WO2013118776A1 - Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置 - Google Patents
Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置 Download PDFInfo
- Publication number
- WO2013118776A1 WO2013118776A1 PCT/JP2013/052743 JP2013052743W WO2013118776A1 WO 2013118776 A1 WO2013118776 A1 WO 2013118776A1 JP 2013052743 W JP2013052743 W JP 2013052743W WO 2013118776 A1 WO2013118776 A1 WO 2013118776A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- ionic liquid
- membrane
- acid ionic
- mixed gas
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims description 15
- 238000000926 separation method Methods 0.000 title claims description 15
- 150000001413 amino acids Chemical class 0.000 claims abstract description 114
- 239000002608 ionic liquid Substances 0.000 claims abstract description 94
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 29
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 21
- 125000001302 tertiary amino group Chemical group 0.000 claims description 20
- 125000003277 amino group Chemical group 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 239000012466 permeate Substances 0.000 claims description 7
- 229940024606 amino acid Drugs 0.000 description 108
- 235000001014 amino acid Nutrition 0.000 description 108
- 239000007789 gas Substances 0.000 description 82
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 42
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 description 17
- 125000000217 alkyl group Chemical group 0.000 description 15
- -1 Amino acid ions Chemical class 0.000 description 12
- 239000004471 Glycine Substances 0.000 description 10
- 229960002449 glycine Drugs 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 101100008681 Glycine max DHPS1 gene Proteins 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- BJQWBACJIAKDTJ-UHFFFAOYSA-N tetrabutylphosphanium Chemical compound CCCC[P+](CCCC)(CCCC)CCCC BJQWBACJIAKDTJ-UHFFFAOYSA-N 0.000 description 5
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000007723 transport mechanism Effects 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229960003767 alanine Drugs 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- NIVFNVUFELHBJP-WNQIDUERSA-M (2S)-2-amino-3-hydroxypropanoate tetrabutylphosphanium Chemical compound N[C@@H](CO)C([O-])=O.CCCC[P+](CCCC)(CCCC)CCCC NIVFNVUFELHBJP-WNQIDUERSA-M 0.000 description 1
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 1
- REACWASHYHDPSQ-UHFFFAOYSA-N 1-butylpyridin-1-ium Chemical compound CCCC[N+]1=CC=CC=C1 REACWASHYHDPSQ-UHFFFAOYSA-N 0.000 description 1
- RVEJOWGVUQQIIZ-UHFFFAOYSA-N 1-hexyl-3-methylimidazolium Chemical compound CCCCCCN1C=C[N+](C)=C1 RVEJOWGVUQQIIZ-UHFFFAOYSA-N 0.000 description 1
- AMKUSFIBHAUBIJ-UHFFFAOYSA-N 1-hexylpyridin-1-ium Chemical compound CCCCCC[N+]1=CC=CC=C1 AMKUSFIBHAUBIJ-UHFFFAOYSA-N 0.000 description 1
- SQXHPFPQJYXZTI-UHFFFAOYSA-M 2-(methylamino)acetate tetrabutylphosphanium Chemical compound CNCC([O-])=O.CCCC[P+](CCCC)(CCCC)CCCC SQXHPFPQJYXZTI-UHFFFAOYSA-M 0.000 description 1
- FABQZCGRSBSETM-UHFFFAOYSA-N 3-(3-methylimidazol-3-ium-1-yl)propan-1-amine Chemical compound C[N+]=1C=CN(CCCN)C=1 FABQZCGRSBSETM-UHFFFAOYSA-N 0.000 description 1
- HGNPFOBULPPWHA-UHFFFAOYSA-N 3-aminopropyl(tributyl)phosphanium Chemical compound CCCC[P+](CCCC)(CCCC)CCCN HGNPFOBULPPWHA-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-O Pyrrolidinium ion Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 229960003121 arginine Drugs 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- FFDGPVCHZBVARC-UHFFFAOYSA-N dimethylaminoacetic acid Natural products CN(C)CC(O)=O FFDGPVCHZBVARC-UHFFFAOYSA-N 0.000 description 1
- 108700003601 dimethylglycine Proteins 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-O guanidinium Chemical compound NC(N)=[NH2+] ZRALSGWEFCBTJO-UHFFFAOYSA-O 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 235000014304 histidine Nutrition 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000018977 lysine Nutrition 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- YNAVUWVOSKDBBP-UHFFFAOYSA-O morpholinium Chemical compound [H+].C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-O 0.000 description 1
- 229940078490 n,n-dimethylglycine Drugs 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- DFQPZDGUFQJANM-UHFFFAOYSA-M tetrabutylphosphanium;hydroxide Chemical compound [OH-].CCCC[P+](CCCC)(CCCC)CCCC DFQPZDGUFQJANM-UHFFFAOYSA-M 0.000 description 1
- DTIFFPXSSXFQCJ-UHFFFAOYSA-N tetrahexylazanium Chemical compound CCCCCC[N+](CCCCCC)(CCCCCC)CCCCCC DTIFFPXSSXFQCJ-UHFFFAOYSA-N 0.000 description 1
- AGWJLDNNUJKAHP-UHFFFAOYSA-N tetrahexylphosphanium Chemical compound CCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC AGWJLDNNUJKAHP-UHFFFAOYSA-N 0.000 description 1
- 229960002898 threonine Drugs 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- FJAPXHMQWAFWMW-UHFFFAOYSA-N tributyl(hexyl)azanium Chemical compound CCCCCC[N+](CCCC)(CCCC)CCCC FJAPXHMQWAFWMW-UHFFFAOYSA-N 0.000 description 1
- VTFBDXOWNVTUKP-UHFFFAOYSA-N tributyl(hexyl)phosphanium Chemical compound CCCCCC[P+](CCCC)(CCCC)CCCC VTFBDXOWNVTUKP-UHFFFAOYSA-N 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 229960004441 tyrosine Drugs 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
- B01D63/087—Single membrane modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/204—Amines
- B01D2252/20494—Amino acids, their salts or derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/30—Ionic liquids and zwitter-ions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/10—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/15—Use of additives
- B01D2323/218—Additive materials
- B01D2323/2181—Inorganic additives
- B01D2323/21815—Acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present invention relates to a CO 2 permselective membrane, a method for separating CO 2 from a mixed gas, and a membrane separation apparatus.
- Non-Patent Document 1 Selectively transmits CO 2, as CO 2 selective permeation membrane which can be used to separate CO 2 from a gas mixture, various polymer membranes have been developed (e.g., Non-Patent Document 1). However, since polymer membranes generally allow CO 2 to physically permeate based on the dissolution and diffusion mechanism, they are limited in improving CO 2 permeability and CO 2 selectivity to N 2 (CO 2 / N 2 selectivity). was there.
- Non-Patent Documents 2 and 3 a permeable membrane that uses a substance called “carrier” that selectively reacts with CO 2 and selectively permeates gas by a facilitated transport mechanism in addition to a dissolution and diffusion mechanism.
- a permeable membrane called a facilitated transport membrane that uses a substance called “carrier” that selectively reacts with CO 2 and selectively permeates gas by a facilitated transport mechanism in addition to a dissolution and diffusion mechanism.
- a specific gas is selectively permeated based on a reversible chemical reaction between a specific gas and a carrier in a film.
- a permeable membrane using an ionic liquid has been proposed as a membrane oriented for a facilitated transport mechanism (Non-patent Documents 4 and 5).
- Patent Document 1 discloses a carbon dioxide gas permselective membrane containing an ionic liquid.
- the relative humidity of the supply gas is preferably 50% or more and 100% or less from the viewpoint of membrane performance. Says.
- the water content in the imidazolium-based amino acid ionic liquid which is one of the structures of the gas permeable membrane, is described in p. From the 11th line of REFERENCE (8) in the right column of 2399, the water content after the produced amino acid ionic liquid is vacuum-dried at 80 ° C. for 2 days is 0.2% or less, and the water content after the salt is produced Is 0.4%.
- Table 1 of 3158 shows that the amount of water in the amino acid ionic liquid is an extremely low value of 200 ppm.
- the main object of the present invention is to provide a CO 2 selective separation membrane capable of achieving sufficiently high CO 2 permeance and CO 2 / N 2 selectivity.
- the present invention sets the water content in the amino acid ionic liquid within an appropriate range. By doing so, sufficiently high CO 2 permeance and CO 2 / N 2 selectivity are achieved.
- a sufficiently high CO 2 concentration can be obtained by adjusting the water content in the amino acid ionic liquid to preferably 3 to 50% by mass, more preferably 5 to 20% by mass.
- Two permeances and CO 2 / N 2 selectivity can be achieved.
- Amino acid ions constituting the amino acid ionic liquid, CO 2 and reversibly react acts as a carrier for CO 2, it is believed to contribute to a high CO 2 permeance and selectivity.
- the function of this amino acid ion is sufficiently exhibited in both dry conditions and high humidity environments.
- the present invention also includes a step of separating CO 2 from the mixed gas by allowing CO 2 in the mixed gas containing CO 2 to pass through the CO 2 permselective membrane, thereby separating the CO 2 from the mixed gas.
- a step of separating CO 2 from the mixed gas by allowing CO 2 in the mixed gas containing CO 2 to pass through the CO 2 permselective membrane, thereby separating the CO 2 from the mixed gas.
- CO 2 can be efficiently separated under both dry conditions and a high humidity environment.
- the method according to the present invention is particularly effective when the low humidity condition, specifically, the relative humidity of the mixed gas is 30% or less, or the portion of the condition where the water vapor concentration of the mixed gas is 30 mol% or less is included. Useful.
- the CO 2 permselective membrane and the mixed gas are heated to 60 ° C.
- the CO 2 in the mixed gas can permeate through the permselective membrane while maintaining the following temperature.
- the temperature of the CO 2 selective permeation membrane and the mixed gas is set to The CO 2 in the mixed gas can be allowed to permeate through the permselective membrane while maintaining the temperature above 60 ° C.
- the amino group in the amino acid ionic liquid is mainly a primary amino group, a secondary amino group or a tertiary amino group
- excellent CO 2 permeance or CO 2 / N 2 selectivity can be obtained.
- the total number of primary amino groups and secondary amino groups contained in the amino acid ionic liquid is equal to or greater than the number of tertiary amino groups contained in the amino acid ionic liquid, and is contained in the amino acid ionic liquid.
- the CO 2 permselective membrane and the mixed gas are kept in a mixed gas while maintaining the temperature above 60 ° C. and below 80 ° C. Of CO 2 can permeate through the permselective membrane.
- a CO 2 selective separation membrane capable of achieving sufficiently high CO 2 permeance and CO 2 / N 2 selectivity.
- CO 2 is a graph showing the relationship between transmission characteristics and the partial pressure of CO 2 selectively permeable membrane.
- CO 2 is a graph showing the relationship between transmission characteristics and the relative humidity of the permselective membrane. It is a graph showing the relationship between the water content of the transmission characteristic and the amino acid ionic liquid CO 2 selectively permeable membrane.
- CO 2 is a graph showing the relationship between transmission characteristics and the temperature of the permselective membrane.
- FIG. 1 is a schematic view showing an embodiment of a membrane separation apparatus having a CO 2 permselective membrane.
- Membrane separation apparatus 10 shown in FIG. 1 is mainly composed of a CO 2 selective permeation membrane 1, and the permeation cell 3 that accommodates the CO 2 selective permeation membrane 1, the heating unit 5 for heating the CO 2 selective permeation membrane 1 .
- a space in which the CO 2 selective permeable membrane 1 is mounted is provided inside the permeation cell 3, and this space is divided by the CO 2 selective permeable membrane 1 into a feed side portion and a sweep side portion.
- a feed gas (mixed gas) F1 containing CO 2 is supplied to the feed side portion and discharged as a feed gas F2.
- the sweep gas S1 is normally supplied to the sweep side portion.
- the sweep gas S1 is generally an inert gas such as helium gas.
- CO 2 selectively permeable membrane 1 selectively permeable to CO 2 which has moved to the sweep side portion gas is discharged together with the sweep gas as a discharge gas S2. As a result, CO 2 is separated from the feed gas F1.
- the CO 2 selective separation membrane 1 has an amino acid ionic liquid and a porous membrane impregnated with the amino acid ionic liquid.
- the amino acid ionic liquid is an ionic liquid containing one or more salts composed of amino acid ions and counter ions thereof, and a small amount of water.
- the amino acid ion may be an anion or a cation, but is preferably an anion from the viewpoint of permeation performance.
- the amino acid ion and the counter ion are each arbitrarily selected in combination that forms an ionic liquid.
- the amino acid ionic liquid preferably contains 3 to 50% by mass, more preferably 5 to 20% by mass of water. This amount of water is a ratio based on the mass of the entire amino acid ionic liquid.
- the amount of water contained in the amino acid ionic liquid may be adjusted by an evaporation operation when preparing the amino acid ionic liquid, or may be adjusted by adding an arbitrary amount of water to the prepared amino acid ionic liquid. Good.
- the amino acid used as the amino acid ion is one or more selected from a primary amino group (—NH 2 ), a secondary amino group (—NH—) and a tertiary amino group (—N ⁇ ). It may be a compound having an amino group and a carboxyl group, and may be natural or non-natural.
- the amino acid ion is, for example, from the group consisting of arginine, histidine, lysine, aspartic acid, glutamic acid, serine, threonine, asparagine, glutamine, cysteine, glycine, proline, alanine, isoleucine, leucine, methionine, phenylalanine, tryptophan, tyrosine and valine. It is an ion formed from at least one selected amino acid. Some or all of the hydrogen atoms of the amino group of these amino acids may be substituted with an alkyl group or an aryl group. For example, N-alkyl amino acids and N-aryl amino acids having secondary amino groups, N, N-dialkyl amino acids and N-alkyl-N-aryl amino acids having tertiary amino groups can be used.
- the counter cation combined with the amino acid anion is essentially not limited as long as it forms an ionic liquid with the amino acid ion.
- This counter cation is represented by, for example, imidazolium represented by the following formula (1), phosphonium represented by the following formula (2), ammonium represented by the following formula (3), and the following formula (4).
- pyridinium pyrrolidinium optionally having a substituent (eg alkyl group), morpholinium optionally having a substituent (eg alkyl group, alkoxyalkyl group) and guanidinium optionally having a substituent Is at least one selected from the group consisting of
- R 1 and R 2 each independently represents an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms) which may have a substituent.
- This alkyl group is, for example, ethyl, butyl or hexyl.
- One of R 1 and R 2 is preferably methyl.
- Specific examples of imidazolium include 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, and 1-hexyl-3-methylimidazolium.
- R 3 represents an optionally substituted alkyl group (preferably an alkyl group having 1 to 10 carbon atoms), and a plurality of R 3 in the same molecule may be the same or different. Alternatively, they may be bonded to each other to form a ring.
- This alkyl group is, for example, butyl or hexyl.
- R 3 may be, for example, an alkyl group substituted with an amino group.
- Specific examples of phosphonium include tetrabutylphosphonium, tetrahexylphosphonium, tributyl (hexyl) phosphonium, and aminopropyltributylphosphonium.
- R 4 represents an alkyl group which may have a substituent (preferably an alkyl group having 1 to 10 carbon atoms), and a plurality of R 4 in the same molecule may be the same or different. Alternatively, they may be bonded to each other to form a ring.
- This alkyl group is, for example, butyl or hexyl.
- Specific examples of ammonium include tetrabutylammonium, tetrahexylammonium, and tributyl (hexyl) ammonium.
- R 5 represents an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms) which may have a substituent.
- This alkyl group is for example butyl or hexyl.
- Specific examples of pyridinium include 1-butylpyridinium and 1-hexylpyridinium.
- the porous membrane can be appropriately selected from those normally used as a support membrane for a selectively permeable membrane.
- the porous membrane may be hydrophilic or hydrophobic, but is preferably hydrophilic when the amino acid ionic liquid is hydrophilic.
- the porous membrane includes, for example, polytetotetrafluoroethylene.
- the thickness of the porous membrane is not particularly limited, but is, for example, 10 to 100 ⁇ m.
- the voids in the porous membrane are preferably sufficiently filled with the amino acid ionic liquid, but may be partially unfilled.
- the porous membrane may be impregnated with a material other than the amino acid ionic liquid, if necessary, in addition to the amino acid ionic liquid. The type and amount of this additional material can be arbitrarily selected without departing from the spirit of the present invention.
- the CO 2 permselective membrane 1 can be produced by a method including a step of impregnating a porous membrane with an amino acid ionic liquid. Impregnation can be performed by a method usually used in the art.
- the temperature of the feed gas (mixed gas) F1 passing through the membrane separator 10 and the CO 2 permselective membrane 1 is usually 10 to 150 ° C. 80 to 110 ° C.
- the CO 2 permselective membrane 1 is heated by the heating unit 5 as necessary.
- the heating unit 5 for example, an oven capable of accommodating the transmission cell 3 is used.
- CO 2 selective permeation membrane 1 in consideration of the type of amino groups of the amino acids contained in the amino acid ionic liquid constituting a temperature of CO 2 selectively permeable membrane 1 and the gas mixture F1 can be set as follows.
- a CO 2 selective permeable membrane containing an amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component is used, and a CO 2 mixed gas is used while keeping the CO 2 selective permeable membrane and the mixed gas at a temperature of 60 ° C. or lower.
- the lower limit of the temperature of the CO 2 permselective membrane and the mixed gas at this time is not particularly limited but is, for example, 10 ° C. Even at a low temperature of 60 ° C. or lower, even better CO 2 permeance and CO 2 / N 2 selectivity are achieved by using an amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component. Is possible.
- An amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component is, for example, an amino acid ionic liquid in which the number of tertiary amino groups is larger than the total number of primary amino groups and secondary amino groups. is there.
- an amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component an amino acid having only a tertiary amino group is 50 mol% or more, 60 mol% or more, 70 mol% or more of all amino acids.
- An amino acid ionic liquid containing 80 mol% or more or 90 mol% or more can be used.
- CO 2 selective permeation membrane comprising an ionic liquid containing as a main component an amino acid having a primary amino group or secondary amino group
- the temperature of the CO 2 selectively permeable membrane and a gas mixture to a temperature exceeding 60 ° C.
- CO 2 can also be separated from the mixed gas.
- the upper limit of the temperature of the CO 2 selective permeable membrane and the mixed gas at this time is not particularly limited, but is, for example, 200 ° C.
- Further excellent CO 2 permeance and CO 2 / N 2 selectivity by using an amino acid ionic liquid containing an amino acid having a primary amino group or a secondary amino group as a main component at a high temperature exceeding 60 ° C. Can be achieved.
- the total number of primary amino groups and secondary amino groups is not less than the number of tertiary amino groups. It is an amino acid ionic liquid.
- an amino acid ionic liquid containing an amino acid having a primary amino group or a secondary amino group as a main component an amino acid having at least one of the primary amino group or the secondary amino group is converted to all amino acids.
- an amino acid ionic liquid containing 50 mol% or more, 60 mol% or more, 70 mol% or more, 80 mol% or more, or 90 mol% or more can be used.
- CO 2 selective permeation membrane comprising an amino acid ionic liquid containing amino acids with secondary amino groups as the main component
- an amino acid ionic liquid containing an amino acid having a secondary amino group as a main component at a temperature higher than 60 ° C. and lower than 80 ° C., further reducing CO 2 permeance while suppressing energy consumption for heating. It is possible to achieve.
- the amino acid ionic liquid containing an amino acid having a secondary amino group as a main component has, for example, a total number of primary amino groups and secondary amino groups equal to or greater than the number of tertiary amino groups, and the secondary amino group. It is an amino acid liquid in which the number of amino groups is larger than the number of primary amino groups.
- an amino acid having only a secondary amino group is 50 mol% or more, 60 mol% or more, 70 mol% or more of all amino acids.
- An amino acid ionic liquid containing 80 mol% or more or 90 mol% or more can be used.
- the comparison of the number of amino groups (number of moles) in the amino acid ionic liquid as described above is usually performed based on the number of amino groups in all amino acids constituting the amino acid ionic liquid. That is, when an amine compound other than an amino acid having an amino group is contained in a small amount in the amino acid ionic liquid, the number of amino groups of these amine compounds can usually be ignored.
- a CO 2 permselective membrane containing an amino acid ionic liquid containing an amino acid having a tertiary amino group as a main component, and an ion containing an amino acid having a primary amino group or a secondary amino group as a main component may be combined.
- the temperature of each CO2 permselective membrane can be set to the above-mentioned temperature range.
- the feed gas F1 often contains N 2 in addition to CO 2 .
- CO 2 selectively permeable film according to the present embodiment a high CO 2 permeance and CO 2 / N 2 selectivity even when CO 2 minutes low pressure is maintained.
- the partial pressure of CO 2 separates the CO 2 from the gas mixture is not so high, CO 2 selectively permeable film according to the present embodiment is particularly useful.
- the CO 2 partial pressure in the feed gas tends to decrease. Therefore, practically even, in many cases, may include the step of separating CO 2 from a gas mixture of low partial pressure of CO 2 is assumed.
- the CO 2 partial pressure of the feed gas (mixed gas) F1 may be 15 kPa or less.
- the CO 2 permselective membrane according to the present embodiment, it is possible to achieve sufficiently high CO 2 permeance and CO 2 / N 2 selectivity.
- the relative humidity of the feed gas (mixed gas) F1 may be less than 50%, 30% or less, preferably 5% or less.
- the water vapor concentration of the feed gas (mixed gas) F1 may be less than 30 mol%, preferably 5 mol% or less.
- the flow rate of the feed gas F1 is not particularly limited, but is, for example, 2 to 1000 mL / min per 10 cm 2 area of the CO 2 permselective membrane.
- the pressure of the feed gas is not particularly limited, but may be atmospheric pressure, and may be adjusted, for example, in the range of 100 to 10000 kPa or 100 to 1000 kPa.
- the flow rate of the sweep gas S1 is not particularly limited, and is, for example, 1 to 500 mL / min per 10 cm 2 area of the CO 2 permselective membrane.
- the pressure of the sweep gas is not particularly limited, but may be atmospheric pressure or less than atmospheric pressure, and may be adjusted to a range of 30 to 5000 kPa or 30 to 1000 kPa, for example. When the partial pressure of CO 2 in the feed gas is sufficiently high, the sweep gas may not necessarily flow.
- an arbitrary layer may be laminated on one side or both sides of the CO 2 permselective membrane.
- An aqueous solution containing 40% by mass of tetrabutylphosphonium hydroxide (hereinafter referred to as “[P (C 4 ) 4 ] [OH]”), or 1-ethyl-3-methylimidazolium glycine (hereinafter referred to as “[Emim]”).
- An aqueous solution containing 50% by mass of [OH] ”) was added dropwise to an aqueous glycine solution containing glycine in an amount 5% excess of the number of moles thereof and 100 mL of pure water while cooling to 8 ° C. in a nitrogen atmosphere. did.
- the neutralization reaction of the hydroxide ion and the hydrogen ion derived from an amino acid was performed by stirring for 24 hours or more.
- water was removed at 40 ° C. by an evaporator. Water was removed until the prepared amino acid ionic liquid became a 90 mass% aqueous solution (water concentration 10 mass%).
- a hydrophilic polytetotetrafluoroethylene (PTFE) porous membrane (thickness 35.7 ⁇ m, average pore diameter 0.2 ⁇ m) is immersed in the amino acid ionic liquid thus prepared, and the pressure is reduced for 1800 seconds in that state.
- the porous membrane was impregnated with an amino acid ionic liquid.
- the porous membrane impregnated with the amino acid ionic liquid was taken out, and the excess amino acid ionic liquid adhering to the surface was removed to obtain a permeable membrane for evaluation.
- a PTFE porous membrane is impregnated with 1-ethyl-3-methylimidazolium bis (trifluoromethane) sulfonamide (hereinafter referred to as “[Emim] [Tf 2 N]”) which is an ionic liquid, A comparative permeable membrane was obtained.
- Each prepared permeable membrane was attached to a stainless steel permeable cell.
- This permeation cell was accommodated in an oven equipped with a thermostat to prepare an evaluation apparatus having the same configuration as the apparatus shown in FIG. The oven was adjusted to a predetermined temperature with a thermostat.
- a dry mixed gas (CO 2 partial pressure: 10 kPa) containing CO 2 gas and N 2 gas and substantially free of moisture was used as the feed gas F1.
- the feed gas F1 was adjusted to a flow rate of 200 mL / min and a temperature of 298K. The pressure on the feed side was maintained at atmospheric pressure.
- Helium gas was used as the sweep gas S1.
- the sweep gas S1 was adjusted to a flow rate of 40 mL / min and a temperature of 298K. The pressure on the sweep side was maintained at almost atmospheric pressure.
- Table 1 shows the evaluation results of permeance and selectivity when the set temperature of the oven is set to 363K or 373K.
- the permeable membrane using [P (C 4 ) 4 ] [Gly] or [Emim] [Gly], which is an amino acid ionic liquid, is [Emim] [Tf 2 N ], Excellent CO 2 permeance and CO 2 / N 2 selectivity were exhibited.
- FIG. 2 shows another ionic liquid N-aminopropyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([C 3 NH 2 min] [Tf 2 ) along with the results of this experiment.
- the value of CO 2 permeance of the permeable membrane using N]) is shown for comparison with reference to Non-Patent Document 5.
- the permeable membrane using [P (C 4 ) 4 ] [Gly] or [Emim] [Gly] has [Emim] [Tf 2 N], particularly in the low CO 2 partial pressure region. ], Excellent CO 2 permeance and CO 2 / N 2 selectivity were exhibited.
- [P (C 4 ) 4 ] [Gly] or [Emim] [Gly] is much better CO 2 permeance than [C 3 NH 2 min] [Tf 2 N] under dry conditions. It was suggested that
- the DAPA permeable membrane was prepared by the following procedure. First, polyvinyl alcohol-polyacrylic acid copolymer (PVA / PAA copolymer), DAPA and CsOH were dissolved in water and stirred at 298K for 24 hours. The molar ratio of CsOH to DAPA was adjusted to 2. After stirring, fine bubbles were removed by centrifugation, and the solution was applied to a hydrophilic porous PTFE membrane. The applied solution was dried overnight at 298K. Finally, the polymer was crosslinked by heating at 393 K for 2 hours to obtain a DAPA permeable membrane.
- PVA / PAA copolymer polyvinyl alcohol-polyacrylic acid copolymer
- FIG. 3A is a graph showing the relationship between the CO 2 permeance and the relative humidity in the feed gas
- FIG. 3B shows the CO 2 / N 2 selectivity and the relative humidity in the feed gas. It is a graph which shows the relationship.
- the CO 2 permeance value of the facilitated transport membrane (Gly-FTM) using glycine is shown for comparison from Non-Patent Document 2. Since the temperature of the permeation cell is 373 K and the pressure of the feed gas is atmospheric pressure, the value of relative humidity (%) in FIG. 3 can be read as the value of water vapor concentration (mol%) as it is.
- the permeable membrane using [P (C 4 ) 4 ] [Gly] or [Emim] [Gly] is high not only under dry conditions with low steam concentration but also under high humidity conditions. CO 2 permeance and CO 2 / N 2 selectivity were shown. In contrast, facilitated transport membrane of DAPA (DAPA-FTM), although a relatively high CO 2 permeance and CO 2 / N 2 selectivity at high humidity conditions, CO 2 permeance and CO 2 with decreasing relative humidity / N 2 selectivity rapidly decreased. Gly-FTM has the same tendency. [Emim] [Tf 2 N] showed CO 2 permeance that was somewhat high in both dry conditions and high humidity conditions, but the CO 2 / N 2 selectivity was generally low.
- DAPA-FTM DAPA-FTM
- the concentration of the prepared amino acid ionic liquid is 100 mass%, 90 mass%, 80 mass%, or 50 mass% (the water content is 0 mass%, 10 mass%, 20 mass%, or 50 mass%). Until removed.
- the amino acid ionic liquid thus prepared was evaluated for CO 2 permeance and CO 2 / N 2 selectivity by the same method as in Study 1.
- FIG. 4A is a graph showing the relationship between CO 2 permeance and the amount of water contained in the amino acid ionic liquid.
- FIG. 4B is a graph showing the relationship between CO 2 / N 2 selectivity and the amount of moisture contained in the amino acid ionic liquid.
- [P (C 4 ) 4 ] [Gly] which is an amino acid ionic liquid containing 20% by mass of water, containing 10% by mass of water [ Similar to P (C 4 ) 4 ] [Gly], it exhibited high CO 2 permeance and CO 2 selectivity under dry conditions.
- [P (C 4 ) 4 ] [Gly] having a water content of 50% by mass showed good CO 2 permeance, but its CO 2 / N 2 selectivity was low.
- FIG. 5A is a graph showing the relationship between the CO 2 permeance and the set temperature of the oven (the temperature of the mixed gas and the separation permeable membrane).
- FIG. 5B is a graph showing the relationship between CO 2 / N 2 selectivity and the set temperature of the oven (temperature of the separation permeable membrane).
- the separation / permeation membrane using [P (C 4 ) 4 ] [mGly] having a secondary amino group has [P ( C 4 ) 4 ] [Gly] or a CO 2 permeance higher than that of a separation permeable membrane using [P (C 4 ) 4 ] [mGly] having a tertiary amino group was exhibited.
- the CO 2 permselective membrane according to the present invention is sufficiently expected to be applied to air purification in a living space of a building, a vehicle interior space, etc., and further to CO 2 removal from natural gas.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
アミノ酸イオン液体として、テトラブチルホスホニウムグリシン(以下、「[P(C4)4][Gly]」という。)、及び1-エチル-3-メチルイミダゾリウムグリシン(以下、「[Emim][Gly]」という。)を準備した。これらアミノ酸イオン液体は中和法により調製した。テトラブチルホスホニウム水酸化物(以下、「[P(C4)4][OH]」という。)を40質量%含む水溶液、あるいは1-エチル-3-メチルイミダゾリウムグリシン(以下、「[Emim][OH]」という。)を50質量%含む水溶液を、窒素雰囲気下で8℃に冷却しながら、それらのモル数よりも5%過剰な量のグリシンと純水100mLとを含むグリシン水溶液に滴下した。その後、24時間以上撹拌することで水酸化物イオンとアミノ酸由来の水素イオンの中和反応を行った。中和反応後、エバポレーターによって40℃で水を除去した。水は、調製されるアミノ酸イオン液体が90質量%水溶液(水分濃度10質量%)となるまで除去した。このようにして調製したアミノ酸イオン液体に、親水性のポリテトテトラフルオロエチレン(PTFE)多孔質膜(厚さ35.7μm,平均孔径0.2μm)を浸し、その状態で1800秒間減圧することにより、多孔質膜にアミノ酸イオン液体を含浸させた。アミノ酸イオン液体が含浸した多孔膜を取り出し、表面に付着した余剰なアミノ酸イオン液体を取り除いて、評価用の透過膜を得た。
検討1と同様の方法で、フィードガスF1におけるCO2分圧を変化させながらCO2及びN2のパーミアンスとCO2/N2選択性の測定を行った。図2の(a)はCO2パーミアンスとCO2分圧との関係を示すグラフであり、図2の(b)はCO2/N2選択性とCO2分圧との関係を示すグラフである。図2の(a)には、本実験の結果とともに、別のイオン液体であるN-アミノプロピル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミド([C3NH2min][Tf2N])を用いた透過膜のCO2パーミアンスの値を、非特許文献5から引用して比較のために示した。
検討1と同様の方法で、フィードガスF1における水蒸気の濃度を変化させながらCO2及びN2のパーミアンスとCO2/N2選択性の測定を行った。フィードガスのCO2分圧は、2kPaに設定した。透過セルを加熱するオーブンの温度は、373Kに設定した。比較のため、DL-2,3-ジアミノプロピオン酸(DAPA)をCO2キャリアとして用いた透過膜(促進輸送膜)を準備し、これを[P(C4)4][Gly]、[Emim][Gly]及び[Emim][Tf2N]の透過膜とともに評価した。
アミノ酸イオン液体として、テトラブチルホスホニウムアラニン(以下、「[P(C4)4][Ala]」という。)及びテトラブチルホスホニウムセリン(以下、「[P(C4)4][Ser]」という。)を準備した。これらについて、検討1と同様の方法により、[P(C4)4][Gly]及び[Emim][Tf2N]とともにCO2パーミアンス及びCO2/N2選択性を評価した。
アミノ酸イオン液体として、所定量の水分を含有する[P(C4)4][Gly]を中和法により準備した。[P(C4)4][OH]を40質量%含む水溶液を、窒素雰囲気下で8℃に冷却しながら、それらのモル数よりも5%過剰な量のグリシンと純水100mLとを含むグリシン水溶液に滴下した。その後、24時間以上撹拌することで水酸化物イオンとアミノ酸由来の水素イオンの中和反応を行った。中和反応後、エバポレーターにて40℃で水を除去した。水は、調製されるアミノ酸イオン液体の濃度が100質量%、90質量%、80質量%、又は50質量%(水分量が0質量%、10質量%、20質量%又は50質量%)となるまで除去した。このようにして調製したアミノ酸イオン液体について、検討1と同様の方法により、CO2パーミアンス及びCO2/N2選択性を評価した。
アミノ酸イオン液体として、テトラブチルホスホニウムグリシン([P(C4)4][Gly])、テトラブチルホスホニウム N-メチルグリシン(以下、[P(C4)4][mGly]という。)、及びテトラブチルホスホニウム N,N-ジメチルグリシン(以下、[P(C4)4][dmGly]という。)を準備した。これらについて、検討1と同様の方法により、オーブンの設定温度を変化させながら、CO2パーミアンス及びCO2/N2選択性を評価した。
以上の実験結果から、本発明によれば、十分に高いCO2パーミアンス及びCO2/N2選択性を達成することが可能なCO2選択透過膜が提供されることが確認された。更に、アミノ酸が有するアミノ基の種類を考慮して温度を制御することにより、更に優れたCO2パーミアンス及びCO2/N2選択性を達成し得ることが明らかとなった。
Claims (7)
- アミノ酸イオン液体と、該アミノ酸イオン液体が含浸している多孔質膜と、を有し、該アミノ酸イオン液体が3~50質量%の水分を含有する、CO2選択透過膜。
- 該アミノ酸イオン液体が5~20質量%の水分を含有する、請求項1に記載のCO2選択透過膜。
- 請求項1又は2に記載のCO2選択透過膜に、CO2を含む混合ガス中のCO2を透過させることにより、CO2を前記混合ガスから分離する工程を備える、CO2を混合ガスから分離する方法。
- CO2を前記混合ガスから分離する前記工程において、
前記アミノ酸イオン液体に含まれる第3級アミノ基の数が前記アミノ酸イオン液体に含まれる第1級アミノ基及び第2級アミノ基の合計数よりも多いとき、前記CO2選択透過膜及び前記混合ガスを60℃以下の温度としながら前記混合ガス中のCO2を前記選択透過膜に透過させ、
前記アミノ酸イオン液体に含まれる第1級アミノ基及び第2級アミノ基の合計数が前記アミノ酸イオン液体に含まれる第3級アミノ基の数以上であるとき、前記CO2選択透過膜及び前記混合ガスの温度を60℃を超える温度としながら前記混合ガス中のCO2を前記選択透過膜に透過させる、
請求項3に記載の方法。 - CO2を前記混合ガスから分離する前記工程において、
前記アミノ酸イオン液体に含まれる第1級アミノ基及び第2級アミノ基の合計数が前記アミノ酸イオン液体に含まれる第3級アミノ基の数以上であり、且つ、前記アミノ酸イオン液体に含まれる第2級アミノ基の数が前記アミノ酸イオン液体に含まれる第1級アミノ基の数よりも多いとき、前記CO2選択透過膜及び前記混合ガスを60℃を超え80℃未満の温度としながら前記混合ガス中のCO2を前記選択透過膜に透過させる、請求項4に記載の方法。 - CO2を前記混合ガスから分離する前記工程が、前記混合ガスの相対湿度が50%未満、又は前記混合ガスの水蒸気濃度が30モル%未満である部分を含む、請求項3~5のいずれか一項に記載の方法。
- 請求項1又は2に記載のCO2選択透過膜を備える、膜分離装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013557550A JP6245607B2 (ja) | 2012-02-06 | 2013-02-06 | Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置 |
US14/377,075 US9597632B2 (en) | 2012-02-06 | 2013-02-06 | Selectively CO 2-permeable membrane, method for separating CO2 from mixed gas, and membrane separation equipment |
DK13746403.8T DK2813279T3 (da) | 2012-02-06 | 2013-02-06 | Selektiv co2-permeabel membran, fremgangsmåde til at separere co2 fra blandingsgas, og membranseparationsudstyr |
EP13746403.8A EP2813279B1 (en) | 2012-02-06 | 2013-02-06 | Selectively co2-permeable membrane, method for separating co2 from mixed gas, and membrane separation equipment |
KR1020147025262A KR101942135B1 (ko) | 2012-02-06 | 2013-02-06 | Co2 선택 투과막, co2를 혼합 가스로부터 분리하는 방법, 및 막 분리 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-023403 | 2012-02-06 | ||
JP2012023403 | 2012-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118776A1 true WO2013118776A1 (ja) | 2013-08-15 |
Family
ID=48947537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/052743 WO2013118776A1 (ja) | 2012-02-06 | 2013-02-06 | Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2813279B1 (ja) |
JP (1) | JP6245607B2 (ja) |
KR (1) | KR101942135B1 (ja) |
DK (1) | DK2813279T3 (ja) |
WO (1) | WO2013118776A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2974781A1 (en) * | 2014-07-14 | 2016-01-20 | DMT Milieutechnologie B.V. | Combination of a biogas plant and a membrane filter unit for removal of carbon dioxide |
JP2016077997A (ja) * | 2014-10-21 | 2016-05-16 | 国立大学法人神戸大学 | アミノ酸イオン性液体含有相互侵入網目構造体及びその製造方法 |
CN106984137A (zh) * | 2016-12-23 | 2017-07-28 | 湖北大学 | 一种相分离的吸收co2的聚氨基酸离子液体的制备及其使用方法 |
WO2017130833A1 (ja) * | 2016-01-27 | 2017-08-03 | シャープ株式会社 | 酸素吸収能を有する液体、その製造方法およびそれを含む錯体溶液 |
WO2018012459A1 (ja) * | 2016-07-15 | 2018-01-18 | シャープ株式会社 | 酸素分離膜 |
WO2018155450A1 (ja) | 2017-02-21 | 2018-08-30 | 国立大学法人大阪大学 | アンチセンスオリゴ核酸 |
WO2018211944A1 (ja) * | 2017-05-18 | 2018-11-22 | 株式会社ダイセル | イオン液体含有積層体及びその製造方法 |
WO2018211945A1 (ja) * | 2017-05-18 | 2018-11-22 | 株式会社ダイセル | 二酸化炭素分離膜及びその製造方法 |
CN110494696A (zh) * | 2017-04-27 | 2019-11-22 | 川崎重工业株式会社 | 空气净化系统 |
JP2020032383A (ja) * | 2018-08-31 | 2020-03-05 | 東京瓦斯株式会社 | 評価方法及び評価システム |
JP2020126073A (ja) * | 2015-02-03 | 2020-08-20 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | 原子炉冷却材系の脱ガス装置 |
WO2021172087A1 (ja) | 2020-02-25 | 2021-09-02 | 国立研究開発法人産業技術総合研究所 | 二酸化炭素分離膜用イオン液体組成物、及び該組成物を保持した二酸化炭素分離膜、並びに該二酸化炭素分離膜を備えた二酸化炭素の濃縮装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6692080B2 (ja) * | 2016-05-30 | 2020-05-13 | 住友化学株式会社 | Dnゲル膜の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050129598A1 (en) * | 2003-12-16 | 2005-06-16 | Chevron U.S.A. Inc. | CO2 removal from gas using ionic liquid absorbents |
JP2008036464A (ja) * | 2006-08-01 | 2008-02-21 | Renaissance Energy Research:Kk | 二酸化炭素分離装置及び方法 |
JP2010163561A (ja) * | 2009-01-16 | 2010-07-29 | Niigata Univ | 置換ポリアセチレン及びその製造方法、置換ポリアセチレン自立膜及びその製造方法、二酸化炭素分離膜、伸縮により可逆的に色変化を呈する膜 |
JP2010214324A (ja) | 2009-03-18 | 2010-09-30 | Petroleum Energy Center | 炭酸ガス分離膜 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4318714A (en) * | 1980-05-14 | 1982-03-09 | General Electric Company | Facilitated separation of a select gas through an ion exchange membrane |
US4761164A (en) * | 1985-03-01 | 1988-08-02 | Air Products And Chemicals, Inc. | Method for gas separation |
NL9401233A (nl) * | 1994-03-25 | 1995-11-01 | Tno | Werkwijze voor membraangasabsorptie. |
DE102009026869A1 (de) * | 2009-06-09 | 2011-02-03 | Schott Ag | Membran aus porösem Glas, Verfahren zu deren Herstellung und Verwendung derselben |
-
2013
- 2013-02-06 JP JP2013557550A patent/JP6245607B2/ja active Active
- 2013-02-06 KR KR1020147025262A patent/KR101942135B1/ko active IP Right Grant
- 2013-02-06 DK DK13746403.8T patent/DK2813279T3/da active
- 2013-02-06 WO PCT/JP2013/052743 patent/WO2013118776A1/ja active Application Filing
- 2013-02-06 EP EP13746403.8A patent/EP2813279B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050129598A1 (en) * | 2003-12-16 | 2005-06-16 | Chevron U.S.A. Inc. | CO2 removal from gas using ionic liquid absorbents |
JP2008036464A (ja) * | 2006-08-01 | 2008-02-21 | Renaissance Energy Research:Kk | 二酸化炭素分離装置及び方法 |
JP2010163561A (ja) * | 2009-01-16 | 2010-07-29 | Niigata Univ | 置換ポリアセチレン及びその製造方法、置換ポリアセチレン自立膜及びその製造方法、二酸化炭素分離膜、伸縮により可逆的に色変化を呈する膜 |
JP2010214324A (ja) | 2009-03-18 | 2010-09-30 | Petroleum Energy Center | 炭酸ガス分離膜 |
Non-Patent Citations (10)
Title |
---|
BARA, J. E. ET AL.: "Guide to C02 Separations in Imidazolium-Based Room-Temperature Ionic Liquids", INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH, vol. 48, no. 6, 11 February 2009 (2009-02-11), pages 2739 - 2751, XP055160228 * |
IND. ENG. CHEM. RES., vol. 39, 2000, pages 2447 |
J. AM. CHEM. SOC. COMMUNICATIONS, vol. 127, 2005, pages 2398 - 2399 |
J. CHEM. ENG. DATA., vol. 56, 2011, pages 3157 - 3162 |
J. MEMBR. SCI., vol. 291, 2007, pages 157 |
J. MEMBR. SCI., vol. 314, 2008, pages 1 |
J. MEMBR. SCI., vol. 320, 2008, pages 390 - 400 |
J. MEMBR. SCI., vol. 322, 2008, pages 28 |
See also references of EP2813279A4 |
SHIFLETT, M. B. ET AL.: "Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate", ENERGY FUELS, vol. 24, no. 10, 7 September 2010 (2010-09-07), pages 5781 - 5789, XP055160230 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2974781A1 (en) * | 2014-07-14 | 2016-01-20 | DMT Milieutechnologie B.V. | Combination of a biogas plant and a membrane filter unit for removal of carbon dioxide |
JP2016077997A (ja) * | 2014-10-21 | 2016-05-16 | 国立大学法人神戸大学 | アミノ酸イオン性液体含有相互侵入網目構造体及びその製造方法 |
JP2020126073A (ja) * | 2015-02-03 | 2020-08-20 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | 原子炉冷却材系の脱ガス装置 |
CN108602009A (zh) * | 2016-01-27 | 2018-09-28 | 夏普株式会社 | 具有氧吸收能力的液体、其制备方法以及含有该液体的复合溶液 |
JPWO2017130833A1 (ja) * | 2016-01-27 | 2018-11-15 | シャープ株式会社 | 酸素吸収能を有する液体、その製造方法およびそれを含む錯体溶液 |
WO2017130833A1 (ja) * | 2016-01-27 | 2017-08-03 | シャープ株式会社 | 酸素吸収能を有する液体、その製造方法およびそれを含む錯体溶液 |
US10814269B2 (en) | 2016-01-27 | 2020-10-27 | Sharp Kabushiki Kaisha | Liquid having oxygen absorbing ability, method for producing same, and complex solution containing same |
JPWO2018012459A1 (ja) * | 2016-07-15 | 2019-04-25 | シャープ株式会社 | 酸素分離膜 |
WO2018012459A1 (ja) * | 2016-07-15 | 2018-01-18 | シャープ株式会社 | 酸素分離膜 |
CN106984137A (zh) * | 2016-12-23 | 2017-07-28 | 湖北大学 | 一种相分离的吸收co2的聚氨基酸离子液体的制备及其使用方法 |
CN106984137B (zh) * | 2016-12-23 | 2020-08-25 | 湖北大学 | 一种可快速相分离的吸收co2的聚氨基酸离子液体型相分离吸收剂的制备及其使用方法 |
WO2018155450A1 (ja) | 2017-02-21 | 2018-08-30 | 国立大学法人大阪大学 | アンチセンスオリゴ核酸 |
US11261440B2 (en) | 2017-02-21 | 2022-03-01 | Osaka University | Antisense oligonucleic acid |
US12104154B2 (en) | 2017-02-21 | 2024-10-01 | Osaka University | Antisense oligonucleic acid |
US11413573B2 (en) | 2017-04-27 | 2022-08-16 | Kawasaki Jukogyo Kabushiki Kaisha | Air purifying system |
CN110494696A (zh) * | 2017-04-27 | 2019-11-22 | 川崎重工业株式会社 | 空气净化系统 |
CN110494696B (zh) * | 2017-04-27 | 2022-04-29 | 川崎重工业株式会社 | 空气净化系统 |
WO2018211945A1 (ja) * | 2017-05-18 | 2018-11-22 | 株式会社ダイセル | 二酸化炭素分離膜及びその製造方法 |
JPWO2018211944A1 (ja) * | 2017-05-18 | 2020-03-19 | 株式会社ダイセル | イオン液体含有積層体及びその製造方法 |
JPWO2018211945A1 (ja) * | 2017-05-18 | 2020-05-28 | 株式会社ダイセル | 二酸化炭素分離膜及びその製造方法 |
US11491447B2 (en) | 2017-05-18 | 2022-11-08 | Daicel Corporation | Ionic liquid-containing laminate and method for producing same |
JP7073357B2 (ja) | 2017-05-18 | 2022-05-23 | 株式会社ダイセル | 二酸化炭素分離膜及びその製造方法 |
JP7078613B2 (ja) | 2017-05-18 | 2022-05-31 | 株式会社ダイセル | イオン液体含有積層体及びその製造方法 |
WO2018211944A1 (ja) * | 2017-05-18 | 2018-11-22 | 株式会社ダイセル | イオン液体含有積層体及びその製造方法 |
US11524265B2 (en) | 2017-05-18 | 2022-12-13 | Daicel Corporation | Carbon dioxide separation membrane and method for producing same |
JP2020032383A (ja) * | 2018-08-31 | 2020-03-05 | 東京瓦斯株式会社 | 評価方法及び評価システム |
WO2021172087A1 (ja) | 2020-02-25 | 2021-09-02 | 国立研究開発法人産業技術総合研究所 | 二酸化炭素分離膜用イオン液体組成物、及び該組成物を保持した二酸化炭素分離膜、並びに該二酸化炭素分離膜を備えた二酸化炭素の濃縮装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2813279A1 (en) | 2014-12-17 |
EP2813279A4 (en) | 2015-10-21 |
JPWO2013118776A1 (ja) | 2015-05-11 |
JP6245607B2 (ja) | 2017-12-13 |
EP2813279B1 (en) | 2020-07-22 |
KR101942135B1 (ko) | 2019-01-24 |
KR20140130469A (ko) | 2014-11-10 |
DK2813279T3 (da) | 2020-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6245607B2 (ja) | Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置 | |
US9597632B2 (en) | Selectively CO 2-permeable membrane, method for separating CO2 from mixed gas, and membrane separation equipment | |
US6635103B2 (en) | Membrane separation of carbon dioxide | |
US11772052B2 (en) | Membranes for gas separation | |
US5749941A (en) | Method for gas absorption across a membrane | |
Tomé et al. | CO 2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes | |
JP6431481B2 (ja) | Co2選択透過膜及びco2を混合ガスから分離する方法 | |
Karkhanechi et al. | A review on gas separation applications of supported ionic liquid membranes | |
US20140137734A1 (en) | Cross-linked polyimide membranes for separations | |
Chen et al. | Selective CO2 Separation from CO2− N2 Mixtures by Immobilized Glycine-Na− Glycerol Membranes | |
WO2005089907A1 (en) | Membrane for separating co2 and process for the production thereof | |
JP6553739B2 (ja) | ガス回収装置、ガス回収方法、及び、半導体洗浄システム | |
US20220305436A1 (en) | Guanidine-containing membranes and methods of using thereof | |
Roy et al. | Poly (acrylamide-co-acrylic acid) hydrophilization of porous polypropylene membrane for dehumidification | |
EP3733265B1 (en) | Method and apparatus both for removing co2 | |
JP2000229219A (ja) | 二酸化炭素の吸収剤 | |
Matsumoto et al. | Vapor permeation of hydrocarbons through supported liquid membranes based on ionic liquids | |
Blinova et al. | Functionalized high performance polymer membranes for separation of carbon dioxide and methane | |
Erdni-Goryaev et al. | New membrane materials based on crosslinked poly (ethylene glycols) and ionic liquids for separation of gas mixtures containing CO 2 | |
Kalmykov et al. | Deoxygenation of CO2 Absorbent Based on Monoethanolamine in Gas–Liquid Membrane Contactors Using Composite Membranes | |
Kamiya et al. | CO2 separation from air by nanoparticle-supported liquid membranes of amine and ionic liquid mixtures | |
Crespo et al. | Ionic liquid membrane technology | |
JPH0477607B2 (ja) | ||
Kamio et al. | [Original Contribution] Effect of Ionic Liquid Additives on CO2Permeation and CO2/N2Selectivity through Facilitated Transport Membranes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13746403 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013557550 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14377075 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013746403 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147025262 Country of ref document: KR Kind code of ref document: A |