WO2013121754A1 - モーターのステーター・コア及び製造方法 - Google Patents

モーターのステーター・コア及び製造方法 Download PDF

Info

Publication number
WO2013121754A1
WO2013121754A1 PCT/JP2013/000678 JP2013000678W WO2013121754A1 WO 2013121754 A1 WO2013121754 A1 WO 2013121754A1 JP 2013000678 W JP2013000678 W JP 2013000678W WO 2013121754 A1 WO2013121754 A1 WO 2013121754A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
divided
annular member
yoke
motor
Prior art date
Application number
PCT/JP2013/000678
Other languages
English (en)
French (fr)
Inventor
一夫 岩田
洋平 亀田
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2013121754A1 publication Critical patent/WO2013121754A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator core for a motor and a manufacturing method thereof.
  • FIG. 11 is a front view of main parts showing a state in which the stator core is baked into the core case
  • FIG. 12 is a front view of main parts of the stator core
  • FIG. FIG. 14 is a cross-sectional view showing a state in which the stator core is baked into the core case.
  • stator core divided bodies 103A, 103B, and 103C of the stator cores 101A, 101B, and 101C of the motor are joined in an annular shape, and the core cases 105A, 105B, and 105C are joined by shrinkage. Storage is fixed.
  • stator core 101A shown in FIGS. 11 and 12 is provided with a slit 101Aa so as not to generate compressive stress, and the stator cores 103B and 103C shown in FIGS. 13 and 14 have holes 103Ba that reduce the compressive stress. , 103Ca are formed.
  • the slits 101Aa and the holes 103Ba and 103Ca cause an increase in magnetic resistance at the portions, and thus there is a problem of deteriorating magnetic characteristics.
  • FIG. 15 is a front view of an essential part showing a state in which the stator core is baked into the core case.
  • each stator core divided body 103 ⁇ / b> D of the stator core 101 ⁇ / b> D is provided with a fragile portion 107 ⁇ / b> D protruding toward the core case 105 ⁇ / b> D.
  • the fragile portion 107D undergoes brittle fracture or plastic deformation by the pressing force from the core case 105D, and reduces the pressing force received by the stator core 101D from the core case 105D.
  • the problem to be solved is that the reduction of the compressive stress due to the slit or the hole causes an increase in the magnetic resistance and the magnetic characteristics are lowered, and the fixing by the fragile part has a difficulty in reducing the magnetic resistance.
  • the present invention comprises an annular yoke portion and a tooth portion protruding radially inward on the inner periphery of the yoke portion.
  • a stator core of a motor the periphery of which is attached to the inner peripheral surface of the annular member, and elastically deformed by receiving a pressing force radially inward from the annular member between the yoke portion and the annular member.
  • an elastic deformation part that frictionally engages between the annular members, and the elastic deformation part protrudes radially outward or inward from the yoke part or the annular member before the yoke part is attached to the annular member.
  • a feature of the stator core of the motor is that the elastic deformation is caused by attaching the yoke portion to the annular member.
  • a stator core manufacturing method for manufacturing a stator core of the motor wherein the plurality of stator cores each include the elastic deformation portions protruding radially outward from the outer peripheral edge before being attached to the annular member.
  • a divided body machining step for machining the divided body, and the plurality of stator / core divided bodies are arranged in an annular shape by facing each divided edge in the circumferential direction, and tightening inward in the radial direction on the inner peripheral surface of the annular member
  • the stator core manufacturing method is characterized in that it includes an assembly step of attaching the elastically deforming portion and holding the elastically deforming portion.
  • the feature of the stator core manufacturing method is that it is provided.
  • the stator core of the motor of the present invention has the above configuration, the yoke portion and the annular member can be frictionally engaged by elastic deformation of the elastic deformation portion.
  • the compressive stress of the stator core of the motor attached to the inner peripheral surface of the annular member can be made zero or further reduced.
  • the yoke part is fixed on the outer side of the yoke part using the elastically deformed part. Can be in a small or zero compressive stress state.
  • the outer side of the yoke part can also reduce the compressive stress due to the frictional engagement of the elastically deforming part.
  • stator core manufacturing method of the present invention has the above-described configuration, a plurality of stator core divided bodies are manufactured, and the plurality of stator core divided bodies are annularly arranged in the circumferential direction so as to have a diameter on the inner periphery of the annular member.
  • the entire yoke portion can be made zero compressive stress, or the inner diameter side of the yoke portion can be made smaller or smaller than the compressive stress acting on the outer diameter side.
  • stator core manufacturing method of the present invention has the above-described configuration, a stator core semi-finished product is manufactured, and the stator core semi-finished product is attached to the inner periphery of the annular member with a tightening margin radially inward.
  • the whole yoke portion have zero compressive stress, or make the inner diameter side of the yoke portion smaller or zero than the compressive stress acting on the outer diameter side.
  • Example 1 It is a principal part front view which shows the state which shrink-fitted the stator core to the motor case.
  • Example 1 It is a surrounding side view of a stator core.
  • Example 1 It is sectional drawing which shows lamination
  • Example 1 It is process drawing which shows a stator core manufacturing method.
  • Example 1 It is a principal part front view which shows the stator core division body processed by a division body manufacturing process.
  • Example 1 It is a principal part front view which shows the matching state of the stator core division body before shrinking.
  • Example 1 It is a principal part front view which shows the state which shrink-fitted the stator core to the motor case.
  • Example 2 It is process drawing which shows a stator core manufacturing method.
  • Example 2 It is a principal part front view which shows a stator core.
  • Example 2 It is a principal part front view which shows the stator core before shrinking together with a motor case.
  • Example 2 It is a principal part front view which shows the state which shrink-fitted the stator core to the core case.
  • (Conventional example) It is a principal part front view of a stator core.
  • (Conventional example) It is a principal part front view which shows the state which shrink-fitted the stator core to the core case.
  • (Conventional example) It is sectional drawing which shows the state which shrink-fitted the stator core to the core case.
  • the yoke part is composed of an annular yoke part 3 and a tooth part 5 projecting radially inwardly on the inner periphery of the yoke part 3.
  • 3 is a stator core 1 of a motor that is attached to the inner periphery of the annular member 7, and the yoke portion 3 is radially inward from the radially outwardly fitting portion 9 and the annular member 7.
  • an elastic deformation part E which comprises a bending part 11 which receives a pressing force and bends and deforms toward the fitting part 9 and frictionally engages with the inner peripheral surface of the annular member 7, and the bending part 11 is an annular member of the yoke part 3.
  • the stator core 1 of the motor in which the distal end side 11a protrudes radially outward from the fitting portion 9 before being attached to the outer ring 7, and is bent and deformed toward the fitting portion 9 by being attached to the annular member 7 of the yoke portion 3.
  • FIG. 1 is a front view of a main part showing a state in which the stator core is baked into a motor case
  • FIG. 2 is a peripheral side view of the stator core
  • FIG. 3 is a partially omitted cross-section showing lamination of the stator core.
  • the stator core 1 is formed of, for example, a magnetic electromagnetic steel plate, and includes an annular yoke portion 3 and a tooth portion 5 that protrudes radially inwardly on the inner periphery of the yoke portion 3. It has become.
  • the outer peripheral edge 3a of the yoke part 3 is formed in a circular shape, and the inner peripheral edges 3b and 3c are linearly formed symmetrically in the circumferential direction between the tooth parts 5 and intersect with each other at an angle.
  • each laminated yoke portion 3 is an annular member on the inner peripheral surface 7a of the motor case 7 by shrinking to the inside of the motor case 7 in the radial direction. It is attached with a tightening allowance.
  • the outer peripheral edge 3a and the inner peripheral surface 7a are joined together without gaps by shrinkage and have substantially the same curvature.
  • the yoke part 3 has an elastic deformation part E.
  • the elastic deformation portion E is formed on the outer peripheral edge 3 a of the yoke portion 3, is elastically deformed by receiving a pressing force from the motor case 7 inward in the radial direction, and is frictionally engaged with the inner peripheral surface 7 a of the motor case 7. .
  • the elastic deformation portion E protrudes radially outward from the outer peripheral edge 3a before the yoke portion 3 is attached to the motor case 7, and is elastically deformed by the attachment of the yoke portion 3 to the motor case 7.
  • the outer peripheral edge 3a is in a state where the stator core 1 is fixed to the motor case 7 by shrinking.
  • the elastic deformation part E has the insertion part 9 and the bending part 11 in a present Example.
  • the fitting portion 9 is formed on the outer peripheral edge of the yoke portion 3 and is composed of a linear dividing edge 13 in the radial direction and an arc-shaped dividing edge 15 in the circumferential direction. Due to the divided edges 13 and 15, the fitting portion 9 has a radially outward shape.
  • the bending portion 11 is formed integrally with the yoke portion 3 and is formed in a plurality at constant intervals in the circumferential direction.
  • the bent portion 11 includes a linear straight dividing edge 17 and an arc-shaped dividing edge 19 in the circumferential direction that face the dividing edge 13 and the dividing edge 15 of the fitting portion 9 without a gap.
  • the space between the dividing edge 13 of the fitting portion 9 and the dividing edge 17 of the bent portion 11 is in a state where the compressive stress is zero or slightly compressive stress.
  • a compression stress state of zero or a slight compressive stress state can be obtained by setting the opposing positional relationship between the divided edges 13 and 17 after bending deformation of the bending portion 11 and adjusting the tightening allowance by shrinkage of the motor case 7. .
  • the bending portion 11 is bent and deformed into the fitting portion 9 by receiving a pressing force radially inward from the motor case 7. Due to this bending deformation, the bending portion 11 is frictionally engaged with the inner peripheral surface 7 a of the motor case 7 with a pressing force in the direction of arrow A.
  • the stacked stator cores 1 are fixedly supported on the motor case 7 by frictional engagement at the bent portions 11.
  • Bending the bending portion 11 generates a tensile stress in the circumferential direction on the outer diameter side of the yoke portion 3. This tensile stress is opposed to this compressive stress when compressive stress is generated on the outer diameter side of the yoke portion 3 due to shrinkage of the motor case 7.
  • the stator core 1 is composed of a plurality of stator core divided bodies 23.
  • the stator / core divided body 23 is formed by dividing the yoke portion 3 into a plurality of circumferential directions by dividing lines 21 extending along the inner and outer circumferences including the dividing edges 13, 15, 17, 19 between the fitting portion 9 and the bent portion 11. It is a thing.
  • Each stator / core divided body 23 is configured for each tooth portion 5 including a yoke portion constituting portion 23a.
  • Each stator core divided body 23 is annularly arranged at each dividing line 21 with each dividing edge 21a, 21b facing each other in the circumferential direction.
  • the dividing edge 21a is a concept including the dividing edges 13 and 15
  • the dividing edge 21b is a concept including the dividing edges 17 and 19 and the like. It has the structure which has the insertion part 9 in the one side of each division
  • the bending portion 11 has a distal end side 11a protruding radially outward from the insertion portion 9 before the yoke portion 3 is attached to the motor case 7, and is bent toward the insertion portion 9 side by attachment of the yoke portion 3 to the motor case 7. Deform.
  • a circumferentially opposed divided portion 25 is provided on the inner diameter side of the yoke portion 3.
  • the circumferentially opposed divided portion 25 is disposed on the inner diameter side of the yoke portion 3 at the circumferential intermediate portion of the insertion portion 9 and the bending portion 11, and the radial length dimension is larger than the radial width dimension of the insertion portion 9 and the bending portion 11. It is set large.
  • the circumferentially opposed divided portion 25 is formed as the inner diameter side of the yoke portion 3 of the dividing line 21, and the divided edges 25 a and 25 b extending between the teeth portions 5 are directed in the radial direction so that they are opposed to each other in the circumferential direction without a gap. Yes.
  • the split edges 13, 17, 25 a and 25 b of the yoke part 3 are oriented toward the center of curvature of the yoke part 3.
  • a radially opposed divided portion 27 is provided in the middle portion of the yoke portion 3 in the radial direction.
  • the radially opposed divided portion 27 is formed along the circumferential direction between the fitting portion 9 and the bent portion 11 and the circumferentially opposed divided portion 25.
  • the radially opposed divided portion 27 is set such that the length in the circumferential direction of the yoke portion 3 is shorter than the length in the circumferential direction of the fitting portion 9 and the bent portion 11.
  • the radially opposed divided portion 27 is configured at an intermediate portion of the dividing line 21, one end is continuous with the circumferentially opposed divided portion 25, and the other end is continuous with the fitting portion 9 and the bent portion 11 at the base of the bent portion 11. Yes.
  • the dividing edges 27a and 27b of the radially opposing divided portion 27 are opposed to each other without a gap in the radial direction.
  • the circumferentially opposed divided portion 25 has a gap between the divided edges 25 a and 25 b before being attached to the motor case 7. Due to the compressive stress acting on the outer diameter side of the yoke part 3 by mounting to the motor case 7 by shrinkage, the divided edges 27a and 27b of the radially opposed divided part 27 are displaced in the circumferential direction. Due to this deviation, the dividing edges 25a and 25b of the circumferentially opposed divided portion 25 face each other without a gap, and when compressive stress acts on the outer diameter side of the yoke portion 3, it is smaller than this compressive stress (including zero). When the compressive stress on the outer diameter side of 3 is zero, a zero compressive stress state can be achieved together with the outer diameter side of the yoke portion 3.
  • FIG. 4 is a process diagram showing a stator core manufacturing method
  • FIG. 5 is a front view of a main part showing a stator core divided body processed in the divided body machining step
  • FIG. 6 is a stator core divided before shrinking. It is a principal part front view which shows the alignment state of a body.
  • the stator core manufacturing method of the present embodiment includes a divided body processing step S1 and an assembly step S2 for manufacturing the stator core 1 of the motor.
  • stator core divided bodies 23 in the circumferential direction as shown in FIG. 5 divided by the dividing line 21 shown in FIG. 1 are formed.
  • Each stator core divided body 23 includes a yoke portion constituting portion 23a, a tooth portion 5, a fitting portion 9, a bent portion 11, a convex portion 29, a concave portion 31, divided edges 13, 17, 15, 19, 27a, 27b, 25a. , 25b are formed.
  • the fitting portion 9 and the bending portion 11 constitute an elastic deformation portion E between the adjacent stator / core divided bodies 23 when the stator / core divided bodies 23 are arranged in an annular shape.
  • the bent portion 11 is set to be displaced outward from the outer peripheral edge 23b of the stator core divided body 23 before the yoke 3 is attached to the motor case 7 in the divided body machining step S1. With this displacement setting, the distal end side 11a protrudes radially outward from the fitting portion 9 of the adjacent stator core divided body 2.
  • each of the plurality of stator core divided bodies 23 is annularly formed with the divided edges 13, 17, 15, 19, 27a, 27b, 25a, 25b facing each other in the circumferential direction. Be placed.
  • Each stator core divided body 23 arranged annularly in the circumferential direction is attached to the inner peripheral surface 7a of the motor case 7 with a shrinkage inward in the radial direction by shrinkage, and elastic deformation of the elastic deformation portion E is achieved.
  • the bending deformation of the bending portion 11 into the insertion portion 9 is performed.
  • the gap between the split edges 13 and 17 of the bent portion 11 into the fitting portion 9 is absorbed, and the split edges 27a and 27b of the radially opposed split portion 27 are relatively relative to each other in the circumferential direction.
  • the set gap between the deviation, the convex portion 29 and the concave portion 31, and the dividing edges 25a and 25b of the circumferentially facing divided portion 25 is absorbed, and the gap is opposed in the circumferential direction.
  • each stator / core divided body 23 When the bending portion 11 is bent and deformed, a rotational moment M is generated in each stator / core divided body 23 as shown in FIG. This rotational moment M is received by the reaction force B in which the convex portion 29 abuts against the bent portion 11 between the concave portions 31, and each stator / core divided body 23 is stably assembled in an annular shape.
  • each stator core division body 23 is annularly arranged before shrinking to the motor case 7, the bending edge 11 is bent in the circumferential direction of the division edges 25 a and 25 b of the circumferentially opposed division part 25 before bending deformation.
  • the assembling can also be performed in a state where the facing is performed without a gap.
  • an annular yoke portion 3 and a tooth portion 5 projecting radially inwardly on the inner periphery of the yoke portion 3 are baked on the inner periphery of the motor case 7.
  • a stator core 1 of a motor that is attached to a radially inner side by a flange, and a yoke portion 3 is radially inward from a radially outwardly shaped fitting portion 9 and a motor case 7 on the outer peripheral edge.
  • an integral bending portion 11 that is bent and deformed to the fitting portion 9 side under frictional force and frictionally engages with the inner peripheral surface of the motor case 7, and the bending portion 11 includes the motor case 7 of the yoke portion 3.
  • the front end side 11a protrudes radially outward from the fitting portion 9 before being attached to the fitting portion 9, and is bent and deformed to the fitting portion 3 side when the yoke portion 3 is attached to the motor case 7.
  • stator core 1 can be securely attached to the motor case 7.
  • the bending portion 11 is frictionally engaged with the inner peripheral surface 7 a of the motor case 7, so that the compressive stress of the yoke portion 3 due to shrinkage of the motor case 7 can be made zero.
  • the yoke part 3 using the elastic deformation part E is fixed on the outer diameter side, so that the inner diameter side of the yoke part 3 works on the outer diameter side.
  • a compressive stress state smaller than or zero than the compressive stress can be obtained.
  • the outer side of the yoke part 3 can also reduce the compressive stress for fixing due to the frictional engagement of the elastically deforming part E.
  • a tensile stress is generated in the circumferential direction on the outer peripheral edge 3a side of the stator core 1 due to the bending deformation of each bending portion 11. This tensile stress opposes the compressive stress when compressive stress is generated on the outer diameter side of the yoke portion 3 by fixing the shrinkage to the motor case 7.
  • the magnetic flux can be efficiently passed from the tooth portion 5 through the entire yoke portion 3, and the output efficiency of the motor can be further improved.
  • Each stator core divided body 23 formed by dividing the yoke portion 3 into a plurality of circumferential directions by dividing the yoke portion 3 between the insertion portion 9 and the bent portion 11 into the inner and outer circumferences is divided edges 13, 17, 15, 19, 27a, 27b, 25a, 25b are arranged annularly facing each other in the circumferential direction, and have a fitting portion 9 on one side of each of the facing divided edges 13, 17, 15, 19, 27a, 27b, 25a, 25b, A bent portion 11 was provided on the other side.
  • each stator / core divided body 23 without providing the bent portion 11, it is strongly pressed in the circumferential direction between each stator / core divided body 23 of the laminated structure. May be deformed and cause problems such as turning over.
  • the compressive stress on the outer peripheral edge 23b side of the stator / core divided body 23 can be reduced to zero or the compressive stress can be reduced. It is possible to securely fix the motor case 7 by shrinkage without causing deformation such as turning over.
  • a split edge 25a, 25b is provided on the inner diameter side of the yoke portion 3 and has a circumferentially opposed divided portion 25 which is formed in a radial direction and faces each other without a gap.
  • the magnetic flux can be efficiently and reliably passed from the tooth portion 5 through the circumferentially opposed divided portion 25 of the yoke portion 3, and the output efficiency of the motor can be further improved.
  • the divided edges 27a and 27b are opposed to each other in the radial direction, and one end is continuous with the circumferentially opposed divided part 25.
  • the end has a radially opposing divided portion 27 that is continuous with the fitting portion 9 and the bent portion 11 at the base of the bent portion 11.
  • the circumferentially opposed divided portion 25 is set separately from the fitting portion 9 and the bent portion 11, and the inner diameter side of the yoke portion 3 including the circumferentially opposed divided portion 25 in the circumferential direction is set together with the outer diameter side of the yoke portion 3. It can be set to be in a state where the compressive stress is zero, or when the compressive stress is generated on the outer diameter side of the yoke portion 3, the compressive stress is smaller than that on the outer diameter side.
  • the convex portions 29 are fitted into the concave portions 31, the annular coupling of the stator / core divided bodies 23 can be more reliably performed.
  • the radially opposed divided portion 27 has a length in the circumferential direction of the yoke portion 3 that is shorter than a length in the circumferential direction of the fitted portion 9 and the bent portion 11, and the circumferentially opposed divided portion 25 is formed between the fitted portion 9 and the bent portion 11. It was arrange
  • the circumferentially opposed divided part 25 has a length dimension in the radial direction of the yoke part 3 larger than a radial width dimension of the fitting part 9 and the bending part 11.
  • the split edges 13, 17, 25 a and 25 b of the yoke part 3 are directed to the center of the yoke part 21.
  • the bending part 11 can be reliably bend-deformed into the fitting part 9 by tightening by shrinkage, and the circumferentially opposed divided part 27 with less magnetic resistance and less iron loss can be reliably formed. .
  • a stator core manufacturing method for manufacturing a stator core 1 of a motor which includes a plurality of bending portions 11 each having a distal end side 11a protruding radially outward from an insertion portion 9 before being attached to a motor case 7.
  • the divided body machining step S1 for machining the stator core divided body 23 and the plurality of stator core divided bodies 23 facing each other in the circumferential direction of the divided edges 13, 17, 15, 19, 27a, 27b, 25a, 25b Is formed in a ring shape before the attachment to the motor case 7, a gap is formed between the division edges 25 a and 25 b of the circumferentially opposed division portion 25, and the attachment to the motor case 7 allows the insertion into the fitting portion 9.
  • An assembling work S2 for performing bending deformation of the bending portion 11 and the division edges 225a and 25b at the circumferentially opposed division portion 25 without gaps is provided.
  • stator core 1 having the above-described effect, which is configured by including the circumferentially opposed divided portions 27 by the plurality of stator core divided bodies 23.
  • each stator core division body 23 is annularly arranged as described above, the gaps 25a and 25b of the circumferentially opposed divided portion 25 are opposed to each other in the circumferential direction before the bending portion 11 is bent. It can be assembled to the motor case 7 at the same time.
  • the tightening allowance of the motor case 7 can be used only for bending deformation of the bending portion 11 and eliminating the gap between the outer peripheral edge 3a of the yoke portion 3 and the inner peripheral surface 7a of the motor case 7, Except for the portion 11, it is possible to prevent the radial pressing force from acting between the outer peripheral edge 3a and the inner peripheral surface 7a (the former). However, it is also possible to adopt a configuration in which a radial pressing force is applied between the outer peripheral edge 3a and the inner peripheral surface 7a other than the bent portion 11 (the latter).
  • the compressive stress on the outer peripheral side of the yoke portion 3 is also zero, and in the latter case, a reduced compressive stress is generated on the outer peripheral side of the yoke portion 3.
  • the elastic deformation part E can also be arranged on the outer periphery of the yoke part 3 corresponding to the tooth part 5.
  • the stator-core divided body 23 can be configured to be engaged by a concavo-convex portion in the circumferential direction.
  • the pair of elastic deformation portions E can be formed so that the pair of bent portions 11 face each other symmetrically in the circumferential direction.
  • FIGS. 7 to 10 relate to a second embodiment of the present invention
  • FIG. 7 is a front view of a main part showing a state in which the stator core is baked into the motor case
  • FIG. 8 shows a method for manufacturing the stator core
  • FIG. 9 is a main part front view showing the state of the stator core before shrinking
  • FIG. 10 is a front view of the main part showing the stator core before shrinking together with the motor case.
  • the yoke portion 3A has a ring shape continuous in the circumferential direction.
  • the insertion portion 9A and the bending portion 11A constituting the elastic deformation portion EA of the present embodiment are arranged on the outer periphery of the yoke portion 3A at a position corresponding to the tooth portion 5.
  • linear inner peripheral edges 3Ab and 3Ac are formed symmetrically between the teeth portions 5.
  • the stator core manufacturing method of the present embodiment includes a core machining step S10 and an assembly step S11 for manufacturing the stator core 1A of the motor.
  • the stator core 1Aa before attachment shown in FIG. 9 is formed.
  • the stator core 1Aa includes an insertion portion 9A, a bending portion 11A, a yoke portion 3A, and a teeth portion 5, and a distal end side 11Aa of the bending portion 11A protrudes radially outward from the insertion portion 9A.
  • the bending portion 11A of the stator core 1Aa is set to be displaced outward from the arc of the outer peripheral edge 3Aa of the yoke portion 3A. With this displacement setting, the tip end 11Aa protrudes radially outward from the fitting portion 9A before being attached to the motor case 7 by shrinkage.
  • stator core 1Aa of FIG. 9 is laminated in the thickness direction, and attached to the inner periphery of the motor case 7 of FIG.
  • stator core 1A is fixed with the bent portion 11A frictionally engaged with the inner peripheral surface 7a of the motor case 7.
  • the yoke portion 3A is in a state of zero compressive stress.
  • the compressive stress can be reduced due to the presence of frictional engagement.
  • the tensile stress resulting from bending of the bending part 11A can be made to oppose, and compression stress can be reduced similarly to Example 1.
  • the same effects as those of the first embodiment can be achieved by the insertion portion 9A and the bending portion 11A.
  • stator core 1Aa is not divided, it is easy to handle, has a small number of parts, and can be easily assembled and managed.
  • the elastic deformation portion EA is provided on the stator core 1A side.
  • the elastic deformation portion EA is provided on the inner peripheral surface 7a side of the motor case 7, or the elastic deformation portion E or the elastic deformation portion.
  • the EA may be provided on the stator core 1, 1 ⁇ / b> A side, and the elastic deformation portion EA may be provided on the inner peripheral surface 7 a side of the motor case 7.
  • the elastically deformable portions E and EA of the present invention only need to frictionally engage the yoke portions 3 and 3A and the inner peripheral surface 7a of the motor case 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 圧縮応力を零とするか低減して磁気特性をより向上可能とするモーターのステーター・コア及び製造方法を提供する。 円環状のヨーク部3及びこのヨーク部3の内周に径方向内側へ突出するティース部5からなりヨーク部3の外周縁が環状部材7の内周に取り付けられるモーターのステーター・コア1であって、ヨーク部3は、外周縁の径方向外向き形状の嵌入部9と環状部材7から径方向内側へ押圧力を受けて嵌入部9側へ曲げ変形し環状部材7の内周面に摩擦係合する曲げ部11とからなる弾性変形部Eを有し、曲げ部11は、ヨーク部3の環状部材7への取り付け前に先端側11aが嵌入部9から径方向外側へ突出し、ヨーク部3の環状部材7への取り付けにより嵌入部9側へ曲げ変形して環状部材7の内周面7aに摩擦係合することを特徴とする。

Description

モーターのステーター・コア及び製造方法
 この発明は、モーターのステーター・コア及び製造方法に関する。
 従来、特許文献1,2,3に記載された図11~図14に記載されたものがある。
 図11は、ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図、図12は、ステーター・コアの要部正面図、図13は、ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図、図14は、ステーター・コアをコア・ケースに焼きバメした状態を示す断面図である。
 図11~図14では、何れも、モーターのステーター・コア101A,101B,101Cのステーター・コア分割体103A,103B,103Cが、環状に接合され、焼きバメによりコア・ケース105A,105B,105Cに収納固定されている。
 ここで、焼きバメ時に、各ステーター・コア分割体103A,103B,103Cの周方向に発生する圧縮応力により鉄損が増大してモーターの出力効率が低下するという問題がある。
 この問題に対し、図11、図12のステーター・コア101Aでは、圧縮応力が発生しないようにスリット101Aaをいれ、図13、図14のステーター・コア103B,103Cでは、圧縮応力を軽減する孔103Ba,103Caを形成している。
 しかし、スリット101Aaや孔103Ba,103Caは、その部分で磁気抵抗の増大を招くため、磁気特性を低下させる問題がある。
 一方、スリットや孔を形成せずに、ステーター・コアが受ける押圧力を低減させるものとして、特許文献4に記載された図15に示す例がある。図15は、ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図である。
 図15では、ステーター・コア101Dの各ステーター・コア分割体103Dに、コア・ケース105D側に突出する脆弱部107Dを設けている。脆弱部107Dは、コア・ケース105Dからの押圧力により脆性破壊又は塑性変形し、コア・ケース105Dからステーター・コア101Dが受ける押圧力を低減させる。
 しかし、脆性破壊又は塑性変形する脆弱部107では、反発力が不足するためコア・ケース105Dに対する十分な係合力が得られず、固定のための締め代確保の必要性は従来とあまり変わらず、ステーター・コア101Dが受ける押圧力の低減にも限界があり、磁気抵抗の低下に難点があった。
特開2005-51941号公報 特開2009-261162号公報 特開2002-136013号公報 特許第4807219号公報
 解決しようとする問題点は、スリットや孔による圧縮応力の低減は、磁気抵抗の増大を招いて磁気特性を低下させ、脆弱部による固定では磁気抵抗の低下に難点があった点である。
 本発明は、圧縮応力を零とするか低減して磁気特性をより向上可能とするため、環状のヨーク部及びこのヨーク部の内周に径方向内側へ突出するティース部からなりヨーク部の外周縁が環状部材の内周面に取り付けられるモーターのステーター・コアであって、前記ヨーク部と環状部材との間に、前記環状部材から径方向内側へ押圧力を受けて弾性変形し前記ヨーク部及び前記環状部材間を摩擦係合させる弾性変形部を有し、前記弾性変形部は、前記ヨーク部の前記環状部材への取り付け前に前記ヨーク部又は前記環状部材から径方向外側又は内側へ突出し、前記ヨーク部の前記環状部材への取り付けにより前記弾性変形したことをモーターのステーター・コアの特徴とする。
 前記モーターのステーター・コアを製造するためのステーター・コア製造方法であって、前記環状部材への取り付け前に前記外周縁から径方向外側へ突出した前記弾性変形部をそれぞれ備える複数のステーター・コア分割体を加工する分割体加工工程と、前記複数のステーター・コア分割体を前記各分割縁の周方向での対向により環状に配置し前記環状部材の内周面に径方向内側への締め代を持って取り付けて前記弾性変形部の弾性変形を行わせる組付け工程とを備えたことをステーター・コア製造方法の特徴とする。
 前記モーターのステーター・コアを製造するためのステーター・コア製造方法であって、前記環状部材への取り付け前に先端側が前記嵌入部から径方向外側へ突出した前記曲げ部を備えるリング状のステーター・コアを形成するコア加工工程と、前記ステーター・コアを前記環状部材の内周に径方向内側への締め代を持って取り付け前記嵌入部内への前記曲げ部の曲げ変形を行わせる組付け工程とを備えたことをステーター・コア製造方法の特徴とする。
 本発明のモーターのステーター・コアは、上記構成であるため、弾性変形部の弾性変形によりヨーク部及び前記環状部材間を摩擦係合させることができる。
 このため、環状部材の内周面に取り付けられるモーターのステーター・コアの圧縮応力を零とするか、より低減することができる。また、ヨーク部の外径側に圧縮応力が発生しても、弾性変形部をも用いたヨーク部の外形側での固定となるため、ヨーク部の内径側を外径側に働く圧縮応力よりも小さいか零の圧縮応力状態にすることができる。ヨーク部の外形側も、弾性変形部の摩擦係合の存在により圧縮応力を低減できる。
 したがって、磁束の多くは圧縮応力が零のヨーク部全体又はヨーク部の外径側よりも抑制された内径側及び圧縮応力の低減された外形側を通ることができ、鉄損などの磁気損失を少なくすることができる。
 本発明のステーター・コア製造方法は、上記構成であるから、複数のステーター・コア分割体を製造し、この複数のステーター・コア分割体を周方向に環状に合わせて環状部材の内周に径方向内側への締め代を持って取り付けることで、ヨーク部全体を圧縮応力零とするか、ヨーク部の内径側を外径側に働く圧縮応力よりも小さいか零の状態にすることができる。
 本発明のステーター・コア製造方法は、上記構成であるから、ステーター・コア半製品を製造し、ステーター・コア半製品を前記環状部材の内周に径方向内側への締め代を持って取り付けることで、ヨーク部全体を圧縮応力零とするか、ヨーク部の内径側を外径側に働く圧縮応力よりも小さいか零の状態にすることができる。
ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図である。(実施例1) ステーター・コアの周側面図である。(実施例1) ステーター・コアの積層を示す断面図である。(実施例1) ステーター・コア製造方法を示す工程図である。(実施例1) 分割体加工工程で加工されるステーター・コア分割体を示す要部正面図である。(実施例1) 焼きバメ前におけるステーター・コア分割体の合わせ状態を示す要部正面図である。(実施例1) ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図である。(実施例2) ステーター・コア製造方法を示す工程図である。(実施例2) ステーター・コアを示す要部正面図である。(実施例2) 焼きバメ前のステーター・コアをモーター・ケースと共に示す要部正面図である。(実施例2) ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図である。(従来例) ステーター・コアの要部正面図である。(従来例) ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図である。(従来例) ステーター・コアをコア・ケースに焼きバメした状態を示す断面図である。(従来例) ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図である。(従来例)
 圧縮応力を零とするか低減して磁気特性をより向上可能にするという目的を、円環状のヨーク部3及びこのヨーク部3の内周に径方向内側へ突出するティース部5からなりヨーク部3の外周縁が環状部材7の内周に取り付けられるモーターのステーター・コア1であって、ヨーク部3は、外周縁の径方向外向き形状の嵌入部9と環状部材7から径方向内側へ押圧力を受けて嵌入部9側へ曲げ変形し環状部材7の内周面に摩擦係合する曲げ部11とからなる弾性変形部Eを有し、曲げ部11は、ヨーク部3の環状部材7への取り付け前に先端側11aが嵌入部9から径方向外側へ突出し、ヨーク部3の環状部材7への取り付けにより嵌入部9側へ曲げ変形するモーターのステーター・コア1により実現した。
 図1は、ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図、図2は、ステーター・コアの周側面図、図3は、ステーター・コアの積層を示す一部省略断面図である。
 図1~図3のように、ステーター・コア1は、例えば磁性体の電磁鋼板で形成され、円環状のヨーク部3及びこのヨーク部3の内周に径方向内側へ突出するティース部5からなっている。ヨーク部3の外周縁3aは、円形に形成され、ティース部5間で内周縁3b、3cは、周方向対称に直線的に形成され、角度をもって交差している。
 ステーター・コア1は、多数枚が積層され、積層状態の各ヨーク部3の外周縁が環状部材であるモーター・ケース7の内周面7aに焼きバメにより、モーター・ケース7の径方向内側への締め代を持って取り付けられている。焼きバメにより外周縁3aと内周面7aとは、隙間なく接合し、ほぼ同一の曲率となっている。
 ヨーク部3は、弾性変形部Eを有している。この弾性変形部Eは、ヨーク部3の外周縁3aに形成されモーター・ケース7から径方向内側へ押圧力を受けて弾性変形しモーター・ケース7の内周面7aに摩擦係合している。
 弾性変形部Eは、ヨーク部3のモーター・ケース7への取り付け前に外周縁3aから径方向外側へ突出し、ヨーク部3のモーター・ケース7への取り付けにより弾性変形している。外周縁3aは、モーター・ケース7へステーター・コア1を焼きバメにより固定した状態でのものである。
 弾性変形部Eは、本実施例において嵌入部9及び曲げ部11を有している。
 嵌入部9は、ヨーク部3の外周縁に形成され、径方向の直線状の分割縁13及び周方向に弧状の分割縁15で構成されている。この分割縁13及び分割縁15により、嵌入部9は、径方向外向きの形状となっている。
 曲げ部11は、ヨーク部3に一体に形成され、周方向一定間で複数形成されている。この曲げ部11は、嵌入部9の分割縁13及び分割縁15に隙間なく対向する径方向の直線状の分割縁17及び周方向に弧状の分割縁19を有している。嵌入部9の分割縁13と曲げ部11の分割縁17との対向間は、圧縮応力零又は若干の圧縮応力状態となっている。圧縮応力零又は若干の圧縮応力状態は、曲げ部11の曲げ変形後における分割縁13、17間の対向位置関係の設定とモーター・ケース7の焼きバメによる締め代の調整とにより得ることができる。
 曲げ部11は、モーター・ケース7から径方向内側へ押圧力を受けて嵌入部9内へ曲げ変形されている。この曲げ変形で曲げ部11は、モーター・ケース7の内周面7aに矢印A方向の押し付け力で摩擦係合している。積層された各ステーター・コア1は、曲げ部11での摩擦係合によりがモーター・ケース7に固定支持される。
 曲げ部11の曲げにより、ヨーク部3の外径側の周方向へは引張応力が発生する。この引張応力は、モーター・ケース7の焼きバメによりヨーク部3の外径側に圧縮応力が発生したときは、この圧縮応力に対向する。
 ステーター・コア1は、複数のステーター・コア分割体23で構成されている。ステーター・コア分割体23は、ヨーク部3が嵌入部9及び曲げ部11間の分割縁13、15、17、19を含めて内外周に渡る分割線21により周方向複数に分割されて形成されたものである。
 各ステーター・コア分割体23は、ヨーク部構成部23aを備えたティース部5毎に構成されている。各ステーター・コア分割体23が各分割線21で各分割縁21a、21bを周方向へ対向させ環状に配置されている。分割縁21aは、分割縁13、15等を含んだ概念であり、分割縁21bは、分割縁17、19等を含んだ概念である。対向する各分割縁21a、21bの一側に嵌入部9を有し、同他側に曲げ部11を有した構成となっている。
 曲げ部11は、ヨーク部3のモーター・ケース7への取り付け前に先端側11aが嵌入部9から径方向外側へ突出し、ヨーク部3のモーター・ケース7への取り付けにより嵌入部9側へ曲げ変形する。
 ヨーク部3の内径側に、周方向対向分割部25が設けられている。周方向対向分割部25は、嵌入部9及び曲げ部11の周方向中間部でヨーク部3内径側に配置され、径方向長さ寸法が嵌入部9及び曲げ部11の径方向幅寸法よりも大きく設定されている。周方向対向分割部25は、分割線21のヨーク部3内径側として形成され、ティース部5の相互間に至る分割縁25a、25bが径方向に指向し相互が周方向へ隙間なく対向している。
 ヨーク部3の分割縁13、17、25a、25bは、ヨーク部3の曲率中心に指向している。
 ヨーク部3の径方向の中間部に、径方向対向分割部27が設けられている。径方向対向分割部27は、嵌入部9及び曲げ部11と周方向対向分割部25との間で周方向に沿って形成されている。径方向対向分割部27は、ヨーク部3の周方向での長さが嵌入部9及び曲げ部11の周方向での長さよりも短く設定されている。径方向対向分割部27は、分割線21の中間部に構成され、一端が周方向対向分割部25に連続し、他端が曲げ部11の基部で嵌入部9及び曲げ部11に連続している。径方向対向分割部27の分割縁27a、27b相互が径方向に隙間なく対向している。
 分割縁15、27a間は、周方向の凸部29となり、分割縁19、27b間は、周方向の凹部31となり、凸部29が凹部31に嵌合している。
 周方向対向分割部25は、モーター・ケース7への取り付け前に分割縁25a、25b相互間に隙間が存在する。モーター・ケース7への焼きバメによる取り付けでヨーク部3の外径側に働く圧縮応力により径方向対向分割部27の分割縁27a、27b相互が周方向へずれる。このずれで周方向対向分割部25の分割縁25a、25b相互が隙間なく対向し、ヨーク部3の外径側に圧縮応力が働くときはこの圧縮応力よりも小さく(零を含む)、ヨーク部3の外径側の圧縮応力が零のときは、ヨーク部3の外径側と共に零の圧縮応力状態にすることができる。
 なお、弾性変形部Eは、ステーター・コア分割体23の外周縁23bの周方向中間部に配置することもできる。この場合、一対の弾性変形部Eを曲げ部11の向き合わせで配置することもできる。
[ステーター・コア製造方法]
 図4は、ステーター・コア製造方法を示す工程図、図5は、分割体加工工程で加工されるステーター・コア分割体を示す要部正面図、図6は、焼きバメ前におけるステーター・コア分割体の合わせ状態を示す要部正面図である。
 図4のように、本実施例のステーター・コア製造方法は、モーターのステーター・コア1を製造するための分割体加工工程S1及び組付け工程S2を備えている。
 分割体加工工程S1は、図1で示す分割線21により分割された図5のような周方向複数のステーター・コア分割体23、・・・を形成する。
 各ステーター・コア分割体23には、ヨーク部構成部23a、ティース部5、嵌入部9、曲げ部11、凸部29、凹部31、分割縁13、17、15、19、27a、27b、25a、25bがそれぞれ形成されている。
 嵌入部9及び曲げ部11は、各ステーター・コア分割体23を環状に配置したときに隣接するステーター・コア分割体23間で弾性変形部Eを構成する。
 曲げ部11は、分割体加工工程S1のヨーク部3のモーター・ケース7への取り付け前に、ステーター・コア分割体23の外周縁23bよりも外側へ変位設定されている。この変位設定で先端側11aが、隣接するステーター・コア分割体2の嵌入部9から径方向外側へ突出する。
 組付け工程S2では、図6のように、複数の各ステーター・コア分割体23が、各分割縁13、17、15、19、27a、27b、25a、25bを周方向に対向させて環状に配置される。
 モーター・ケース7への焼きバメによる取り付け前に、環状に合わせた各ステーター・コア分割体23の各周方向対向分割部25の分割縁25a、25b間には、例えば10μm程度の隙間がそれぞれ形成される。この隙間は、曲げ変形前の曲げ部11の分割縁17、19間の角部が、嵌入部9の分割縁13に当接することで形成される。この当接により凸部29及び凹部31間にも周方向の隙間が形成される。
 周方向へ環状に配置された各ステーター・コア分割体23は、モーター・ケース7の内周面7aに焼きバメにより径方向内側への締め代を持って取り付けられ、弾性変形部Eの弾性変形として嵌入部9内への曲げ部11の曲げ変形が行われる。
 焼きバメによる取り付けで、嵌入部9内への曲げ部11の分割縁13、17間の隙間が吸収されると共に、径方向対向分割部27の分割縁27a、27b相互が周方向に相対的にずれ、凸部29及び凹部31間、周方向対向分割部25の分割縁25a、25b間の設定された隙間が吸収され、周方向に隙間のない対向を行わせる。
 嵌入部9及び曲げ部11の分割面13、17間、凸部29及び凹部31間の隙間もなくなる。
 曲げ部11の曲げ変形時は、図1のように、各ステーター・コア分割体23に回転モーメントMが発生する。この回転モーメントMは、凸部29が凹部31間で曲げ部11に当接する反力Bによって受けられ、各ステーター・コア分割体23は、環状に安定して組み付けられる。
 なお、モーター・ケース7への焼きバメ前に各ステーター・コア分割体23を環状に配置したとき、曲げ部11の曲げ変形前から周方向対向分割部25の分割縁25a、25bの周方向に隙間のない対向を行わせた状態で前記組み付けを行わせることもできる。
 [実施例1の作用効果]
 本発明の実施例1では、円環状のヨーク部3及びこのヨーク部3の内周に径方向内側へ突出するティース部5からなりヨーク部3の外周縁がモーター・ケース7の内周に焼きバメにより径方向内側への締め代を持って取り付けられるモーターのステーター・コア1であって、ヨーク部3は、外周縁の径方向外向き形状の嵌入部9とモーター・ケース7から径方向内側へ押圧力を受けて嵌入部9側へ曲げ変形しモーター・ケース7の内周面に摩擦係合する一体の曲げ部11とを有し、曲げ部11は、ヨーク部3のモーター・ケース7への取り付け前に先端側11aが嵌入部9から径方向外側へ突出し、ヨーク部3のモーター・ケース7への取り付けにより嵌入部3側へ曲げ変形する。
 この曲げ部11がモーター・ケース7の内周面7aに矢印A方向の押し付け力で摩擦係合するから、ステーター・コア1のモーター・ケース7への確実な取り付けを行わせることができる。
 しかも、曲げ部11がモーター・ケース7の内周面7aに摩擦係合することで、モーター・ケース7の焼きバメによるヨーク部3の圧縮応力を零にすることができる。
 ヨーク部3の外径側に圧縮応力が発生しても、弾性変形部Eをも用いたヨーク部3の外径側での固定となるため、ヨーク部3の内径側を外径側に働く圧縮応力よりも小さいか零の圧縮応力状態にすることができる。ヨーク部3の外形側も、弾性変形部Eの摩擦係合の存在により固定のための圧縮応力を低減できる。
 各曲げ部11の曲げ変形で、ステーター・コア1の外周縁3a側で周方向に引張応力が発生する。この引張応力は、モーター・ケース7への焼きバメ固定によりヨーク部3の外径側に圧縮応力が発生した場合に、この圧縮応力に対抗する。
 これらのため、ティース部5からヨーク部3全体を介して磁束を効率よく通すことができ、モーターの出力効率をより向上させることができる。
 ヨーク部3を嵌入部9及び曲げ部11間を含めて内外周に渡る分割により周方向複数に分割形成した各ステーター・コア分割体23が、各分割による分割縁13、17、15、19、27a、27b、25a、25bで周方向に対向して環状に配置され、対向する各分割縁13、17、15、19、27a、27b、25a、25bの一側に嵌入部9を有し、同他側に曲げ部11を有した。
 このため、上記効果を奏しながら、周方向へ環状に配置した各ステーター・コア分割体23をモーター・ケース7へ確実に固定することができる。
 ここで、曲げ部11を設けずに各ステーター・コア分割体23の外周縁23b側に圧縮応力を発生させるようにして固定すると、積層構造の各ステーター・コア分割体23間周方向に強く押し付けられて変形し、めくれる等の不具合を招く恐れがある。
 これに対し、曲げ部11による摩擦係合を行わせると、ステーター・コア分割体23の外周縁23b側の圧縮応力を零とするか、圧縮応力を低減できるから、ステーター・コア分割体23間のめくれ等の変形を招くことなく、モーター・ケース7への焼きバメによる固定を確実に行わせることができる。
 ヨーク部3の内径側に設けられ分割縁25a、25bが径方向に指向して形成され相互に隙間なく対向する周方向対向分割部25を有し、この周方向対向分割部25では、モーター・ケース7への取り付け前に分割縁25a、25b相互間に隙間が存在し、モーター・ケース7への取り付けにより分割縁25a、25b相互が隙間なく対向してヨーク部3の外径側と共に圧縮応力零の状態とし、又はヨーク部3の外径側に圧縮応力が発生したときは外径側よりも圧縮応力が小さい状態(零を含む)とすることができる。
 このため、ティース部5からヨーク部3の周方向対向分割部25を介して磁束を効率よく確実に通すことができ、モーターの出力効率をより向上させることができる。
 嵌入部9及び曲げ部11と周方向対向分割部25との間で周方向に沿って形成され分割縁27a、27b相互が径方向に対向して一端が周方向対向分割部25に連続し他端が曲げ部11の基部で嵌入部9及び曲げ部11に連続する径方向対向分割部27を有する。
 このため、周方向対向分割部25を嵌入部9及び曲げ部11とは区別して設定し、周方向対向分割部25を周方向に含むヨーク部3内径側を、ヨーク部3の外径側と共に圧縮応力零の状態とし、又はヨーク部3の外径側に圧縮応力が発生したときは外径側よりも圧縮応力が小さい状態となるように確実に設定することができる。しかも、凸部29が凹部31に嵌入することで各ステーター・コア分割体23の環状の結合をより確実に行わせることができる。
 径方向対向分割部27は、ヨーク部3の周方向での長さが嵌入部9及び曲げ部11の周方向での長さよりも短く周方向対向分割部25が嵌入部9及び曲げ部11の周方向中間部に配置された。
 このため、曲げ部11の先端側11aが嵌入部9内へ曲げ変形して分割縁15に当接するとき、先端側11aが当接する分割縁15の内径側に周方向対向分割部25が位置せず、先端側11aが分割縁15に当接したとしても応力分散を確実に行わせることができる。
 周方向対向分割部25は、ヨーク部3径方向の長さ寸法が嵌入部9及び曲げ部11の径方向の幅寸法よりも大きい。
 このため、圧縮応力を零か抑制できる周方向対向分割部25を周方向に含むヨーク部3内径側を拡大することができる。
 ヨーク部3の分割縁13、17、25a、25bは、ヨーク部21の中心に指向する。
 このため、焼きバメによる締め代で曲げ部11を嵌入部9内へ確実に曲げ変形させることができ、磁気抵抗の少ないかつ鉄損の少ない周方向対向分割部27を確実に形成することができる。
 モーターのステーター・コア1を製造するためのステーター・コア製造方法であって、モーター・ケース7への取り付け前に先端側11aが嵌入部9から径方向外側へ突出した曲げ部11をそれぞれ備える複数のステーター・コア分割体23を加工する分割体加工工程S1と、複数のステーター・コア分割体23を各分割縁13、17、15、19、27a、27b、25a、25bの周方向での対向により環状に配置した状態でモーター・ケース7への取り付け前に周方向対向分割部25の分割縁25a、25b相互間に隙間を形成し、モーター・ケース7への取り付けにより嵌入部9内への曲げ部11の曲げ変形と周方向対向分割部25での分割縁225a、25b相互の隙間ない対向を行わせる組付け工S2とを備えた。
 このため、複数のステーター・コア分割体23により周方向対向分割部27を有して構成され上記効果を有するステーター・コア1を容易に得ることができる。
 なお、前記のように各ステーター・コア分割体23を環状に配置したとき、曲げ部11の曲げ変形前から周方向対向分割部25の分割縁25a、25bの周方向に隙間のない対向を行わせてモーター・ケース7に組み付けることができる。
 この場合、モーター・ケース7の締め代を、曲げ部11の曲げ変形、ヨーク部3の外周縁3a及びモーター・ケース7の内周面7a間の隙間をなくすことのみに供することができ、曲げ部11以外で外周縁3a及び内周面7a間に径方向の押圧力を作用させないようにすることができる(前者)。但し、曲げ部11以外で外周縁3a及び内周面7a間に径方向の押圧力を作用させる構成にすることもできる(後者)。
 前者の場合は、ヨーク部3の外周側の圧縮応力も零となり、後者の場合は、ヨーク部3の外周側に低減された圧縮応力が発生する。
 弾性変形部Eは、ティース部5に対応したヨーク部3外周縁に配置することもできる。この場合、ステーター・コア分割体23間は、周方向の凹凸部で係合する構成とすることができる。ティース部5に対応したヨーク部3外周縁に配置するばあい、一対の曲げ部11を周方向に対称に向き合わせるように一対の弾性変形部Eを形成することもできる。
 図7~図10は、本発明の実施例2に係り、図7は、ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図、図8は、ステーター・コア製造方法を示す工程図、図9は、焼きバメ前のステーター・コアの状態を示す要部正面図、図10は、焼きバメ前のステーター・コアをモーター・ケースと共に示す要部正面図である。なお、基本的な構成は実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には同符号にAを付し、重複説明は省略する。
 図7のように、本実施例2のステーター・コア1Aは、ヨーク部3Aを、周方向に連続したリング状とした。
 本実施例の弾性変形部EAを構成する嵌入部9A及び曲げ部11Aは、ティース部5に対応した位置でヨーク部3Aの外周に配置されている。ヨーク部3Aには、ティース部5間で直線的な内周縁3Ab、3Acが対称に形成されている。
 図8のように、本実施例のステーター・コア製造方法は、モーターのステーター・コア1Aを製造するためのコア加工工程S10及び組付け工程S11を備えている。
 コア加工工程S10では、図9で示す取り付け前のステーター・コア1Aaを形成する。ステーター・コア1Aaは、嵌入部9A及び曲げ部11Aとヨーク部3A及びティース部5とを備え、曲げ部11Aの先端側11Aaが、嵌入部9Aから径方向外側へ突出している。
 図9のように、ステーター・コア1Aaの曲げ部11Aは、ヨーク部3Aの外周縁3Aaの円弧よりも外側へ変位設定されている。この変位設定により、モーター・ケース7への焼きバメによる取り付け前に、先端側11Aaが嵌入部9Aから径方向外側へ突出した状態となる。
 組付け工程S11では、図9のステーター・コア1Aaを板厚方向に積層し、図7のモーター・ケース7の内周に焼きバメにより径方向内側への締め代を持って取り付ける。
 この焼きバメによる取り付けでり、図9の曲げ部11Aが、締め代により径方向に押圧される。この押圧により嵌入部9Aへの曲げ部11Aの曲げ変形が行われる。この曲げ部11Aが曲げ変形した図7の状態では、曲げ部11Aがモーター・ケース7の内周面7aに摩擦係合し、固定を確実に行わせることができる。
 焼きバメによる取り付けが完了すると、ステーター・コア1Aは、曲げ部11Aがモーター・ケース7の内周面7aに摩擦係合して固定される。
 このため、ヨーク部3Aは圧縮応力零の状態となる。又はヨーク部3の外径側に圧縮応力が発生しても、摩擦係合の存在により圧縮応力を低減できる。また、曲げ部11Aの曲げに起因する引張応力を対向させ、実施例1と同様に圧縮応力を低減させることができる。
 ヨーク部3Aの圧縮応力零の状態は、モーター・ケース7の焼きバメによる締め代を、ヨーク部3Aの外周縁3Aaとモーター・ケース7の内周面7a間の隙間をなくし曲げ部11Aの曲げ変形をさせることのみに供することで得られる。
 曲げ部11Aの曲げ変形時には、図10のように曲げ部11A回りに回転モーメントMが発生する。この回転モーメントMは、ヨーク部3Aの外周縁3Aaがモーター・ケース7の内周面7aに当接する反力によって受けられ、各ステーター・コア1Aは、安定して組み付けられる。
 したがって、本実施例でも、嵌入部9A及び曲げ部11Aにより、実施例1と同様な作用効果を奏することができる。
 しかも、ステーター・コア1Aaは、分割されていないため、取り扱いが容易であり、部品点数も少なく、組み立て、部品管理が容易となる。
 上記実施例2では、弾性変形部EAを、ステーター・コア1A側に設けたが、弾性変形部EAを、モーター・ケース7の内周面7a側に設け、或いは弾性変形部E又は弾性変形部EAをステーター・コア1、1A側に設けると共に弾性変形部EAを、モーター・ケース7の内周面7a側に設けることもできる。
 以上、本発明の弾性変形部E、EAは、ヨーク部3、3Aとモーター・ケース7の内周面7aとを摩擦係合するものであれば良い。
 1,1A ステーター・コア
 1Aa 取り付け前のステーター・コア
 3、3A ヨーク部
 5、5A ティース部
 7 モーター・ケース(環状部材)
 9、9A 嵌入部
 11、11A 曲げ部
 13、17、15、19、27a、27b、25a、25 分割縁
 21 分割線
 21a、21b 分割縁
 23 ステーター・コア分割体
 25 周方向対向分割部
 27 径方向対向分割部
 S1 分割体加工工程
 S2、S11 組付け工程
 S10 コア加工工程 
 E、EA 弾性変形部

Claims (16)

  1.  環状のヨーク部及びこのヨーク部の内周に径方向内側へ突出するティース部からなりヨーク部の外周縁が環状部材の内周面に取り付けられるモーターのステーター・コアであって、
     前記ヨーク部と環状部材との間に、前記環状部材から径方向内側へ押圧力を受けて弾性変形し前記ヨーク部及び前記環状部材間を摩擦係合させる弾性変形部を有し、
     前記弾性変形部は、前記ヨーク部の前記環状部材への取り付け前に前記ヨーク部又は前記環状部材から径方向外側又は内側へ突出し、前記ヨーク部の前記環状部材への締め代を持った取り付けにより前記弾性変形した、
     ことを特徴とするモーターのステーター・コア。
  2.  請求項1記載のモーターのステーター・コアであって、
     前記弾性変形部は、前記ヨーク部の外周縁に形成した径方向外向き形状の嵌入部と前記環状部材から径方向内側へ押圧力を受けて前記嵌入部側へ曲げ変形し前記環状部材の内周面に摩擦係合した曲げ部とを有し、
     前記曲げ部は、前記ヨーク部の前記環状部材への取り付け前に先端側が前記嵌入部から径方向外側へ突出し、前記ヨーク部の前記環状部材への前記締め代を持った取り付けにより前記嵌入部側へ曲げ変形した、
     ことを特徴とするモーターのステーター・コア。
  3.  請求項1記載のモーターのステーター・コアであって、
     前記ヨーク部での内外周に渡る分割により周方向複数に分割され前記嵌入部及び曲げ部を備えたステーター・コア分割体を設け、
     前記取り付け前に前記各ステーター・コア分割体を前記各分割による分割縁相互を周方向に対向させて環状に配置し前記締め代を持った取り付けを行った、
     ことを特徴とするモーターのステーター・コア。
  4.  請求項2記載のモーターのステーター・コアであって、
     前記ヨーク部で前記嵌入部及び曲げ部間を含めて内外周に渡る分割により周方向複数に分割形成したステーター・コア分割体を設け、
     前記取り付け前に前記各ステーター・コア分割体を前記各分割による分割縁相互を周方向に対向させて環状に配置し、
     前記嵌入部を、前記対向する各分割縁の一側に備え、前記曲げ部を、前記対向する各分割縁の他側に備えて、前記嵌入部の外径側に前記曲げ部を配置して前記締め代を持った取り付けを行った、
     ことを特徴とするモーターのステーター・コア。
  5.  請求項4記載のモーターのステーター・コアであって、
     前記ヨーク部の内径側に設けられ前記分割縁が径方向に指向して形成され周方向へ相互に隙間なく対向した周方向対向分割部を有し、
     この周方向対向分割部では、前記環状部材への取り付け前に前記分割縁相互間に隙間が存在し前記環状部材への取り付けにより隙間なく対向して前記ヨーク部の外径側と共に圧縮応力零の状態又は前記ヨーク部の外径側に圧縮応力が発生したときは外径側よりも圧縮応力が小さい状態となる、
     ことを特徴とするモーターのステーター・コア。
  6.  請求項5記載のモーターのステーター・コアであって、
     前記嵌入部及び曲げ部と前記周方向対向分割部との間で周方向に沿って形成され前記分分割縁相互が径方向に対向して一端が前記周方向対向分割部に連続し他端が前記曲げ部の基部で前記嵌入部及び曲げ部に連続する径方向対向分割部を有する、
     ことを特徴とするモーターのステーター・コア。
  7.  請求項6記載のモーターのステーター・コアであって、
     前記径方向対向分割部は、前記ヨーク部の周方向での長さが前記嵌入部及び曲げ部の周方向での長さよりも短く前記周方向対向分割部が前記嵌入部及び曲げ部の周方向中間部に対応して配置された、
     ことを特徴とするモーターのステーター・コア。
  8.  請求項5~7記載のモーターのステーター・コアであって、
     前記周方向対向分割部は、前記ヨーク部の径方向での長さ寸法が前記嵌入部及び曲げ部の径方向での幅寸法よりも大きい、
     ことを特徴とするモーターのステーター・コア。
  9.  請求項4~8の何れか1項記載のモーターのステーター・コアであって、
     前記ヨーク部の分割縁は、該ヨーク部の曲率中心に指向する、
     ことを特徴とするモーターのステーター・コア。
  10.  請求項1又は2記載のモーターのステーター・コアであって、
     前記ヨーク部は、周方向に連続したリング状である、
     ことを特徴とするモーターのステーター・コア。
  11.  請求項1~10の何れか1項記載のモーターのステーター・コアであって、
     前記環状部材への取り付けは、焼きバメである、
     ことを特徴とするモーターのステーター・コア。
  12.  請求項3記載のモーターのステーター・コアを製造するためのステーター・コア製造方法であって、
     前記環状部材への取り付け前に前記外周縁から径方向外側へ突出し得る前記弾性変形部をそれぞれ備えた複数のステーター・コア分割体を加工する分割体加工工程と、
     前記複数のステーター・コア分割体を前記各分割縁の周方向での対向により環状に配置し前記環状部材の内周面に径方向内側への締め代を持って取り付けて前記弾性変形部の弾性変形を行わせる組付け工程と、
     を備えたことを特徴とするステーター・コア製造方法。
  13.  請求項4~9の何れか1項記載のモーターのステーター・コアを製造するためのステーター・コア製造方法であって、
     前記環状部材への取り付け前に先端側が前記嵌入部から径方向外側へ突出し得る前記曲げ部をそれぞれ備えた複数のステーター・コア分割体を加工する分割体加工工程と、
     前記複数のステーター・コア分割体を前記各分割縁の周方向での対向により環状に配置し前記環状部材の内周面に径方向内側への締め代を持って取り付けて前記嵌入部内への前記曲げ部の曲げ変形を行わせる組付け工程と、
     を備えたことを特徴とするステーター・コア製造方法。
  14.  請求項5~8の何れか1項記載のモーターのステーター・コアを製造するためのステーター・コア製造方法であって、
     前記環状部材への取り付け前に先端側が前記嵌入部から径方向外側へ突出し得る前記曲げ部をそれぞれ備えた複数のステーター・コア分割体を加工する分割体加工工程と、
     前記複数のステーター・コア分割体を前記各分割縁の周方向での対向により環状に配置した状態で前記環状部材への取り付け前に前記周方向対向分割部の前記分割縁相互間に隙間を形成し前記環状部材への取り付けにより前記嵌入部内への前記曲げ部の曲げ変形と前記周方向対向分割部での前記分割縁相互の隙間ない対向を行わせる組付け工程と、
     を備えたことを特徴とするステーター・コア製造方法。
  15.  請求項10記載のモーターのステーター・コアを製造するためのステーター・コア製造方法であって、
     前記環状部材への取り付け前に先端側が前記嵌入部から径方向外側へ突出した前記曲げ部を備えるリング状のステーター・コアを形成するコア加工工程と、
     前記ステーター・コアを前記環状部材の内周に径方向内側への締め代を持って取り付け前記嵌入部内への前記曲げ部の曲げ変形を行わせる組付け工程と、
     を備えたことを特徴とするステーター・コア製造方法。
  16.  請求項12~15の何れか1項記載のステーター・コア製造方法であって、
     前記環状部材への取り付けは、焼きバメである、
     ことを特徴とするステーター・コア製造方法。
PCT/JP2013/000678 2012-02-14 2013-02-07 モーターのステーター・コア及び製造方法 WO2013121754A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012029969A JP2013169043A (ja) 2012-02-14 2012-02-14 モーターのステーター・コア及び製造方法
JP2012-029969 2012-02-14

Publications (1)

Publication Number Publication Date
WO2013121754A1 true WO2013121754A1 (ja) 2013-08-22

Family

ID=48983890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000678 WO2013121754A1 (ja) 2012-02-14 2013-02-07 モーターのステーター・コア及び製造方法

Country Status (2)

Country Link
JP (1) JP2013169043A (ja)
WO (1) WO2013121754A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076166A1 (ja) * 2014-11-11 2016-05-19 株式会社ミツバ ブラシレスワイパモータ
CN110875644A (zh) * 2018-08-31 2020-03-10 广东威灵电机制造有限公司 内转子多相电机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400859B2 (ja) * 2015-11-12 2018-10-03 三菱電機株式会社 鉄心装置およびその製造方法
CN111418131B (zh) * 2017-12-07 2022-06-14 京瓷工业工具株式会社 定子铁心
JP7473793B2 (ja) 2020-03-26 2024-04-24 ダイキン工業株式会社 モータ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163070A (ja) * 1993-12-07 1995-06-23 Honda Motor Co Ltd 電動機のステータ製造方法および該方法により製造されたステータ
JPH11355984A (ja) * 1998-06-10 1999-12-24 Japan Servo Co Ltd 小型電動機
JP2006223076A (ja) * 2005-02-14 2006-08-24 Toshiba Corp アウターロータ及びその製造方法
JP2006333657A (ja) * 2005-05-27 2006-12-07 Mitsuba Corp モータ
JP2010068687A (ja) * 2008-09-12 2010-03-25 Honda Motor Co Ltd コアに卜ロイダル状の巻線を備えた回転電機用固定子および回転電機の制御装置
JP2010119163A (ja) * 2008-11-11 2010-05-27 Mitsubishi Electric Corp 圧縮機、圧縮機の組立設備、及び、圧縮機の組立方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163070A (ja) * 1993-12-07 1995-06-23 Honda Motor Co Ltd 電動機のステータ製造方法および該方法により製造されたステータ
JPH11355984A (ja) * 1998-06-10 1999-12-24 Japan Servo Co Ltd 小型電動機
JP2006223076A (ja) * 2005-02-14 2006-08-24 Toshiba Corp アウターロータ及びその製造方法
JP2006333657A (ja) * 2005-05-27 2006-12-07 Mitsuba Corp モータ
JP2010068687A (ja) * 2008-09-12 2010-03-25 Honda Motor Co Ltd コアに卜ロイダル状の巻線を備えた回転電機用固定子および回転電機の制御装置
JP2010119163A (ja) * 2008-11-11 2010-05-27 Mitsubishi Electric Corp 圧縮機、圧縮機の組立設備、及び、圧縮機の組立方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076166A1 (ja) * 2014-11-11 2016-05-19 株式会社ミツバ ブラシレスワイパモータ
US20170313283A1 (en) * 2014-11-11 2017-11-02 Mitsuba Corporation Brushless wiper motor
US10336299B2 (en) 2014-11-11 2019-07-02 Mitsuba Corporation Brushless wiper motor
CN110875644A (zh) * 2018-08-31 2020-03-10 广东威灵电机制造有限公司 内转子多相电机

Also Published As

Publication number Publication date
JP2013169043A (ja) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5993580B2 (ja) モーターのステーター・コア及び製造方法
JP5740436B2 (ja) 回転電機のステータコア
WO2013121754A1 (ja) モーターのステーター・コア及び製造方法
US9030076B2 (en) Electrical rotary machine
WO2010001776A1 (ja) 永久磁石式回転機の回転子構造
EP2782217B1 (en) Rotor for rotating electric machine and motor for electric power steering
JP5641902B2 (ja) モーターのステーター・コア及び製造方法
JP5326642B2 (ja) 回転電機及び回転電機の製造方法
JP2017079570A (ja) 同期電動機の永久磁石回転子
US11804763B2 (en) Axial gap motor
CN112640258B (zh) 旋转电机
WO2014136145A1 (ja) 回転電機のステータ鉄心及び回転電機並びにその製造方法
JP2015144499A (ja) 固定子鉄心の製造方法
JP5659770B2 (ja) 回転電機のコア及び回転電機のコアの製造方法
WO2017090189A1 (ja) 回転電機
JP2012050178A (ja) ステータコア、ステータ及びステータコアの組付方法
CN113519106A (zh) 旋转电机用转子的制造方法
JP2010063205A (ja) ロータ及びロータの製造方法
JP2008278597A (ja) ロータコア
WO2021075275A1 (ja) ステータコア、ステータユニット及びモータ
JP5130242B2 (ja) ステータ
JP6877161B2 (ja) 回転電機のステータ
JP2011166934A (ja) 電動機
US20220166266A1 (en) Stator core
JP2015220823A (ja) ステータ分割鉄芯の締結構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749313

Country of ref document: EP

Kind code of ref document: A1