WO2013118271A1 - 並列蓄電システムおよびその制御方法 - Google Patents
並列蓄電システムおよびその制御方法 Download PDFInfo
- Publication number
- WO2013118271A1 WO2013118271A1 PCT/JP2012/052961 JP2012052961W WO2013118271A1 WO 2013118271 A1 WO2013118271 A1 WO 2013118271A1 JP 2012052961 W JP2012052961 W JP 2012052961W WO 2013118271 A1 WO2013118271 A1 WO 2013118271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bank
- battery bank
- battery
- switch
- charge
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0024—Parallel/serial switching of connection of batteries to charge or load circuit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/19—Switching between serial connection and parallel connection of battery modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/22—Balancing the charge of battery modules
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0025—Sequential battery discharge in systems with a plurality of batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
Definitions
- the present invention relates to a parallel power storage system and a control method thereof.
- Patent Document 1 in a parallel connection power storage system in which one or a plurality of chargeable / dischargeable power storage elements are connected in series to form a power storage element array, and the plurality of power storage element arrays are connected in parallel, An isolation switch is provided in the element row, and when there is one or more storage element rows whose voltage difference detected by the voltage monitoring means is within a predetermined value, only the switch for the storage element row is turned on.
- a technique for preventing the occurrence of incompatibility such as overcurrent and abnormal heat generation caused by a large cross current is disclosed (for example, Patent Document 1 below).
- Patent Document 2 provides a DC / DC converter that operates as a charging / discharging circuit for each unit cell in a secondary battery configured by connecting units composed of a unit cell and a charging / discharging circuit in series.
- a DC / DC converter that operates as a charging / discharging circuit for each unit cell in a secondary battery configured by connecting units composed of a unit cell and a charging / discharging circuit in series.
- Patent Document 1 is applicable to a low-power parallel power storage system and is not suitable for a high-power parallel power storage system. This is because, in the system of Patent Document 1, it is necessary to cut off the current when the switch is operated, and when the relatively large current is cut off, the entire system needs to be stopped when the switch is operated.
- the present invention has been made in view of the above, and even when applied to a high-power system, a parallel power storage system capable of preventing the system from becoming large and expensive and its control It aims to provide a method.
- the present invention comprises a plurality of DC buses and one or more chargeable / dischargeable battery cells connected in series, the number of which is greater than the number of DC buses.
- a plurality of battery banks, a switch provided for each of the battery banks, connected in series to the battery bank to switch the connection between the battery bank and each of the DC buses, and via the DC bus Charge and discharge circuits as many as the DC buses supplying the load power to the load device with charging power from the battery banks that are charged or received via the DC buses, and the voltages of the battery banks are detected.
- FIG. 1 is a block diagram illustrating a configuration of a parallel power storage system.
- FIG. 2 is a simplified configuration diagram for explaining the first method.
- FIG. 3 is a time chart showing the state of each bank according to the first method.
- FIG. 4 is a time chart showing the state of each bank according to the second method.
- FIG. 5 is a simplified configuration diagram for explaining the third method.
- FIG. 6 is a time chart showing the state of each bank according to the third method.
- FIG. 7 is a time chart showing the state of each bank according to the fourth method.
- FIG. 8 is a time chart showing the voltage change of each bus according to the fourth method.
- FIG. 1 is a block diagram showing a configuration of a parallel power storage system according to an embodiment of the present invention.
- the parallel power storage system 1 includes n sets of battery banks 2 (2 1 , 2) in which one or a plurality of battery cells 12 that can be charged and discharged are connected in series. 2 ,..., 2 n ), buses 4 A and 4 B that form first and second DC buses, respectively, and each battery bank 2, connected in series to each battery bank 2 and connected to each battery bank 2.
- 1 circuit 2 contact switch 3 (3 1 , 3 2 ,..., 3 n ) for switching the connection between the switch 4 and the buses 4A and 4B, and the first contact K side of each switch 3 via the bus 4A.
- a DCDC converter 5A as a first charging / discharging circuit that is electrically connected and charges each battery bank 2 or supplies discharge power from each battery bank 2 to the load device 9, and each switching via a bus 4B.
- voltage detector 6 (6 1 to detect the DCDC converter 5B, the voltage of each battery bank 2 as a second charge and discharge circuit for supplying discharge power to the load device 9 from the battery bank 2, 6 2 ,, .., 6 n ) and the detection value of each voltage detector 6 and a controller 7 for controlling the operation of the DCDC converters 5A and 5B based on a predetermined signal (in FIG. 1, a bank exchange signal and a bank abnormality signal are illustrated). It is configured with.
- the number of DCDC converters and the number of buses are the same. Therefore, when the number of DCDC converters is m (m is an integer of 2 or more), the number of buses is m, and the switch 3 is a switch having a switching function of one circuit m contact.
- the number of DCDC converters is smaller in terms of the number of DCDC converters and the number of sets of battery banks. That is, there is a relationship of m ⁇ n between the number n of battery bank sets and the number m of DCDC converters. For example, when two DCDC converters are provided as shown in FIG. 1, three or more battery banks are connected with two DC buses, and when three DCDC converters are provided, 3 It has a configuration in which four or more battery banks are connected with one DC bus.
- the components of the load device 9 are not shown, but include, for example, a smoothing capacitor that stores DC power, an inverter device that converts DC power to AC power, an electric motor that drives a vehicle, and the like.
- FIG. 2 is a simplified configuration diagram for explaining the first technique according to the present embodiment
- FIG. 3 is a time chart showing the state of each battery bank (hereinafter simply referred to as “bank”) according to the first technique.
- FIG. 2 is a configuration in which the number of sets of banks 2 is three and the number of DCDC converters is two in the configuration of FIG. 1, and the three banks are denoted as banks A, B, and C, respectively.
- the two DCDC converters 5A and 5B are represented as DCDC1 and 2, respectively, and the buses 4A and 4B are represented as buses 1 and 2, respectively.
- each bank is switched to the bus 2 side when, for example, the state of the bank B (a state classified by the state of charge (SOC: State Of Charge), usage time, deterioration state, etc., hereinafter simply referred to as “state”) is the bank.
- SOC State Of Charge
- state When it is closer to bank C than A, it is intended to group together banks in the same state and connect them to the same bus.
- the control may be performed so that the duty ratio of the switching signal with respect to a switching element (not shown) that is a component of the DCDC 1 approaches zero (it is regarded as a stopped state). For example, it is not always necessary to set the duty ratio to zero).
- the bank to be controlled is selected according to the state of the bank, and the bank is switched while interlocking with the control of the DCDC converter, so the system is stopped. The effect that it is possible to cope with the variation between banks is obtained.
- the sequence when the number of buses and DCDC converters is two has been described. However, the same sequence may be executed when there are three or more buses and DCDC converters.
- the first DCDC converter is configured to stop the operation of the first DCDC converter that is the DCDC converter of the connection source to which the first battery bank to be switched is electrically connected and to maintain the output of the system.
- the operating current of at least one DCDC converter other than is increased, and the first switch to which the first battery bank is connected is switched to be electrically connected to a DCDC converter other than the first DCDC converter,
- the operating current of the DCDC converter including the first DCDC converter may be returned to the state before switching.
- FIG. 4 is a time chart showing the state of each bank according to the second method. In the second method, an operation according to the following sequence is executed.
- the system configuration is the same as in FIG.
- the output of the DCDC2 is raised and the output of the DCDC1 is lowered, so that the current flowing through the bank A decreases and the current flowing through the banks B and C increases.
- the banks A to C share current, and two units of discharge current flow in each bank.
- the bank is switched after controlling the switch to the neutral state.
- the effect that the cross current can be made smaller than that of the first method can be obtained.
- the sequence when the number of buses and DCDC converters is two has been described.
- the same sequence may be executed when there are three or more buses and DCDC converters.
- the first DCDC converter is configured to stop the operation of the first DCDC converter that is the DCDC converter of the connection source to which the first battery bank to be switched is electrically connected and to maintain the output of the system.
- the operating current of at least one DCDC converter other than is increased, the first switch to which the first battery bank is connected is switched to the neutral state, and the operation of the second DCDC converter that is the DCDC converter of the switching destination is changed.
- the operating current of at least one DCDC converter other than the DCDC converter other than the second DCDC converter is increased so that the output of the system is maintained, and the first switch is changed to a DCDC converter other than the first DCDC converter.
- the operating current of C converter may be to return to the pre-switching state.
- FIG. 5 is a simplified configuration diagram for explaining the third method according to the present embodiment.
- FIG. 5 is a configuration in which switches Ab, Bb, and Cb in which resistors are connected in parallel are inserted between each bank and each switch in the configuration of FIG.
- Other configurations are the same as those in FIG.
- FIG. 6 is a time chart showing the state of each bank according to the third method. In the third method, the following sequence is executed.
- the switch Bb is shut off (opened), and the bank B and the switch Ba are connected via a balance resistor (sequence 34).
- the switch Ba is switched to the bus 2 (contact L) side, and the bank 2 is inserted into the bus 2 (sequence 35).
- the bank B and the bank C are waited to balance, in other words, the switch Bb is turned on (closed) after the current of the bank B is stabilized (sequence 36).
- the output of DCDC2 is raised and the output of DCDC1 is lowered to return to the normal state (sequence 37).
- sequences 31 to SQ33 are the same as those in the second method, and thus the description thereof is omitted.
- the current of 6 units flows only in the bank A.
- the sequence 34 is a preparatory operation for the sequence 35, and the bank B and the switch Ba are connected via a balance resistor.
- a current as shown in the figure flows through the bank B.
- 3 units of discharge current flows through bank B, and 3 units of charge current flows through bank C. Since the cross current generated at this time flows through the balance resistance, the current is smaller and the relaxation time is longer than in the second method.
- the switch Bb is turned on after waiting for the cross current generated in the sequence 35 to decrease. Even if the switch Bb is turned on, since the cross current has already been relaxed, there is almost no change in the current flowing through each bank.
- the cross current can be reduced as compared with the first and second methods. can get.
- the sequence when the number of buses and DCDC converters is two has been described.
- the same sequence may be executed when there are three or more buses and DCDC converters.
- the first DCDC converter is configured to stop the operation of the first DCDC converter that is the DCDC converter of the connection source to which the first battery bank to be switched is electrically connected and to maintain the output of the system.
- the operating current of at least one DCDC converter other than is increased, the first switch to which the first battery bank is connected is switched to the neutral state, and the operation of the second DCDC converter that is the DCDC converter of the switching destination is changed.
- the operating current of at least one DCDC converter other than the DCDC converter other than the second DCDC converter is increased so as to maintain the output of the system, and the first switch to which the first battery bank is connected is shut off Then, the first battery bank and the first switch are connected via a balance resistor, and the first switch is Switch to be connected to a DCDC converter other than the DCDC converter of 1 and wait for the current flowing through the first battery bank to stabilize, turn on the first switch, The operating current of the DCDC converter including the DCDC converter may be returned to the state before switching.
- FIG. 7 is a time chart showing the state of each bank according to the fourth method. In the fourth method, the following sequence of operations is executed.
- the system configuration is the same as in FIG.
- FIG. 8 is a time chart showing the voltage change of each bus according to the fourth method.
- the waveform indicated by the solid line is the voltage of the bus 1
- the waveform indicated by the alternate long and short dash line is the voltage of the bus 2.
- DCDC1 is positively discharged to lower the SOCs of banks A and B connected to bus 1.
- the voltage of the banks A and B connected to the bus 1 is lower than that of the bank C connected to the bus 2 by this control.
- DCDC2 may be charged and the output of DCDC1 may be increased accordingly.
- DCDC2 is a charging operation of 6 units
- DCDC1 is a discharging operation of 12 units (6 units for each of banks A and B), and the discharge current of the entire system is maintained at 6 units.
- the switch Ba is controlled to be in a neutral state, but since the DCDC 1 is stopped, there is no change in the state of each bank. At this time, the voltage of bank B is measured. This voltage is V.
- the process first waits until the voltage at the stop of the bank C becomes equal to the voltage V of the bank B. Since the bank C is being discharged, its voltage is reduced by the internal resistance of the battery. This voltage drop can be easily obtained by the product of the internal resistance of the bank C and the discharge current.
- the stop voltage of bank C is obtained by adding the voltage drop due to the internal resistance to the voltage of bank C.
- the output of DCDC1 is raised and DCDC2 is stopped. Therefore, the current flowing through bank A increases and the current flowing through bank C decreases. As a result, a current of 6 units flows through bank A, and no current flows through banks B and C. Further, at this time, the voltage of the bank B is equal to the voltage of the bank C.
- the fourth method since the cross current at the time of disconnection and insertion of the bank can be suppressed, the effect of not consuming power for the balance between the banks can be obtained.
- the alternate long and two short dashes line drawn between the time point at which the sequence 44 is performed and the time point t at which the bank B voltage becomes the stop-time voltage indicates the bank B voltage.
- bank B is disconnected from the bus in sequence 43, and in sequence 44, DCDC1 is released from being stopped, so that the voltage of bank B and the voltage of bus 1 are different.
- the charging current of DCDC1 is increased to increase the SOC of the bank connected to bus 1 (sequence 41 ′).
- DCDC1 is stopped and the current of DCDC1 is supplemented with DCDC2 so as to maintain the state before the stop (sequence 42 ′).
- the switch Ba is switched to a neutral state (a state in which neither switch is connected) (sequence 43 ′).
- the control waits until the stop voltage of bank C becomes equal to the voltage of bank B, and at the same time, the charging current of DCDC1 is increased and DCDC2 is stopped (sequence 44 ').
- the charging control according to the fourth method has an effect that a parallel power storage system with reduced variation can be realized even in applications where power must be continuously absorbed, such as power regeneration.
- the sequence when the number of buses and DCDC converters is two has been described. However, the same sequence may be executed when there are three or more buses and DCDC converters. For example, the output of the first DCDC converter that is the DCDC converter of the connection source to which the first battery bank to be switched is electrically connected is increased, and the first DCDC converter is connected to the first DCDC converter.
- At least one DCDC other than the first DCDC converter to reduce or increase the SOC of the battery bank electrically connected to the DC bus, stop the operation of the first DCDC converter, and maintain the output of the system
- the operating current of the converter is increased, the first switch connected to the first battery bank is switched to the neutral state, the output of the first DCDC converter is increased, and the second DCDC converter that is the switching destination DC Stops the operation of the DCDC converter and stops the voltage of the second DC bus to which the second DCDC converter is connected. Wait until it becomes equal to the voltage of the first battery bank, then switch the first switch to the second bus side, put the first battery bank into the second bus, and the second DCDC converter And the output of the first DCDC converter may be lowered.
- the first to fourth methods have been described above as an example of bank switching control applicable to the parallel power storage system according to the present embodiment. Since these first to fourth methods can be executed without stopping the system, bank switching control can be actively performed. This produces the following effects.
- the banks to be exchanged After the banks to be exchanged are determined, the banks can be grouped, connected to one bus, and controlled to be actively discharged through the bus, so that the remaining power of the bank can be used effectively. Thus, the effect of reducing the influence on the bank that is not exchanged can be obtained.
- the abnormal bank is disconnected from the bus when the bank is abnormal, it is possible to avoid a situation in which the normal bank performance deteriorates due to the operation of the abnormal bank, and it is possible to suppress a decrease in system reliability. An effect is obtained.
- the parallel power storage system and the control method thereof according to the present invention are useful as an invention that can prevent the system from becoming large and expensive even when applied to a high-power system. It is.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
図2は、本実施の形態に係る第1の手法を説明するための簡略構成図であり、図3は、第1の手法による各電池バンク(以下単に「バンク」という)の状態を示すタイムチャートである。なお、図2は、図1の構成において、バンク2の組数を3組とし、DCDCコンバータの数を2個とした構成であり、3個のバンクをそれぞれバンクA,B,Cと表記し、2個のDCDCコンバータ5A,5BをそれぞれDCDC1,2と表記し、母線4A,4Bをそれぞれ母線1,2と表記している。
まず、各バンクの初期状態は、図示のように、
・バンクA-母線1(接点K側)
・バンクB-母線1(接点K側)
・バンクC-母線2(接点L側)とする。
(2)つぎに、切替器Baを母線2(接点L)側に切り替える(シーケンス12)。なお、電流遮断機能を有さない切替器の場合、大電流の遮断は困難であるが、投入は可能である。本例の場合、DCDC1は停止しているため、切替器Baを接点Kから切り離すことは可能である。また、DCDC2は動作しているが、母線2への切替は接点Lへの投入動作になるので、実施可能である。
(3)最後に、DCDC2の出力を下げると共に、DCDC1の出力を上げ、通常状態へ復帰する(シーケンス13)。
図4は、第2の手法による各バンクの状態を示すタイムチャートである。この第2の手法では、以下のシーケンスによる動作が実行される。なお、システム構成については、図2と同一である。
(2)つぎに、切替器Baを中立状態(どちらの接点にも接続されない状態)に切り替える(シーケンス22)。
(3)つぎに、DCDC2を停止すると共に、システムの出力を保つようにDCDC1の電流を増加させる(シーケンス23)。
(4)つぎに、切替器Baを母線2(接点L)側に切り替えて、バンク2を母線2に投入する(シーケンス24)。
(5)最後に、DCDC2の出力を上げると共に、DCDC1の出力を下げ、通常状態へ復帰する(シーケンス25)。
図5は、本実施の形態に係る第3の手法を説明するための簡略構成図である。ここで、図5は、図2の構成において、各バンクと各切替器との間に抵抗を並列接続した開閉器Ab,Bb,Cbを挿入した構成である。なお、その他の構成については、図2と同一である。
(2)つぎに、切替器Baを中立状態(どちらの接点にも接続されない状態)に切り替える(シーケンス32)。
(3)つぎに、DCDC2を停止すると共に、システムの出力を保つようにDCDC1の電流を増加させる(シーケンス33)。
なお、ここまでのシーケンスは、第2の手法と同一である。
(5)つぎに、切替器Baを母線2(接点L)側に切り替えて、バンク2を母線2に投入する(シーケンス35)。
(6)つぎに、バンクBとバンクCがバランスするのを待って、別言すればバンクBの電流が安定化するのを待って開閉器Bbを投入(閉路)する(シーケンス36)。
(7)最後に、DCDC2の出力を上げると共に、DCDC1の出力を下げ、通常状態へ復帰する(シーケンス37)。
図7は、第4の手法による各バンクの状態を示すタイムチャートである。この第4の手法では、以下のシーケンスによる動作が実行される。なお、システム構成については、図2と同一である。
(2)つぎに、DCDC1を停止すると共に、システムの出力を保つようにDCDC2の電流を増加させる(シーケンス42)。
(3)つぎに、切替器Baを中立状態(どちらの接点にも接続されない状態)に切り替える(シーケンス43)。
(4)つぎに、バンクCの停止時電圧がバンクBの電圧と等しくなるまで待機し、等しくなった瞬間にDCDC1の出力を上げると共に、DCDC2を停止させる(シーケンス44)。
(5)つぎに、切替器Baを母線2(接点L)側に切り替えて、バンクBを母線2に投入する(シーケンス45)。
(6)最後に、DCDC2の出力を上げると共に、DCDC1の出力を下げ、通常状態へ復帰する(シーケンス46)。
(2)つぎに、DCDC1を停止すると共に、停止前の状態を維持するようにDCDC1の電流分をDCDC2で補う(シーケンス42’)。
(3)つぎに、切替器Baを中立状態(どちらの接点にも接続されない状態)に切り替える(シーケンス43’)。
(4)つぎに、バンクCの停止時電圧がバンクBの電圧と等しくなるまで待機し、等しくなった瞬間にDCDC1の充電電流を上げると共に、DCDC2を停止させる(シーケンス44’)。
(5)つぎに、切替器Baを母線2(接点L)側に切り替えて、バンクBを母線2に投入する(シーケンス45’)。
(6)最後に、DCDC2の充電電流を上げると共に、DCDC1の充電電流を下げ、通常状態へ復帰する(シーケンス46’)。
2(21,22,…,2n) 電池バンク
3(31,32,…,3n) 切替器
4A,4B 母線
5A,5B コンバータ
6 電圧検出器
7 コントローラ
9 負荷装置
12 電池セル
Claims (9)
- 複数の直流母線と、
充放電可能な1または複数個の電池セルを直列に接続してなり、前記直流母線の数よりも多数組の電池バンクと、
前記各電池バンクごとに設けられ、当該電池バンクに直列に接続されて当該電池バンクと前記各直流母線との間の接続を切り替える切替器と、
前記直流母線を介して前記各電池バンクを充電し、または前記直流母線を介して受電した前記各電池バンクからの放電電力を負荷装置に供給する前記直流母線と同数の充放電回路と、
前記各電池バンクの電圧を検出する電圧検出器と、
少なくとも前記電圧検出器の検出電圧に基づいて、前記切替器を制御するコントローラと、
を備えたことを特徴とする並列蓄電システム。 - バランス抵抗が並列に接続され、前記各電池バンクと前記各切替器との間に挿入される開閉器をさらに備えたことを特徴とする請求項1に記載の並列蓄電システム。
- 充放電可能な1または複数個の電池セルを直列に接続してなる電池バンクと、直流母線を介して前記各電池バンクを充電し、または前記直流母線を介して受電した前記各電池バンクからの放電電力を負荷装置に供給する充放電回路と、を備えた並列蓄電システムの制御方法であって、
前記並列蓄電システムにおける前記直流母線は複数であり、且つ、前記充放電回路は前記直流母線と同数であり、且つ、前記電池バンクは前記直流母線の数よりも多数組設けられ、さらに、前記電池バンクに直列に接続されて当該電池バンクと前記各直流母線との間の接続を切り替える切替器が設けられる構成に対し、
切替対象となる第1の電池バンクが電気的に接続されている接続元の充放電回路である第1の充放電回路の動作を停止すると共に、システムの出力を保つように前記第1の充放電回路以外の少なくとも1つの充放電回路の動作電流を増加する第1ステップと、
前記第1の電池バンクが接続されている第1の切替器を前記第1の充放電回路以外の充放電回路に電気的に接続されるように切り替える第2ステップと、
前記第1の充放電回路を含む充放電回路の動作電流を切替前の状態に戻す第3ステップと、
を含むことを特徴とする並列蓄電システムの制御方法。 - 前記第1ステップと前記第2ステップとの間に、
前記第1の切替器を中立状態に切り替える第1サブステップと、
切替先の充放電回路である第2の充放電回路の動作を停止すると共に、システムの出力を保つように前記第2の充放電回路以外の充放電回路以外の少なくとも1つの充放電回路の動作電流を増加する第2サブステップと、
を含むことを特徴とする請求項3に記載の並列蓄電システムの制御方法。 - 前記並列蓄電システムは、バランス抵抗が並列に接続され、前記各電池バンクと前記各切替器との間に挿入される開閉器をさらに有する構成であり、
前記第2サブステップと前記第2ステップとの間に、前記第1の電池バンクが接続される第1の開閉器を遮断して、当該第1の電池バンクと前記第1の切替器とをバランス抵抗を介して接続する第3サブステップを含み、
前記第2ステップと前記第3ステップとの間に、前記第1の電池バンクに流れる電流が安定化するのを待って前記第1の開閉器を投入する第4サブステップを含む
ことを特徴とする請求項4に記載の並列蓄電システムの制御方法。 - 充放電可能な1または複数個の電池セルを直列に接続してなる電池バンクと、直流母線を介して前記各電池バンクを充電し、または前記直流母線を介して受電した前記各電池バンクからの放電電力を負荷装置に供給する充放電回路と、を備えた並列蓄電システムの制御方法であって、
前記並列蓄電システムにおける前記直流母線は複数であり、且つ、前記充放電回路は前記直流母線と同数であり、且つ、前記電池バンクは前記直流母線の数よりも多数組設けられ、さらに、前記電池バンクに直列に接続されて当該電池バンクと前記各直流母線との間の接続を切り替える切替器が設けられる構成に対し、
切替対象となる第1の電池バンクが電気的に接続されている接続元の充放電回路である第1の充放電回路の出力を上げ、第1の充放電回路が接続されている第1の直流母線に電気的に接続されている電池バンクのSOCを低下させる第1ステップと、
前記第1の充放電回路の動作を停止すると共に、システムの出力を保つように前記第1の充放電回路以外の少なくとも1つの充放電回路の動作電流を増加する第2ステップと、
前記第1の電池バンクが接続されている第1の切替器を中立状態に切り替える第3ステップと、
前記第2の充放電回路が接続されている第2の直流母線の停止時電圧が前記第1の電池バンクの電圧と等しくなるまで待機し、その後、前記第1の充放電回路の出力を上げると共に、切替先の充放電回路である第2の充放電回路の動作を停止する第4ステップと、
前記第1の切替器を前記第2の母線側に切り替えて、前記第1の電池バンクを前記第2の母線に投入する第5ステップと、
前記第2の充放電回路の出力を上げると共に、前記第1の充放電回路の出力を下げる第6ステップと、
を含むことを特徴とする並列蓄電システムの制御方法。 - 充放電可能な1または複数個の電池セルを直列に接続してなる電池バンクと、直流母線を介して前記各電池バンクを充電し、または前記直流母線を介して受電した前記各電池バンクからの放電電力を負荷装置に供給する充放電回路と、を備えた並列蓄電システムの制御方法であって、
前記並列蓄電システムにおける前記直流母線は複数であり、且つ、前記充放電回路は前記直流母線と同数であり、且つ、前記電池バンクは前記直流母線の数よりも多数組設けられ、さらに、前記電池バンクに直列に接続されて当該電池バンクと前記各直流母線との間の接続を切り替える切替器が設けられる構成に対し、
切替対象となる第1の電池バンクが電気的に接続されている接続元の充放電回路である第1の充放電回路の出力を上げ、第1の充放電回路が接続されている第1の直流母線に電気的に接続されている電池バンクのSOCを増加させる第1ステップと、
前記第1の充放電回路の動作を停止すると共に、システムの出力を保つように前記第1の充放電回路以外の少なくとも1つの充放電回路の動作電流を増加する第2ステップと、
前記第1の電池バンクが接続されている第1の切替器を中立状態に切り替える第3ステップと、
前記第2の充放電回路が接続されている第2の直流母線の停止時電圧が前記第1の電池バンクの電圧と等しくなるまで待機し、その後、前記第1の充放電回路の出力を上げると共に、切替先の充放電回路である第2の充放電回路の動作を停止する第4ステップと、
前記第1の切替器を前記第2の母線側に切り替えて、前記第1の電池バンクを前記第2の母線に投入する第5ステップと、
前記第2の充放電回路の出力を上げると共に、前記第1の充放電回路の出力を下げる第6ステップと、
を含むことを特徴とする並列蓄電システムの制御方法。 - 特性の類似した電池バンク同士をグループ化し、当該グループ化した電池バンク群毎に前記直流母線を切り分けて使用することを特徴とする請求項3に記載の並列蓄電システムの制御方法。
- 交換する電池バンク同士をグループ化し、当該グループ化した電池バンク群毎に前記直流母線を切り分けて使用することを特徴とする請求項3に記載の並列蓄電システムの制御方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147024794A KR101599659B1 (ko) | 2012-02-09 | 2012-02-09 | 병렬 축전 시스템 및 그 제어 방법 |
JP2013557291A JP5653542B2 (ja) | 2012-02-09 | 2012-02-09 | 並列蓄電システムおよびその制御方法 |
PCT/JP2012/052961 WO2013118271A1 (ja) | 2012-02-09 | 2012-02-09 | 並列蓄電システムおよびその制御方法 |
US14/377,357 US9543767B2 (en) | 2012-02-09 | 2012-02-09 | Parallel electricity-storage system and control method thereof |
CN201280069234.0A CN104094494B (zh) | 2012-02-09 | 2012-02-09 | 并联蓄电系统及其控制方法 |
EP12867932.1A EP2814132B1 (en) | 2012-02-09 | 2012-02-09 | Parallel accumulator system and method of control thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/052961 WO2013118271A1 (ja) | 2012-02-09 | 2012-02-09 | 並列蓄電システムおよびその制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118271A1 true WO2013118271A1 (ja) | 2013-08-15 |
Family
ID=48947075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052961 WO2013118271A1 (ja) | 2012-02-09 | 2012-02-09 | 並列蓄電システムおよびその制御方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9543767B2 (ja) |
EP (1) | EP2814132B1 (ja) |
JP (1) | JP5653542B2 (ja) |
KR (1) | KR101599659B1 (ja) |
CN (1) | CN104094494B (ja) |
WO (1) | WO2013118271A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019163181A1 (ja) * | 2018-02-20 | 2019-08-29 | 株式会社日立製作所 | 蓄電システム |
JPWO2022097307A1 (ja) * | 2020-11-09 | 2022-05-12 | ||
JP7572017B2 (ja) | 2020-08-19 | 2024-10-23 | ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド | 電源システム及び方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014105092A2 (en) * | 2012-12-24 | 2014-07-03 | Tutunaru Catalin | Advances in electric car technology |
KR20140099741A (ko) * | 2013-02-04 | 2014-08-13 | 삼성전자주식회사 | 충전장치 및 충전방법 |
JP6267052B2 (ja) * | 2013-09-27 | 2018-01-24 | ルネサスエレクトロニクス株式会社 | 電源回路、及び電源回路の制御方法 |
CN108736541B (zh) * | 2015-07-31 | 2020-08-07 | 深圳市大疆创新科技有限公司 | 供电系统、供电控制方法及具有该供电系统的可移动平台 |
US9837843B2 (en) * | 2015-11-13 | 2017-12-05 | General Electric Company | Voltage grouping of energy storage units |
FR3052927B1 (fr) * | 2016-06-16 | 2019-07-12 | Bluebus | Procede et systeme de gestion intelligente de batteries electrochimiques d'un vehicule electrique |
DE102016010699A1 (de) | 2016-09-03 | 2017-03-30 | Daimler Ag | Batterieanordnung für ein Kraftfahrzeug, mit mindestens zwei Energiespeichern, sowie Verfahren zum Betreiben einer Batterieanordnung für ein Kraftfahrzeug |
DE102016010839A1 (de) | 2016-09-08 | 2017-03-30 | Daimler Ag | Hochvoltbatteriesystem für ein Kraftfahrzeug sowie Verfahren zum Herstellen einer Mehrzahl von Betriebszuständen |
CN106696748B (zh) * | 2017-01-25 | 2019-06-28 | 华为技术有限公司 | 一种充电桩系统 |
DE102017201604A1 (de) * | 2017-02-01 | 2018-08-02 | Robert Bosch Gmbh | Ladeschaltung mit Gleichspannungswandler und Ladeverfahren für ein elektrisches Energiespeichersystem |
KR102338938B1 (ko) | 2018-05-03 | 2021-12-10 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 및 이를 포함하는 에너지 저장 시스템 |
KR102361334B1 (ko) * | 2018-05-09 | 2022-02-09 | 주식회사 엘지에너지솔루션 | 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템 |
US20200036207A1 (en) * | 2018-07-30 | 2020-01-30 | Hi-Cooler Company Limited | Battery Module with a Voltage Controlled Switch |
KR102347920B1 (ko) * | 2018-10-12 | 2022-01-05 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 및 방법 |
DE102019208042A1 (de) * | 2019-06-03 | 2020-12-03 | Robert Bosch Gmbh | Verfahren zum Betreiben eines elektrischen Energiespeichers, elektrischer Energiespeicher und Vorrichtung |
US11474547B2 (en) * | 2020-02-14 | 2022-10-18 | Intel Corporation | Apparatus and method of balancing input power from multiple sources |
CN112564239A (zh) * | 2020-12-17 | 2021-03-26 | 上海空间电源研究所 | 一种电池电压滞后消除装置 |
KR20230027841A (ko) * | 2021-08-20 | 2023-02-28 | 주식회사 엘지에너지솔루션 | 충방전 전력 제어 장치, 에너지 저장 시스템 및 에너지 저장 시스템의 동작 방법 |
FR3141294A1 (fr) * | 2022-10-21 | 2024-04-26 | Vitesco Technologies | Activation de batterie d’un système électrique d’alimentation pour véhicule par un circuit de précharge |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004147477A (ja) * | 2002-10-28 | 2004-05-20 | Komatsu Ltd | 電動機の電源装置 |
JP2008167620A (ja) * | 2007-01-04 | 2008-07-17 | Toyota Motor Corp | 車両の電源装置および車両 |
JP2009033936A (ja) | 2007-07-30 | 2009-02-12 | Toshiba Corp | 並列接続蓄電システム |
JP2010172143A (ja) * | 2009-01-23 | 2010-08-05 | Sony Corp | 電力供給システムおよび電子機器 |
JP2011055592A (ja) | 2009-08-31 | 2011-03-17 | Yokogawa Electric Corp | 二次電池、及びその充放電方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2562723B1 (fr) * | 1984-04-06 | 1986-08-22 | Black & Decker Inc | Dispositif perfectionne pour la mise en charge d'un ensemble accumulateur electrique |
JP3580123B2 (ja) | 1998-03-20 | 2004-10-20 | 富士通株式会社 | バッテリ装置 |
US6304059B1 (en) * | 2000-06-22 | 2001-10-16 | Subhas C. Chalasani | Battery management system, method of operation therefor and battery plant employing the same |
JP2002034157A (ja) | 2000-07-17 | 2002-01-31 | Mitsubishi Electric Corp | 負荷平準化装置 |
JP2003157908A (ja) * | 2001-09-10 | 2003-05-30 | Ntt Power & Building Facilities Inc | リチウムイオン二次電池充電装置および方法 |
US7725182B2 (en) * | 2005-05-31 | 2010-05-25 | Marvell World Trade Ltd. | Power distribution system for a medical device |
JP4572850B2 (ja) * | 2006-03-24 | 2010-11-04 | 株式会社日立製作所 | 電源制御装置 |
JP4542536B2 (ja) | 2006-11-06 | 2010-09-15 | 株式会社日立製作所 | 電源制御装置 |
KR101164629B1 (ko) * | 2007-10-16 | 2012-07-11 | 한국과학기술원 | 직렬 연결 배터리 스트링을 위한 2단 전하 균일 방법 및장치 |
KR101077154B1 (ko) * | 2008-04-22 | 2011-10-27 | 한국과학기술원 | 직렬연결 배터리 스트링을 위한 2단 전하 균일 방법 및장치 |
US20090278488A1 (en) * | 2008-05-09 | 2009-11-12 | Kai-Wai Alexander Choi | Method for discharge balancing of a battery array |
WO2009155986A1 (en) * | 2008-06-27 | 2009-12-30 | Abb Research Ltd | Battery energy source arrangement and voltage source converter system |
JP2010029015A (ja) | 2008-07-23 | 2010-02-04 | Mitsubishi Heavy Ind Ltd | 組電池システム |
CN101409455B (zh) * | 2008-11-19 | 2011-10-26 | 华为终端有限公司 | 一种电池系统的电压平衡装置及电压平衡方法 |
KR101093597B1 (ko) * | 2009-01-30 | 2011-12-15 | 한국과학기술원 | 정전압원을 이용한 자동전하균일 장치 |
DE102009034596A1 (de) * | 2009-07-24 | 2011-02-03 | Continental Automotive Gmbh | Parallelschaltung von Energiespeichern mit schaltbarer Ausgleichszelle |
KR101638393B1 (ko) * | 2010-01-29 | 2016-07-11 | 삼성전자주식회사 | 휴대용 장치에서 배터리 잔량 및 충방전 상태 표시 장치 및 방법 |
JP5546370B2 (ja) * | 2010-06-28 | 2014-07-09 | 日立ビークルエナジー株式会社 | 蓄電器制御回路及び蓄電装置 |
JP5463324B2 (ja) | 2011-06-01 | 2014-04-09 | 三菱重工業株式会社 | 組電池システム |
JP5767873B2 (ja) | 2011-06-28 | 2015-08-26 | 株式会社東芝 | 蓄電装置および蓄電システム |
-
2012
- 2012-02-09 JP JP2013557291A patent/JP5653542B2/ja not_active Expired - Fee Related
- 2012-02-09 US US14/377,357 patent/US9543767B2/en active Active
- 2012-02-09 CN CN201280069234.0A patent/CN104094494B/zh not_active Expired - Fee Related
- 2012-02-09 WO PCT/JP2012/052961 patent/WO2013118271A1/ja active Application Filing
- 2012-02-09 KR KR1020147024794A patent/KR101599659B1/ko active IP Right Grant
- 2012-02-09 EP EP12867932.1A patent/EP2814132B1/en not_active Not-in-force
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004147477A (ja) * | 2002-10-28 | 2004-05-20 | Komatsu Ltd | 電動機の電源装置 |
JP2008167620A (ja) * | 2007-01-04 | 2008-07-17 | Toyota Motor Corp | 車両の電源装置および車両 |
JP2009033936A (ja) | 2007-07-30 | 2009-02-12 | Toshiba Corp | 並列接続蓄電システム |
JP2010172143A (ja) * | 2009-01-23 | 2010-08-05 | Sony Corp | 電力供給システムおよび電子機器 |
JP2011055592A (ja) | 2009-08-31 | 2011-03-17 | Yokogawa Electric Corp | 二次電池、及びその充放電方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2814132A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019163181A1 (ja) * | 2018-02-20 | 2019-08-29 | 株式会社日立製作所 | 蓄電システム |
JP7572017B2 (ja) | 2020-08-19 | 2024-10-23 | ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド | 電源システム及び方法 |
JPWO2022097307A1 (ja) * | 2020-11-09 | 2022-05-12 | ||
WO2022097307A1 (ja) * | 2020-11-09 | 2022-05-12 | 東芝三菱電機産業システム株式会社 | 電力変換装置の制御装置および電力変換装置用抵抗器 |
JP7332042B2 (ja) | 2020-11-09 | 2023-08-23 | 東芝三菱電機産業システム株式会社 | 電力変換装置の制御装置および電力変換システム |
Also Published As
Publication number | Publication date |
---|---|
EP2814132A4 (en) | 2015-11-25 |
US20150002095A1 (en) | 2015-01-01 |
JPWO2013118271A1 (ja) | 2015-05-11 |
EP2814132B1 (en) | 2016-10-19 |
CN104094494A (zh) | 2014-10-08 |
CN104094494B (zh) | 2016-06-29 |
EP2814132A1 (en) | 2014-12-17 |
US9543767B2 (en) | 2017-01-10 |
KR20140127858A (ko) | 2014-11-04 |
KR101599659B1 (ko) | 2016-03-03 |
JP5653542B2 (ja) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5653542B2 (ja) | 並列蓄電システムおよびその制御方法 | |
JP5618359B2 (ja) | 二次電池パック接続制御方法、および、蓄電システム | |
US9024586B2 (en) | Battery fault tolerant architecture for cell failure modes series bypass circuit | |
US8471529B2 (en) | Battery fault tolerant architecture for cell failure modes parallel bypass circuit | |
US9520613B2 (en) | Battery control with block selection | |
US10807487B2 (en) | Battery management and balance circuit, battery system and method of charging the battery system | |
JP6250680B2 (ja) | バッテリ管理のための仮想セル法 | |
JP2004215459A (ja) | 電源制御装置 | |
JP5569418B2 (ja) | 電池監視装置 | |
US9178367B2 (en) | Balance correction apparatus and electric storage system | |
JP2013078242A (ja) | 電源装置 | |
JP2008043009A (ja) | 電池パックおよび制御方法 | |
EP4044396A1 (en) | Failsafe battery storage system | |
JP2012205407A (ja) | 蓄電装置および蓄電装置の電圧均等化方法 | |
US20240092223A1 (en) | Multi-Voltage Storage System for an at Least Partially Electrically Driven Vehicle | |
US9312553B2 (en) | Apparatus and method for controlling fuel cell system | |
JP5696614B2 (ja) | コンデンサの放電回路 | |
EP2846387B1 (en) | Apparatus and method for controlling fuel cell system using sub-power conditioning system | |
WO2012111410A1 (ja) | 電池システム | |
JP2016140135A (ja) | 双方向dc−dcコンバータ | |
WO2013005804A1 (ja) | スイッチング装置 | |
EP4203231A1 (en) | Modular energy source with bypass and reconfiguration functionality and method of operating a modular energy source | |
CN116613838A (zh) | 用于转换用于发电的燃料电池的电力的装置及方法 | |
JP2016082749A (ja) | 蓄電池管理システム、蓄電池管理装置及び蓄電池管理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12867932 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013557291 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012867932 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012867932 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14377357 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147024794 Country of ref document: KR Kind code of ref document: A |