WO2013118765A1 - Deposition device and film-forming method using deposition device - Google Patents

Deposition device and film-forming method using deposition device Download PDF

Info

Publication number
WO2013118765A1
WO2013118765A1 PCT/JP2013/052710 JP2013052710W WO2013118765A1 WO 2013118765 A1 WO2013118765 A1 WO 2013118765A1 JP 2013052710 W JP2013052710 W JP 2013052710W WO 2013118765 A1 WO2013118765 A1 WO 2013118765A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
vapor deposition
mask
film
protective mask
Prior art date
Application number
PCT/JP2013/052710
Other languages
French (fr)
Japanese (ja)
Inventor
廣治 鳴海
正浩 市原
博之 田村
松本 栄一
永田 博彰
三之 田島
吉岡 正樹
Original Assignee
キヤノントッキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノントッキ株式会社 filed Critical キヤノントッキ株式会社
Publication of WO2013118765A1 publication Critical patent/WO2013118765A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present invention relates to a vapor deposition apparatus for forming a vapor deposition film having a film formation pattern using a vapor deposition mask on a substrate and a film forming method using the vapor deposition apparatus.
  • organic EL display devices using organic electroluminescence elements have attracted attention as display devices that replace CRTs and LCDs.
  • An organic EL device such as an organic EL display device has a configuration in which an electrode layer and a light emitting layer in which a plurality of organic layers are laminated are formed on a substrate, and a sealing layer is further formed on the substrate. Compared with high-speed response, a high viewing angle and high contrast can be realized.
  • Such an organic EL device is generally manufactured by a vacuum vapor deposition method, in which a substrate and a vapor deposition mask are aligned and closely adhered in a vacuum chamber, and a vapor deposition film having a desired film formation pattern is formed on the substrate by the vapor deposition mask. Is formed.
  • a vapor deposition mask for obtaining a desired film formation pattern is required to be enlarged with an increase in the size of the substrate, but it is difficult to increase the size of a high-definition mask. Even if it can be manufactured, various problems may occur in practice due to distortion problems.
  • the applicant has developed a vapor deposition apparatus that can deposit a desired film deposition pattern on a large substrate over a wide range even with a small vapor deposition mask by adopting a configuration in which the substrate and the vapor deposition mask are spaced apart and relatively moved. Has been proceeding.
  • a vapor deposition film having a desired film formation pattern can be vapor-deposited on a large substrate even with a small vapor deposition mask as described above, but it is difficult to cover the non-deposition portion of the large substrate with the vapor deposition mask.
  • the vapor deposition mask itself can cover the non-film-formation part. It is difficult to manufacture a vapor deposition mask corresponding to the substrate size (glass substrate (1100mm x 1300mm) or later). In other words, it is difficult to form a high-definition mask opening in a size that covers the entire surface of the substrate, and even if manufactured, it is practically difficult due to distortion problems.
  • an electrode wiring pattern of an anode electrode and a cathode electrode and a circuit pattern such as a thin film transistor (TFT) for driving an organic EL element are formed on a glass substrate used in an organic EL display device. It is provided as a connection terminal with an external control device for a display device product.
  • an external control device for a display device product When the film forming material adheres to such a region (non-film forming portion), a connection failure occurs in connection with the external control device described above, which causes a significant decrease in product yield.
  • the wiring pattern of these substrates needs to be a non-film forming portion where the film forming material should not adhere.
  • the present invention has solved such problems, and by relatively moving the substrate and the vapor deposition mask and the evaporation source in a separated state, even a small vapor deposition mask can be deposited on a large substrate, Since the vapor deposition mask can be small, a high-definition mask opening can be realized, distortion problems are less likely to occur, and the non-film-formation part around the film-formation part is covered with a separate protective mask,
  • An object of the present invention is to provide an excellent vapor deposition apparatus capable of reliably preventing vapor deposition on a non-film forming portion, realizing high quality vapor deposition, and a film forming method using the vapor deposition apparatus.
  • the deposition material evaporated from the evaporation source 1 passes through the mask opening 4 of the deposition mask 3 disposed to face the substrate 2, so that the deposition film having the deposition pattern defined by the mask opening 4 is formed.
  • the vapor deposition apparatus configured to be formed on the film formation portion provided on the film formation surface of the substrate 2, the substrate 2 and the evaporation source in a state where the substrate 2 and the vapor deposition mask 3 are separated from each other.
  • a protective mask 5 covering the non-film forming part so that the vapor deposition film does not adhere to the non-film forming part around the film forming part.
  • Vapor deposition characterized by It relates to the location.
  • the protective mask holding device 6 for holding the protective mask 5 is provided on a substrate transfer tray 7 for fixing the substrate 2 and transferring the substrate 2 into and out of a vapor deposition chamber for depositing the vapor deposition film on the substrate 2.
  • a magnet 8 is provided and the protective mask 5 is attracted and fixed at a predetermined position by the magnet 8 of the substrate transport tray 7.
  • the substrate transport tray 7 is provided with a magnet drive mechanism 9 for driving the magnet 8, and by operating the magnet drive mechanism 9, the direction of the magnetic field generated by the magnet 8 is changed, or the magnet 8 Is moved with respect to the protective mask 5 to change the magnetic field acting on the protective mask 5 so that the protective mask 5 is attached to and detached from the substrate transport tray 7.
  • the vapor deposition apparatus according to claim 2, wherein:
  • the substrate transport tray 7 is provided with at least one adhesive chuck or electrostatic chuck 11 to adsorb and fix the substrate 2 by adsorbing the opposite surface of the substrate 2 to the substrate film forming surface. It concerns on the vapor deposition apparatus of Claim 2 characterized by the above-mentioned.
  • the adhesive chuck or the electrostatic chuck 11 has a size corresponding to each region of the film forming unit divided and formed on the substrate 2, and is provided for each region.
  • the adhesive chuck or electrostatic chuck 11 has a size corresponding to each region of the film forming unit divided and formed on the substrate 2, and at least a central portion of each region is attracted.
  • the film forming surface of the substrate 2 that is attracted and fixed by the adhesive chuck or electrostatic chuck 11 provided on the substrate transport tray 7 is configured to be held parallel to the vapor deposition mask 3.
  • the vapor deposition mask 3 is stretched by applying tension to the substrate side end of the mask holder 10 provided between the evaporation source 1 and the substrate 2, and is applied to the film formation surface of the substrate 2.
  • the vapor deposition apparatus according to any one of claims 1 to 6, wherein the vapor deposition apparatus is configured to be held in parallel.
  • the power supply for supplying to the electrostatic chuck 11 provided on the substrate transfer tray 7 is supplied from a power source 13 provided outside the vapor deposition chamber. 6.
  • the vapor deposition apparatus according to any one of 6 above.
  • the power supply for supplying to the electrostatic chuck 11 provided on the substrate transfer tray 7 is supplied from a power source 15 disposed on the substrate transfer tray 7. 6.
  • the vapor deposition apparatus according to any one of 6 above.
  • the power supply mechanism further comprises a power supply mechanism for supplying power to the electrostatic chuck through a conductor portion provided inside the substrate transfer tray. This relates to the described vapor deposition apparatus.
  • the power source 13 is provided with an external power supply mechanism 16 for supplying and charging power from the outside of the vapor deposition chamber through a supplied conductor portion 14 provided outside the substrate transfer tray 7 at the time of film formation.
  • the imaging means 17 for imaging the reference pattern provided on the substrate 2 and the vapor deposition mask 3, and the positional deviation amount of the reference pattern is within a predetermined value based on the image captured by the imaging means 17. Alignment is performed by the XY ⁇ stage 25 for the vapor deposition mask that holds the vapor deposition mask 3, and the substrate conveyance tray that conveys the substrate 2 into and out of the vapor deposition chamber in which the substrate 2 is fixed and the vapor deposition film is vapor deposited on the substrate 2. 7.
  • the substrate 2 and the protective mask 5 are aligned with respect to the substrate transport tray 7 for transporting the substrate 2 into and out of a deposition chamber for fixing the substrate 2 and depositing the deposited film on the substrate 2.
  • the alignment mechanism is positioned by abutting means 20 that abuts at least one corner of the substrate 2 and the protective mask 5 or two adjacent end surfaces against a butting member 19 provided on the substrate transport tray 7.
  • the alignment mechanism is configured so that the positioning pin 22 provided on the substrate transport tray 7 or the protective mask 5 fits in the reference hole 23 provided on the protective mask 5 or the substrate transport tray 7.
  • a protective mask XY ⁇ stage 24 for holding the substrate 5 and aligning and fixing the protective mask 5 to the substrate transport tray 7 or the substrate 2 fixed to the substrate transport tray 7.
  • the alignment mechanism includes an imaging unit 17 that captures a reference pattern provided on the substrate 2 and the protective mask 5, and a positional deviation amount of the reference pattern is within a predetermined value based on an image captured by the imaging unit 17. As described above, alignment is performed by the protective mask XY ⁇ stage 24 that holds the protective mask 5, and the protective mask 5 is closely fixed to the substrate transport tray 7 or the substrate 2 fixed to the substrate transport tray 7. 15.
  • the substrate 2 and the vapor deposition mask 3 are vapor-deposited in a separated state and a vapor deposition film having a film formation pattern defined by the mask opening 4 of the vapor deposition mask 3 is formed on the substrate 2, this vapor deposition is performed.
  • the shadow SH which is an inclined portion of the side edge of the film, is G for the gap between the substrate 2 and the vapor deposition mask 3, ⁇ x for the lateral opening width of the evaporation port portion of the evaporation source 1, and Assuming that the distance from the vapor deposition mask 3 is TS, the opening width ⁇ x of the evaporation port is set small so that the shadow SH does not reach the interval PP between the adjacent vapor deposition films,
  • the vapor deposition apparatus according to any one of claims 1 to 6, wherein the gap G is set to be large.
  • a vapor deposition film having a film formation pattern defined by the mask opening 4 of the vapor deposition mask 3 is formed on the substrate 2 using the vapor deposition apparatus according to any one of claims 1 to 6.
  • the present invention relates to a film forming method characterized by the following.
  • the present invention is configured as described above, even a small deposition mask can be deposited on a large substrate by relatively moving the substrate, the deposition mask, and the evaporation source apart from each other, and the deposition mask is small. Therefore, high-definition mask openings can be realized, distortion problems are less likely to occur, and the non-film-formation part around the film-formation part is covered with a separately provided protective mask.
  • the present invention provides an excellent vapor deposition apparatus that can reliably prevent vapor deposition and realize high-quality vapor deposition and a film forming method using this vapor deposition apparatus.
  • a protective mask that protects the film-forming material from adhering to the non-film-forming portion of the substrate is held between the substrate and the vapor deposition mask, for example, adjacent to the substrate, and the substrate and the evaporation source and By depositing a film on the entire surface of the substrate by moving the deposition mask relative to the substrate, the deposition pattern on the substrate is formed with high precision by a small deposition mask that can be manufactured with high precision.
  • the structure is such that the film-forming material easily flows into the non-film-formation part because it is separated, the protective mask reliably prevents the film-formation material from entering the non-film-formation part on the substrate.
  • the protective mask is disposed between the substrate and the vapor deposition mask (gap), the thickness of the protective mask can be increased.
  • a protective mask holding device for holding a protective mask is provided with a magnet on a substrate transport tray for transporting a substrate, and the protective mask is attracted and fixed at a predetermined position by the magnet of the substrate transport tray. Since it comprised so, it becomes a vapor deposition apparatus excellent in practicality, such as a mechanical holding mechanism, such as a clamp and a clip becoming unnecessary.
  • the substrate transport tray is provided with a magnet driving mechanism for driving the magnet, and the magnet driving mechanism is operated to change the magnetic field acting on the protective mask, Since the protective mask holding device is configured to detach the protective mask with respect to the substrate transport tray, the magnet is rotated, the direction of the magnetic field is changed, or the distance between the magnet and the protective mask is increased, By changing the strength of the magnetic field, the strength of the magnetic field applied to the protective mask can be changed and the protective mask can be attached and detached, so that the protective mask can be easily attached and detached, and the vapor deposition apparatus has excellent practicality.
  • the substrate transport tray is provided with at least one adhesive chuck or electrostatic chuck, and sucks and fixes the substrate opposite to the substrate film-forming surface. Because of the configuration, there is no need for a mechanism for closely contacting the substrate transport tray from the substrate deposition surface, and fixing the opposite surface of the deposition surface will affect the deposition surface from degassing from adhesive materials and electrostatic charging. Not give.
  • a mechanical holding mechanism such as a clamp or a clip is unnecessary, and a holding mechanism is not required between the substrate and the vapor deposition mask, so that it is possible to prevent mechanical contact such as a holding mechanism.
  • the adhesive chuck or the electrostatic chuck has a size corresponding to each region of the film forming unit divided and formed on a plurality of substrates. Since each is provided with a structure in which only the film forming part is sucked and fixed from the back by an adhesive chuck or electrostatic chuck, when there are a plurality of film forming parts on the substrate, a corresponding number of chucks are installed, and the substrate is sucked and fixed.
  • a mechanical holding mechanism such as a clamp or clip is not required, and at least the film formation unit is closely attached and fixed to the substrate transport tray by a chuck, so that the gap with the mask can be accurately maintained, and the gap accuracy of the film formation unit Therefore, it is an excellent vapor deposition apparatus that can prevent the positional deviation of the film formation pattern.
  • the adhesive chuck or the electrostatic chuck has a size corresponding to each region of the film forming portion formed in a plurality of divided portions of the substrate, and at least of these regions. Since the central area is provided at a position to be attracted, the opposite surface of the substrate film forming part is adsorbed and fixed by an adhesive chuck or electrostatic chuck, and the flatness of the substrate film forming part is determined by an adhesive chuck or electrostatic chuck. Because the configuration matches the plane of the chuck, the gap between the substrate film formation surface and the evaporation mask can be kept constant, and displacement of the film formation pattern on the substrate due to fluctuations in the gap between the substrate film formation surface and the evaporation mask can be prevented. It becomes an excellent vapor deposition apparatus capable of
  • the film formation surface of the substrate that is attracted and fixed by the adhesive chuck or electrostatic chuck provided on the substrate transport tray is held parallel to the vapor deposition mask. Since it is configured, the gap between the substrate film formation surface and the vapor deposition mask is kept constant, and it is possible to reliably prevent the positional deviation of the film formation pattern on the substrate due to the gap variation between the substrate film formation surface and the vapor deposition mask. Vapor deposition equipment.
  • the vapor deposition mask is stretched by applying tension to the substrate side end portion of the mask holder provided between the evaporation source and the substrate, and is applied to the film formation surface of the substrate. Since it is configured to be held in parallel, the mask holder can prevent the deflection of the deposition mask, the gap between the substrate deposition surface and the deposition mask is kept constant, and the substrate due to the gap variation between the substrate deposition surface and the deposition mask. It becomes an excellent vapor deposition apparatus that can prevent the positional deviation of the upper film formation pattern.
  • the substrate transfer tray since the power to be supplied to the electrostatic chuck provided on the substrate transfer tray is supplied from the power source arranged outside the vapor deposition chamber, the substrate transfer The tray does not require a power source, can reduce the weight of the tray, and can be an excellent vapor deposition apparatus that can reliably prevent power interruption during film formation.
  • the substrate transport tray can be transported to a plurality of chambers alone, and the external wiring for supplying power is not required, so that an excellent vapor deposition apparatus capable of reducing the apparatus cost can be obtained.
  • the substrate transport tray is provided.
  • an external power supply mechanism that supplies power to the power source from the outside of the vapor deposition chamber through a supplied conductor portion provided outside the substrate transfer tray when the film is formed is charged. Because it is configured to supply power to the secondary battery installed in the substrate transport tray in vacuum and not expose the substrate transport tray to the atmosphere, it is not necessary to replace the power supply and the tray can be used continuously. Moreover, it becomes an excellent vapor deposition apparatus capable of preventing adsorption of gas and particles from the atmosphere to the substrate transport tray.
  • an image pickup means for picking up a reference pattern provided on the substrate and the vapor deposition mask, and a positional deviation amount of the reference pattern is within a predetermined value based on an image picked up by the image pickup means.
  • the substrate and the protective mask are aligned with respect to the substrate transport tray for transporting the substrate into and out of the deposition chamber for fixing the substrate and depositing the deposited film on the substrate. Since the alignment means is provided, an excellent vapor deposition apparatus capable of accurately aligning the substrate and the protective mask at a predetermined position with respect to the substrate transport tray and reliably preventing the positional deviation of the film formation pattern, Become.
  • the alignment mechanism includes an abutting unit in which at least one corner of the substrate and the protective mask or two adjacent end surfaces abut against an abutting member provided on the substrate transport tray. Since the alignment is performed and the protective mask is configured to be tightly fixed to the substrate transport tray or the substrate fixed to the substrate transport tray, for example, the end surfaces of the substrate and the protective mask are aligned, and the substrate and the protective mask are abutted against each other. Since it can be aligned by pressing it against the member from the facing surface, this alignment can be performed easily with high accuracy, and the deposition material can be prevented from entering the non-deposition part, and the deposition can be prevented from being misaligned. It becomes a device.
  • the alignment mechanism holds the protective mask so that the positioning pins provided on the substrate transport tray or the protective mask can be received in the reference holes provided on the protective mask or the substrate transport tray.
  • Alignment is performed by the protective mask XY ⁇ stage, and the protective mask is configured to be closely fixed to the substrate transport tray or the substrate fixed to the substrate transport tray, so that the reference positions of the substrate transport tray and the protective mask are aligned.
  • the position of the substrate and the protective mask can be aligned accurately and easily, and the deposition material can be prevented from wrapping around the non-film-formation portion, and the film deposition pattern can be prevented from shifting. .
  • the alignment mechanism includes an imaging unit that images a reference pattern provided on a substrate and a protective mask, and a positional deviation amount of the reference pattern is predetermined based on an image captured by the imaging unit. Since the positioning is performed by the protective mask XY ⁇ stage holding the protective mask so that the value is within the range, and the protective mask is closely fixed to the substrate transfer tray or the substrate fixed to the substrate transfer tray, the imaging is performed. Since the amount of displacement of the image obtained by the means can be measured with high accuracy by image processing, the amount of movement can be fed back to the XY ⁇ stage based on the amount of displacement obtained by image processing. An excellent vapor deposition system that can accurately align the position of the film and prevent the film formation material from entering the non-film formation area. It made.
  • the film formation pattern formed by the vapor deposition mask does not reach the adjacent film formation pattern, the gap between the substrate and the vapor deposition mask can be widened, and protection is provided between the substrate and the vapor deposition mask. Since a mask can be provided and the adjacent vapor deposition film is not reached in this way, the color deposition in each of the RGB pixels can be prevented, resulting in an excellent vapor deposition apparatus.
  • the film forming material is an organic material, it can be widely applied not only to organic EL devices but also to vacuum film forming in organic electronics fields such as organic thin film solar cells and organic EL lighting. It becomes a very effective vapor deposition apparatus.
  • a vapor deposition film having a film formation pattern defined by the mask opening of the vapor deposition mask is formed on the substrate using the vapor deposition apparatus according to any one of the first to sixth aspects. Since it is a film formation method to be formed, it can be widely applied not only to organic EL devices but also to vacuum film formation in the field of organic electronics such as organic thin film solar cells and organic EL lighting, and a film formation method using an extremely effective vapor deposition apparatus Become.
  • (A) is a description top view of 4th Example
  • (b) is a description front view of 4th Example. It is a description front view of 5th Example. It is a description front view of 6th Example. It is a description perspective view of 7th Example.
  • (A) is a description top view of 8th Example
  • (b) is a description front view of 8th Example.
  • (A) is a description top view of 9th Example
  • (b) is a description front view of 9th Example.
  • (A) is a description perspective view of 10th Example
  • (b) is a description top view of 10th Example. It is a description front view of 11th Example.
  • the deposition material evaporated from the evaporation source 1 passes through the mask opening 4 of the deposition mask 3 disposed to face the substrate 2, so that the deposition film having the deposition pattern defined by the mask opening 4 is formed.
  • the film is formed on a film forming portion provided on the film forming surface of the substrate 2.
  • an evaporation source 1 for heating a crucible (not shown) and ejecting a film forming material is provided.
  • a plurality of the evaporation ports are arranged in parallel in the X direction, and further, the evaporation source 1 is arranged in the Y direction of the relative movement direction, and the film forming material is supplied from each evaporation port of each evaporation source 1.
  • the mask opening 4 defines the substrate 2 to be transported in a state of being separated from the vapor deposition mask 3 by the mask opening 4 of the vapor deposition mask 3 which is ejected and fixed to the mask holder 10 provided on the evaporation source 1.
  • the vapor deposition film having the film formation pattern thus formed is formed.
  • a protective mask 5 is provided between the substrate 2 and the vapor deposition mask 3 so as to cover the non-film forming portion of the substrate 2, thereby preventing the film forming material from adhering to the non-film forming portion of the substrate 2. It is configured as follows. Specifically, the frame-shaped protective mask 5 which is opened so as to cover the non-film-forming part 29 in the peripheral part of the substrate 2 is opened. The protective mask 5 divided into a plurality of parts may be provided so as to cover each non-film forming portion 29.
  • an electrode wiring pattern of an anode electrode and a cathode electrode, and a circuit pattern such as a thin film transistor (TFT) for driving the organic EL element are formed on the glass substrate 2 used in the organic EL display device.
  • TFT thin film transistor
  • the wiring pattern of these substrates 2 needs to be a non-film forming portion where the film forming material should not adhere.
  • the substrate and the mask are in close contact, if the substrate size is small, it is possible to cover the non-deposition portion with the vapor deposition mask itself.
  • Substrate (1100mm x 1300mm or later) it is difficult to manufacture a deposition mask corresponding to the substrate size. That is, it is difficult to manufacture a vapor deposition mask with a size that covers the entire surface of the mask opening of the high-definition pattern.
  • the vapor deposition mask 3 is set to be short in the movement direction (Y direction) of the substrate 2, and the substrate 2 passes over the vapor deposition mask 3, thereby continuously.
  • the deposited film is formed on the entire surface of the substrate 2.
  • a protective mask 5 is provided between the substrate 2 and the vapor deposition mask 3 separately from the vapor deposition mask 3 so as to cover the non-film formation portion 29 as described above.
  • the substrate 2 is mounted on the vapor deposition mask 3 with a transport device (moving device) that horizontally transports the substrate 2 while maintaining a separation distance from the evaporation source 1 and the vapor deposition mask 3 as described above.
  • the protective mask 5 is relatively transported while maintaining a certain separation distance, and the protective mask 5 is aligned with the glass substrate 2 by an alignment mechanism (not shown, for example, butting or alignment pins), so The arrangement is fixed by a protective mask holding device 6 (not shown) so as to correspond to the film forming section.
  • the substrate 2 and the protective mask 5 arranged so as to face the evaporation source 1 are configured to be deposited by a scanning film forming method in which the substrate 2 and the protective mask 5 move along the Y direction and are continuously deposited.
  • the protective mask 5 moves at the same speed as the substrate 2, but the protective mask 5 is configured to be relatively aligned and fixed in accordance with the non-film forming portion 29 of the substrate 2. .
  • a general holding device for example, a clamp or a clip
  • this holding device protective mask fixing means
  • the protective mask 5 is arranged and fixed between the substrate 2 and the vapor deposition mask 3 by being provided on the outer periphery of the transfer tray 7. Accordingly, the substrate 2 and the protective mask 5 fixed to the substrate 2 are sequentially transported and separated from the plurality of evaporation sources 1 and the vapor deposition mask 3 by the substrate transport tray 7 to form a film. It is configured to prevent the adhesion to the portion 29 and to achieve a high yield device.
  • the vapor deposition mask 3 needs to maintain good flatness with respect to the substrate 2, the vapor deposition mask 3 is attached to a mask frame 10 provided as a mask holder 10 with tension applied in the X direction or Y direction of the vapor deposition mask 3. It is desirable to fix (for example, spot welding). Thereby, good flatness with the substrate 2 can be maintained.
  • the protective mask 5 is provided between the substrate 2 and the vapor deposition mask 3 in the film formation in which the evaporation source 1 and the vapor deposition mask 3 and the substrate 2 are relatively moved in a separated state.
  • FIGS. 3 and 4 are an embodiment in which a protective mask holding device 6 (protective mask fixing means 6) for attaching and detaching the protective mask 5 is configured by a magnet 8 provided on the substrate transport tray 7.
  • 3 and 4 are cross-sectional views of the substrate transfer tray 7 provided with the protective mask fixing means 6.
  • the protective mask fixing means 6 by the magnetic force of the present embodiment protects the non-film forming portion 29 of the glass substrate 2 fixed to the substrate transport tray 7 with the film forming surface facing down.
  • the mask 5 is provided, and the protective mask 5 is attracted and fixed to the substrate 2 or the substrate transport tray 7 by the magnet 8 provided in the substrate transport tray 7, and the phenomenon that the film forming material adheres to the non-film forming portion 29 of the substrate 2 It is configured to prevent.
  • the protective mask 5 is physically held when the substrate transport tray 7 is transported through a plurality of vapor deposition chambers by being attracted and retained by the protective mask fixing means 6 by the magnet 8 provided inside the substrate transport tray 7. Since it is not necessary to provide a mechanism (for example, a clamp or a clip) between the substrate 2 and the vapor deposition mask 3, it is possible to prevent contact with the vapor deposition mask 3 or the like during transportation. Further, since the protective mask 5 is attracted by the magnetic force from the back surface of the substrate 2, the protective mask 5 can be disposed in close contact with the substrate 2, so that a further effect can be realized against the wraparound of the film forming material.
  • a mechanism for example, a clamp or a clip
  • a permanent magnet such as a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, or a coil around a magnetic core material is energized temporarily.
  • An electromagnet or the like that generates a magnetic force can be used, but a permanent magnet that does not require power supply from the outside of the vacuum chamber or the inside of the substrate transport tray 7 is desirable.
  • a permanent magnet that does not require power supply from the outside of the vacuum chamber or the inside of the substrate transport tray 7 is desirable.
  • a shape of the magnet a disc shape, a columnar shape, a square bar shape, or the like is selected. However, a square shape is desirable for placement on the substrate transport tray 7. Further, a sheet-like magnet may be used to reduce the weight of the substrate transfer tray.
  • the magnet 8 is arranged inside the substrate transport tray in accordance with the non-film forming portion 29 of the substrate 2, and the protective mask 5 provided according to the non-film forming portion 29 is in close contact with the substrate 2.
  • the structure is fixed.
  • the non-film forming portion 29 is only the outer peripheral portion, so it may be provided only on the outer peripheral portion of the substrate transport tray 7, and may be constituted by, for example, one frame-shaped plate.
  • it may be divided into a plurality of pieces, each of which may be arranged, and in multi-chamfering, it may be arranged not only at the outer peripheral part but also at the crosspiece part between the panels, or one piece having this crosspiece part It is good also as a board.
  • the protective mask 5 is attached / detached by the attaching / detaching mechanism provided in the substrate transfer tray 7 or the vapor deposition chamber.
  • the magnet drive mechanism 9 for rotating the permanent magnets 8 provided on the substrate carrying tray 7 by 90 degrees is provided, thereby changing the magnetic field applied to the protective mask 5 to be attached and detached.
  • the magnet 8 provided on the substrate transfer tray 7 is protected by a magnet drive mechanism 9 provided with a drive shaft extending and retracting provided on the substrate transfer tray 7.
  • a method may be adopted in which the magnet 10 is moved linearly with respect to the mask 5 so that the distance from the protective mask 5 is increased and the magnetic force is weakened to be attached or detached.
  • it is good also as a structure which provides an opening part in the board
  • the protective mask fixing means 6 is provided by the magnetic force inside the substrate transport tray 7, the substrate 2 or the substrate transport tray 7 and the protective mask 5 are in close contact with each other. It can be fixed with increased sex.
  • fixation by magnetic force does not require external control or a power source, and can be continuously formed by moving through a plurality of vapor deposition chambers without misalignment with the substrate 2.
  • FIG. 5 is sectional views of the substrate transfer tray 7 provided with the electrostatic chuck 11 according to the present embodiment.
  • the electrostatic chuck 11 of the present embodiment is provided inside the substrate transport tray 7 or on the substrate contact surface, and is added to the electrode 27 protected by the insulator 26 as shown in FIG.
  • a negative charge bias is generated, so that reverse charges are induced in the vicinity of the contact surface of the substrate 2, and the charges of the substrate 2 are attracted and attracted and fixed.
  • the glass substrate 2 may bend due to its own weight when the substrate size is increased, and may be broken if only the end surface of the substrate 2 is simply held.
  • the glass substrate 2 constituting the recent display is thin (for example, 0.5 mm thick), and it is difficult to hold the glass substrate 2 by simple support of only the end face of the substrate 2 like the conventional small substrate 2.
  • the electrostatic chuck 11 composed of the electrode 27 covered with the insulator 26 is exposed on the surface of the substrate transport tray 7 and directly in contact with the back surface of the substrate 2, the substrate 2 is The entire back surface of the substrate 2 can be sucked and held horizontally on the substrate transport tray 7.
  • the electrostatic chuck 11 is also divided into a plurality according to the size of the film forming unit 28.
  • the deflection due to the substrate weight of the film forming section 28 that requires the highest film forming accuracy is ensured. Therefore, it is possible to adjust the horizontal alignment with the vapor deposition mask 3 with high accuracy, so that highly accurate film formation is possible.
  • the substrate 2 is transported.
  • the substrate 2 and the evaporation source 1 are relatively moved.
  • FIG. 8 shows the driving of the electrostatic chuck 11 by the external power supply 13 that supplies power to the storage battery 31 provided on the substrate carrying tray 7 through the connection wiring 30 from the power supply 13 provided outside the electrostatic chuck 11 according to the present embodiment. It is explanatory drawing shown.
  • the electrostatic chuck 11 generates static electricity by applying electric power to the electrode 27 provided on the surface and attracts the substrate 2, so that power is always applied to the electrostatic chuck 11 (electrode 27) when holding the substrate. I have to do it.
  • the electrostatic chuck 11 of this embodiment can supply power to the electrostatic chuck 11 from the power supply 13 provided outside the vacuum deposition chamber (deposition chamber) through the connection wiring 30. Therefore, it is possible to control the adsorption force constantly during film formation.
  • the connection wiring 30 is configured to be able to follow when the substrate carrying tray 7 on which the electrostatic chuck 11 is installed moves relative to the evaporation source 1 and the vapor deposition mask 3 and can always realize a stable operation.
  • the operation of turning on / off the power supply of the electrostatic chuck 11 is necessary for the attachment / detachment of the substrate 2, but the power supply operation is facilitated by providing the power supply 13 outside. If the external power supply 13 is connected to an uninterruptible power supply (not shown) (for example, a lithium ion battery), the power stored in the uninterruptible power supply is supplied even when the power supply 13 is disconnected. In addition, an instantaneous voltage drop or power failure can be prevented from occurring with respect to the electrostatic chuck 11.
  • an uninterruptible power supply not shown
  • an instantaneous voltage drop or power failure can be prevented from occurring with respect to the electrostatic chuck 11.
  • the power supply 13 for generating the electrostatic force on the electrostatic chuck 11 is provided outside the vacuum chamber.
  • FIG. 9 illustrates an example of a system in which a storage battery 15 as a power source is provided in the electrostatic chuck 11 according to the present embodiment, and power is supplied through the supplied conductor portion 12.
  • the substrate transport tray 7 In a general in-line vapor deposition method, since a plurality of vapor deposition chambers (film deposition chambers) maintained in a vacuum are passed, a consistent electrical wiring cannot be connected to the substrate transport tray 7, and the substrate transport tray 7 is transported alone. It is desirable that Since the electrostatic chuck 11 requires electric power when adsorbing the substrate, the substrate transport tray 7 alone supplies a plurality of vapor depositions by supplying it via the supplied conductor 12 by the storage battery 15 provided on the substrate transport tray 7. It can pass through the chamber (deposition chamber). At this time, the storage battery 15 provided on the substrate transfer tray 7 is arranged in a vacuum shut-off box so that it can be driven even in a vacuum atmosphere.
  • the inside of the vacuum shut-off box is maintained by atmospheric pressure, and in addition to the storage battery, a switch for controlling ON / OFF of the power supply, a drive circuit, and the like are arranged.
  • the switch of this embodiment is placed in a vacuum so that it can be turned ON / OFF in a vacuum.
  • a radio can be provided in the vacuum shut-off box, and a switch configuration by communication with the outside may be used. Is done.
  • the type of storage battery 15 for example, a nickel-cadmium battery, a nickel metal hydride battery, a lithium ion battery, a small sealed lead battery, etc.
  • the self-discharge rate is low, and charging / discharging at the time of substrate adsorption / non-adsorption It is desirable to use a lithium ion battery that does not have the memory effect of reducing the battery capacity due to the voltage drop when the above is repeated.
  • a storage battery 15 as a power source inside the substrate transfer tray 7 as in this embodiment, the entire device has no effect on the electrostatic chuck even when an instantaneous voltage drop or power failure occurs, and external influences
  • the substrate 2 can be held stably without being influenced by the above.
  • connection wiring with an external power source in the film forming chamber is unnecessary as compared with the fourth embodiment, and furthermore, each film forming chamber divided by the gate valve.
  • the film forming / conveying speed of the substrate 2 adsorbed by the electrostatic chuck 11 can be kept constant, so that a highly productive apparatus can be provided.
  • the electrostatic chuck 11 can operate stably, resulting in a high yield device.
  • FIG. 10 illustrates an example of a system for supplying (charging) electric power to the electrostatic chuck 11 provided with the storage battery 15 in a stock chamber 34 as a non-film forming chamber provided separately from the film forming chamber 33. It is.
  • the electrostatic chuck 11 is provided with a storage battery 15 on the back surface of the electrostatic chuck 11, and an electrostatic force is generated in the electrostatic chuck 11 by the electric power supplied from the storage battery 15. Is adsorbed. When film formation is performed for a certain period of time, electric power is consumed from the storage battery 15 by the electrostatic chuck 11.
  • the substrate transfer tray 7 is transferred from the film forming chamber 33 by a transfer robot (not shown) to the stock chamber 34 which is a non-film forming chamber provided with an external power supply mechanism 16 for the electrostatic chuck 11. It is conveyed to.
  • a power supply 13 provided outside the chamber is connected to a detachable connector 32 provided on the electrostatic chuck 11 through a vacuum inlet provided on the side surface of the chamber.
  • a power feeding unit connected to an external power source is provided at the tip of the expanding and contracting cylinder, and after the electrostatic chuck 11 is held in a fixed position, the cylinder is extended and provided on the electrostatic chuck 11.
  • the battery is charged by contacting with the power feeding unit, and after charging is completed, the cylinder is contracted to complete the charging operation.
  • the stock chamber 34 is configured such that a plurality of stock chambers 34 can be accommodated simultaneously by providing a mechanism capable of moving the substrate transport tray 7 up and down.
  • the charged substrate transport tray 7 is unloaded from the stock chamber 34 and transported to the film forming process when the control mechanism determines that the substrate transport tray 7 is necessary in the film forming chamber 33.
  • the stock chamber 34 is provided adjacent to the film formation chamber 33, and the electrostatic chuck 11 repeatedly adsorbs the substrate 2 during non-film formation.
  • the electrostatic chuck 11 is held by the storage battery 15 that always holds a stable amount of power during film formation by carrying in the substrate transfer tray 7 containing the storage battery 15 in which power is consumed as needed and charging the storage battery 15.
  • the substrate transfer tray 7 can be repeatedly charged under vacuum, it is not necessary to take out to the outside, reducing the downtime of production due to the charging time, and high productivity.
  • An apparatus can be provided.
  • FIG. 11 is an explanatory view schematically showing a method for aligning the substrate 2 and the vapor deposition mask 3 according to this embodiment.
  • an in-line method that can be easily transported even with a large substrate 2 is used.
  • a tension is applied to a small deposition mask 3 that substantially matches the substrate 2 in the lateral direction but is narrow in the moving direction. In this state, it is fixed to the mask frame 10 (for example, spot welding) to suppress lateral displacement.
  • the vapor deposition mask 3 fixed to the mask frame 10 is connected to a vapor deposition mask XY ⁇ stage 25 that is movably provided in the X, Y, and ⁇ directions, for example, called an XY ⁇ stage.
  • the alignment mark provided on the vapor deposition mask 3 is aligned with the alignment mark provided on the substrate 2 with a slight gap provided between the conveyed substrate 2 and the vapor deposition mask 3.
  • the vapor deposition mask 3 is used so that each positional deviation amount is detected by an alignment means having an imaging means 17 (for example, a CCD camera) capable of confirming each alignment mark, and this positional deviation amount is minimized.
  • the alignment mark provided on the substrate 2 is arranged at a position closest to the vapor deposition mask 3 with respect to the substrate conveyance direction, and completes the alignment before passing through the mask opening 4 of the vapor deposition mask 3. Further, by providing a plurality of or line-shaped alignment marks on the substrate 2 in the transport direction, it is possible to perform a sequential alignment during the transport.
  • the substrate surface height and the vapor deposition mask surface height are measured by a plurality of optical sensors provided on the same plane.
  • 12 (a) and 12 (b) are explanatory views schematically showing a method for aligning the substrate 2 and the protective mask 3 according to this embodiment.
  • the substrate transport tray 7 with an abutting member 19 on at least one side, the substrate end surface positioned diagonally or in parallel with the abutting member 19 with respect to the end surface of the substrate 2 is used as a cylinder or the like.
  • the abutting means 20 that presses in the direction of the abutting member 19 by the expansion / contraction mechanism, the end surfaces of the substrate 2 and the protective mask 5 can be aligned to perform alignment.
  • the protective mask 5 of the present embodiment does not require high-precision alignment, and thus exhibits a sufficient effect even in alignment accuracy with respect to the substrate end surface. Furthermore, since the alignment method is simple, the time required for alignment can be shortened.
  • the substrate 2 is attracted and held by an attracting mechanism (for example, an electrostatic chuck 11) provided on the substrate transport tray 7 in a state of being aligned by an abutting member 19 provided on the substrate transport tray 7.
  • the protective mask 5 is transported from a separate chamber (not shown) by a transport robot, and is configured to be held by, for example, the protective mask XY ⁇ stage 24 provided with the expansion / contraction mechanism.
  • the substrate 2 and the protective mask 5 are separated from each other, and the protective mask 5 is moved toward the abutting member 19 by an expansion / contraction mechanism to align the substrate 2 and the protective mask 5.
  • the substrate 2 and the protective mask 5 are brought into close contact with each other, and the protective mask 5 is attracted and held by the magnet 8 provided on the substrate transfer tray 7.
  • the substrate transfer tray 7 holding the substrate 2 and the protective mask 5 by suction is sequentially transferred to the film formation chamber and formed into a film.
  • the tact time in in-line film formation can be shortened, and the deposition particles can be more reliably circulated to the non-film formation portion. Can be prevented.
  • FIGS. 13A and 13B are diagrams schematically showing a method of aligning the substrate 2 and the protective mask 5 according to the present embodiment.
  • alignment is performed by providing alignment pins 22 on the substrate transport tray 7 and opening 23 as a reference hole in the protective mask 5.
  • the alignment pin 22 and the opening 23 have different tapered shapes, and have a structure for correcting the positional deviation between the alignment pin 22 and the opening 23.
  • the alignment pins 22 are provided on the substrate transport tray 7 on the outer periphery of the substrate 2.
  • the alignment pins 22 are positioned by providing them at two diagonal corners of the substrate transport tray 7.
  • the protective mask 5 is transferred from a separate chamber (not shown) by a transfer robot, and is held on a protective mask stage 24 that is movably provided in the X, Y, and ⁇ directions, which is called an XY ⁇ stage.
  • the protective mask 5 held on the XY ⁇ stage 24 raises the XY ⁇ stage 24 to align the substrate 2 and the protective mask 5 by aligning the opening 23 of the protective mask 5 with the alignment pin 22. 2 and the protective mask 5 are brought into close contact with each other, and the protective mask 5 is attracted and held by the magnet 8 provided on the substrate transfer tray 7.
  • the substrate transfer tray 7 holding the substrate 2 and the protective mask 5 by suction is sequentially transferred to the film formation chamber and formed into a film.
  • the present embodiment (the ninth embodiment), finer alignment is possible and the alignment accuracy can be improved as compared with the eighth embodiment. Accordingly, it is possible to further prevent the vapor deposition particles from entering the non-film forming portion.
  • FIGS. 14A and 14B are explanatory views schematically showing a method of aligning the substrate 2 and the protective mask 5 according to the present embodiment.
  • a protective mask XY ⁇ stage 24 called an XY ⁇ stage, which is provided so as to be movable in the X direction, the Y direction, and the ⁇ direction, is provided. And is held by the XY ⁇ stage 24.
  • the substrate 2 is sucked and held by a suction mechanism (for example, an electrostatic chuck 11) provided on the substrate transport tray 7, and an alignment mark provided on the substrate 2 is placed on the substrate transport tray 7 by an imaging means 17 such as a CCD camera.
  • An opening is provided so that it can be confirmed, and the alignment mark of the substrate 2 and the protective mask 5 is recognized by the imaging means 17 through the opening.
  • the alignment mark provided on the protective mask 5 is made to coincide with the alignment mark provided on the substrate 2 with a slight gap provided between the held protective mask 5 and the substrate 2.
  • the alignment means including the imaging means 17 that can confirm each alignment mark is used to detect the amount of misalignment of each, and to minimize the amount of misalignment between the alignment marks of the substrate 2 and the protective mask 5.
  • the protective mask 5 is fixedly supported and moved by the XY ⁇ stage 24. After the alignment of the substrate 2 and the protective mask 5, the XY ⁇ stage 24 is moved up so that the substrate 2 and the protective mask 5 are brought into close contact with each other on the substrate transport tray 7.
  • the protective mask 5 is attracted and held by the magnet 8 provided.
  • the substrate transfer tray 7 holding the substrate 2 and the protective mask 5 by suction is sequentially transferred to the film formation chamber and formed into a film.
  • the alignment can be performed with higher accuracy than the ninth embodiment, and the alignment accuracy can be improved. Therefore, it is possible to more reliably prevent the vapor deposition particles from entering the non-film forming portion.
  • FIG. 15 is an explanatory view schematically showing a shadow (SH) generated by the gap amount between the substrate 2 and the vapor deposition mask 3 according to the present embodiment.
  • SH shadow
  • the gap G can be set large by setting the opening width ⁇ x of the evaporation port portion small as represented by the following equation. ing.
  • the gap G can be secured to 1 mm or more.
  • the gap G is 1 mm.
  • the TS is 100 mm and the ⁇ x is reduced to 0.6 mm, the gap G can be 5 mm. Therefore, according to the present embodiment, pixels to be formed are formed by forming a mask pattern in advance according to the size of the gap G between the substrate 2 and the vapor deposition mask 3 and the distance TS between the evaporation source 1 and the vapor deposition mask 3.
  • the shadow SH of the film can be formed with high accuracy without affecting adjacent pixels, and the gap G can be set wide. Therefore, the protective mask 5 can be easily provided, and the film forming material is formed on the substrate film forming surface. It is possible to prevent the film from entering the non-film-formation part, and further to prevent the contact between the substrate 2 and the vapor deposition mask 3, thereby providing a vapor deposition apparatus that enables high yield production.

Abstract

The invention addresses the problem of providing a superior deposition device and a film-forming method using said deposition device. The deposition device: is capable of deposition on a large substrate even with a small deposition mask (3) by the substrate (2) being separated from and being moved relative to the deposition mask (3) and the vapor source (1); is capable of achieving a highly detailed mask opening (4), the problem of warping not occurring easily because a small deposition mask (3) can be used; and, using a configuration in which the non-film-forming areas around the film-forming areas are also covered by a separately provided protective mask (5), is capable of reliably preventing deposition on the non-film-forming areas and of achieving high quality, high yield deposition. A deposition device, which has a configuration in which a moving device, which moves the substrate (2) relative to the vapor source (1) and the deposition mask (3) with the substrate (2) separated from the deposition mask, is provided and which provides a protective mask (5) between the substrate (2) and the deposition mask (3), the protective mask covering the non-film-forming areas (29) so that the deposited film does not adhere to the non-film-forming areas (29) surrounding the film-forming areas.

Description

蒸着装置並びに蒸着装置を用いた成膜方法Vapor deposition apparatus and film forming method using vapor deposition apparatus
 本発明は、蒸着マスクによる成膜パターンの蒸着膜を基板上に形成させる蒸着装置並びに蒸着装置を用いた成膜方法に関するものである。 The present invention relates to a vapor deposition apparatus for forming a vapor deposition film having a film formation pattern using a vapor deposition mask on a substrate and a film forming method using the vapor deposition apparatus.
 近年、有機エレクトロルミネッセンス素子を用いた有機EL表示装置が、CRTやLCDに替る表示装置として注目されている。 In recent years, organic EL display devices using organic electroluminescence elements have attracted attention as display devices that replace CRTs and LCDs.
 この有機EL表示装置などの有機ELデバイスは、基板に電極層と複数の有機層を積層した発光層とを積層形成し、更に封止層を被覆形成した構成であり、自発光で、LCDに比べて高速応答性に優れ、高視野角及び高コントラストを実現できるものである。 An organic EL device such as an organic EL display device has a configuration in which an electrode layer and a light emitting layer in which a plurality of organic layers are laminated are formed on a substrate, and a sealing layer is further formed on the substrate. Compared with high-speed response, a high viewing angle and high contrast can be realized.
 このような有機ELデバイスは、一般に真空蒸着法により製造されており、真空チャンバー内で基板と蒸着マスクをアライメントして密着させ蒸着を行い、この蒸着マスクにより所望の成膜パターンの蒸着膜を基板に形成している。 Such an organic EL device is generally manufactured by a vacuum vapor deposition method, in which a substrate and a vapor deposition mask are aligned and closely adhered in a vacuum chamber, and a vapor deposition film having a desired film formation pattern is formed on the substrate by the vapor deposition mask. Is formed.
 また、このような有機ELデバイスの製造においては、基板の大型化に伴い所望の成膜パターンを得るための蒸着マスクも大型化が求められているが、高精細なマスクの大型化は困難で、また製作できても歪みの問題によって実用上様々な問題を生じ得る。 Further, in the manufacture of such an organic EL device, a vapor deposition mask for obtaining a desired film formation pattern is required to be enlarged with an increase in the size of the substrate, but it is difficult to increase the size of a high-definition mask. Even if it can be manufactured, various problems may occur in practice due to distortion problems.
 そこで、出願人は、基板と蒸着マスクとを離間配設して相対移動させる構成とすることで、小さな蒸着マスクでも広範囲に所望の成膜パターンを大型基板に蒸着させることができる蒸着装置の開発を進めてきている。 Therefore, the applicant has developed a vapor deposition apparatus that can deposit a desired film deposition pattern on a large substrate over a wide range even with a small vapor deposition mask by adopting a configuration in which the substrate and the vapor deposition mask are spaced apart and relatively moved. Has been proceeding.
 このような基板と、蒸着マスク及び蒸発源とを離間した状態で相対移動させて、蒸発源から蒸発した成膜材料が蒸着マスクのマスク開口部に規定される成膜パターンで基板に蒸着させる構成の蒸着装置では、前述のように小型の蒸着マスクでも所望の成膜パターンの蒸着膜を大型の基板に蒸着できるが、大型の基板の非成膜部まで蒸着マスクで覆うことは困難である。 A structure in which such a substrate, a vapor deposition mask and an evaporation source are relatively moved apart from each other, and a film deposition material evaporated from the evaporation source is deposited on the substrate in a film formation pattern defined in the mask opening of the vapor deposition mask. In this vapor deposition apparatus, a vapor deposition film having a desired film formation pattern can be vapor-deposited on a large substrate even with a small vapor deposition mask as described above, but it is difficult to cover the non-deposition portion of the large substrate with the vapor deposition mask.
 即ち、従来の基板と蒸着マスクとが密着したマスク蒸着法では、基板サイズが小型であれば蒸着マスク自身で非成膜部を覆うことはできるが、基板の大型化に伴い(例えば第5世代ガラス基板(1100mm×1300mm)以降)、基板サイズに対応した蒸着マスクの製造は困難である。言い換えると、高精細なマスク開口部を基板全面を覆うサイズに形成することは困難であり、また製造しても歪みの問題などを生じるため事実上困難である。 That is, in the conventional mask vapor deposition method in which the substrate and the vapor deposition mask are in close contact with each other, if the substrate size is small, the vapor deposition mask itself can cover the non-film-formation part. It is difficult to manufacture a vapor deposition mask corresponding to the substrate size (glass substrate (1100mm x 1300mm) or later). In other words, it is difficult to form a high-definition mask opening in a size that covers the entire surface of the substrate, and even if manufactured, it is practically difficult due to distortion problems.
 更に説明すると、例えば、有機ELディスプレイデバイスに用いられるガラス基板には、陽極電極と陰極電極の電極配線パターンや有機EL素子を駆動させる薄膜トランジスタ(TFT)等の回路パターンが形成されており、これらはディスプレイデバイス製品とするための外部制御機器との接続端子として設けられている。このような領域(非成膜部)に前記成膜材料が付着した場合、前述した外部制御機器との接続において接続不良が発生するため、製品歩留りを大きく低下させる要因となる。 To explain further, for example, on a glass substrate used in an organic EL display device, an electrode wiring pattern of an anode electrode and a cathode electrode and a circuit pattern such as a thin film transistor (TFT) for driving an organic EL element are formed. It is provided as a connection terminal with an external control device for a display device product. When the film forming material adheres to such a region (non-film forming portion), a connection failure occurs in connection with the external control device described above, which causes a significant decrease in product yield.
 従って、これらの基板の配線パターンには、前記成膜材料が付着してはならない非成膜部にする必要がある。 Therefore, the wiring pattern of these substrates needs to be a non-film forming portion where the film forming material should not adhere.
 しかし、前述のように基板サイズに対応した蒸着マスクを製造することは困難であり、また製造しても歪みの問題などを生じる。 However, as described above, it is difficult to manufacture a vapor deposition mask corresponding to the substrate size, and even if manufactured, a problem of distortion occurs.
 そこで、本発明は、このような問題を解決したもので、基板と蒸着マスク及び蒸発源とを離間した状態で相対移動することで、小型の蒸着マスクでも大型の基板に蒸着させることができ、蒸着マスクは小型でよいため、高精細なマスク開口部を実現でき、歪みの問題も生じにくく、しかも、成膜部周囲の非成膜部も別途設けた保護マスクにより覆う構成とすることで、非成膜部への蒸着を確実に防止し、品質に優れ高留りな蒸着を実現できる優れた蒸着装置並びにこの蒸着装置を用いた成膜方法を提供することを目的としている。 Therefore, the present invention has solved such problems, and by relatively moving the substrate and the vapor deposition mask and the evaporation source in a separated state, even a small vapor deposition mask can be deposited on a large substrate, Since the vapor deposition mask can be small, a high-definition mask opening can be realized, distortion problems are less likely to occur, and the non-film-formation part around the film-formation part is covered with a separate protective mask, An object of the present invention is to provide an excellent vapor deposition apparatus capable of reliably preventing vapor deposition on a non-film forming portion, realizing high quality vapor deposition, and a film forming method using the vapor deposition apparatus.
 添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be described with reference to the accompanying drawings.
 蒸発源1より蒸発した成膜材料が、基板2に対向して配置される蒸着マスク3のマスク開口部4を通過することにより、このマスク開口部4で規定される成膜パターンの蒸着膜が、前記基板2の成膜面に設けられた成膜部に形成されるように構成した蒸着装置において、前記基板2と前記蒸着マスク3とが離間した状態で、前記基板2と、前記蒸発源1及び前記蒸着マスク3とを相対移動させる移動装置を備えた構成とし、前記蒸着膜が前記成膜部の周囲の非成膜部に付着しないようにこの非成膜部を覆う保護マスク5を前記基板2と前記蒸着マスク3との間に設け、前記保護マスク5を保持して前記基板2と共に前記蒸発源1及び前記蒸着マスク3に対して相対移動させる保護マスク保持装置6を備えた構成としたことを特徴とする蒸着装置に係るものである。 The deposition material evaporated from the evaporation source 1 passes through the mask opening 4 of the deposition mask 3 disposed to face the substrate 2, so that the deposition film having the deposition pattern defined by the mask opening 4 is formed. In the vapor deposition apparatus configured to be formed on the film formation portion provided on the film formation surface of the substrate 2, the substrate 2 and the evaporation source in a state where the substrate 2 and the vapor deposition mask 3 are separated from each other. And a protective mask 5 covering the non-film forming part so that the vapor deposition film does not adhere to the non-film forming part around the film forming part. A configuration provided with a protective mask holding device 6 provided between the substrate 2 and the vapor deposition mask 3 to hold the protective mask 5 and move it relative to the evaporation source 1 and the vapor deposition mask 3 together with the substrate 2. Vapor deposition characterized by It relates to the location.
 また、前記保護マスク5を保持する前記保護マスク保持装置6は、前記基板2を固定してこの基板2に前記蒸着膜を蒸着させる蒸着室の内外にこの基板2を搬送させる基板搬送トレイ7に磁石8を設け、この基板搬送トレイ7の磁石8により前記保護マスク5を所定位置に吸着固定するように構成したことを特徴とする請求項1記載の蒸着装置に係るものである。 Further, the protective mask holding device 6 for holding the protective mask 5 is provided on a substrate transfer tray 7 for fixing the substrate 2 and transferring the substrate 2 into and out of a vapor deposition chamber for depositing the vapor deposition film on the substrate 2. 2. The vapor deposition apparatus according to claim 1, wherein a magnet 8 is provided and the protective mask 5 is attracted and fixed at a predetermined position by the magnet 8 of the substrate transport tray 7.
 また、前記基板搬送トレイ7に、前記磁石8を駆動する磁石駆動機構9を設け、この磁石駆動機構9を作動させることで、前記磁石8で生じる磁界の向きを変えることにより、若しくは前記磁石8を前記保護マスク5に対して移動することにより、前記保護マスク5に作用する前記磁界を変化させて、前記基板搬送トレイ7に対して前記保護マスク5を着脱するように前記保護マスク保持装置6を構成したことを特徴とする請求項2記載の蒸着装置に係るものである。 Further, the substrate transport tray 7 is provided with a magnet drive mechanism 9 for driving the magnet 8, and by operating the magnet drive mechanism 9, the direction of the magnetic field generated by the magnet 8 is changed, or the magnet 8 Is moved with respect to the protective mask 5 to change the magnetic field acting on the protective mask 5 so that the protective mask 5 is attached to and detached from the substrate transport tray 7. The vapor deposition apparatus according to claim 2, wherein:
 また、前記基板搬送トレイ7は、少なくとも一つ以上の粘着チャック若しくは静電チャック11を設けて、前記基板2の基板成膜面の反対面を吸着してこの基板2を吸着固定する構成としたことを特徴とする請求項2記載の蒸着装置に係るものである。 The substrate transport tray 7 is provided with at least one adhesive chuck or electrostatic chuck 11 to adsorb and fix the substrate 2 by adsorbing the opposite surface of the substrate 2 to the substrate film forming surface. It concerns on the vapor deposition apparatus of Claim 2 characterized by the above-mentioned.
 また、前記粘着チャック若しくは前記静電チャック11は、前記基板2の複数に分割形成された前記成膜部の各領域に対応する大きさを有し、この各領域毎に各々設けたことを特徴とする請求項4記載の蒸着装置に係るものである。 In addition, the adhesive chuck or the electrostatic chuck 11 has a size corresponding to each region of the film forming unit divided and formed on the substrate 2, and is provided for each region. The vapor deposition apparatus according to claim 4.
 また、前記粘着チャック若しくは静電チャック11は、前記基板2の複数に分割形成された前記成膜部の各領域に対応する大きさを有し、この各領域のうち少なくとも中央部分の領域を吸着する位置に設けた構成としたことを特徴とする請求項4記載の蒸着装置に係るものである。 Further, the adhesive chuck or electrostatic chuck 11 has a size corresponding to each region of the film forming unit divided and formed on the substrate 2, and at least a central portion of each region is attracted. The vapor deposition apparatus according to claim 4, wherein the vapor deposition apparatus is provided at a position where the vapor deposition is performed.
 また、前記基板搬送トレイ7に設けた前記粘着チャック若しくは静電チャック11により吸着固定される前記基板2の成膜面は、前記蒸着マスク3に対して平行に保持されるように構成したことを特徴とする請求項4~6のいずれか1項に記載の蒸着装置に係るものである。 Further, the film forming surface of the substrate 2 that is attracted and fixed by the adhesive chuck or electrostatic chuck 11 provided on the substrate transport tray 7 is configured to be held parallel to the vapor deposition mask 3. The vapor deposition apparatus according to any one of Claims 4 to 6, wherein the vapor deposition apparatus is characterized.
 また、前記蒸着マスク3は、前記蒸発源1と前記基板2との間に設けられたマスクホルダー10の基板側端部にテンションを付与し張設され、前記基板2の成膜面に対して平行に保持されるように構成したことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置に係るものである。 Further, the vapor deposition mask 3 is stretched by applying tension to the substrate side end of the mask holder 10 provided between the evaporation source 1 and the substrate 2, and is applied to the film formation surface of the substrate 2. The vapor deposition apparatus according to any one of claims 1 to 6, wherein the vapor deposition apparatus is configured to be held in parallel.
 また、前記基板搬送トレイ7に設けた前記静電チャック11に供給するための電力を、前記蒸着室外部に配設された電源13から供給するように構成したことを特徴とする請求項4~6のいずれか1項に記載の蒸着装置に係るものである。 The power supply for supplying to the electrostatic chuck 11 provided on the substrate transfer tray 7 is supplied from a power source 13 provided outside the vapor deposition chamber. 6. The vapor deposition apparatus according to any one of 6 above.
 また、基板搬送トレイ7に設けた前記静電チャック11に供給するための電力を、この基板搬送トレイ7に配設された電源15から供給するように構成したことを特徴とする請求項4~6のいずれか1項に記載の蒸着装置に係るものである。 The power supply for supplying to the electrostatic chuck 11 provided on the substrate transfer tray 7 is supplied from a power source 15 disposed on the substrate transfer tray 7. 6. The vapor deposition apparatus according to any one of 6 above.
 また、前記電源15から供給される電力が、前記基板搬送トレイ7内部に設けた導電体部12を通じて前記静電チャック11に電力供給される電力供給機構を備えたことを特徴とする請求項10記載の蒸着装置に係るものである。 The power supply mechanism further comprises a power supply mechanism for supplying power to the electrostatic chuck through a conductor portion provided inside the substrate transfer tray. This relates to the described vapor deposition apparatus.
 また、前記電源13に、被成膜時において前記基板搬送トレイ7外部に設けた被供給導電体部14を通じて、前記蒸着室外部から電力を供給し充電する外部電力供給機構16を備えたことを特徴とする請求項10記載の蒸着装置に係るものである。 Further, the power source 13 is provided with an external power supply mechanism 16 for supplying and charging power from the outside of the vapor deposition chamber through a supplied conductor portion 14 provided outside the substrate transfer tray 7 at the time of film formation. The vapor deposition apparatus according to claim 10, wherein the vapor deposition apparatus is characterized.
 また、前記基板2及び前記蒸着マスク3に設けた基準パターンを撮像する撮像手段17と、前記撮像手段17による撮像画像に基づいて前記基準パターンの位置ずれ量が所定値内となるように、前記蒸着マスク3を保持する蒸着マスク用XYθステージ25により位置合わせを行い、前記基板2を固定してこの基板2に前記蒸着膜を蒸着させる蒸着室の内外にこの基板2を搬送する前記基板搬送トレイ7若しくはこの基板搬送トレイ7に固定したこの基板2に、前記保護マスク5を密着固定した構成としたことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置に係るものである。 Further, the imaging means 17 for imaging the reference pattern provided on the substrate 2 and the vapor deposition mask 3, and the positional deviation amount of the reference pattern is within a predetermined value based on the image captured by the imaging means 17. Alignment is performed by the XYθ stage 25 for the vapor deposition mask that holds the vapor deposition mask 3, and the substrate conveyance tray that conveys the substrate 2 into and out of the vapor deposition chamber in which the substrate 2 is fixed and the vapor deposition film is vapor deposited on the substrate 2. 7. The vapor deposition apparatus according to claim 1, wherein the protective mask 5 is closely fixed to the substrate 2 fixed to the substrate transfer tray 7 or the substrate 2. is there.
 また、前記基板2を固定してこの基板2に前記蒸着膜を蒸着させる蒸着室の内外にこの基板2を搬送する前記基板搬送トレイ7に対して、前記基板2及び前記保護マスク5を位置合せするアライメント手段を備えたことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置に係るものである。 Further, the substrate 2 and the protective mask 5 are aligned with respect to the substrate transport tray 7 for transporting the substrate 2 into and out of a deposition chamber for fixing the substrate 2 and depositing the deposited film on the substrate 2. 7. The vapor deposition apparatus according to claim 1, further comprising an alignment unit configured to perform the alignment.
 また、前記アライメント機構は、前記基板2及び前記保護マスク5の少なくとも一つの角もしくは隣接する二つの端面が、前記基板搬送トレイ7に設けられた突き当て部材19に突き当てる突き当て手段20により位置合せを行い、前記保護マスク5を前記基板搬送トレイ7若しくはこの基板搬送トレイ7に固定した前記基板2に密着固定するように構成したことを特徴とする請求項14記載の蒸着装置に係るものである。 The alignment mechanism is positioned by abutting means 20 that abuts at least one corner of the substrate 2 and the protective mask 5 or two adjacent end surfaces against a butting member 19 provided on the substrate transport tray 7. The vapor deposition apparatus according to claim 14, wherein the protective mask 5 is closely attached to and fixed to the substrate transport tray 7 or the substrate 2 fixed to the substrate transport tray 7. is there.
 また、前記アライメント機構は、前記基板搬送トレイ7若しくは前記保護マスク5に設けた位置決めピン22が、前記保護マスク5若しくは前記基板搬送トレイ7に設けられた基準穴23に収まるように、前記保護マスク5を保持する保護マスク用XYθステージ24により位置合わせを行い、この保護マスク5を前記基板搬送トレイ7若しくはこの基板搬送トレイ7に固定した前記基板2に密着固定するように構成したことを特徴とする請求項14記載の蒸着装置に係るものである。 In addition, the alignment mechanism is configured so that the positioning pin 22 provided on the substrate transport tray 7 or the protective mask 5 fits in the reference hole 23 provided on the protective mask 5 or the substrate transport tray 7. And a protective mask XYθ stage 24 for holding the substrate 5 and aligning and fixing the protective mask 5 to the substrate transport tray 7 or the substrate 2 fixed to the substrate transport tray 7. The vapor deposition apparatus according to claim 14.
 また、前記アライメント機構は、前記基板2及び前記保護マスク5に設けた基準パターンを撮像する撮像手段17と、前記撮像手段17による撮像画像に基づいて前記基準パターンの位置ずれ量が所定値内となるように、前記保護マスク5を保持する前記保護マスク用XYθステージ24により位置合わせを行い、前記保護マスク5を前記基板搬送トレイ7若しくはこの基板搬送トレイ7に固定した前記基板2に密着固定するように構成したことを特徴とする請求項14記載の蒸着装置に係るものである。 The alignment mechanism includes an imaging unit 17 that captures a reference pattern provided on the substrate 2 and the protective mask 5, and a positional deviation amount of the reference pattern is within a predetermined value based on an image captured by the imaging unit 17. As described above, alignment is performed by the protective mask XYθ stage 24 that holds the protective mask 5, and the protective mask 5 is closely fixed to the substrate transport tray 7 or the substrate 2 fixed to the substrate transport tray 7. 15. The vapor deposition apparatus according to claim 14, wherein the vapor deposition apparatus is configured as described above.
 また、前記基板2と前記蒸着マスク3とが離間状態で蒸着し、この蒸着マスク3の前記マスク開口部4により規定される成膜パターンの蒸着膜が前記基板2に形成される際、この蒸着膜の側端傾斜部分である陰影SHは、前記基板2と前記蒸着マスク3とのギャップをG,前記蒸発源1の蒸発口部の前記横方向の開口幅をφx,この蒸発口部と前記蒸着マスク3との距離をTSとすると、下記の式で表され、この陰影SHが隣接する蒸着膜との間隔PPに達しないように、前記蒸発口部の前記開口幅φxを小さく設定し、前記ギャップGを大きく設定した構成としたことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置に係るものである。
Figure JPOXMLDOC01-appb-M000002
Further, when the substrate 2 and the vapor deposition mask 3 are vapor-deposited in a separated state and a vapor deposition film having a film formation pattern defined by the mask opening 4 of the vapor deposition mask 3 is formed on the substrate 2, this vapor deposition is performed. The shadow SH, which is an inclined portion of the side edge of the film, is G for the gap between the substrate 2 and the vapor deposition mask 3, φx for the lateral opening width of the evaporation port portion of the evaporation source 1, and Assuming that the distance from the vapor deposition mask 3 is TS, the opening width φx of the evaporation port is set small so that the shadow SH does not reach the interval PP between the adjacent vapor deposition films, The vapor deposition apparatus according to any one of claims 1 to 6, wherein the gap G is set to be large.
Figure JPOXMLDOC01-appb-M000002
 また、前記成膜材料を有機材料としたことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置に係るものである。 The vapor deposition apparatus according to any one of claims 1 to 6, wherein the film forming material is an organic material.
 また、請求項1~6のいずれか1項に記載の蒸着装置を用いて、前記基板2上に前記蒸着マスク3の前記マスク開口部4により規定される成膜パターンの蒸着膜を形成することを特徴とする成膜方法に係るものである。 In addition, a vapor deposition film having a film formation pattern defined by the mask opening 4 of the vapor deposition mask 3 is formed on the substrate 2 using the vapor deposition apparatus according to any one of claims 1 to 6. The present invention relates to a film forming method characterized by the following.
 本発明は上述のように構成したから、基板と蒸着マスク及び蒸発源とを離間した状態で相対移動することで、小型の蒸着マスクでも大型の基板に蒸着させることができ、蒸着マスクは小型でよいため、高精細なマスク開口部を実現でき、歪みの問題も生じにくく、しかも、成膜部周囲の非成膜部も別途設けた保護マスクにより覆う構成とすることで、非成膜部への蒸着を確実に防止し、品質に優れ高留りな蒸着を実現できる優れた蒸着装置並びにこの蒸着装置を用いた成膜方法となる。 Since the present invention is configured as described above, even a small deposition mask can be deposited on a large substrate by relatively moving the substrate, the deposition mask, and the evaporation source apart from each other, and the deposition mask is small. Therefore, high-definition mask openings can be realized, distortion problems are less likely to occur, and the non-film-formation part around the film-formation part is covered with a separately provided protective mask. Thus, the present invention provides an excellent vapor deposition apparatus that can reliably prevent vapor deposition and realize high-quality vapor deposition and a film forming method using this vapor deposition apparatus.
 即ち、基板の非成膜部に成膜材料が付着しないように保護する保護マスクを、基板と蒸着マスクとの間に、例えば基板に隣接させた状態で保持して、この基板と蒸発源及び蒸着マスクとを相対移動させて基板全面に成膜することで、この基板上の成膜パターンは、高精細に製造可能な小型の蒸着マスクにより高精度に形成され、しかも基板と蒸着マスクとが離間しているために非成膜部に成膜材料が回込み易い構成であるが、前記保護マスクにより、基板上の非成膜部への成膜材料の回り込みが確実に防止され、品質に優れ高留りな蒸着が行える優れた蒸着装置並びに蒸着装置を用いた成膜方法となると共に、基板と蒸着マスクとの間(ギャップ)に保護マスクを配置するので、保護マスクの厚みを大きくできる。 That is, a protective mask that protects the film-forming material from adhering to the non-film-forming portion of the substrate is held between the substrate and the vapor deposition mask, for example, adjacent to the substrate, and the substrate and the evaporation source and By depositing a film on the entire surface of the substrate by moving the deposition mask relative to the substrate, the deposition pattern on the substrate is formed with high precision by a small deposition mask that can be manufactured with high precision. Although the structure is such that the film-forming material easily flows into the non-film-formation part because it is separated, the protective mask reliably prevents the film-formation material from entering the non-film-formation part on the substrate. In addition to an excellent vapor deposition apparatus capable of performing high yield deposition and a film forming method using the vapor deposition apparatus, since the protective mask is disposed between the substrate and the vapor deposition mask (gap), the thickness of the protective mask can be increased.
 また、請求項2記載の発明においては、保護マスクを保持する保護マスク保持装置は、基板を搬送させる基板搬送トレイに磁石を設け、この基板搬送トレイの磁石により前記保護マスクを所定位置に吸着固定するように構成したから、クランプやクリップ等の機械的な保持機構が不要となるなど実用性に優れた蒸着装置となる。 According to a second aspect of the present invention, a protective mask holding device for holding a protective mask is provided with a magnet on a substrate transport tray for transporting a substrate, and the protective mask is attracted and fixed at a predetermined position by the magnet of the substrate transport tray. Since it comprised so, it becomes a vapor deposition apparatus excellent in practicality, such as a mechanical holding mechanism, such as a clamp and a clip becoming unnecessary.
 また、請求項3記載の発明においては、基板搬送トレイに、前記磁石を駆動する磁石駆動機構を設け、この磁石駆動機構を作動させることで、前記保護マスクに作用する磁界を変化させて、前記基板搬送トレイに対して前記保護マスクを着脱するように前記保護マスク保持装置を構成したから、磁石を回転させて、磁界の向きを変えたり、磁石と保護マスクとの間の距離を離して、磁界の強度を変えることで、保護マスクに掛かる磁界の強弱を変化させて、保護マスクを着脱することができるため、保護マスクの着脱が容易となるなど実用性に優れた蒸着装置となる。 According to a third aspect of the present invention, the substrate transport tray is provided with a magnet driving mechanism for driving the magnet, and the magnet driving mechanism is operated to change the magnetic field acting on the protective mask, Since the protective mask holding device is configured to detach the protective mask with respect to the substrate transport tray, the magnet is rotated, the direction of the magnetic field is changed, or the distance between the magnet and the protective mask is increased, By changing the strength of the magnetic field, the strength of the magnetic field applied to the protective mask can be changed and the protective mask can be attached and detached, so that the protective mask can be easily attached and detached, and the vapor deposition apparatus has excellent practicality.
 また、請求項4記載の発明においては、基板搬送トレイは、少なくとも一つ以上の粘着チャック若しくは静電チャックを設けて、基板の基板成膜面の反対面を吸着してこの基板を吸着固定する構成としたから、基板の成膜面から基板搬送トレイに密着させる機構が不要となり、成膜面の反対面を固定する事で、成膜面に粘着素材からのデガスや静電気による帯電等の影響を与えない。 According to a fourth aspect of the present invention, the substrate transport tray is provided with at least one adhesive chuck or electrostatic chuck, and sucks and fixes the substrate opposite to the substrate film-forming surface. Because of the configuration, there is no need for a mechanism for closely contacting the substrate transport tray from the substrate deposition surface, and fixing the opposite surface of the deposition surface will affect the deposition surface from degassing from adhesive materials and electrostatic charging. Not give.
 また、クランプやクリップ等の機械的な保持機構が不要であり、また基板と蒸着マスク間に保持機構が不要であるため、万が一の保持機構等の機械的な接触を防止できる。 Also, a mechanical holding mechanism such as a clamp or a clip is unnecessary, and a holding mechanism is not required between the substrate and the vapor deposition mask, so that it is possible to prevent mechanical contact such as a holding mechanism.
 また、重力に対して、反対方向の力で吸着するので基板の自重たわみを防止できる。 Also, since it is adsorbed by the force in the opposite direction against gravity, it is possible to prevent the substrate from being bent by its own weight.
 また、点ではなく、面で吸着する為、基板搬送トレイと基板の位置ズレを防止できる優れた蒸着装置となる。 Also, since it is adsorbed by the surface instead of the point, it becomes an excellent vapor deposition apparatus that can prevent the positional deviation between the substrate transfer tray and the substrate.
 また、請求項5記載の発明においては、前記粘着チャック若しくは前記静電チャックは、基板の複数に分割形成された前記成膜部の各領域に対応する大きさを有し、この各領域毎に各々設けたから、成膜部のみ粘着チャック若しくは静電チャックにより背面から吸着固定する構成で、基板に成膜部が複数ある場合、それに対応した数のチャックが設置され、基板を吸着固定するため、クランプやクリップ等の機械的な保持機構が不要で、少なくとも成膜部はチャックにより基板搬送トレイと密着固定されている為、マスクとのギャップを精度よく保つことができ、成膜部のギャップ精度が保てる為、成膜パターンの位置ズレを防止することができる優れた蒸着装置となる。 According to a fifth aspect of the present invention, the adhesive chuck or the electrostatic chuck has a size corresponding to each region of the film forming unit divided and formed on a plurality of substrates. Since each is provided with a structure in which only the film forming part is sucked and fixed from the back by an adhesive chuck or electrostatic chuck, when there are a plurality of film forming parts on the substrate, a corresponding number of chucks are installed, and the substrate is sucked and fixed. A mechanical holding mechanism such as a clamp or clip is not required, and at least the film formation unit is closely attached and fixed to the substrate transport tray by a chuck, so that the gap with the mask can be accurately maintained, and the gap accuracy of the film formation unit Therefore, it is an excellent vapor deposition apparatus that can prevent the positional deviation of the film formation pattern.
 また、請求項6記載の発明においては、前記粘着チャック若しくは静電チャックは、基板の複数に分割形成された前記成膜部の各領域に対応する大きさを有し、この各領域のうち少なくとも中央部分の領域を吸着する位置に設けた構成としたから、基板の成膜部の反対面を粘着チャック若しくは静電チャックにより吸着固定して、基板成膜部の平面度を粘着チャック若しくは静電チャックの平面と一致させる構成のため、基板成膜面と蒸着マスクとのギャップを一定に保持でき、基板成膜面と蒸着マスクのギャップ変動による基板上の成膜パターンの位置ズレを防止することができる優れた蒸着装置となる。 In the invention according to claim 6, the adhesive chuck or the electrostatic chuck has a size corresponding to each region of the film forming portion formed in a plurality of divided portions of the substrate, and at least of these regions. Since the central area is provided at a position to be attracted, the opposite surface of the substrate film forming part is adsorbed and fixed by an adhesive chuck or electrostatic chuck, and the flatness of the substrate film forming part is determined by an adhesive chuck or electrostatic chuck. Because the configuration matches the plane of the chuck, the gap between the substrate film formation surface and the evaporation mask can be kept constant, and displacement of the film formation pattern on the substrate due to fluctuations in the gap between the substrate film formation surface and the evaporation mask can be prevented. It becomes an excellent vapor deposition apparatus capable of
 また、請求項7記載の発明においては、基板搬送トレイに設けた前記粘着チャック若しくは静電チャックにより吸着固定される前記基板の成膜面は、前記蒸着マスクに対して平行に保持されるように構成したから、基板成膜面と蒸着マスクとのギャップを一定に保持して、基板成膜面と蒸着マスクのギャップ変動による基板上の成膜パターンの位置ズレを確実に防止することができる優れた蒸着装置となる。 According to a seventh aspect of the present invention, the film formation surface of the substrate that is attracted and fixed by the adhesive chuck or electrostatic chuck provided on the substrate transport tray is held parallel to the vapor deposition mask. Since it is configured, the gap between the substrate film formation surface and the vapor deposition mask is kept constant, and it is possible to reliably prevent the positional deviation of the film formation pattern on the substrate due to the gap variation between the substrate film formation surface and the vapor deposition mask. Vapor deposition equipment.
 また、請求項8記載の発明においては、蒸着マスクは、蒸発源と基板との間に設けられたマスクホルダーの基板側端部にテンションを付与し張設され、基板の成膜面に対して平行に保持されるように構成したから、マスクホルダーにより蒸着マスクのたわみを防止でき、基板成膜面と蒸着マスクとのギャップを一定に保持し、基板成膜面と蒸着マスクのギャップ変動による基板上の成膜パターンの位置ズレを防止できる優れた蒸着装置となる。 In the invention according to claim 8, the vapor deposition mask is stretched by applying tension to the substrate side end portion of the mask holder provided between the evaporation source and the substrate, and is applied to the film formation surface of the substrate. Since it is configured to be held in parallel, the mask holder can prevent the deflection of the deposition mask, the gap between the substrate deposition surface and the deposition mask is kept constant, and the substrate due to the gap variation between the substrate deposition surface and the deposition mask. It becomes an excellent vapor deposition apparatus that can prevent the positional deviation of the upper film formation pattern.
 また、請求項9記載の発明においては、基板搬送トレイに設けた前記静電チャックに供給するための電力を、前記蒸着室外部に配設された電源から供給するように構成したから、基板搬送トレイに電源が不要であり、トレイを軽量化でき、また、成膜時の電力切れを確実に防ぐことができる優れた蒸着装置となる。 In the invention according to claim 9, since the power to be supplied to the electrostatic chuck provided on the substrate transfer tray is supplied from the power source arranged outside the vapor deposition chamber, the substrate transfer The tray does not require a power source, can reduce the weight of the tray, and can be an excellent vapor deposition apparatus that can reliably prevent power interruption during film formation.
 また、請求項10記載の発明においては、基板搬送トレイに設けた前記静電チャックに供給するための電力を、この基板搬送トレイに配設された電源から供給するように構成したから、チャンバ外部からの電源が不要となり、基板搬送トレイ単独で複数チャンバに搬送でき、また、電力を供給する外部からの電気配線等を不要とし、装置コストを抑えることができる優れた蒸着装置となる。 In the invention according to claim 10, since the power to be supplied to the electrostatic chuck provided on the substrate transfer tray is supplied from the power source arranged on the substrate transfer tray, the outside of the chamber Therefore, the substrate transport tray can be transported to a plurality of chambers alone, and the external wiring for supplying power is not required, so that an excellent vapor deposition apparatus capable of reducing the apparatus cost can be obtained.
 また、請求項11記載の発明においては、前記電源から供給される電力が、基板搬送トレイ内部に設けた導電体部を通じて前記静電チャックに電力供給される電力供給機構を備えたから、基板搬送トレイ内部に一体化する事で、基板搬送トレイに余計な配線をしなくてよく、また、電力供給配線への蒸着膜の付着を防止することができる優れた蒸着装置となる。 In the invention according to claim 11, since the power supplied from the power source is provided with a power supply mechanism for supplying power to the electrostatic chuck through a conductor portion provided inside the substrate transport tray, the substrate transport tray is provided. By integrating it inside, it is possible to eliminate the need for extra wiring on the substrate transfer tray, and to provide an excellent vapor deposition apparatus capable of preventing the deposition film from adhering to the power supply wiring.
 また、請求項12記載の発明においては、前記電源に、被成膜時において前記基板搬送トレイ外部に設けた被供給導電体部を通じて、前記蒸着室外部から電力を供給し充電する外部電力供給機構を備えたから、真空中で基板搬送トレイに設けられた二次電池に電力を供給し、基板搬送トレイを大気に暴露しない構成となるため、電源交換が不要となり、トレイを連続使用する事ができ、また、基板搬送トレイに大気からのガスやパーティクルの吸着を防止できる優れた蒸着装置となる。 According to a twelfth aspect of the present invention, an external power supply mechanism that supplies power to the power source from the outside of the vapor deposition chamber through a supplied conductor portion provided outside the substrate transfer tray when the film is formed is charged. Because it is configured to supply power to the secondary battery installed in the substrate transport tray in vacuum and not expose the substrate transport tray to the atmosphere, it is not necessary to replace the power supply and the tray can be used continuously. Moreover, it becomes an excellent vapor deposition apparatus capable of preventing adsorption of gas and particles from the atmosphere to the substrate transport tray.
 また、請求項13記載の発明においては、基板及び蒸着マスクに設けた基準パターンを撮像する撮像手段と、前記撮像手段による撮像画像に基づいて前記基準パターンの位置ずれ量が所定値内となるように、前記蒸着マスクを保持する蒸着マスク用XYθステージにより位置合わせを行い、基板を固定してこの基板に蒸着膜を蒸着させる蒸着室の内外にこの基板を搬送する前記基板搬送トレイ若しくはこの基板搬送トレイに固定したこの基板に、保護マスクを密着固定した構成としたから、基板に対し、定められた位置に蒸着マスクを精度良く位置合せすることができ、成膜パターンの位置ズレを確実に防止することができる優れた蒸着装置となる。 According to a thirteenth aspect of the present invention, an image pickup means for picking up a reference pattern provided on the substrate and the vapor deposition mask, and a positional deviation amount of the reference pattern is within a predetermined value based on an image picked up by the image pickup means. The substrate transport tray or the substrate transport for transporting the substrate into and out of a deposition chamber where the substrate is fixed and the deposition film is deposited on the substrate by performing alignment with an XYθ stage for the deposition mask that holds the deposition mask. Since the protective mask is in close contact with the substrate fixed to the tray, the deposition mask can be accurately aligned with the substrate at a predetermined position, and the film pattern can be prevented from being misaligned. It becomes the outstanding vapor deposition apparatus which can do.
 また、請求項14記載の発明においては、基板を固定してこの基板に蒸着膜を蒸着させる蒸着室の内外にこの基板を搬送する前記基板搬送トレイに対して、基板及び保護マスクを位置合せするアライメント手段を備えたから、基板搬送トレイに対し、定められた位置に基板及び保護マスクを精度良く位置合せすることができ、成膜パターンの位置ズレを確実に防止することができる優れた蒸着装置となる。 In the invention described in claim 14, the substrate and the protective mask are aligned with respect to the substrate transport tray for transporting the substrate into and out of the deposition chamber for fixing the substrate and depositing the deposited film on the substrate. Since the alignment means is provided, an excellent vapor deposition apparatus capable of accurately aligning the substrate and the protective mask at a predetermined position with respect to the substrate transport tray and reliably preventing the positional deviation of the film formation pattern, Become.
 また、請求項15記載の発明においては、前記アライメント機構は、基板及び保護マスクの少なくとも一つの角もしくは隣接する二つの端面が、基板搬送トレイに設けられた突き当て部材に突き当てる突き当て手段により位置合せを行い、保護マスクを基板搬送トレイ若しくはこの基板搬送トレイに固定した基板に密着固定するように構成したから、例えば、基板及び保護マスクの端面を合わせ、この基板及び保護マスクを、突き当て部材に対して対向面から押し付けることで位置合わせできるから、この位置合わせが精度良く容易に行え、非成膜部への成膜材料の回り込み防止でき、成膜パターンのズレを防止できる優れた蒸着装置となる。 In the invention according to claim 15, the alignment mechanism includes an abutting unit in which at least one corner of the substrate and the protective mask or two adjacent end surfaces abut against an abutting member provided on the substrate transport tray. Since the alignment is performed and the protective mask is configured to be tightly fixed to the substrate transport tray or the substrate fixed to the substrate transport tray, for example, the end surfaces of the substrate and the protective mask are aligned, and the substrate and the protective mask are abutted against each other. Since it can be aligned by pressing it against the member from the facing surface, this alignment can be performed easily with high accuracy, and the deposition material can be prevented from entering the non-deposition part, and the deposition can be prevented from being misaligned. It becomes a device.
 また、請求項16記載の発明においては、前記アライメント機構は、基板搬送トレイ若しくは保護マスクに設けた位置決めピンが、保護マスク若しくは基板搬送トレイに設けられた基準穴に収まるように、保護マスクを保持する保護マスク用XYθステージにより位置合わせを行い、この保護マスクを前記基板搬送トレイ若しくはこの基板搬送トレイに固定した基板に密着固定するように構成したから、基板搬送トレイと保護マスクの基準位置を合わせることで、基板と保護マスクの位置を精度良く容易に位置合せすることができ、非成膜部への成膜材料の回り込みを防止でき、成膜パターンのズレを防止できる優れた蒸着装置となる。 According to a sixteenth aspect of the present invention, the alignment mechanism holds the protective mask so that the positioning pins provided on the substrate transport tray or the protective mask can be received in the reference holes provided on the protective mask or the substrate transport tray. Alignment is performed by the protective mask XYθ stage, and the protective mask is configured to be closely fixed to the substrate transport tray or the substrate fixed to the substrate transport tray, so that the reference positions of the substrate transport tray and the protective mask are aligned. Thus, the position of the substrate and the protective mask can be aligned accurately and easily, and the deposition material can be prevented from wrapping around the non-film-formation portion, and the film deposition pattern can be prevented from shifting. .
 また、請求項17記載の発明においては、前記アライメント機構は、基板及び保護マスクに設けた基準パターンを撮像する撮像手段と、前記撮像手段による撮像画像に基づいて前記基準パターンの位置ずれ量が所定値内となるように、保護マスクを保持する前記保護マスク用XYθステージにより位置合わせを行い、保護マスクを基板搬送トレイ若しくはこの基板搬送トレイに固定した基板に密着固定するように構成したから、撮像手段により得られた画像を、画像処理によりズレ量を高精度に計測できるため、画像処理により得られたズレ量をもとに、移動量をXYθステージにフィードバックすることができ、基板と保護マスクの位置を高精度に位置合せでき、非成膜部への成膜材料の回り込みを確実に防止することができる優れた蒸着装置となる。 In the invention according to claim 17, the alignment mechanism includes an imaging unit that images a reference pattern provided on a substrate and a protective mask, and a positional deviation amount of the reference pattern is predetermined based on an image captured by the imaging unit. Since the positioning is performed by the protective mask XYθ stage holding the protective mask so that the value is within the range, and the protective mask is closely fixed to the substrate transfer tray or the substrate fixed to the substrate transfer tray, the imaging is performed. Since the amount of displacement of the image obtained by the means can be measured with high accuracy by image processing, the amount of movement can be fed back to the XYθ stage based on the amount of displacement obtained by image processing. An excellent vapor deposition system that can accurately align the position of the film and prevent the film formation material from entering the non-film formation area. It made.
 また、請求項18記載の発明においては、蒸着マスクにより形成される成膜パターンが、隣接する成膜パターンに到達しないため、基板と蒸着マスクのギャップが広く取れ、基板と蒸着マスクの間に保護マスクを設けることができ、またこのように隣接する蒸着膜に到達しない為、RGB画素の各々における混色を防止することができるなど優れた蒸着装置となる。 In the invention described in claim 18, since the film formation pattern formed by the vapor deposition mask does not reach the adjacent film formation pattern, the gap between the substrate and the vapor deposition mask can be widened, and protection is provided between the substrate and the vapor deposition mask. Since a mask can be provided and the adjacent vapor deposition film is not reached in this way, the color deposition in each of the RGB pixels can be prevented, resulting in an excellent vapor deposition apparatus.
 また、請求項19記載の発明においては、前記成膜材料を有機材料としたから、有機ELデバイスのみならず、有機薄膜太陽電池や有機EL照明などの有機エレクトロニクス分野の真空成膜に広く適用でき、極めて有効な蒸着装置となる。 In the invention described in claim 19, since the film forming material is an organic material, it can be widely applied not only to organic EL devices but also to vacuum film forming in organic electronics fields such as organic thin film solar cells and organic EL lighting. It becomes a very effective vapor deposition apparatus.
 また、請求項20記載の発明においては、請求項1~6のいずれか1項に記載の蒸着装置を用いて、基板上に蒸着マスクのマスク開口部により規定される成膜パターンの蒸着膜を形成する成膜方法であるから、有機ELデバイスのみならず、有機薄膜太陽電池や有機EL照明などの有機エレクトロニクス分野の真空成膜に広く適用でき、極めて有効な蒸着装置を用いた成膜方法となる。 In the twentieth aspect of the invention, a vapor deposition film having a film formation pattern defined by the mask opening of the vapor deposition mask is formed on the substrate using the vapor deposition apparatus according to any one of the first to sixth aspects. Since it is a film formation method to be formed, it can be widely applied not only to organic EL devices but also to vacuum film formation in the field of organic electronics such as organic thin film solar cells and organic EL lighting, and a film formation method using an extremely effective vapor deposition apparatus Become.
第1実施例の説明正面図である。It is a description front view of 1st Example. 第1実施例の説明側面図である。It is a description side view of 1st Example. 第2実施例の説明平面図である。It is an explanatory top view of the 2nd example. 第2実施例の保護マスク保持装置(磁石を用いた保護マスク固定手段)の具体例を示すもので、(a)は磁石を回転させる、(b)は磁石を上下離反させる、(c)は磁石を左右スライド離反させて、磁力を変化させ保護マスクを着脱させる構成例を示す説明正面図である。The specific example of the protective mask holding | maintenance apparatus (protective mask fixing means using a magnet) of 2nd Example is shown, (a) rotates a magnet, (b) separates a magnet up and down, (c) is It is explanatory front view which shows the structural example which makes a magnet slide left and right, changes a magnetic force, and attaches / detaches a protective mask. 第3実施例の説明正面図である。It is a description front view of 3rd Example. 第3実施例の要部の拡大説明図である。It is expansion explanatory drawing of the principal part of 3rd Example. 第3実施例の説明分解斜視図である。It is a description disassembled perspective view of 3rd Example. (a)は第4実施例の説明平面図で、(b)は第4実施例の説明正面図である。(A) is a description top view of 4th Example, (b) is a description front view of 4th Example. 第5実施例の説明正面図である。It is a description front view of 5th Example. 第6実施例の説明正面図である。It is a description front view of 6th Example. 第7実施例の説明斜視図である。It is a description perspective view of 7th Example. (a)は第8実施例の説明平面図で、(b)は第8実施例の説明正面図である。(A) is a description top view of 8th Example, (b) is a description front view of 8th Example. (a)は第9実施例の説明平面図で、(b)は第9実施例の説明正面図である。(A) is a description top view of 9th Example, (b) is a description front view of 9th Example. (a)は第10実施例の説明斜視図で、(b)は第10実施例の説明平面図である。(A) is a description perspective view of 10th Example, (b) is a description top view of 10th Example. 第11実施例の説明正面図である。It is a description front view of 11th Example.
 好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 Embodiments of the present invention that are considered suitable will be briefly described with reference to the drawings, illustrating the operation of the present invention.
 蒸発源1より蒸発した成膜材料が、基板2に対向して配置される蒸着マスク3のマスク開口部4を通過することにより、このマスク開口部4で規定される成膜パターンの蒸着膜が、前記基板2の成膜面に設けられた成膜部に形成される。この際、基板2と蒸着マスク3とは離間した状態で、基板2が蒸発源1及び蒸着マスク3に対して相対移動するため、小型の蒸着マスク3でも大型の基板2に蒸着させることができ、蒸着マスク3は小型でよいため、高精細なマスク開口部4を実現でき、歪みの問題も生じにくいこととなる。 The deposition material evaporated from the evaporation source 1 passes through the mask opening 4 of the deposition mask 3 disposed to face the substrate 2, so that the deposition film having the deposition pattern defined by the mask opening 4 is formed. The film is formed on a film forming portion provided on the film forming surface of the substrate 2. At this time, since the substrate 2 moves relative to the evaporation source 1 and the vapor deposition mask 3 while the substrate 2 and the vapor deposition mask 3 are separated from each other, even the small vapor deposition mask 3 can be vapor-deposited on the large substrate 2. Since the vapor deposition mask 3 may be small, a high-definition mask opening 4 can be realized, and the problem of distortion hardly occurs.
 更に、基板2の成膜部周囲の非成膜部を別途設けた保護マスク5により覆う構成とすることで、非成膜部への回り込みによる蒸着も確実に防止し、品質に優れ高留りな蒸着を実現できることとなる。 Furthermore, by adopting a configuration in which the non-film forming part around the film forming part of the substrate 2 is covered with a protective mask 5 provided separately, vapor deposition due to wrapping around the non-film forming part is reliably prevented, and the quality is excellent and the yield is high. Vapor deposition can be realized.
 本発明の具体的な実施例1について図面に基づいて説明する。 Specific Example 1 of the present invention will be described with reference to the drawings.
 本実施例では、図1に示すように、例えば不図示の坩堝を加熱し成膜材料を噴出する蒸発源1を設けている。具体的には例えばその蒸発口部をX方向に複数並設し、更にこの蒸発源1を相対移動方向のY方向に並設し、この各蒸発源1の各蒸発口部から成膜材料を噴出させ、この蒸発源1上に設けられたマスクホルダー10に固定された蒸着マスク3のマスク開口部4により、蒸着マスク3と離間した状態で搬送される基板2へ前記マスク開口部4により規定された成膜パターンの蒸着膜が形成される構成としている。 In this embodiment, as shown in FIG. 1, for example, an evaporation source 1 for heating a crucible (not shown) and ejecting a film forming material is provided. Specifically, for example, a plurality of the evaporation ports are arranged in parallel in the X direction, and further, the evaporation source 1 is arranged in the Y direction of the relative movement direction, and the film forming material is supplied from each evaporation port of each evaporation source 1. The mask opening 4 defines the substrate 2 to be transported in a state of being separated from the vapor deposition mask 3 by the mask opening 4 of the vapor deposition mask 3 which is ejected and fixed to the mask holder 10 provided on the evaporation source 1. The vapor deposition film having the film formation pattern thus formed is formed.
 またこのとき、基板2の非成膜部を覆うように、基板2と蒸着マスク3との間に保護マスク5を備え、基板2の非成膜部に成膜材料が付着するのを防止するように構成している。具体的には、基板2の中央の成膜部28を開口し、基板2の周辺部の非成膜部29を覆うように設置した枠板状の保護マスク5を、基板2と蒸着マスク3との間に設けても良いし、複数に分割した保護マスク5を各非成膜部29を覆うように配設しても良い。 At this time, a protective mask 5 is provided between the substrate 2 and the vapor deposition mask 3 so as to cover the non-film forming portion of the substrate 2, thereby preventing the film forming material from adhering to the non-film forming portion of the substrate 2. It is configured as follows. Specifically, the frame-shaped protective mask 5 which is opened so as to cover the non-film-forming part 29 in the peripheral part of the substrate 2 is opened. The protective mask 5 divided into a plurality of parts may be provided so as to cover each non-film forming portion 29.
 また更に説明すると、例えば、有機ELディスプレイデバイスに用いられるガラス基板2には、陽極電極と陰極電極の電極配線パターンや有機EL素子を駆動させる薄膜トランジスタ(TFT)等の回路パターンが形成されており、これらはディスプレイデバイス製品とするための外部制御機器との接続端子として設けられている。このような領域(非成膜部)に前記成膜材料が付着した場合、前述した外部制御機器との接続において接続不良が発生するため、製品歩留りを大きく低下させる要因となる。 Further, for example, on the glass substrate 2 used in the organic EL display device, an electrode wiring pattern of an anode electrode and a cathode electrode, and a circuit pattern such as a thin film transistor (TFT) for driving the organic EL element are formed. These are provided as connection terminals with an external control device for a display device product. When the film forming material adheres to such a region (non-film forming portion), a connection failure occurs in connection with the external control device described above, which causes a significant decrease in product yield.
 従って、これらの基板2の配線パターンは、前記成膜材料が付着してはならない非成膜部にする必要がある。従来の基板とマスクが密着したマスク蒸着法では、基板サイズが小型であれば蒸着マスク自身で非成膜部分を覆うことが可能であったが、基板の大型化に伴い(例えば第5世代ガラス基板(1100mm×1300mm)以降)、基板サイズに対応した蒸着マスクの製造は困難である。即ち、高精細パターンのマスク開口部を基板全面を覆うサイズで蒸着マスクを製造することは困難である。 Therefore, the wiring pattern of these substrates 2 needs to be a non-film forming portion where the film forming material should not adhere. In the conventional mask vapor deposition method in which the substrate and the mask are in close contact, if the substrate size is small, it is possible to cover the non-deposition portion with the vapor deposition mask itself. Substrate (1100mm x 1300mm or later), it is difficult to manufacture a deposition mask corresponding to the substrate size. That is, it is difficult to manufacture a vapor deposition mask with a size that covers the entire surface of the mask opening of the high-definition pattern.
 そこで、本実施例は、図1,図2に示すように、蒸着マスク3は基板2移動方向(Y方向)に短く設定されており、蒸着マスク3上を基板2が通過することで、連続された蒸着膜が基板2全面に形成されるように構成している。 Therefore, in this embodiment, as shown in FIGS. 1 and 2, the vapor deposition mask 3 is set to be short in the movement direction (Y direction) of the substrate 2, and the substrate 2 passes over the vapor deposition mask 3, thereby continuously. The deposited film is formed on the entire surface of the substrate 2.
 即ち、基板2を基板搬送トレイ7に固定して蒸着マスク3と離間した状態で水平搬送する移動装置を備えることで、小型の蒸着マスク3でも大型の基板2の全面に高精細な成膜パターンの蒸着膜を形成できるように構成し、この基板2と蒸着マスク3との間に、前述のように非成膜部29を覆う保護マスク5を蒸着マスク3とは別に設けている。 That is, by providing a moving device that fixes the substrate 2 to the substrate transfer tray 7 and horizontally transfers the substrate 2 in a state of being separated from the vapor deposition mask 3, a high-definition film forming pattern is formed on the entire surface of the large substrate 2 even with the small vapor deposition mask 3. A protective mask 5 is provided between the substrate 2 and the vapor deposition mask 3 separately from the vapor deposition mask 3 so as to cover the non-film formation portion 29 as described above.
 言い換えると、この基板2を前述のように蒸発源1及び蒸着マスク3に対して離間距離を保持して水平搬送する搬送装置(移動装置)を備えた構成として、基板2を蒸着マスク3に対しては一定の離間距離を保持したまま相対的に搬送させ、保護マスク5は、前記ガラス基板2に対して図示しない位置合せ機構(例えば突き当てやアライメントピン)によりアライメントして、基板2の非成膜部に対応するように不図示の保護マスク保持装置6により配置固定する構成としている。 In other words, as described above, the substrate 2 is mounted on the vapor deposition mask 3 with a transport device (moving device) that horizontally transports the substrate 2 while maintaining a separation distance from the evaporation source 1 and the vapor deposition mask 3 as described above. Then, the protective mask 5 is relatively transported while maintaining a certain separation distance, and the protective mask 5 is aligned with the glass substrate 2 by an alignment mechanism (not shown, for example, butting or alignment pins), so The arrangement is fixed by a protective mask holding device 6 (not shown) so as to correspond to the film forming section.
 従って、蒸発源1と対向するように配置された基板2及び保護マスク5は、Y方向に沿って移動し、連続的に蒸着を行うスキャニング成膜方法で蒸着が行われる構成としている。 Therefore, the substrate 2 and the protective mask 5 arranged so as to face the evaporation source 1 are configured to be deposited by a scanning film forming method in which the substrate 2 and the protective mask 5 move along the Y direction and are continuously deposited.
 ここで、この保護マスク5は基板2と同じ速度で移動するが、保護マスク5は、基板2の非成膜部29に応じて相対的に位置合せがされ固定されるように構成している。 Here, the protective mask 5 moves at the same speed as the substrate 2, but the protective mask 5 is configured to be relatively aligned and fixed in accordance with the non-film forming portion 29 of the substrate 2. .
 保護マスク5の固定方法は、一般的な保持装置(例えばクランプやクリップ)などが選択できるが、この保持装置(保護マスク固定手段)を、基板2を固定し搬送される移動装置として設けた基板搬送トレイ7外周部に設けて、これにより基板2と蒸着マスク3の間に保護マスク5を配置固定する構成としている。従って、基板2と基板2に固定された保護マスク5は、前記基板搬送トレイ7により順次複数の蒸発源1及び蒸着マスク3に対して離間状態で搬送され成膜されることにより、非成膜部29への付着を防止し、高歩留りな装置となるように構成している。 As a method for fixing the protective mask 5, a general holding device (for example, a clamp or a clip) can be selected, and this holding device (protective mask fixing means) is provided as a moving device that fixes and transports the substrate 2. The protective mask 5 is arranged and fixed between the substrate 2 and the vapor deposition mask 3 by being provided on the outer periphery of the transfer tray 7. Accordingly, the substrate 2 and the protective mask 5 fixed to the substrate 2 are sequentially transported and separated from the plurality of evaporation sources 1 and the vapor deposition mask 3 by the substrate transport tray 7 to form a film. It is configured to prevent the adhesion to the portion 29 and to achieve a high yield device.
 また、蒸着マスク3は、基板2に対して良好な平面度を維持する必要がある為、蒸着マスク3のX方向若しくはY方向にテンションを掛けた状態でマスクホルダー10として設けたマスクフレーム10に固定(例えばスポット溶接)することが望ましい。それにより、基板2との良好な平面度を維持することができる。 Further, since the vapor deposition mask 3 needs to maintain good flatness with respect to the substrate 2, the vapor deposition mask 3 is attached to a mask frame 10 provided as a mask holder 10 with tension applied in the X direction or Y direction of the vapor deposition mask 3. It is desirable to fix (for example, spot welding). Thereby, good flatness with the substrate 2 can be maintained.
 以上のように本実施例(第1実施例)によれば、蒸発源1および蒸着マスク3と基板2が離間状態で相対移動する成膜において、基板2と蒸着マスク3の間に保護マスク5を設ける事で、成膜材料が基板成膜面の非成膜部29へ回り込む事を防止し、高歩留りな蒸着装置となる。 As described above, according to the present embodiment (first embodiment), the protective mask 5 is provided between the substrate 2 and the vapor deposition mask 3 in the film formation in which the evaporation source 1 and the vapor deposition mask 3 and the substrate 2 are relatively moved in a separated state. By providing the above, it is possible to prevent the film forming material from entering the non-film forming portion 29 on the film forming surface of the substrate, and to obtain a high-yield vapor deposition apparatus.
 本発明の具体的な実施例2について図面に基づいて説明する。 Specific Example 2 of the present invention will be described with reference to the drawings.
 図3、図4に示す第2実施例は、保護マスク5を着脱する保護マスク保持装置6(保護マスク固定手段6)を、基板搬送トレイ7に設けた磁石8により構成した実施例であり、図3、図4はこの保護マスク固定手段6を設けた基板搬送トレイ7の断面図である。図3に示すように、本実施例の磁力による保護マスク固定手段6は、基板搬送トレイ7に成膜面を下面にして固定されたガラス基板2の非成膜部29を覆うように、保護マスク5を備え、保護マスク5は基板搬送トレイ7内部に設けられた磁石8により基板2若しくは基板搬送トレイ7に吸着固定され、基板2の非成膜部29に成膜材料が付着する現象を防止するように構成している。 The second embodiment shown in FIGS. 3 and 4 is an embodiment in which a protective mask holding device 6 (protective mask fixing means 6) for attaching and detaching the protective mask 5 is configured by a magnet 8 provided on the substrate transport tray 7. 3 and 4 are cross-sectional views of the substrate transfer tray 7 provided with the protective mask fixing means 6. As shown in FIG. 3, the protective mask fixing means 6 by the magnetic force of the present embodiment protects the non-film forming portion 29 of the glass substrate 2 fixed to the substrate transport tray 7 with the film forming surface facing down. The mask 5 is provided, and the protective mask 5 is attracted and fixed to the substrate 2 or the substrate transport tray 7 by the magnet 8 provided in the substrate transport tray 7, and the phenomenon that the film forming material adheres to the non-film forming portion 29 of the substrate 2 It is configured to prevent.
 この保護マスク5を、基板搬送トレイ7内部に設けられた磁石8による保護マスク固定手段6により吸着保持することで、基板搬送トレイ7を複数の蒸膜室を搬送させる際に、物理的な保持機構(例えばクランプやクリップ)を基板2と蒸着マスク3との間に設ける必要が無いので、搬送時に蒸着マスク3等への接触を防ぐことができる。また、保護マスク5を基板2背面からの磁力により吸着するので、基板2と密着して保護マスク5を配置することができるため、成膜材料の回り込みに対してより一層の効果が実現できる。 The protective mask 5 is physically held when the substrate transport tray 7 is transported through a plurality of vapor deposition chambers by being attracted and retained by the protective mask fixing means 6 by the magnet 8 provided inside the substrate transport tray 7. Since it is not necessary to provide a mechanism (for example, a clamp or a clip) between the substrate 2 and the vapor deposition mask 3, it is possible to prevent contact with the vapor deposition mask 3 or the like during transportation. Further, since the protective mask 5 is attracted by the magnetic force from the back surface of the substrate 2, the protective mask 5 can be disposed in close contact with the substrate 2, so that a further effect can be realized against the wraparound of the film forming material.
 この基板搬送トレイ7に配設される磁力による保護マスク固定手段6としては、例えば、フェライト磁石、ネオジム磁石、サマリウムコバルト磁石などの永久磁石、又は磁性を持った芯材周辺のコイルに通電し一時的に磁力を発生させる電磁石などを用いることができるが、真空室外部若しくは基板搬送トレイ7内部からの電源供給の必要が無い永久磁石が望ましい。磁石の形状としては、円板状、円柱状、角棒状などが選ばれるが、基板搬送トレイ7に配置するには角状が望ましい。また、基板搬送トレイの重量を軽くする為にシート状のマグネットを用いても良い。 As the protective mask fixing means 6 by the magnetic force disposed on the substrate transport tray 7, for example, a permanent magnet such as a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, or a coil around a magnetic core material is energized temporarily. An electromagnet or the like that generates a magnetic force can be used, but a permanent magnet that does not require power supply from the outside of the vacuum chamber or the inside of the substrate transport tray 7 is desirable. As the shape of the magnet, a disc shape, a columnar shape, a square bar shape, or the like is selected. However, a square shape is desirable for placement on the substrate transport tray 7. Further, a sheet-like magnet may be used to reduce the weight of the substrate transfer tray.
 また磁石8の配置としては、基板2の非成膜部29に合わせて基板搬送トレイ内部に磁石8を配置し、前記非成膜部29に応じて設けられた保護マスク5を基板2に密着固定させる構成とする。例えば、基板2が1面取りのパターンであれば、非成膜部29は外周部のみなので、基板搬送トレイ7外周部のみに設ければよく、例えば1枚の枠状板で構成しても良いし、複数枚に分割した構成とし、夫々を配設しても良く、また多面取りでは、外周部のみならずパネル間の桟部分に配置する構成としても良いし、この桟部分を有する一枚板としても良い。 As for the arrangement of the magnet 8, the magnet 8 is arranged inside the substrate transport tray in accordance with the non-film forming portion 29 of the substrate 2, and the protective mask 5 provided according to the non-film forming portion 29 is in close contact with the substrate 2. The structure is fixed. For example, if the substrate 2 is a one-chamfered pattern, the non-film forming portion 29 is only the outer peripheral portion, so it may be provided only on the outer peripheral portion of the substrate transport tray 7, and may be constituted by, for example, one frame-shaped plate. However, it may be divided into a plurality of pieces, each of which may be arranged, and in multi-chamfering, it may be arranged not only at the outer peripheral part but also at the crosspiece part between the panels, or one piece having this crosspiece part It is good also as a board.
 また、保護マスク5の着脱には、基板搬送トレイ7若しくは蒸着室に設けられた着脱機構により保護マスク5を着脱させる。具体的には、図4(a)に示すように基板搬送トレイ7に設けられた永久磁石8を90度回転させる磁石駆動機構9を設けることにより保護マスク5に掛かる磁界を変化させることにより着脱させる。 In addition, the protective mask 5 is attached / detached by the attaching / detaching mechanism provided in the substrate transfer tray 7 or the vapor deposition chamber. Specifically, as shown in FIG. 4A, the magnet drive mechanism 9 for rotating the permanent magnets 8 provided on the substrate carrying tray 7 by 90 degrees is provided, thereby changing the magnetic field applied to the protective mask 5 to be attached and detached. Let
 また、図4(b),(c)に示すように基板搬送トレイ7に設けられている磁石8を、基板搬送トレイ7に設けられた伸縮する駆動軸を設けた磁石駆動機構9により、保護マスク5に対して磁石10を直動させることにより、保護マスク5から距離を離し、磁力を弱めることで着脱させる方法としても良い。また、基板搬送トレイ7に開口部を設け、この開口部に上下昇降機構ピンを挿入し、直接保護マスク5を着脱させる構造としても良い。 Further, as shown in FIGS. 4B and 4C, the magnet 8 provided on the substrate transfer tray 7 is protected by a magnet drive mechanism 9 provided with a drive shaft extending and retracting provided on the substrate transfer tray 7. A method may be adopted in which the magnet 10 is moved linearly with respect to the mask 5 so that the distance from the protective mask 5 is increased and the magnetic force is weakened to be attached or detached. Moreover, it is good also as a structure which provides an opening part in the board | substrate conveyance tray 7, inserts an up-and-down raising / lowering mechanism pin in this opening part, and attaches or detaches the protective mask 5 directly.
 以上のように本実施例(第2実施例)によれば、基板搬送トレイ7内部に磁力による保護マスク固定手段6を設けているので、基板2若しくは基板搬送トレイ7と保護マスク5との密着性を高めて固定することができる。また、磁力による固定は、外部からの制御や電源を必要とせず、また基板2との位置合せがズレることなく、複数の蒸着室を移動して連続成膜を行うことが出来る。 As described above, according to the present embodiment (second embodiment), since the protective mask fixing means 6 is provided by the magnetic force inside the substrate transport tray 7, the substrate 2 or the substrate transport tray 7 and the protective mask 5 are in close contact with each other. It can be fixed with increased sex. In addition, fixation by magnetic force does not require external control or a power source, and can be continuously formed by moving through a plurality of vapor deposition chambers without misalignment with the substrate 2.
 本発明の具体的な実施例3について図面に基づいて説明する。 Specific Example 3 of the present invention will be described with reference to the drawings.
 図5、図6および図7は本実施例に係る静電チャック11を設けた基板搬送トレイ7の断面図である。図5に示すように、本実施例の静電チャック11は、基板搬送トレイ7内部若しくは基板接触面に設けられており、図7に示すように絶縁体26により保護された電極27にプラス・マイナスの電荷の偏りが発生し、それにより基板2接触面近傍には、逆電荷が誘導されて、基板2の電荷がそれぞれ引き合い、吸着固定される構成としている。ガラス基板2は、基板サイズが大きくなると自重によりたわみが発生し、基板2端面のみを単純保持すると破断する虞がある。また、近年のディスプレイを構成するガラス基板2は厚みも薄く(例えば板厚0.5mm)、従来の小片基板2のように基板2端面のみの単純支持では保持が難しい。本実施例では、前記絶縁体26に覆われた電極27で構成した前記静電チャック11を基板搬送トレイ7表面に露出させ、基板2背面に直接接触させるように設けたことから、基板2を基板搬送トレイ7に水平且つ基板2背面全体を面で吸着保持する事ができる。 5, 6 and 7 are sectional views of the substrate transfer tray 7 provided with the electrostatic chuck 11 according to the present embodiment. As shown in FIG. 5, the electrostatic chuck 11 of the present embodiment is provided inside the substrate transport tray 7 or on the substrate contact surface, and is added to the electrode 27 protected by the insulator 26 as shown in FIG. A negative charge bias is generated, so that reverse charges are induced in the vicinity of the contact surface of the substrate 2, and the charges of the substrate 2 are attracted and attracted and fixed. The glass substrate 2 may bend due to its own weight when the substrate size is increased, and may be broken if only the end surface of the substrate 2 is simply held. Further, the glass substrate 2 constituting the recent display is thin (for example, 0.5 mm thick), and it is difficult to hold the glass substrate 2 by simple support of only the end face of the substrate 2 like the conventional small substrate 2. In this embodiment, since the electrostatic chuck 11 composed of the electrode 27 covered with the insulator 26 is exposed on the surface of the substrate transport tray 7 and directly in contact with the back surface of the substrate 2, the substrate 2 is The entire back surface of the substrate 2 can be sucked and held horizontally on the substrate transport tray 7.
 また、図7に示すように1枚のガラス基板2に対して、成膜部28が複数に分割形成されている場合には、静電チャック11も成膜部28のサイズに応じて複数分割し、各々の基板2の成膜部28に対応する基板搬送トレイ7に複数分割して設置されることにより、最も成膜の精度が必要とされる成膜部28の基板自重によるたわみを確実に防止し、蒸着マスク3との水平を高精度にあわせることが出来るため、高精度の成膜が可能となる。 Further, as shown in FIG. 7, when the film forming unit 28 is divided into a plurality of parts on one glass substrate 2, the electrostatic chuck 11 is also divided into a plurality according to the size of the film forming unit 28. In addition, by being divided into a plurality of substrate transfer trays 7 corresponding to the film forming sections 28 of each substrate 2, the deflection due to the substrate weight of the film forming section 28 that requires the highest film forming accuracy is ensured. Therefore, it is possible to adjust the horizontal alignment with the vapor deposition mask 3 with high accuracy, so that highly accurate film formation is possible.
 以上のように本実施例(第3実施例)によれば、静電チャック11を基板搬送トレイ7表面に露出させ、基板2背面に直接接触させるように設けたことから、基板2を基板搬送トレイ7に水平且つ基板2背面全体を面で吸着保持し、本実施例の基板2と蒸着マスク3が離間状態で基板2と蒸発源1とが相対移動する構成において、基板2と蒸着マスク3との距離を平行に保つことで、蒸着マスク3により形成されるパターン位置精度を良好に保ち、高歩留りな蒸着装置を提供することができる。 As described above, according to the present embodiment (third embodiment), since the electrostatic chuck 11 is exposed on the surface of the substrate transport tray 7 and directly in contact with the back surface of the substrate 2, the substrate 2 is transported. In the structure in which the entire back surface of the substrate 2 is sucked and held on the tray 7 and the substrate 2 and the evaporation mask 3 of this embodiment are separated from each other, the substrate 2 and the evaporation source 1 are relatively moved. By keeping the distance between and parallel to each other, the pattern position accuracy formed by the vapor deposition mask 3 can be kept good, and a high yield vapor deposition apparatus can be provided.
 本発明の具体的な実施例4について図面に基づいて説明する。 Specific Example 4 of the present invention will be described with reference to the drawings.
 図8は本実施例に係る静電チャック11を外部に設けた電源13より、接続配線30を通じて基板搬送トレイ7に設けた蓄電池31に電力を供給する外部電源13による静電チャック11の駆動を示した説明図である。この静電チャック11は、表面に設けられた電極27に電力を印加することにより静電気を発生させ、基板2を吸着するため、基板保持時には、常に静電チャック11(電極27)に電力を印加しなくてはならない。本実施例の静電チャック11は、図8に示すように真空の蒸着室(成膜室)外部に設けられた電源13から、接続配線30を通り静電チャック11に電力を供給する事が出来るため、成膜中は常に安定した吸着力に制御する事が出来る。前記接続配線30は、静電チャック11が設置されている基板搬送トレイ7が蒸発源1と蒸着マスク3に対して相対移動するに際して追従できる構成とし、常に安定した動作を実現する事が出来る。 FIG. 8 shows the driving of the electrostatic chuck 11 by the external power supply 13 that supplies power to the storage battery 31 provided on the substrate carrying tray 7 through the connection wiring 30 from the power supply 13 provided outside the electrostatic chuck 11 according to the present embodiment. It is explanatory drawing shown. The electrostatic chuck 11 generates static electricity by applying electric power to the electrode 27 provided on the surface and attracts the substrate 2, so that power is always applied to the electrostatic chuck 11 (electrode 27) when holding the substrate. I have to do it. As shown in FIG. 8, the electrostatic chuck 11 of this embodiment can supply power to the electrostatic chuck 11 from the power supply 13 provided outside the vacuum deposition chamber (deposition chamber) through the connection wiring 30. Therefore, it is possible to control the adsorption force constantly during film formation. The connection wiring 30 is configured to be able to follow when the substrate carrying tray 7 on which the electrostatic chuck 11 is installed moves relative to the evaporation source 1 and the vapor deposition mask 3 and can always realize a stable operation.
 さらに、基板2の着脱には静電チャック11の電源をON/OFFする動作が必要であるが、電源13を外部に設けたことにより電源操作が容易となる。また、外部電源13を不図示の無停電電源装置(例えばリチウムイオン電池)に接続しておけば、前記電源13が切断された場合にも、前記無停電電源装置に蓄積していた電力を供給し、瞬時電圧低下や停電が静電チャック11に対して起こらないようにすることも出来る。 Furthermore, the operation of turning on / off the power supply of the electrostatic chuck 11 is necessary for the attachment / detachment of the substrate 2, but the power supply operation is facilitated by providing the power supply 13 outside. If the external power supply 13 is connected to an uninterruptible power supply (not shown) (for example, a lithium ion battery), the power stored in the uninterruptible power supply is supplied even when the power supply 13 is disconnected. In addition, an instantaneous voltage drop or power failure can be prevented from occurring with respect to the electrostatic chuck 11.
 以上のように本実施例(第4実施例)によれば、静電チャック11に静電気力を発生させるための電源13を真空室外部に設けたことから、静電チャック11に対して安定して電力を供給することが可能で有り、さらに、電力低下による静電チャック11の吸着力の低下によって生ずる基板2の落下や位置ズレを確実に防止し、ガラス基板2を安定して吸着保持する事ができるので、蒸着マスク3と基板2の位置精度および離間距離を精度良く保ち、高精度・高歩留りな蒸着装置を提供することができる。 As described above, according to this embodiment (fourth embodiment), the power supply 13 for generating the electrostatic force on the electrostatic chuck 11 is provided outside the vacuum chamber. In addition, it is possible to reliably prevent the substrate 2 from dropping or misaligned due to a decrease in the suction force of the electrostatic chuck 11 due to the power reduction, and stably hold the glass substrate 2 by suction. Therefore, it is possible to provide a high-accuracy and high-yield vapor deposition apparatus that maintains the positional accuracy and the separation distance between the vapor deposition mask 3 and the substrate 2 with high accuracy.
 本発明の具体的な実施例5について図面に基づいて説明する。 Specific Example 5 of the present invention will be described with reference to the drawings.
 図9は本実施例に係る静電チャック11に電源としての蓄電池15を設け、被供給導電体部12を通じて電力を供給するシステムの一例を図示したものである。 FIG. 9 illustrates an example of a system in which a storage battery 15 as a power source is provided in the electrostatic chuck 11 according to the present embodiment, and power is supplied through the supplied conductor portion 12.
 一般的なインライン蒸着方式では、真空に維持された複数の蒸着室(成膜室)を通過するために基板搬送トレイ7には一貫した電気配線が接続できず、基板搬送トレイ7は単独で搬送されることが望ましい。静電チャック11は、基板吸着時に電力を必要とするために、基板搬送トレイ7に設けられた蓄電池15により被供給導電体12を介して供給することにより、基板搬送トレイ7単独で複数の蒸着室(成膜室)を通過することができる。この時、基板搬送トレイ7に設けられた蓄電池15は、真空雰囲気下においても駆動できるように、真空遮断ボックス内に配置される。真空遮断ボックス内は大気圧により保持されており、蓄電池の他に電源のON/OFFを制御するスイッチや駆動回路等を配置する。本実施例のスイッチは、真空内でON/OFFができる様に、真空中に配置されているが、真空遮断ボックス内に無線機を設け、外部との通信によるスイッチ構成としても良く、適宜選択される。また、蓄電池15の種類としては、例えば、ニカド電池、ニッケル水素電池、リチウムイオン電池、小型シール鉛電池などを用いることができるが、自己放電率が低く、基板吸着時・非吸着時の充放電を繰返した場合の電圧低下による電池容量が減少するメモリ効果が無いリチウムイオン電池が望ましい。本実施例のように、基板搬送トレイ7内部に電源としての蓄電池15を設けることで、装置全体が、瞬時電圧低下や停電が起こった際にも、静電チャックには影響がなく、外部影響に左右されずに安定して基板2を保持することが出来る。 In a general in-line vapor deposition method, since a plurality of vapor deposition chambers (film deposition chambers) maintained in a vacuum are passed, a consistent electrical wiring cannot be connected to the substrate transport tray 7, and the substrate transport tray 7 is transported alone. It is desirable that Since the electrostatic chuck 11 requires electric power when adsorbing the substrate, the substrate transport tray 7 alone supplies a plurality of vapor depositions by supplying it via the supplied conductor 12 by the storage battery 15 provided on the substrate transport tray 7. It can pass through the chamber (deposition chamber). At this time, the storage battery 15 provided on the substrate transfer tray 7 is arranged in a vacuum shut-off box so that it can be driven even in a vacuum atmosphere. The inside of the vacuum shut-off box is maintained by atmospheric pressure, and in addition to the storage battery, a switch for controlling ON / OFF of the power supply, a drive circuit, and the like are arranged. The switch of this embodiment is placed in a vacuum so that it can be turned ON / OFF in a vacuum. However, a radio can be provided in the vacuum shut-off box, and a switch configuration by communication with the outside may be used. Is done. In addition, as the type of storage battery 15, for example, a nickel-cadmium battery, a nickel metal hydride battery, a lithium ion battery, a small sealed lead battery, etc. can be used, but the self-discharge rate is low, and charging / discharging at the time of substrate adsorption / non-adsorption It is desirable to use a lithium ion battery that does not have the memory effect of reducing the battery capacity due to the voltage drop when the above is repeated. By providing a storage battery 15 as a power source inside the substrate transfer tray 7 as in this embodiment, the entire device has no effect on the electrostatic chuck even when an instantaneous voltage drop or power failure occurs, and external influences The substrate 2 can be held stably without being influenced by the above.
 従って、本実施例(第5実施例)によれば前記第4実施例に比べ、成膜室内での外部電源との接続配線が不要となり、さらには、仕切り弁によって分割された各成膜室においても、電気接続配線の切り替えが不要となるので、静電チャック11によって吸着された基板2の成膜搬送速度を一定に保つことが出来るため、高生産性の装置を提供することが出来る。さらに、外部からの電力影響を受けないため、静電チャック11の安定した動作が可能であり、高歩留りな装置となる。 Therefore, according to the present embodiment (fifth embodiment), connection wiring with an external power source in the film forming chamber is unnecessary as compared with the fourth embodiment, and furthermore, each film forming chamber divided by the gate valve. In this case, since it is not necessary to switch the electric connection wiring, the film forming / conveying speed of the substrate 2 adsorbed by the electrostatic chuck 11 can be kept constant, so that a highly productive apparatus can be provided. Furthermore, since it is not affected by external electric power, the electrostatic chuck 11 can operate stably, resulting in a high yield device.
 本発明の具体的な実施例6について図面に基づいて説明する。 Specific Example 6 of the present invention will be described with reference to the drawings.
 図10は、成膜室33とは別に設けられた非成膜室としてのストック室34において、蓄電池15を設けた静電チャック11に電力を供給する(充電する)システムの一例を図示したものである。前記静電チャック11は、前記第5実施例と同様に、静電チャック11背面に蓄電池15が設けられており、蓄電池15から供給された電力によって静電チャック11に静電気力を発生させ基板2を吸着している。一定時間成膜を行うと静電チャック11により蓄電池15から電力が消費される。 FIG. 10 illustrates an example of a system for supplying (charging) electric power to the electrostatic chuck 11 provided with the storage battery 15 in a stock chamber 34 as a non-film forming chamber provided separately from the film forming chamber 33. It is. As in the fifth embodiment, the electrostatic chuck 11 is provided with a storage battery 15 on the back surface of the electrostatic chuck 11, and an electrostatic force is generated in the electrostatic chuck 11 by the electric power supplied from the storage battery 15. Is adsorbed. When film formation is performed for a certain period of time, electric power is consumed from the storage battery 15 by the electrostatic chuck 11.
 蓄電池15に保持されている電力が消費してくると、静電気の発生が不安定になり、静電気が消失する原因となるため、一定時間使用後に蓄電池15へ給電し、充電する必要がある。蓄電池15へ充電を行うためには、成膜室33から不図示の搬送ロボットにより基板搬送トレイ7が、静電チャック11への外部電力供給機構16を備えた非成膜室であるストック室34に搬送される。ストック室34では、チャンバ外部に設けられた電源13からチャンバ側面に設けられた真空導入口を通り、静電チャック11に設けられた着脱コネクタ32に接続される。このコネクタ32の着脱には、例えば、伸縮するシリンダ先端に外部電源に接続された給電部を設け、静電チャック11が定位置に保持されたのち、シリンダを伸ばして静電チャック11に設けられた給電部と接触することで充電を行い、充電完了後にシリンダを縮めて充電作業を完了する。前記ストック室34は、基板搬送トレイ7を上下昇降できる機構を設けることで複数同時に収容できるように構成されている。充電が終了した基板搬送トレイ7は、制御機構によって、成膜室33に基板搬送トレイ7が必要と判断された場合にストック室34から搬出され、成膜工程へ搬送される。 When the electric power held in the storage battery 15 is consumed, the generation of static electricity becomes unstable and causes the static electricity to disappear. Therefore, it is necessary to feed and charge the storage battery 15 after a certain period of use. In order to charge the storage battery 15, the substrate transfer tray 7 is transferred from the film forming chamber 33 by a transfer robot (not shown) to the stock chamber 34 which is a non-film forming chamber provided with an external power supply mechanism 16 for the electrostatic chuck 11. It is conveyed to. In the stock chamber 34, a power supply 13 provided outside the chamber is connected to a detachable connector 32 provided on the electrostatic chuck 11 through a vacuum inlet provided on the side surface of the chamber. To attach and detach the connector 32, for example, a power feeding unit connected to an external power source is provided at the tip of the expanding and contracting cylinder, and after the electrostatic chuck 11 is held in a fixed position, the cylinder is extended and provided on the electrostatic chuck 11. The battery is charged by contacting with the power feeding unit, and after charging is completed, the cylinder is contracted to complete the charging operation. The stock chamber 34 is configured such that a plurality of stock chambers 34 can be accommodated simultaneously by providing a mechanism capable of moving the substrate transport tray 7 up and down. The charged substrate transport tray 7 is unloaded from the stock chamber 34 and transported to the film forming process when the control mechanism determines that the substrate transport tray 7 is necessary in the film forming chamber 33.
 以上のように本実施例(第6実施例)によれば、成膜室33に隣接してストック室34を設け、非成膜時において、静電チャック11が基板2を繰り返し吸着することにより、電力が消費された蓄電池15を内蔵した基板搬送トレイ7を随時搬入し、前記蓄電池15への充電を行うことで、成膜時には常に安定した電力量を保持した蓄電池15により静電チャック11を運用することができ、さらに、基板搬送トレイ7に対して真空下で適宜充電を繰り返すことができるため、外部への取出し作業が不要となり、充電時間による生産のダウンタイムを減らし、高生産性な装置を提供することができる。 As described above, according to this embodiment (sixth embodiment), the stock chamber 34 is provided adjacent to the film formation chamber 33, and the electrostatic chuck 11 repeatedly adsorbs the substrate 2 during non-film formation. The electrostatic chuck 11 is held by the storage battery 15 that always holds a stable amount of power during film formation by carrying in the substrate transfer tray 7 containing the storage battery 15 in which power is consumed as needed and charging the storage battery 15. In addition, since the substrate transfer tray 7 can be repeatedly charged under vacuum, it is not necessary to take out to the outside, reducing the downtime of production due to the charging time, and high productivity. An apparatus can be provided.
 本発明の具体的な実施例7について図面に基づいて説明する。 Specific Example 7 of the present invention will be described with reference to the drawings.
 図11は、本実施例に係る基板2と蒸着マスク3との位置合わせ方法を模式的に示した説明図である。 FIG. 11 is an explanatory view schematically showing a method for aligning the substrate 2 and the vapor deposition mask 3 according to this embodiment.
 本実施例では、大型基板2でも容易に搬送可能なインライン方式としたもので、横方向では基板2と略合致するが移動方向に対しては幅狭い小型の蒸着マスク3を、張力を付与した状態でマスクフレーム10に固定(例えばスポット溶接等)し、横方向のズレを抑制している。 In this embodiment, an in-line method that can be easily transported even with a large substrate 2 is used. A tension is applied to a small deposition mask 3 that substantially matches the substrate 2 in the lateral direction but is narrow in the moving direction. In this state, it is fixed to the mask frame 10 (for example, spot welding) to suppress lateral displacement.
 本実施例において、マスクフレーム10に固定された蒸着マスク3は、例えばXYθステージと称される、X方向・Y方向およびθ方向に移動可能に設けられた蒸着マスク用XYθステージ25と接続されており、搬送された基板2と蒸着マスク3の間には僅かな隙間を設けた状態で、基板2に設けられたアライメントマークに対して、蒸着マスク3に設けられたアライメントマークを一致させる。この位置合わせにおいては、各アライメントマークを確認できる撮像手段17(例えばCCDカメラ)を備えたアライメント手段により、各々の位置ずれ量を検知し、この位置ずれ量を最小化するように、蒸着マスク3を固定支持したXYθステージ25により移動させ、基板2と蒸着マスク3の位置合せ後、基板2を蒸着マスク3に対して相対移動させることで成膜を行う。基板2に設けられたアライメントマークは、基板搬送方向に対して、最も蒸着マスク3に近い位置に配置され、蒸着マスク3のマスク開口部4を通過する前に、アライメントを完了させる。また、基板2上に搬送方向に対して複数若しくはライン状のアライメントマークを設けることにより、搬送中も逐次アライメントを行える構成としても良い。また、基板2と蒸着マスク3との隙間を測定する光学センサ(例えばレーザセンサ)を用いることにより、同一平面状に設けられた複数の光学センサにより、基板表面高さと蒸着マスク表面高さを測定し、各々の差分から隙間を正確に算出することにより、基板2と蒸着マスク3の接触を防ぎつつ、安定した基板搬送成膜を行うことが出来る。 In this embodiment, the vapor deposition mask 3 fixed to the mask frame 10 is connected to a vapor deposition mask XYθ stage 25 that is movably provided in the X, Y, and θ directions, for example, called an XYθ stage. The alignment mark provided on the vapor deposition mask 3 is aligned with the alignment mark provided on the substrate 2 with a slight gap provided between the conveyed substrate 2 and the vapor deposition mask 3. In this alignment, the vapor deposition mask 3 is used so that each positional deviation amount is detected by an alignment means having an imaging means 17 (for example, a CCD camera) capable of confirming each alignment mark, and this positional deviation amount is minimized. Is moved by an XYθ stage 25 fixedly supported, and after the substrate 2 and the deposition mask 3 are aligned, the substrate 2 is moved relative to the deposition mask 3 to form a film. The alignment mark provided on the substrate 2 is arranged at a position closest to the vapor deposition mask 3 with respect to the substrate conveyance direction, and completes the alignment before passing through the mask opening 4 of the vapor deposition mask 3. Further, by providing a plurality of or line-shaped alignment marks on the substrate 2 in the transport direction, it is possible to perform a sequential alignment during the transport. In addition, by using an optical sensor (for example, a laser sensor) that measures the gap between the substrate 2 and the vapor deposition mask 3, the substrate surface height and the vapor deposition mask surface height are measured by a plurality of optical sensors provided on the same plane. By accurately calculating the gap from each difference, stable substrate transfer film formation can be performed while preventing contact between the substrate 2 and the vapor deposition mask 3.
 本発明の具体的な実施例8について図面に基づいて説明する。 Specific Example 8 of the present invention will be described with reference to the drawings.
 図12(a),(b)は、本実施例に係る基板2と保護マスク3との位置合わせ方法を模式的に示した説明図である。 12 (a) and 12 (b) are explanatory views schematically showing a method for aligning the substrate 2 and the protective mask 3 according to this embodiment.
 本実施例において、例えば基板搬送トレイ7に少なくとも1辺に突き当て部材19を設けることで、基板2の端面を基準とし、突き当て部材19の対角若しくは平行に位置する基板端面を、シリンダ等の伸縮機構により突き当て部材19方向に押し当てる突き当て手段20を設けることで、基板2と保護マスク5の端面を一致させ位置合わせを行うことができる。 In the present embodiment, for example, by providing the substrate transport tray 7 with an abutting member 19 on at least one side, the substrate end surface positioned diagonally or in parallel with the abutting member 19 with respect to the end surface of the substrate 2 is used as a cylinder or the like. By providing the abutting means 20 that presses in the direction of the abutting member 19 by the expansion / contraction mechanism, the end surfaces of the substrate 2 and the protective mask 5 can be aligned to perform alignment.
 本実施例の保護マスク5は、蒸着マスク3とは異なり、高精度のアライメントを必要としないため、基板端面基準の位置合わせ精度においても、十分な効果を発揮する。さらには、位置合わせ方法が簡便であることから、位置合わせに掛かる時間を短縮することが出来る。基板2は、基板搬送トレイ7に設けられた突き当て部材19により位置合わせされた状態で、基板搬送トレイ7に設けられた吸着機構(例えば静電チャック11)により吸着保持されている。保護マスク5は、不図示の別チャンバから搬送ロボットにより搬送され、例えば前記伸縮機構が設けられた保護マスク用XYθステージ24に保持されるように構成し、また、保護マスク5の接触による基板表面の損傷を防ぐために、基板2と保護マスク5は離間しており、保護マスク5を伸縮機構により突き当て部材19方向に移動させ、基板2と保護マスク5の位置合わせを行う。位置合わせ後、基板2と保護マスク5を密着させ、基板搬送トレイ7に設けられた磁石8により保護マスク5を吸着保持させる。基板2と保護マスク5を吸着保持した基板搬送トレイ7は、順次成膜室へ搬送され成膜される。 Unlike the vapor deposition mask 3, the protective mask 5 of the present embodiment does not require high-precision alignment, and thus exhibits a sufficient effect even in alignment accuracy with respect to the substrate end surface. Furthermore, since the alignment method is simple, the time required for alignment can be shortened. The substrate 2 is attracted and held by an attracting mechanism (for example, an electrostatic chuck 11) provided on the substrate transport tray 7 in a state of being aligned by an abutting member 19 provided on the substrate transport tray 7. The protective mask 5 is transported from a separate chamber (not shown) by a transport robot, and is configured to be held by, for example, the protective mask XYθ stage 24 provided with the expansion / contraction mechanism. In order to prevent the damage, the substrate 2 and the protective mask 5 are separated from each other, and the protective mask 5 is moved toward the abutting member 19 by an expansion / contraction mechanism to align the substrate 2 and the protective mask 5. After alignment, the substrate 2 and the protective mask 5 are brought into close contact with each other, and the protective mask 5 is attracted and held by the magnet 8 provided on the substrate transfer tray 7. The substrate transfer tray 7 holding the substrate 2 and the protective mask 5 by suction is sequentially transferred to the film formation chamber and formed into a film.
 従って、本実施例(第8実施例)によれば高速な位置合わせが可能であり、インライン成膜におけるタクトタイムを短くすることが出来ると共に、非成膜部への蒸着粒子の回り込みをより確実に防止することが出来る。 Therefore, according to the present embodiment (eighth embodiment), high-speed alignment is possible, the tact time in in-line film formation can be shortened, and the deposition particles can be more reliably circulated to the non-film formation portion. Can be prevented.
 本発明の具体的な実施例9について図面に基づいて説明する。 Specific Example 9 of the present invention will be described with reference to the drawings.
 図13(a),(b)は、本実施例に係る基板2と保護マスク5との位置合わせ方法を模式的に示した図である。 FIGS. 13A and 13B are diagrams schematically showing a method of aligning the substrate 2 and the protective mask 5 according to the present embodiment.
 本実施例において、基板搬送トレイ7にアライメントピン22を設け、保護マスク5には基準穴としての開口23を設けることにより位置合わせを行う。前記アライメントピン22と開口23は互いに異なるテーパー形状をしており、アライメントピン22と開口23の位置ずれを補正する構造となっている。アライメントピン22は、基板2外周部の基板搬送トレイ7に設けられている。アライメントピン22は、基板搬送トレイ7の対角角部2箇所に設けることで位置合わせを行う。保護マスク5は、不図示の別チャンバから搬送ロボットにより搬送され、XYθステージと称される、X方向・Y方向およびθ方向に移動可能に設けられた保護マスク用ステージ24に保持される。このXYθステージ24に保持された保護マスク5は、このXYθステージ24を上昇させることにより、アライメントピン22に保護マスク5の開口23を合わせる事により基板2と保護マスク5の位置合わせを行い、基板2と保護マスク5を密着させ、基板搬送トレイ7に設けられた磁石8により保護マスク5を吸着保持させる。基板2と保護マスク5を吸着保持した基板搬送トレイ7は、順次成膜室へ搬送され成膜される。 In this embodiment, alignment is performed by providing alignment pins 22 on the substrate transport tray 7 and opening 23 as a reference hole in the protective mask 5. The alignment pin 22 and the opening 23 have different tapered shapes, and have a structure for correcting the positional deviation between the alignment pin 22 and the opening 23. The alignment pins 22 are provided on the substrate transport tray 7 on the outer periphery of the substrate 2. The alignment pins 22 are positioned by providing them at two diagonal corners of the substrate transport tray 7. The protective mask 5 is transferred from a separate chamber (not shown) by a transfer robot, and is held on a protective mask stage 24 that is movably provided in the X, Y, and θ directions, which is called an XYθ stage. The protective mask 5 held on the XYθ stage 24 raises the XYθ stage 24 to align the substrate 2 and the protective mask 5 by aligning the opening 23 of the protective mask 5 with the alignment pin 22. 2 and the protective mask 5 are brought into close contact with each other, and the protective mask 5 is attracted and held by the magnet 8 provided on the substrate transfer tray 7. The substrate transfer tray 7 holding the substrate 2 and the protective mask 5 by suction is sequentially transferred to the film formation chamber and formed into a film.
 従って、本実施例(第9実施例)によれば前記第8実施例に比べ、より精細な位置合わせが可能であり、アライメント精度を向上させることが出来る。従って、非成膜部への蒸着粒子の回り込みをより一層防止することが出来る。 Therefore, according to the present embodiment (the ninth embodiment), finer alignment is possible and the alignment accuracy can be improved as compared with the eighth embodiment. Accordingly, it is possible to further prevent the vapor deposition particles from entering the non-film forming portion.
 本発明の具体的な実施例10について図面に基づいて説明する。 Specific Example 10 of the present invention will be described with reference to the drawings.
 図14(a),(b)は、本実施例に係る基板2と保護マスク5との位置合わせ方法を模式的に示した説明図である。 FIGS. 14A and 14B are explanatory views schematically showing a method of aligning the substrate 2 and the protective mask 5 according to the present embodiment.
 本実施例において、例えばXYθステージと称される、X方向・Y方向およびθ方向に移動可能に設けられた保護マスク用XYθステージ24を備え、保護マスク5は、不図示の別チャンバから搬送ロボットにより搬送され、このXYθステージ24により保持される。基板2は基板搬送トレイ7に設けられた吸着機構(例えば静電チャック11)により吸着保持され、前記基板搬送トレイ7には、基板2に設けられたアライメントマークを撮像手段17例えばCCDカメラ)により確認できる様に、開口が設けられており、前記開口を通じて、基板2と保護マスク5のアライメントマークを前記撮像手段17により認識する。保持された保護マスク5と基板2との間には僅かな隙間を設けた状態で、基板2に設けられたアライメントマークに対して、保護マスク5に設けられたアライメントマークを一致させる。この位置合わせにおいては、各アライメントマークを確認できる撮像手段17を備えたアライメント手段により、各々の位置ずれ量を検知し、基板2と保護マスク5のアライメントマークの位置ずれ量を最小化するように、保護マスク5を固定支持したXYθステージ24により移動させ、基板2と保護マスク5の位置合せ後、XYθステージ24を上昇させることにより、基板2と保護マスク5を密着させ、基板搬送トレイ7に設けられた磁石8により保護マスク5を吸着保持させる。基板2と保護マスク5を吸着保持した基板搬送トレイ7は、順次成膜室へ搬送され成膜される。 In the present embodiment, for example, a protective mask XYθ stage 24 called an XYθ stage, which is provided so as to be movable in the X direction, the Y direction, and the θ direction, is provided. And is held by the XYθ stage 24. The substrate 2 is sucked and held by a suction mechanism (for example, an electrostatic chuck 11) provided on the substrate transport tray 7, and an alignment mark provided on the substrate 2 is placed on the substrate transport tray 7 by an imaging means 17 such as a CCD camera. An opening is provided so that it can be confirmed, and the alignment mark of the substrate 2 and the protective mask 5 is recognized by the imaging means 17 through the opening. The alignment mark provided on the protective mask 5 is made to coincide with the alignment mark provided on the substrate 2 with a slight gap provided between the held protective mask 5 and the substrate 2. In this alignment, the alignment means including the imaging means 17 that can confirm each alignment mark is used to detect the amount of misalignment of each, and to minimize the amount of misalignment between the alignment marks of the substrate 2 and the protective mask 5. The protective mask 5 is fixedly supported and moved by the XYθ stage 24. After the alignment of the substrate 2 and the protective mask 5, the XYθ stage 24 is moved up so that the substrate 2 and the protective mask 5 are brought into close contact with each other on the substrate transport tray 7. The protective mask 5 is attracted and held by the magnet 8 provided. The substrate transfer tray 7 holding the substrate 2 and the protective mask 5 by suction is sequentially transferred to the film formation chamber and formed into a film.
 従って、本実施例(第10実施例)によれば前記第9実施例に比べ、より高精度な位置合わせが可能であり、アライメント精度を向上させることが出来る。従って、非成膜部への蒸着粒子の回り込みをより一層確実に防止することが出来る。 Therefore, according to the present embodiment (tenth embodiment), the alignment can be performed with higher accuracy than the ninth embodiment, and the alignment accuracy can be improved. Therefore, it is possible to more reliably prevent the vapor deposition particles from entering the non-film forming portion.
 本発明の具体的な実施例11について図面に基づいて説明する。 Specific Example 11 of the present invention will be described with reference to the drawings.
 図15は、本実施例に係る基板2と蒸着マスク3とのGap量によって生じる陰影(SH)を模式的に示した説明図である。 FIG. 15 is an explanatory view schematically showing a shadow (SH) generated by the gap amount between the substrate 2 and the vapor deposition mask 3 according to the present embodiment.
 基板2と蒸着マスク3を離間状態で配設し、成膜する場合、蒸着膜の両側端部の傾斜部分である陰影SHが生じる。この陰影SHが隣接する蒸着膜との間隔PPに達しないように、下記の式で表されるように、蒸発口部の開口幅φxを小さく設定してギャップGを大きく設定できるように構成している。 When the substrate 2 and the vapor deposition mask 3 are disposed in a separated state and formed into a film, a shadow SH that is an inclined portion at both end portions of the vapor deposition film occurs. In order to prevent this shadow SH from reaching the interval PP between the adjacent deposited films, the gap G can be set large by setting the opening width φx of the evaporation port portion small as represented by the following equation. ing.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 具体的には、陰影SHを0.03mm以下に設定し、上記TSを100~300mmと、上記φxを0.5mm~3mm設定すると、ギャップGが1mm以上確保できる。例えば、上記TSを100mmで上記φxを3mmとすると、ギャップGは1mmとなり、また上記TSを100mmで上記φxを0.6mmまで小さくすると、ギャップGを5mm確保することが出来る。従って、本実施例によれば予め基板2と蒸着マスク3とのギャップGの大小及び蒸発源1と蒸着マスク3までの距離TSの大小に応じてマスクパターンを形成することで、成膜する画素の陰影SHが隣接する画素へ影響することなく高精度に成膜が行え、さらにはギャップGを広く設定できることから、保護マスク5を容易に設けることができ、成膜材料が基板成膜面の非成膜部へ回り込む事を防止し、さらには基板2と蒸着マスク3との接触を防止し、高歩留りな生産を可能とした蒸着装置となる。 Specifically, if the shadow SH is set to 0.03 mm or less, the TS is set to 100 to 300 mm, and the φx is set to 0.5 mm to 3 mm, the gap G can be secured to 1 mm or more. For example, if the TS is 100 mm and the φx is 3 mm, the gap G is 1 mm. If the TS is 100 mm and the φx is reduced to 0.6 mm, the gap G can be 5 mm. Therefore, according to the present embodiment, pixels to be formed are formed by forming a mask pattern in advance according to the size of the gap G between the substrate 2 and the vapor deposition mask 3 and the distance TS between the evaporation source 1 and the vapor deposition mask 3. The shadow SH of the film can be formed with high accuracy without affecting adjacent pixels, and the gap G can be set wide. Therefore, the protective mask 5 can be easily provided, and the film forming material is formed on the substrate film forming surface. It is possible to prevent the film from entering the non-film-formation part, and further to prevent the contact between the substrate 2 and the vapor deposition mask 3, thereby providing a vapor deposition apparatus that enables high yield production.
 尚、本発明は、実施例1~11に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。 Note that the present invention is not limited to the first to eleventh embodiments, and the specific configuration of each component can be designed as appropriate.

Claims (20)

  1.  蒸発源より蒸発した成膜材料が、基板に対向して配置される蒸着マスクのマスク開口部を通過することにより、このマスク開口部で規定される成膜パターンの蒸着膜が、前記基板の成膜面に設けられた成膜部に形成されるように構成した蒸着装置において、前記基板と前記蒸着マスクとが離間した状態で、前記基板と、前記蒸発源及び前記蒸着マスクとを相対移動させる移動装置を備えた構成とし、前記蒸着膜が前記成膜部の周囲の非成膜部に付着しないようにこの非成膜部を覆う保護マスクを前記基板と前記蒸着マスクとの間に設け、前記保護マスクを保持して前記基板と共に前記蒸発源及び前記蒸着マスクに対して相対移動させる保護マスク保持装置を備えた構成としたことを特徴とする蒸着装置。 The film-forming material evaporated from the evaporation source passes through the mask opening of the vapor deposition mask arranged to face the substrate, so that the vapor deposition film having the film formation pattern defined by the mask opening is formed on the substrate. In a vapor deposition apparatus configured to be formed in a film forming unit provided on a film surface, the substrate, the evaporation source, and the vapor deposition mask are relatively moved in a state where the substrate and the vapor deposition mask are separated from each other. A configuration including a moving device, and a protective mask that covers the non-deposition part is provided between the substrate and the deposition mask so that the vapor deposition film does not adhere to the non-deposition part around the film formation part, A vapor deposition apparatus comprising a protective mask holding device that holds the protective mask and moves the substrate relative to the evaporation source and the vapor deposition mask together with the substrate.
  2.  前記保護マスクを保持する前記保護マスク保持装置は、前記基板を固定してこの基板に前記蒸着膜を蒸着させる蒸着室の内外にこの基板を搬送させる基板搬送トレイに磁石を設け、この基板搬送トレイの磁石により前記保護マスクを所定位置に吸着固定するように構成したことを特徴とする請求項1記載の蒸着装置。 The protective mask holding device for holding the protective mask is provided with a magnet on a substrate transfer tray for transferring the substrate into and out of a vapor deposition chamber for fixing the substrate and depositing the vapor deposition film on the substrate. The vapor deposition apparatus according to claim 1, wherein the protective mask is configured to be attracted and fixed at a predetermined position by a magnet.
  3.  前記基板搬送トレイに、前記磁石を駆動する磁石駆動機構を設け、この磁石駆動機構を作動させることで、前記磁石で生じる磁界の向きを変えることにより、若しくは前記磁石を前記保護マスクに対して移動することにより、前記保護マスクに作用する前記磁界を変化させて、前記基板搬送トレイに対して前記保護マスクを着脱するように前記保護マスク保持装置を構成したことを特徴とする請求項2記載の蒸着装置。 The substrate transport tray is provided with a magnet drive mechanism for driving the magnet, and by operating the magnet drive mechanism, the direction of the magnetic field generated by the magnet is changed, or the magnet is moved with respect to the protective mask. 3. The protection mask holding device according to claim 2, wherein the protection mask holding device is configured to change the magnetic field acting on the protection mask to attach and detach the protection mask with respect to the substrate transport tray. Vapor deposition equipment.
  4.  前記基板搬送トレイは、少なくとも一つ以上の粘着チャック若しくは静電チャックを設けて、前記基板の基板成膜面の反対面を吸着してこの基板を吸着固定する構成としたことを特徴とする請求項2記載の蒸着装置。 The substrate transport tray is provided with at least one adhesive chuck or electrostatic chuck, and is configured to suck and fix the substrate opposite to the substrate film-forming surface of the substrate. Item 3. The vapor deposition apparatus according to Item 2.
  5.  前記粘着チャック若しくは前記静電チャックは、前記基板の複数に分割形成された前記成膜部の各領域に対応する大きさを有し、この各領域毎に各々設けたことを特徴とする請求項4記載の蒸着装置。 The adhesive chuck or the electrostatic chuck has a size corresponding to each region of the film forming unit divided into a plurality of portions of the substrate, and is provided for each region. 4. The vapor deposition apparatus according to 4.
  6.  前記粘着チャック若しくは静電チャックは、前記基板の複数に分割形成された前記成膜部の各領域に対応する大きさを有し、この各領域のうち少なくとも中央部分の領域を吸着する位置に設けた構成としたことを特徴とする請求項4記載の蒸着装置。 The adhesive chuck or the electrostatic chuck has a size corresponding to each region of the film forming unit divided into a plurality of portions of the substrate, and is provided at a position where at least a central portion of each region is adsorbed. The vapor deposition apparatus according to claim 4, wherein the vapor deposition apparatus is configured as described above.
  7.  前記基板搬送トレイに設けた前記粘着チャック若しくは静電チャックにより吸着固定される前記基板の成膜面は、前記蒸着マスクに対して平行に保持されるように構成したことを特徴とする請求項4~6のいずれか1項に記載の蒸着装置。 5. The film forming surface of the substrate that is attracted and fixed by the adhesive chuck or electrostatic chuck provided on the substrate transport tray is configured to be held in parallel to the vapor deposition mask. The vapor deposition apparatus according to any one of 1 to 6.
  8.  前記蒸着マスクは、前記蒸発源と前記基板との間に設けられたマスクホルダーの基板側端部にテンションを付与し張設され、前記基板の成膜面に対して平行に保持されるように構成したことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置。 The deposition mask is stretched by applying tension to a substrate side end portion of a mask holder provided between the evaporation source and the substrate, and is held parallel to the film formation surface of the substrate. 7. The vapor deposition apparatus according to claim 1, wherein the vapor deposition apparatus is configured.
  9.  前記基板搬送トレイに設けた前記静電チャックに供給するための電力を、前記蒸着室外部に配設された電源から供給するように構成したことを特徴とする請求項4~6のいずれか1項に記載の蒸着装置。 7. The apparatus according to claim 4, wherein electric power to be supplied to the electrostatic chuck provided on the substrate transfer tray is supplied from a power source disposed outside the vapor deposition chamber. The vapor deposition apparatus as described in a term.
  10.  基板搬送トレイに設けた前記静電チャックに供給するための電力を、この基板搬送トレイに配設された電源から供給するように構成したことを特徴とする請求項4~6のいずれか1項に記載の蒸着装置。 7. The apparatus according to claim 4, wherein power to be supplied to the electrostatic chuck provided on the substrate transfer tray is supplied from a power source provided on the substrate transfer tray. The vapor deposition apparatus of description.
  11.  前記電源から供給される電力が、前記基板搬送トレイ内部に設けた導電体部を通じて前記静電チャックに電力供給される電力供給機構を備えたことを特徴とする請求項10記載の蒸着装置。 The vapor deposition apparatus according to claim 10, further comprising: a power supply mechanism for supplying electric power supplied from the power source to the electrostatic chuck through a conductor portion provided in the substrate transfer tray.
  12.  前記電源に、被成膜時において前記基板搬送トレイ外部に設けた被供給導電体部を通じて、前記蒸着室外部から電力を供給し充電する外部電力供給機構を備えたことを特徴とする請求項10記載の蒸着装置。 11. The power supply includes an external power supply mechanism that supplies power from outside the vapor deposition chamber through a supplied conductor portion provided outside the substrate transfer tray when the film is formed. The vapor deposition apparatus of description.
  13.  前記基板及び前記蒸着マスクに設けた基準パターンを撮像する撮像手段と、前記撮像手段による撮像画像に基づいて前記基準パターンの位置ずれ量が所定値内となるように、前記蒸着マスクを保持する蒸着マスク用XYθステージにより位置合わせを行い、前記基板を固定してこの基板に前記蒸着膜を蒸着させる蒸着室の内外にこの基板を搬送する前記基板搬送トレイ若しくはこの基板搬送トレイに固定したこの基板に、前記保護マスクを密着固定した構成としたことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置。 An imaging unit that images a reference pattern provided on the substrate and the deposition mask, and an evaporation that holds the deposition mask so that a positional deviation amount of the reference pattern falls within a predetermined value based on an image captured by the imaging unit. Alignment is performed by an XYθ stage for a mask, and the substrate is fixed to the substrate transfer tray for transferring the substrate into or out of a deposition chamber for fixing the substrate and depositing the deposited film on the substrate. The vapor deposition apparatus according to any one of claims 1 to 6, wherein the protective mask is configured to be closely fixed.
  14.  前記基板を固定してこの基板に前記蒸着膜を蒸着させる蒸着室の内外にこの基板を搬送する前記基板搬送トレイに対して、前記基板及び前記保護マスクを位置合せするアライメント手段を備えたことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置。 Alignment means for aligning the substrate and the protective mask with respect to the substrate transport tray for transporting the substrate into and out of a deposition chamber for fixing the substrate and depositing the deposited film on the substrate. The vapor deposition apparatus according to any one of claims 1 to 6, wherein the vapor deposition apparatus is characterized in that:
  15.  前記アライメント機構は、前記基板及び前記保護マスクの少なくとも一つの角もしくは隣接する二つの端面が、前記基板搬送トレイに設けられた突き当て部材に突き当てる突き当て手段により位置合せを行い、前記保護マスクを前記基板搬送トレイ若しくはこの基板搬送トレイに固定した前記基板に密着固定するように構成したことを特徴とする請求項14記載の蒸着装置。 The alignment mechanism aligns at least one corner of the substrate and the protective mask or two adjacent end surfaces with an abutting unit that abuts against an abutting member provided on the substrate transport tray, and the protective mask The vapor deposition apparatus according to claim 14, wherein the vapor deposition apparatus is configured to be closely fixed to the substrate transport tray or the substrate fixed to the substrate transport tray.
  16.  前記アライメント機構は、前記基板搬送トレイ若しくは前記保護マスクに設けた位置決めピンが、前記保護マスク若しくは前記基板搬送トレイに設けられた基準穴に収まるように、前記保護マスクを保持する保護マスク用XYθステージにより位置合わせを行い、この保護マスクを前記基板搬送トレイ若しくはこの基板搬送トレイに固定した前記基板に密着固定するように構成したことを特徴とする請求項14記載の蒸着装置。 The alignment mechanism includes an XYθ stage for a protective mask that holds the protective mask so that a positioning pin provided on the substrate transport tray or the protective mask is received in a reference hole provided on the protective mask or the substrate transport tray. The vapor deposition apparatus according to claim 14, wherein the deposition is performed by aligning the protective mask to the substrate transport tray or the substrate fixed to the substrate transport tray.
  17.  前記アライメント機構は、前記基板及び前記保護マスクに設けた基準パターンを撮像する撮像手段と、前記撮像手段による撮像画像に基づいて前記基準パターンの位置ずれ量が所定値内となるように、前記保護マスクを保持する前記保護マスク用XYθステージにより位置合わせを行い、前記保護マスクを前記基板搬送トレイ若しくはこの基板搬送トレイに固定した前記基板に密着固定するように構成したことを特徴とする請求項14記載の蒸着装置。 The alignment mechanism includes an imaging unit configured to capture a reference pattern provided on the substrate and the protective mask, and the protection pattern so that a positional deviation amount of the reference pattern is within a predetermined value based on an image captured by the imaging unit. 15. The alignment is performed by the protective mask XYθ stage holding a mask, and the protective mask is configured to be closely fixed to the substrate transfer tray or the substrate fixed to the substrate transfer tray. The vapor deposition apparatus of description.
  18.  前記基板と前記蒸着マスクとが離間状態で蒸着し、この蒸着マスクの前記マスク開口部により規定される成膜パターンの蒸着膜が前記基板に形成される際、この蒸着膜の側端傾斜部分である陰影SHは、前記基板と前記蒸着マスクとのギャップをG, 前記蒸発源の蒸発口部の前記横方向の開口幅をφx,この蒸発口部と前記蒸着マスクとの距離をTSとすると、下記の式で表され、この陰影SHが隣接する蒸着膜との間隔PPに達しないように、前記蒸発口部の前記開口幅φxを小さく設定し、前記ギャップGを大きく設定した構成としたことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置。
    Figure JPOXMLDOC01-appb-M000001
    When the substrate and the vapor deposition mask are vapor-deposited in a separated state, and a vapor deposition film having a film formation pattern defined by the mask opening of the vapor deposition mask is formed on the substrate, A certain shadow SH is defined such that the gap between the substrate and the vapor deposition mask is G, the lateral opening width of the evaporation port portion of the evaporation source is φx, and the distance between the evaporation port portion and the vapor deposition mask is TS. It is represented by the following formula, and the configuration is such that the opening width φx of the evaporation port portion is set small and the gap G is set large so that the shadow SH does not reach the interval PP between adjacent vapor deposition films. The vapor deposition apparatus according to any one of claims 1 to 6, wherein:
    Figure JPOXMLDOC01-appb-M000001
  19.  前記成膜材料を有機材料としたことを特徴とする請求項1~6のいずれか1項に記載の蒸着装置。 The vapor deposition apparatus according to any one of claims 1 to 6, wherein the film forming material is an organic material.
  20.  請求項1~6のいずれか1項に記載の蒸着装置を用いて、前記基板上に前記蒸着マスクの前記マスク開口部により規定される成膜パターンの蒸着膜を形成することを特徴とする成膜方法。 A deposition film having a deposition pattern defined by the mask opening of the deposition mask is formed on the substrate using the deposition apparatus according to any one of claims 1 to 6. Membrane method.
PCT/JP2013/052710 2012-02-09 2013-02-06 Deposition device and film-forming method using deposition device WO2013118765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-026570 2012-02-09
JP2012026570A JP2013163837A (en) 2012-02-09 2012-02-09 Vapor deposition apparatus, and method of forming film using the same

Publications (1)

Publication Number Publication Date
WO2013118765A1 true WO2013118765A1 (en) 2013-08-15

Family

ID=48947526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052710 WO2013118765A1 (en) 2012-02-09 2013-02-06 Deposition device and film-forming method using deposition device

Country Status (3)

Country Link
JP (1) JP2013163837A (en)
TW (1) TW201346051A (en)
WO (1) WO2013118765A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108701630A (en) * 2017-01-31 2018-10-23 应用材料公司 The method of substrate carrier and processing substrate
CN110656305A (en) * 2018-06-29 2020-01-07 三星显示有限公司 Deposition apparatus
WO2020025101A1 (en) * 2018-07-30 2020-02-06 Applied Materials, Inc. Apparatus with movable shield carrier
CN111378925A (en) * 2018-12-27 2020-07-07 佳能特机株式会社 Alignment system, film forming apparatus, film forming method, and method for manufacturing electronic device
CN113463021A (en) * 2021-06-30 2021-10-01 武汉华星光电半导体显示技术有限公司 Cooling device and cooling method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616812B2 (en) * 2011-02-10 2014-10-29 キヤノントッキ株式会社 Vapor deposition apparatus and vapor deposition method
KR101684281B1 (en) * 2014-02-14 2016-12-08 (주)브이앤아이솔루션 Substrate carrier
US10096509B2 (en) * 2014-05-09 2018-10-09 Applied Materials, Inc. Substrate carrier system with protective covering
JP6502396B2 (en) * 2014-07-08 2019-04-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Magnetic chucking of mask by Halbach array
CN107002223B (en) * 2014-12-05 2019-11-05 应用材料公司 Material deposition system and method for the deposition materials in material deposition system
CN109643682A (en) * 2016-06-01 2019-04-16 应用材料公司 Electrostatic chuck and its manufacturing method
WO2018141367A1 (en) * 2017-01-31 2018-08-09 Applied Materials, Inc. Method of processing a substrate and substrate carrier for holding a substrate
WO2018153479A1 (en) * 2017-02-24 2018-08-30 Applied Materials, Inc. Carrier for use in a vacuum system, system for vacuum processing, and method for vacuum processing of a substrate
JP6345854B1 (en) * 2017-09-25 2018-06-20 株式会社アルバック Vacuum processing equipment
KR102188241B1 (en) * 2018-05-14 2020-12-09 주식회사 야스 Target Source-Substrate Distance Automatic Controllable Deposition System
KR102419064B1 (en) * 2018-07-31 2022-07-07 캐논 톡키 가부시키가이샤 Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device
KR102620156B1 (en) * 2018-10-30 2023-12-29 캐논 톡키 가부시키가이샤 Apparatus and method for checking adhesion degree and apparatus and method for forming film using the same, and manufacturing method of electronic device
JP7450366B2 (en) * 2019-11-11 2024-03-15 キヤノントッキ株式会社 Substrate holding device, substrate processing device, substrate holding method, reversing method, film forming method, electronic device manufacturing method
KR20210081589A (en) * 2019-12-24 2021-07-02 캐논 톡키 가부시키가이샤 Film forming apparatus, manufacturing apparatus of electronic device, film forming method, and manufacturing method of electronic device
KR102594075B1 (en) * 2021-05-31 2023-10-24 세메스 주식회사 Container and system for processing substreate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145481A (en) * 1993-11-22 1995-06-06 Shin Etsu Chem Co Ltd Substrate and holding method of substrate holder
JP2004031502A (en) * 2002-06-24 2004-01-29 Ulvac Japan Ltd Electrostatic attracting device and vacuum treating device using the same
JP2007291417A (en) * 2006-04-21 2007-11-08 Tokki Corp Thin film depositing method
JP2010077460A (en) * 2008-09-24 2010-04-08 Dainippon Printing Co Ltd Method for fixing mask
JP2010261081A (en) * 2009-05-08 2010-11-18 V Technology Co Ltd Vapor deposition method and vapor deposition apparatus
JP2011047048A (en) * 2009-08-27 2011-03-10 Samsung Mobile Display Co Ltd Thin film vapor deposition apparatus and method for manufacturing organic luminescent display device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145481A (en) * 1993-11-22 1995-06-06 Shin Etsu Chem Co Ltd Substrate and holding method of substrate holder
JP2004031502A (en) * 2002-06-24 2004-01-29 Ulvac Japan Ltd Electrostatic attracting device and vacuum treating device using the same
JP2007291417A (en) * 2006-04-21 2007-11-08 Tokki Corp Thin film depositing method
JP2010077460A (en) * 2008-09-24 2010-04-08 Dainippon Printing Co Ltd Method for fixing mask
JP2010261081A (en) * 2009-05-08 2010-11-18 V Technology Co Ltd Vapor deposition method and vapor deposition apparatus
JP2011047048A (en) * 2009-08-27 2011-03-10 Samsung Mobile Display Co Ltd Thin film vapor deposition apparatus and method for manufacturing organic luminescent display device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108701630A (en) * 2017-01-31 2018-10-23 应用材料公司 The method of substrate carrier and processing substrate
CN110656305A (en) * 2018-06-29 2020-01-07 三星显示有限公司 Deposition apparatus
CN110656305B (en) * 2018-06-29 2023-08-11 三星显示有限公司 Deposition apparatus
WO2020025101A1 (en) * 2018-07-30 2020-02-06 Applied Materials, Inc. Apparatus with movable shield carrier
CN110972483A (en) * 2018-07-30 2020-04-07 应用材料公司 Device with movable shade carrier
CN111378925A (en) * 2018-12-27 2020-07-07 佳能特机株式会社 Alignment system, film forming apparatus, film forming method, and method for manufacturing electronic device
CN111378925B (en) * 2018-12-27 2023-09-29 佳能特机株式会社 Alignment system, film forming apparatus, film forming method, and method for manufacturing electronic device
CN113463021A (en) * 2021-06-30 2021-10-01 武汉华星光电半导体显示技术有限公司 Cooling device and cooling method thereof
CN113463021B (en) * 2021-06-30 2023-05-30 武汉华星光电半导体显示技术有限公司 Cooling device and cooling method thereof

Also Published As

Publication number Publication date
TW201346051A (en) 2013-11-16
JP2013163837A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
WO2013118765A1 (en) Deposition device and film-forming method using deposition device
JP6990643B2 (en) Electrostatic chuck, film forming equipment, film forming method, and manufacturing method of electronic devices
CN109837504B (en) Film forming apparatus, film forming method, and electronic device manufacturing method
US9246135B2 (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
CN109837505B (en) Film forming apparatus, film forming method, and method for manufacturing organic EL display device
US9048460B2 (en) Deposition apparatus and method for manufacturing organic light emitting display apparatus by using the same
JP7138757B2 (en) Film forming apparatus and method for manufacturing electronic device
US11335892B2 (en) Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
JP2019102801A (en) Film forming apparatus and method of manufacturing organic EL display device using the same
JP2019117922A (en) Film forming apparatus, film forming method, and manufacturing method of organic el display device using the same
WO2020180334A1 (en) Mask frame integration, carrier for mask frame and method of handling a mask
CN111128828B (en) Adsorption and alignment method, adsorption system, film forming method and apparatus, and method for manufacturing electronic device
US8962360B2 (en) Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the organic layer deposition apparatus
JP2019102802A (en) Film forming apparatus, film forming method, and manufacturing method of organic el display device using the same
KR102505832B1 (en) Adsorption apparatus, position adjusting method, and method for forming film
CN109957775B (en) Electrostatic chuck, film forming apparatus, method for holding and separating substrate, and film forming method
CN112779503B (en) Film forming apparatus and method for controlling film forming apparatus
KR102501617B1 (en) Film forming apparatus, film forming method, and manufacturing method of electronic device
CN113025985A (en) Rotary driving device, film forming apparatus, and method for manufacturing electronic device
JP6956244B2 (en) Film formation equipment and film formation method
CN111118445A (en) Alignment and film forming apparatus, alignment and film forming method, and method of manufacturing electronic device
CN113088870B (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
CN113005398B (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
KR102501615B1 (en) Film forming apparatus, film forming method, and manufacturing method of electronic device
CN111128835A (en) Adsorption and alignment method, adsorption system, film forming method and apparatus, and method for manufacturing electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747331

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747331

Country of ref document: EP

Kind code of ref document: A1