d, J = 6.9 Hz, 2H), 7.22 (s, 1H), 7.26-7.32 (m, 2H), 7.44 (s, 1H), 7.46-7.53 (m, 3H), 8.12 (d, J = 8.7 Hz, 2H), 8.36 (d, J = 8.7 Hz, 2H), 8.63 (t, J = 6.9 Hz, 2H).
[実施例3]1aを用いた分子内酸化的アミノ環化反応による含窒素環化合物の製造
 反応容器において、室温下、出発原料である1a(26.7mg、0.1mmol)、1aに対して10mol%のテトラブチルアンモニウムヨージド(3.7mg、0.01mmol)、及び溶媒である酢酸エチル(5ml)を添加し、次いで、1aに対して2当量(5.5M-デカン溶液、Aldrich社製、36.4μL、0.2mmol)のtert-ブチルヒドロペルオキシド(TBHP)を添加した。その後、24時間攪拌し、反応を行った。反応終了後、反応容器に飽和の亜硫酸ナトリウム(Na2SO3)水溶液(5mL)を加えて、反応生成物を含む反応液を酢酸エチルで2回抽出した。得られた有機層を水及びNaCl水溶液により、順次、洗浄した後、無水硫酸ナトリウム(Na2SO4)を投入した。その後、溶媒を減圧下、留去し、粗生成物を含む濃縮物を得た。次いで、この濃縮物をシリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=3/1)に供して、下記式(2a)で表される5-ベンゾイル-1-フェニルピロリジン-2-オンを白色固体物として得た。得られた生成物(2a)の分析データを以下に示す。
2a:TLC, Rf = 0.48 (hexane-EtOAc = 1:4); 1H NMR (CDCl3, 400 MHz) δ 2.11-2.19 (m, 1H), 2.58-2.77 (m, 3H), 5.69-5.76 (m, 1H), 7.11-7.16 (m, 1H), 7.31 (t, J = 7.8 Hz, 2H), 7.43-7.48 (m, 2H), 7.51-7.58 (m, 2H), 7.63-7.69 (m, 1H), 8.00 (d, J = 7.4 Hz, 2H).
 また、上記実施例を実施例3-1として、下記表1に示す反応条件を除き、上記実施例と同様にして、実施例3-2~3-6を行った。
Figure JPOXMLDOC01-appb-T000022
[実施例4]1b~11を用いた分子内酸化的アミノ環化反応による含窒素環化合物の製造
 以下の実施例において、基質化合物として、実施例2により得られたアミド誘導体を、4級アンモニウム塩として、テトラブチルアンモニウムヨージド(Bu4+-)20mol%をそれぞれ用い、上記実施例3-1と同様にして、下記式に示すように、対応する含窒素環化合物を製造し、収率を測定した。尚、1b、1c、1d、1e、5a、5b、7、9、11に対応する生成物は、それぞれ2b、2c、2d、2e、6a、6b、8、10、及び12である。それぞれの反応時間、並びに、化学収率を下記式に示す。
Figure JPOXMLDOC01-appb-C000023
 以下に、得られた生成物の分析データを以下に示す。
2b: 白色固体. TLC, Rf = 0.38 (hexane-EtOAc = 1:8); 1H NMR (CDCl3, 400 MHz) δ2.11-2.22 (m, 1H), 2.50-2.71 (m, 3H), 3.76 (s, 3H), 6.06-6.11 (m, 1H), 6.83 (d,J = 9.2 Hz, 2H), 7.14-7.21 (m, 2H), 7.25 (s, 1H), 7.32 (s, 1H), 7.38 (d, J = 9.2 Hz, 2H), 7.39-7.46 (m, 3H).
2c: 白色固体. TLC, Rf = 0.25 (hexane-EtOAc = 1:4); IR (CHCl3) 3006, 2962, 1699, 1598, 1406, 1284, 1208, 1155, 1070 cm-11H NMR (CDCl3, 400 MHz) δ 2.12-2.21(m, 1H), 2.51-2.74 (m, 3H), 3.72 (s, 6H), 6.12-6.17 (m, 1H), 6.23 (t, J = 2.3 Hz, 1H), 6.79 (d, J = 2.3 Hz, 2H), 7.17-7.23 (m, 2H), 7.27 (s, 1H), 7.35 (s, 1H),7.38-7.46 (m, 3H); 13C NMR (CDCl3, 100 MHz) δ 23.1, 31.1, 55.3 (2C), 63.5, 97.3, 99.6, 125.5 (2C), 128.0, 128.9, 129.0 (2C), 130.4, 137.4, 140.1, 140.8, 160.7(2C), 174.7, 187.7; HRMS (FAB+) m/z calcd for C22H22N3O4 (M+H) 392.1610, found 392.1606.
2d:白色固体. TLC, Rf = 0.2 (hexane-EtOAc = 1:8); 1H NMR (CDCl3, 400 MHz) δ 2.16-2.26 (m, 1H), 2.56-2.72 (m, 3H), 6.19-6.24 (m, 1H), 7.20-7.25 (m, 3H), 7.34 (s, 1H), 7.41 (s, 1H), 7.42-7.49 (m, 3H), 7.55 (d, J = 6.4 Hz, 2H), 8.47 (d, J = 5.5 Hz, 2H).
2e:白色固体. TLC, Rf = 0.28 (hexane-EtOAc = 1:8); 1H NMR (CDCl3, 400 MHz) δ 2.09-2.19 (m, 1H), 2.53-2.71 (m, 3H), 3.76 (s, 3H), 3.98 (s, 3H), 6.04-6.09 (m, 1H), 6.85 (d, J = 8.7 Hz, 2H), 7.09 (s, 1H), 7.20 (s, 1H), 7.41 (d, J = 9.2 Hz, 2H).
6a:白色固体. TLC, Rf = 0.39 (hexane-EtOAc = 1:4); IR (CHCl3) 1698, 1543, 1406, 1366, 1350, 1163 cm-11H NMR (CDCl3, 400 MHz) δ 1.90-2.03 (m, 2H), 2.13-2.21(m, 1H), 2.41-2.51 (m, 1H), 3.57-3.70 (m, 2H), 5.79 (dd, J = 6.2, 8.7 Hz, 1H), 7.23 (s, 1H), 7.26-7.32 (m, 3H), 7.40-7.48 (m, 3H), 7.55-7.59 (m, 1H), 7.60-7.69 (m, 2H), 8.02-8.06 (m, 1H); HRMS (FAB+) m/z calcd for C20H119N4O5S (M+H) 427.1076, found 429.1079.
6b:白色固体. TLC, Rf = 0.56 (hexane-EtOAc = 1:4); IR (CHCl3) 1699, 1493, 1407, 1344, 1158, 1096 cm-11H NMR (CDCl3, 400 MHz) δ 1.62-1.74 (m, 1H), 1.85-1.96(m, 1H), 1.96-2.08 (m, 1H), 2.12-2.27 (m, 1H), 2.43 (s, 3H), 3.28 (dt, J = 7.3Hz, 9.6 Hz, 1H), 3.51-3.60 (m, 1H), 5.54 (dd, J = 4.6, 8.7 Hz, 1H), 7.24 (s, 1H),7.28-7.37 (m, 5H), 7.43-7.50 (m, 3H), 7.74-7.79 (m, 2H) ; 13C NMR (CDCl3, 100 MHz) δ 21.5, 24.7, 31.4, 48.9, 62.5, 125.7 (2C), 127.3, 127.5 (2C), 128.7, 129.0(2C), 129.6 (2C), 130.0, 135.1, 137.9, 141.4, 143.3, 188.3 ; HRMS (FAB+) m/z calcd for C21H22N3O3S (M+H) 396.1382, found 396.1380.
8:白色固体. TLC, Rf = 0.61 (hexane-EtOAc = 1:2); IR (CHCl3) 2953, 1687, 1495, 1400, 1335, 1152, 1093 cm-11H NMR (CDCl3, 400 MHz) δ 1.68 (s, 3H), 1.85-1.93 (m, 1H), 1.94-2.03 (m, 1H), 2.11-2.20 (m, 1H), 2.40 (s, 3H), 3.08-3.16 (m, 1H), 3.47 (dt, J = 3.2, 8.2 Hz, 1H), 3.85 (dt, J = 6.9, 8.7 Hz, 1H), 7.18 (dd, J = 0.9, 5.0 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 7.41-7.49 (m, 5H), 7.58 (d, J = 8.2 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 21.4, 23.6, 24.3, 39.9, 49.0, 73.0, 125.5 (2C), 125.8, 127.1 (2C), 128.3, 128.6, 129.0 (2C), 129.3 (2C), 138.0, 138.7, 141.1,142.7, 191.3; HRMS (FAB+) m/z calcd for C22H24N3O3S (M+H) 410.1538, found 410.1527.
10:白色固体. TLC, Rf = 0.42 (hexane-EtOAc = 1:4); IR (CHCl3) 1698, 1543, 1406, 1369, 1336, 1164 cm-11H NMR (CDCl3, 400 MHz) δ 2.37-2.46 (m, 1H), 2.74 (dt,J = 4.6, 9.6, 11.2 Hz, 1H), 3.99-4.05 (m, 1H), 4.34 (dd, J = 7.8, 16.5 Hz, 1H),6.13 (dd, J = 7.8, 9.6 Hz, 1H), 7.23 (d, J = 0.9 Hz, 1H), 7.27-7.32 (m, 3H), 7.43-7.47 (m, 3H), 7.63-7.68 (m, 3H), 8.07-8.12 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ 21.0, 49.4, 66.4, 124,0, 125.8 (2C), 127.5, 128.9, 129.0 (2C), 130.3, 131.2, 132.0, 133.1, 133.3, 137.5, 140.1, 148.2, 184.8; HRMS (FAB+) m/z calcd for C19H17N4O5S (M+H) 413.0920, found 413.0923.
12:白色固体. TLC, Rf = 0.53 (hexane-EtOAc = 1:2); IR (CHCl3) 2948, 1692, 1542, 1344, 1161, 901 cm-11H NMR (CDCl3, 400 MHz) δ 1.21-1.39 (m, 1H), 1.45-1.80 (m, 3H), 1.95-2.06 (m, 1H), 2.54 (d, J = 14.2 Hz, 1H), 3.71 (dt, J = 3.2, 12.4 Hz, 1H), 3.75-3.81 (m, 1H), 5.76 (d, J = 5.5 Hz, 1H), 7.17 (s, 1H), 7.20-7.31 (m,3H), 7.41-7.46 (m, 3H), 7.59-7.67 (m, 3H), 8.04-8.07 (m, 1H); HRMS (FAB+) m/z calcd for C21H21N4O5S (M+H) 441.1232, found 441.1236.
[実施例5] 第四級アンモニウムヨージドの触媒活性の検討
 上記実施例1で製造された(A)~(D)のキラルな第四級アンモニウムヨージドをそれぞれ触媒前駆体として用い、上記実施例2で製造されたアミド化合物1bから、下記表2に示されるように、五員環のラクタムの製造を行い、その触媒活性について調べた。
 出発原料となるアミド化合物としては、表2に示される1bを用いた。アミドの保護基としては4-メトキシフェニル基を用いた。
 反応容器において、室温下、出発原料である1b(36.3mg、0.1mmol)、1bに対して10mol%の第四級アンモニウムヨージド(17mg、0.01mmol)、及び溶媒であるシクロペンチルメチルエーテル(CPME)(5ml)を添加し、次いで、1bに対して2当量(5.5M-デカン溶液、Aldrich社製、36.4μL、0.2mmol)のtert-ブチルヒドロペルオキシド(TBHP)を添加した。その後、下記表に示す反応時間攪拌し、反応を行った。反応終了後、反応容器に飽和の亜硫酸ナトリウム(Na2SO3)水溶液(5mL)を加えて、反応生成物を含む反応液を酢酸エチルで2回抽出した。得られた有機層を水及びNaCl水溶液により、順次、洗浄した後、無水硫酸ナトリウム(Na2SO4)を投入した。その後、溶媒を減圧下、留去し、粗生成物を含む濃縮物を得た。次いで、この濃縮物をシリカゲルのフラッシュカラムクロマトグラフィー(展開液:ヘキサン/酢酸エチル=3/1)に供して、下記式(2b)で表される1-メトキシ-5-(1-フェニル-1H-イミダゾール-2-カルボニル)ピロリジン-2-オン(白色固体物)を得た。HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA」、溶離液:ヘキサン/エタノール(4/1)、流速:0.4mL/分、t1=32分、t2=39分)によるエナンチオ選択率を調べた。用いた第四級アンモニウムヨージド、反応時間、並びに、化学収率及び不斉収率を表2に示す。
Figure JPOXMLDOC01-appb-T000024
 表2から明らかなように、反応時間15~25時間において、いずれの第四級アンモニウムヨージドを用いても五員環のラクタムを高い化学収率及び不斉収率で得ることができることが分かった。特に、第四級アンモニウムヨージドが上記(A)である場合に、触媒活性及び選択性に優れていた。
 また、化合物1bにおいて、ケトンの隣接基として、1-フェニルイミダゾリニル基が好適であることが分かった。
[実施例6] 反応溶媒の検討
 次に、反応溶媒の比較検討を行った。上記実施例5の反応溶媒CPMEに換えて、それぞれ表3に示す溶媒を用いて、下記表3に示す変更点を除き、実施例5-1と同様に五員環のラクタムの製造を行った。尚、第四級アンモニウムヨージドとしては上記(A)を用い、アミド化合物としては、アミドの保護基を4-メトキシフェニル基に換えて3,5-ジメトキシフェニル基としたアミド化合物1cを用いた。HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(1/10)、流速:0.4mL/分、t1=22分、t2=37分)によるエナンチオ選択率を調べた。溶媒の種類、溶媒濃度、反応温度、及び反応時間、並びに化学収率及び不斉収率を表3に示す。尚、表中の溶媒濃度Mは酢酸エチルの体積あたりの基質のモル数を表す。
Figure JPOXMLDOC01-appb-T000025
 表3の実施例6-1から明らかなように、上記実施例5-1と比較すると、アミドの保護基としては、4-メトキシフェニル基よりも3,5-ジメトキシフェニル基である方が化学収率及び不斉収率共に良好な結果が得られた。表3の実施例6-2から明らかなように、溶媒をトルエンとした場合には、不斉収率が向上した。さらに、実施例6-3から明らかなように、0℃と低温にした場合には不斉収率が85%と向上した。また、実施例6-4及び6-5から明らかなように、水を共溶媒として用いると、触媒活性及び不斉収率に向上が見られた。従って、一般式(3)におけるXがOであるアミド化合物の環化反応(ラクタムの製造)において、エーテル系溶剤よりもトルエンが不斉収率の観点から溶剤として適していることが分かった。また、水を共溶媒することで、化学収率及び不斉収率を向上できることが分かった。
[実施例7] 四級炭素を有する2-アシルピロリジン-5-オンの製造
 アミド化合物1cに換えて、上記実施例2で製造されたアミド化合物3a及び3b(ケトンのα位にメチル基を有するアミド化合物)を用いて、下記の変更点を除いて上記実施例6-1と同様にして、反応を行った。アミドの保護基としては、3,5-ジメトキシフェニル基に換えて、トシル(Ts)基、即ち、4-CH3-C64SO2、又はメシル(Ms)基、即ち、CH3SO2を用い、それぞれ下記表4に示す溶媒の種類、溶媒濃度、反応温度、及び反応時間で反応を行った。化学収率及び不斉収率を表4にそれぞれ示す。尚、表4中、溶媒MTBEはメチル tert-ブチルエーテルを示す。
Figure JPOXMLDOC01-appb-T000026
 表4から明らかなように、アミドの保護基として、Ts基及びMs基を用いたものは、良好な化学収率及び不斉収率でラクタムを得ることができた。特に、Ms基は、化学収率及び不斉収率においてより向上した。従って、一般式(3)におけるXがOであるアミド化合物の不斉酸化的環化反応(ラクタムの製造)においては、アミドの保護基がTs基及びMs基である場合に良好な結果が得られることが分かった。
 得られた化合物4の分析データを以下に示す。
4a:白色固体. TLC, Rf = 0.58 (hexane-EtOAc = 1:4); 1H NMR (CDCl3, 400 MHz) δ 1.84 (s, 3H), 2.30-2.45 (m, 4H), 2.98-3.09 (m, 1H), 3.40-3.49 (m, 2H), 7.17 (s, 1H), 7.20-7.32 (m, 5H), 7.47 (s, 1H), 7.86 (d, J = 7.8 Hz, 2H). HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(4/1)、流速:1mL/分、t1=31分、t2=35分)によるエナンチオ選択率は36%eeであった。
4b:白色固体. TLC, Rf = 0.42 (hexane-EtOAc = 1:4); IR (CHCl3) 1700, 1639, 1396, 1306, 1146 cm-11H NMR (CDCl3, 400 MHz) δ 1.90 (s, 3H), 2.35-2.45 (m, 1H), 3.01-3.11 (1H), 3.07 (s, 3H), 3.28-3.36 (m. 2H), 7.22 (s, 1H), 7.24-7.28 (m, 2H),7.30-7.32 (m, 1H), 7.46-7.51 (m, 3H); 13C NMR (CDCl3, 100 MHz) δ 24.3, 30.2, 33.8, 42.4, 92.2, 125.7 (2C), 127.4, 129.1, 129.2 (2C), 130.1, 137.8, 139.3, 180.5, 186.1; HRMS (FAB+) m/z calcd for C16H18N3O4S (M+H) 348.1018, found 348.1015.HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3及びIAの2本」、溶離液:ヘキサン/エタノール(4/1)、流速:0.8mL/分、t1=65分、t2=69分)によるエナンチオ選択率は52%eeであった。
[実施例8] アシルピロリジンの不斉合成
 ケトアミドのアミド部位のカルボニル基が外側にあって、Xが2つのHであるアミド化合物5の不斉酸化的環化反応を、下記の変更点を除いて上記実施例6-2と同様にして、反応を行った。アミドの保護基として、それぞれ表5に示す2-ニトロベンゼンスルホニル(Ns)基、即ち、2-NO2-C64SO2基、及び脱保護が容易なTs基を用い、室温にてそれぞれ表5に示す反応時間で行った。溶媒はトルエン(0.01M)を使用した。化学及び不斉収率を同じく表5に示す。HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(4/1)、流速:1mL/分、t1=24分、t2=50分)による6aエナンチオ選択率は92%eeであった。また、HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(4/1)、流速:1mL/分、t1=17分、t2=19分)による6bのエナンチオ選択率は93%eeであった。
Figure JPOXMLDOC01-appb-T000027
 表5から明らかなように、保護基がNs基及びTs基である場合は共に、極めて高い化学収率及び不斉収率でピロリジンを得ることができた。従って、一般式(3)におけるXが2つのHであるアミド化合物の不斉酸化的環化反応においては、アミドの保護基がNs基及びTs基である場合に良好な結果が得られることが分かった。
[実施例9] 四級炭素を有する2-アシルピロリジンの製造
 ケトンのα-位にメチル基を有するアミド化合物7の不斉酸化的環化反応を、表6に示す種々の溶媒において、表6に示す反応温度及び反応時間でそれぞれ行った。HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(10/1)、流速:1mL/分、t1=22分、t2=35分)によるエナンチオ選択率を調べた。尚、他の反応条件は、上記実施例8-1と同様にした。化学収率及び不斉収率を表6に示す。
Figure JPOXMLDOC01-appb-T000028
 表6に示すように、実施例9-3及び9-4のエーテル系溶剤において、高い化学収率及び不斉収率を得ることができた。特に実施例9-4のメチルt-ブチルエーテルを溶媒とした場合には、化学収率及び不斉収率が共に90%を超える優れた結果であった。従って、一般式(3)におけるXが2つのHであるアミド化合物の不斉酸化的環化反応においては、エーテル系溶剤、特にメチルt-ブチルエーテルを用いた場合に、化学収率及び不斉収率共に優れていることが分かった。
 尚、得られた2-アシルピロリジンは、保護基のTs、カルボニル基、及び1-フェニルイミダゾリル基を外し、医薬中間体として、有用に用いることができる。
[実施例10] 2-アシルアゼチジン、2-アシルピペリジンの製造
 上記実施例9-1と同様に、異なる環サイズの含窒素ヘテロ環化合物の製造を行った。尚、反応時間、基質としてのアミド化合物9、11、及びその結果を表7に示す。HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(10/1)、流速:1mL/分、t1=18分、t2=23分)による化合物10のエナンチオ選択率は79%eeであった。 また、HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(4/1)、流速:1mL/分、t1=20分、t2=26分)による化合物12エナンチオ選択率は37%eeであった。
Figure JPOXMLDOC01-appb-T000029
 表7から明らかなように、四員環の2-アシルアゼチジン10が高い化学収率及び不斉収率で得られた。また、六員環の2-アシルピペリジン12も得ることができた。
[実施例11]アミド化合物13,15,17,19を用いた分子内酸化的アミノ環化反応による含窒素環化合物の製造
 上記実施例5-1において、アミド化合物1bに代えて、上記実施例1の合成例13~16で合成したアミド化合物13,15,17,及び19を出発原料として分子内酸化的アミノ環化反応を行った。但し、反応溶媒、反応温度及び反応時間は、表8に示すとおりとした。表8から分かるように、13の反応では、β-ラクタム誘導体14が良好な不斉収率で得られた。また、窒素原子の保護基が4-ニトロベンゼンスルホニル基でありケトンのα位にアリル基やシアノ基を有するアミド化合物15と17の反応では、対応するピロリジン誘導体16と18がそれぞれ良好な化学及び不斉収率で得られた。また、シクロヘキシル基を有するアミド化合物19の反応では、対応するスピロピロリジン誘導体20が良好な化学収率と高い不斉収率で得られた。
Figure JPOXMLDOC01-appb-T000030
 以下に、生成物の分析データを示す。
14: 白色固体. TLC, Rf = 0.52 (hexane-EtOAc = 1:4); 1H NMR (CDCl3, 400 MHz) δ 3.06 (dd, J = 2.8, 15.1 Hz, 1H), 3.50 (dd, J = 6.4, 15.1 Hz, 1H), 3.73 (s, 6H), 5.84 (dd, J = 2.8, 6.4 Hz, 1H), 6.17 (t, J = 2.3 Hz, 1H), 6.50 (d, J = 2.3 Hz, 2H), 7.26-7.30 (m, 2H), 7.32 (d, J = 0.92 Hz, 1H), 7.37 (d, J = 0.92 Hz, 1H), 7.43-7.48 (m, 3H). HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(4/1)、流速:1.0mL/分、t1=34分、t2=45分)によるβ-ラクタム14のエナンチオ選択率は79%eeであった。
16: 黄白色固体. TLC, Rf = 0.67 (hexane-EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 1.93-2.05 (m, 2H), 2.22 (ddd, J = 5.0, 7.3, 12.8 Hz, 1H), 2.88 (dt, J = 8.7, 12.8 Hz, 1H), 3.01 (dd, J = 6.0, 14.6 Hz, 1H), 3.12 (dd, J = 8.7, 14.6 Hz, 1H), 3.52-3.59 (m, 1H), 3.82 (q, J = 7.8 Hz, 1H), 5.07-5.18 (m, 2H), 5.62-5.73 (m, 1H), 7.13 (d, J = 0.92 Hz, 1H), 7.18 (d, J = 0.92 Hz, 1H), 7.37-7.43 (m, 2H), 7.48-7.54 (m, 3H), 7.81 (d, J = 9.2 Hz, 2H), 8.21 (d, J = 9.2 Hz, 2H). HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(4/1)、流速:1.0mL/分、t1=13分、t2=15分)によるピロリジン誘導体16のエナンチオ選択率は61%eeであった。
18:白色固体. TLC, Rf = 0.27 (hexane-EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 2.09-2.18 (m, 1H), 2.20-2.30 (m, 1H), 2.79-2.88 (m, 1H), 3.08-3.18 (m, 1H), 3.49 (dt, J = 3.7, 8.3 Hz, 1H), 3.93-4.00 (m, 1H), 7.31 (s, 1H), 7.36 (s, 1H), 7.38-7.44 (m, 2H), 7.48-7.54 (m, 3H), 8.14 (d, J = 8.7 Hz, 2H), 8.38 (d, J = 8.7 Hz, 2H). HPLC測定(キラルカラム:「DAICEL CHIRALPAK AS-H」、溶離液:ヘキサン/エタノール(4/1)、流速:1.0mL/分、t1=45分、t2=53分)によるピロリジン誘導体18のエナンチオ選択率は64%eeであった。
20: 白色固体. TLC, Rf = 0.37 (hexane-EtOAc = 2:1); 1H NMR (CDCl3, 400 MHz) δ 1.02-1.20 (m, 2H), 1.22-1.48 (m, 8H), 1.74 (dd, J = 9.2, 12.8 Hz, 1H), 2.36 (dd, J = 7.8, 12.8 Hz, 1H), 3.16 (d, J = 10.1 Hz, 1H), 3.46 (d, J = 10.1 Hz, 1H), 5.63 (t, J = 9.2 Hz, 1H), 7.26-7.36 (m, 4H), 7.46-7.50 (m, 3H), 8.04 (d, J = 8.7 Hz, 2H), 8.32 (d, J = 8.7 Hz, 2H). HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(4/1)、流速:1.0mL/分、t1=24分、t2=41分)によるスピロピロリジン誘導体20のエナンチオ選択率は94%eeであった。
[実施例12]生成物の誘導
 下記式に示すように、実施例8-2で得られた生成物6bのイミダゾリル基は文献法(Evans, et al. J. Am. Chem. Soc. 2007, vol.129, p10029)に従って、既知化合物のエステル21へと光学純度を保持したまま変換することに成功した。その際に、生成物の絶対立体配置をRと決定した。誘導したキラル窒素へテロ環化合物はさらに、ケトンやカルボン酸、アルコール等の有用官能基への変換が可能である。
Figure JPOXMLDOC01-appb-C000031
 以下に、化合物21の分析データを示す。
21: 白色固体. TLC, Rf = 0.56 (hexane-EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 1.26 (t, J = 7.3 Hz, 1H), 1.71-1.81 (m, 1H), 1.91-2.08 (m, 3H), 2.43 (s, 3H), 3.28-3.36 (m, 1H), 3.45-3.52 (m, 1H), 4.11-4.22 (m, 2H), 4.29 (dd, J = 4.3, 7.8 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H). HPLC測定(キラルカラム:「DAICEL CHIRALPAK IA-3」、溶離液:ヘキサン/エタノール(4/1)、流速:1.0mL/分、t1=17分、t2=19分)による21のエナンチオ選択率は93%eeであった。
 以下には様々な天然物や生理活性物質を示すが、これらの化合物は本発明によって合成可能である。
Figure JPOXMLDOC01-appb-C000032
 本出願は、2012年2月16日に出願された日本国特許出願第2012-31224号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
本発明は、含窒素環化合物が使用される、医薬品、触媒、及び化学産業等の分野において有用である。

Claims (9)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは芳香環であり、R2は水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
    で表される含窒素環化合物の製造方法であって、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Arは芳香環であり、R2は素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
    で表されるアミド化合物を、ヨージド塩及び共酸化剤の存在下に反応させる工程を包含する、含窒素環化合物の製造方法。
  2.  上記アミド化合物が、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1、及びR2はそれぞれ独立して水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
    で表され、上記得られる含窒素環化合物が、下記一般式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1、及びR2はそれぞれ独立して水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
    で表される、請求項1記載の含窒素環化合物の製造方法。
  3.  前記ヨージド塩が、アンモニウムヨージド、ホスホニウムヨージド、及びアルカリ金属ヨージドからなる群から選ばれた一種以上である、請求項1又は2記載の含窒素環化合物の製造方法。
  4.  前記ヨージド塩が、キラルなヨージド塩である、請求項1~3のいずれか一項に記載の含窒素環化合物の製造方法。
  5.  前記ヨージド塩が、下記一般式(5)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Ar1、及びAr2はそれぞれ独立して置換基を有していてもよいアリール基であって、該置換基はハロゲン原子、ハロゲン原子で置換されたアルキル基、ハロゲン原子で置換されたアルケニル基、ハロゲン原子で置換されたアルキニル基、ハロゲン原子で置換されシクロアルキル基、若しくはハロゲン原子で置換されたアリール基であってもよく、又は、ハロゲン原子で置換されたアルキル基、ハロゲン原子で置換されたアルケニル基、ハロゲン原子で置換されたアルキニル基、ハロゲン原子で置換されたシクロアルキル基、若しくはハロゲン原子で置換されたアリール基で置換されたアリール基であってもよい。また、2つのビナフチル部における軸不斉の組み合わせは(R,R)又は(S,S)を表す。)
    で表される第四級アンモニウムヨージドである、請求項4記載の含窒素環化合物の製造方法。
  6. 前記PGがメシル基、トシル基、又は2-ニトロベンゼンスルホニル基である、請求項1~5のいずれか一項に記載の含窒素環化合物の製造方法。
  7.  前記共酸化剤が有機過酸化物である、請求項1~6のいずれか一項に記載の含窒素環化合物の製造方法。
  8.  前記共酸化剤がtert-ブチルヒドロペルオキシドである、請求項7に記載の含窒素環化合物の製造方法。
  9.  下記一般式(4)で表される、含窒素環化合物。
    Figure JPOXMLDOC01-appb-C000006
    (式中、R1、及びR2はそれぞれ独立して水素原子又は一価の炭化水素基であり、Xは2つのH、又はOであり、PGはXが2つのHの場合には窒素原子に結合するスルホニル基又はカルボニル基を持つ保護基、XがOの場合には窒素原子の保護基であり、n=0~2である)
PCT/JP2013/051983 2012-02-16 2013-01-30 含窒素環化合物の製造方法及び含窒素環化合物 WO2013121879A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012031224 2012-02-16
JP2012-031224 2012-02-16

Publications (1)

Publication Number Publication Date
WO2013121879A1 true WO2013121879A1 (ja) 2013-08-22

Family

ID=48983994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051983 WO2013121879A1 (ja) 2012-02-16 2013-01-30 含窒素環化合物の製造方法及び含窒素環化合物

Country Status (2)

Country Link
JP (1) JPWO2013121879A1 (ja)
WO (1) WO2013121879A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041795A1 (en) * 2002-10-30 2004-05-21 Guilford Pharmaceuticals Inc. Novel inhibitors of dipeptidyl peptidase iv
JP2009298713A (ja) * 2008-06-11 2009-12-24 Daiichi Sankyo Co Ltd イミダゾチアゾール誘導体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041795A1 (en) * 2002-10-30 2004-05-21 Guilford Pharmaceuticals Inc. Novel inhibitors of dipeptidyl peptidase iv
JP2009298713A (ja) * 2008-06-11 2009-12-24 Daiichi Sankyo Co Ltd イミダゾチアゾール誘導体

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DAISUKE SUZUKI ET AL.: "Chiral (Ji) A Yososan'en Shokubai o Mochiiru Enantio Sentakuteki Bunshinai Sankateki Amino-ka Hanno o Kagi to suru Kogaku Kassei 2-Acylpyrrolidine Gosei", KOEN YOKOSHU, vol. 92ND, no. 4, 9 March 2012 (2012-03-09), pages 1337 *
FERRARIS,D. ET AL.: "Ketopyrrolidines and ketoazetidines as potent dipeptidyl peptidase IV (DPP IV) inhibitors", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 14, no. 22, 2004, pages 5579 - 5583, XP004598598, DOI: doi:10.1016/j.bmcl.2004.08.057 *
HIROAKI OKAMOTO ET AL.: "Chiral (Ji) A Yososan'en Shokubai ni yoru Enantio Sentakuteki Bunshinai Sankateki Amino-ka Hanno o Kagi to suru Kogaku Kassei 2-Acyl Indoline Gosei", KOEN YOKOSHU, vol. 91ST, no. 4, 2011, pages 1229 *
TAKAHATA,H. ET AL.: "A convenient synthesis of monocyclic P-lactams by means of solid-liquid phase transfer reactions", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 29, no. 4, 1981, pages 1063 - 1068, XP001062821 *
TAKESHI YASUI ET AL.: "Chiral Hypervalent Iodine-Catalyzed Oxidative Oxylactonization of Ketocarboxylic Acids with Hydrogen Peroxide", KOEN YOKOSHU, vol. 89TH, no. 2, 2009, pages 1170, XP008163804 *
UYANIK M. ET AL.: "In Situ Generated (Hypo)Iodite Catalysts for the Direct a-Oxyacylation of Carbonyl Compounds with Carboxylic Acids", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 50, no. 23, 2011, pages 5331 - 5334 *
UYANIK M. ET AL.: "Quaternary ammonium (hypo) iodite catalysis for enantioselective oxidative cycloetherification.", SCIENCE, vol. 328, 2010, pages 1376 - 1379 *

Also Published As

Publication number Publication date
JPWO2013121879A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6148351B2 (ja) 置換ピロリジン−2−カルボキサミドの不斉合成
JP6429016B2 (ja) トリフルオロメタンスルホンアニリド化合物の製造方法
JP2007230963A (ja) 2,4−ジ置換ピリジンの製造法
KR101744046B1 (ko) 실로도신 합성에 유용한 중간체의 제조방법
EP2465845A1 (en) Method for producing optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester
WO2013121879A1 (ja) 含窒素環化合物の製造方法及び含窒素環化合物
JP5073497B2 (ja) テトラ置換−5−アザスピロ[2.4]へプタン誘導体の製法およびその光学活性中間体
KR20180118054A (ko) 의약품 합성용 중간체 화합물의 제조 방법
WO2014069351A1 (ja) 光学活性二環式ウレア化合物の製造方法
Magata et al. Highly Diastereoselective Synthesis of 2-(1-N-Boc-aminoalkyl) thiazole-5-carboxylates by Reduction of tert-Butylsulfinyl Ketimines
JP5870114B2 (ja) 鏡像異性的に純粋なビナフトール誘導体およびその製造方法(enantiomerically pure binaphtol derivatives and method for preparing the sae)
KR20170080190A (ko) 1,5-쌍극자의 [5+3] 고리화 첨가 반응을 이용한 8원 헤테로 고리 화합물의 제조 방법 및 이에 의해 제조된 8원 헤테로 고리 화합물
KR102134179B1 (ko) 카보네이트를 이용한 시탈로프람 및 에스시탈로프람의 새로운 제조 방법
KR101764185B1 (ko) 신코나 유래 유기촉매를 이용한 비대칭 수소첨가 반응에 의한 키랄 베타 아미노산 유도체의 제조방법
WO2005068457A1 (en) Cataltytic asymmetric hetero diels-alder reaction of a heteroaromatic c-nitroso dienophile: a novel method for synthesis of chiral non-racemic amino alcohols
JP6660393B2 (ja) 4−シアノピペリジン塩酸塩を調製する方法
US20020019532A1 (en) Process for the synthesis of (2S)-phenyl-3-piperidone
US9029592B2 (en) Process for preparing carboxamidine compounds
WO2020213714A1 (ja) シス-(-)-フロシノピペリドールの製造方法
JP5529037B2 (ja) アゼチジン誘導体を調製する方法
JP5573030B2 (ja) 光学活性テトラヒドロピラン化合物の製造方法
JP2006524695A (ja) 2個の隣接するキラル中心を有する環化合物を調製する方法
KR20200082952A (ko) 키랄 감마-락탐 화합물의 제조방법 및 이를 위한 금속 착체
JP2003321468A (ja) ピリドン化合物の製造法およびその中間体
JP2003335757A (ja) エーテル化合物の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749699

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014500160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749699

Country of ref document: EP

Kind code of ref document: A1