WO2013118239A1 - 分波器およびモジュール - Google Patents

分波器およびモジュール Download PDF

Info

Publication number
WO2013118239A1
WO2013118239A1 PCT/JP2012/052601 JP2012052601W WO2013118239A1 WO 2013118239 A1 WO2013118239 A1 WO 2013118239A1 JP 2012052601 W JP2012052601 W JP 2012052601W WO 2013118239 A1 WO2013118239 A1 WO 2013118239A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmission
impedance
reception
duplexer
Prior art date
Application number
PCT/JP2012/052601
Other languages
English (en)
French (fr)
Inventor
川内治
上原健誠
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to PCT/JP2012/052601 priority Critical patent/WO2013118239A1/ja
Publication of WO2013118239A1 publication Critical patent/WO2013118239A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention relates to a duplexer and a module, for example, a duplexer and a module in which impedance of each terminal of the duplexer is different.
  • a duplexer is used for a mobile communication terminal.
  • the duplexer includes a transmission filter and a reception filter.
  • the transmission filter is connected between the antenna terminal and the transmission terminal.
  • the reception filter is connected between the antenna terminal and the reception terminal.
  • the output signal of the power amplifier is input to the transmission terminal.
  • the signal output from the receiving terminal is output to the low noise amplifier.
  • Patent Document 1 describes that the output impedance of the power amplifier is low.
  • Patent Document 2 describes that a phase substrate having a characteristic impedance of less than 50 ⁇ is provided on the antenna terminal side of the reception filter.
  • the output impedance of the power amplifier is smaller than 50 ⁇ , for example, the output impedance of the power amplifier is converted to 50 ⁇ and connected to the transmission terminal of the duplexer. For this reason, a matching circuit for impedance conversion is used.
  • the present invention has been made in view of the above problems, and an object thereof is to simplify a matching circuit.
  • the present invention comprises a transmission filter connected between an antenna terminal and a transmission terminal, and a reception filter connected between the antenna terminal and the reception terminal, wherein the impedance of the antenna terminal is Zant,
  • the duplexer is characterized in that Ztx ⁇ Zant ⁇ Zrx, where Ztx is the impedance of the transmitting terminal and Zrx is the impedance of the receiving terminal.
  • the matching circuit can be simplified.
  • the Zant may be 50 ⁇ 10 ⁇ and the Ztx may be 20 ⁇ 15 ⁇ .
  • a plurality of the transmission terminals may be provided, and a plurality of transmission terminals may be input with signals having different phases.
  • the present invention includes a substrate, the duplexer mounted on the substrate, a power amplifier mounted on the substrate and electrically connected to the transmission terminal, formed on the substrate, the transmission terminal and the A transmission transmission line for connecting a power amplifier to the power amplifier.
  • the transmission transmission line may have a characteristic impedance Ztx.
  • a low noise amplifier mounted on the substrate and electrically connected to the reception terminal, and a reception transmission line connecting the reception terminal and the low noise amplifier may be provided.
  • the characteristic impedance of the reception transmission line may be the Zrx.
  • the matching circuit can be simplified.
  • FIG. 1 is a circuit diagram of a duplexer according to a first embodiment.
  • FIG. 2 is a circuit diagram around the duplexer according to the first embodiment.
  • FIG. 3A and FIG. 3B are circuit diagrams illustrating examples of amplifiers.
  • FIG. 4 is a circuit diagram around the duplexer according to the second embodiment.
  • FIG. 5 is a circuit diagram of a module according to the third embodiment.
  • FIG. 1 is a circuit diagram of the duplexer according to the first embodiment.
  • the duplexer 10 includes a transmission filter 12 and a reception filter 14.
  • the transmission filter 12 is electrically connected between the transmission terminal T2 and the antenna terminal T1.
  • the reception filter 14 is electrically connected between the reception terminal T3 and the antenna terminal T1.
  • the antenna terminal T1 is electrically connected to the antenna 20.
  • the transmission filter 12 and the reception filter 14 have different pass bands, and these pass bands do not overlap each other.
  • the transmission filter 12 has a pass band set so as to pass a signal in the transmission band and suppress a signal in the reception band.
  • the reception filter 14 has a communication band set so as to pass a signal in the reception band and suppress a signal in the transmission band.
  • the transmission filter 12 passes signals in the transmission band among signals input from the transmission terminal T2, and suppresses signals of other frequencies.
  • the signal that has passed through the transmission filter 12 is output from the antenna terminal T1.
  • the reception filter 14 passes signals in the reception band among signals input to the antenna terminal T1, and suppresses signals of other frequencies.
  • the signal that has passed through the reception filter 14 is output from the reception terminal T3.
  • the impedance between the antenna terminal T1, the transmission filter 12, and the reception filter 14 is such that the impedance in the transmission band when the reception filter 14 is viewed from the antenna terminal T1 side is high and the impedance in the reception band when the transmission filter 12 is viewed from the antenna terminal T1 side is high.
  • a matching circuit for matching impedance between them may be provided. Thereby, the signal in the transmission band that has passed through the transmission filter 12 is not input to the reception filter 14.
  • the reception band signal input from the antenna terminal T1 is not input to the transmission filter 12.
  • Example 1 when the impedance of the antenna terminal T1 is Zant, the impedance of the transmission terminal T2 is Ztx, and the impedance of the reception terminal T3 is Zrx, Ztx ⁇ Zant ⁇ Zrx.
  • Zant is the output impedance of the signal in the transmission band at the antenna terminal T1
  • the input impedance of the signal in the reception band Ztx is the input impedance of the signal in the transmission band at the transmission terminal T2.
  • Zrx is the output impedance of the signal in the reception band at the reception terminal T3.
  • FIG. 2 is a circuit diagram around the duplexer according to the first embodiment.
  • a PA power amplifier
  • An LNA low noise amplifier
  • the PA 22 amplifies the signal input from the terminal T4 and outputs it to the transmission terminal T2.
  • the LAN 24 amplifies the signal output from the reception terminal T3 and outputs it to the terminal T5.
  • FIG. 3A and FIG. 3B are circuit diagrams illustrating examples of amplifiers.
  • 3A shows an amplifier circuit having one transistor
  • FIG. 3B shows an amplifier circuit having two transistors.
  • a grounded emitter circuit is used in the case of a bipolar transistor, and a common source circuit is often used in the case of a FET (Field Effect Transistor).
  • FET Field Effect Transistor
  • 3A and 3B a bipolar transistor grounded emitter circuit will be described as an example.
  • the emitter E of the transistor 30 is grounded, the base B is electrically connected to the input terminal Tin, and the collector C is connected to the output terminal Tout.
  • the output impedance at the output terminal Tout is lower than the input impedance at the input terminal Tin.
  • the output terminal Tout of the first-stage transistor 30 is electrically connected to the input terminal Tin of the next-stage transistor 30.
  • the output impedance at the output terminal Tout of the transistor 30 at the next stage is further lower than the output impedance of FIG.
  • the transmission power used for the mobile communication terminal is, for example, several hundred to several thousand mW.
  • the PA 22 amplifies the signal to a power of several hundred to several thousand mW.
  • a plurality of stages of transistors are connected. Therefore, the output impedance of PA22 becomes low.
  • the output impedance of PA22 is about 20 ⁇ .
  • the output impedance of the PA 22 is about 20 ⁇ .
  • the impedance of the antenna 20 is generally 50 ⁇ .
  • the input impedance of the LNA 24 is generally high due to the input impedance of the amplifier, for example, 200 ⁇ or more.
  • the input impedance Ztx of the transmission terminal T2 is set as the output impedance of the PA 22.
  • the input / output impedance of the antenna terminal T1 is set as the input / output impedance of the antenna 20.
  • the output impedance Zrx of the receiving terminal T3 is set as the input impedance of the LNA 24. This eliminates the need to provide a matching circuit. Therefore, insertion loss due to the matching circuit can be suppressed. Furthermore, the size can be reduced.
  • the input impedance Ztx of the transmission terminal T2 and the output impedance of the PA 22 do not have to completely match. If the input impedance Ztx of the transmission terminal T2 is close to the output impedance of the PA 22, loss due to impedance mismatch can be reduced. Furthermore, even if a matching circuit is provided between the PA 22 and the transmission terminal T2, if the impedance difference between them is small, the matching circuit may be small, and insertion loss due to the matching circuit can be suppressed. The same applies to the antenna terminal T1 and the reception terminal T3.
  • the impedance Ztx of the transmission terminal T2 can be set to 20 ⁇ ⁇ 15 ⁇ , for example. It may be 20 ⁇ ⁇ 10 ⁇ .
  • the impedance Zant of the antenna terminal T1 can be set to 50 ⁇ ⁇ 10 ⁇ , for example. It may be 50 ⁇ ⁇ 5 ⁇ .
  • the impedance Zrx of the reception terminal T3 can be set to 200 ⁇ or more, for example. It may be 300 ⁇ or more.
  • Ztx / Zant is preferably 0.6 or less, more preferably 0.5 or less, or 0.4 or less.
  • an elastic wave filter can be used.
  • the elastic wave filter may include at least one of a ladder type filter using a resonator including an IDT (Interdigital-Transducer) such as a surface acoustic wave resonator, a Love wave resonator, or a boundary acoustic wave resonator, and a multimode filter. it can.
  • IDT Interdigital-Transducer
  • the input impedance or / and the output impedance can be set by adjusting the opening length of the IDT or / and the number of electrode fingers of the IDT.
  • the elastic wave filter can be a ladder filter or a multimode filter using a piezoelectric thin film resonator. In these filters, the input impedance or / and the output impedance can be set by adjusting the area of the region where the lower electrode and the upper electrode overlap with each other with the piezoelectric thin film interposed therebetween.
  • Example 2 is an example of a duplexer having a plurality of transmission terminals.
  • FIG. 4 is a circuit diagram around the duplexer according to the second embodiment. As shown in FIG. 4, the two output terminals of the PA 22 and the two transmission terminals T21 and T22 are electrically connected. The PA 22 outputs signals having a 90 ° phase difference. The reason why PA 22 outputs signals having a phase difference of 90 ° is to suppress harmonics in PA 22.
  • Transmission terminals T21 and T22 receive signals whose phases are shifted by approximately 90 °.
  • the transmission filter 12 almost eliminates the phase difference between the two signals by shifting the phase of one of the two signals by 90 °. Thereafter, the two signals are synthesized. After filtering the synthesized signal, it is output to the antenna terminal T1.
  • the phase of the signal can be shifted, for example, by adjusting the interval between the electrode fingers of the IDT.
  • signals having different phases are input to the plurality of transmission terminals T21 and T22.
  • the circuit can be reduced in size.
  • Example 3 is an example of a module including the duplexer according to Example 1.
  • FIG. 5 is a circuit diagram of a module according to the third embodiment. As shown in FIG. 5, the module 40 includes a substrate 42, a duplexer 10, a PA 22, an LNA 24, a transmission transmission line 26 and a reception transmission line 28. The duplexer 10, PA 22, and LNA 24 are mounted on the substrate 42. The transmission transmission line 26 and the reception transmission line 28 are formed on the substrate 42.
  • the substrate 42 includes, for example, a conductive layer and an insulating layer.
  • the duplexer 10, the PA 22, and the LAN 24 may be mounted on the substrate 42 or embedded in the insulating layer of the substrate 42.
  • the transmission transmission line 26 and the reception transmission line 28 are, for example, a microstrip line or a strip line formed by a conductive layer and an insulating layer of the substrate 42.
  • the duplexer 10 is a duplexer according to the first embodiment.
  • the PA 22 includes a plurality of stages of transistors 30.
  • the terminal T4 of the module 40 and the input terminal T7 of the PA 22 are electrically connected.
  • the output terminal T8 of the PA 22 and the transmission terminal T2 of the duplexer 10 are electrically connected by a transmission transmission line 26.
  • the antenna terminal T1 of the duplexer 10 and the terminal T6 of the module 40 are electrically connected.
  • the terminal T6 is electrically connected to the antenna 20.
  • the receiving terminal T3 of the duplexer 10 and the input terminal T9 of the LNA 24 are electrically connected by a receiving transmission line 28.
  • the output terminal T10 of the LNA 24 and the terminal T5 of the module 40 are electrically connected.
  • the transmission terminal T2 and the PA 22 are connected using the transmission transmission line 26.
  • the loss of the signal between PA22 and transmission terminal T2 can be suppressed.
  • the characteristic impedance of the transmission transmission line 26 is preferably the impedance Ztx of the transmission terminal T2.
  • the characteristic impedance of the transmission transmission line 26 is preferably the output impedance of the PA 22.
  • the width of the signal line of the transmission line is increased.
  • the PA 22 and the duplexer 10 are mounted on the substrate 42, and the PA 22 and the duplexer 10 are connected by the transmission transmission line 26 formed on the substrate 42. For this reason, the length of the transmission transmission line 26 can be reduced. For example, the length of the transmission transmission line 26 can be set to several mm or less. Therefore, the module can be miniaturized.
  • the reception terminal T3 and the LNA 24 are connected using the reception transmission line 28. Thereby, the loss of the signal between the receiving terminal T3 and the LNA 24 can be suppressed.
  • the characteristic impedance of the reception transmission line 28 is preferably the impedance Zrx of the reception terminal T3.
  • the characteristic impedance of the reception transmission line 28 is preferably the input impedance of the LNA 24.
  • the module 40 includes the PA 22 and the LNA 24 has been described.
  • the module 40 only needs to include at least one of the PA 22 and the LNA 24.
  • the module 40 may include a duplexer according to the second embodiment.
  • Demultiplexer 12 Transmission filter 14 Reception filter 20 Antenna 22 PA 24 LNA 26 Transmission Transmission Line 28 Reception Transmission Line 40 Module 42 Substrate T1 Antenna Terminal T2 Transmission Terminal T3 Reception Terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

 アンテナ端子T1と送信端子T2との間に接続された送信フィルタ12と、前記アンテナ端子と受信端子T3との間に接続された受信フィルタ14と、を具備し、前記アンテナ端子のインピーダンスをZant、前記送信端子のインピーダンスをZtx、前記受信端子のインピーダンスをZrxとしたとき、Ztx<Zant<Zrxである分波器。

Description

分波器およびモジュール
 本発明は、分波器およびモジュールに関し、例えば、分波器の各端子のインピーダンスが異なる分波器およびモジュールに関する。
 例えば移動体通信端末には、分波器が用いられる。分波器は、送信フィルタと受信フィルタとを備えている。送信フィルタは、アンテナ端子と送信端子との間に接続されている。受信フィルタは、アンテナ端子の受信端子との間に接続されている。送信端子にはパワーアンプの出力信号が入力する。受信端子から出力された信号はローノイズアンプに出力する。
 特許文献1には、パワーアンプの出力インピーダンスが低いことが記載されている。特許文献2には、受信フィルタのアンテナ端子側に特性インピーダンスが50Ωより小さい位相基板を設けることが記載されている。
特開2011-244070号公報 国際公開第01/48917号
 パワーアンプの出力インピーダンスが例えば50Ωより小さい場合、パワーアンプの出力インピーダンスを50Ωに変換し、分波器の送信端子に接続することになる。このため、インピーダンス変換のための整合回路を用いることとなる。
 本発明は、上記課題に鑑みなされたものであり、整合回路を簡素化することを目的とする。
 本発明は、アンテナ端子と送信端子との間に接続された送信フィルタと、前記アンテナ端子と受信端子との間に接続された受信フィルタと、を具備し、前記アンテナ端子のインピーダンスをZant、前記送信端子のインピーダンスをZtx、前記受信端子のインピーダンスをZrxとしたとき、Ztx<Zant<Zrxであることを特徴とする分波器である。本発明によれば、整合回路を簡素化することができる。
 上記構成において、前記Zantは50±10Ωであり、前記Ztxは20±15Ωである構成とすることができる。
 上記構成において、前記送信端子は複数設けられ、複数の前記送信端子には互いに位相が異なる信号が入力する構成とすることができる。
 本発明は、基板と、前記基板に搭載され、上記分波器と、前記基板に搭載され、前記送信端子に電気的に接続されたパワーアンプと、前記基板に形成され、前記送信端子と前記パワーアンプとを接続する送信伝送線路と、を具備することを特徴とするモジュールである。
 上記構成において、前記送信伝送線路の特性インピーダンスは、前記Ztxである構成とすることができる。
 上記構成において、前記基板に搭載され、前記受信端子に電気的に接続されたローノイズアンプと、前記受信端子と前記ローノイズアンプとを接続する受信伝送線路と、を具備する構成とすることができる。
 上記構成において、前記受信伝送線路の特性インピーダンスは前記Zrxである構成とすることができる。
 本発明によれば、整合回路を簡素化することができる。
図1は、実施例1に係る分波器の回路図である。 図2は、実施例1に係る分波器周辺の回路図である。 図3(a)および図3(b)は、アンプの例を示す回路図である。 図4は、実施例2に係る分波器周辺の回路図である。 図5は、実施例3に係るモジュールの回路図である。
 以下、図面を参照に、本発明の実施例について説明する。
 図1は、実施例1に係る分波器の回路図である。図1に示すように、分波器10は、送信フィルタ12および受信フィルタ14を備えている。送信フィルタ12は、送信端子T2とアンテナ端子T1との間に電気的に接続されている。受信フィルタ14は、受信端子T3とアンテナ端子T1との間に電気的に接続されている。アンテナ端子T1はアンテナ20と電気的に接続されている。送信フィルタ12と受信フィルタ14とは異なる通過帯域を有しており、これらの通過帯域は互いに重なっていない。送信フィルタ12は送信帯域の信号を通過させ、受信帯域の信号を抑圧するように通過帯域が設定されている。受信フィルタ14は受信帯域の信号を通過させ送信帯域の信号を抑圧するように通信帯域が設定されている。
 送信フィルタ12は、送信端子T2から入力した信号のうち送信帯域の信号を通過させ、他の周波数の信号を抑圧する。送信フィルタ12を通過した信号はアンテナ端子T1から出力される。受信フィルタ14は、アンテナ端子T1に入力した信号のうち受信帯域の信号を通過させ、他の周波数の信号を抑圧する。受信フィルタ14を通過した信号は受信端子T3から出力する。アンテナ端子T1側から受信フィルタ14をみた送信帯域におけるインピーダンスは高くなりアンテナ端子T1側から送信フィルタ12をみた受信帯域におけるインピーダンスは高くなるように、アンテナ端子T1と送信フィルタ12および受信フィルタ14との間にインピーダンスを整合させる整合回路が設けられていてもよい。これにより、送信フィルタ12を通過した送信帯域の信号は受信フィルタ14に入力しない。アンテナ端子T1から入力した受信帯域の信号は送信フィルタ12に入力しない。
 実施例1においては、アンテナ端子T1のインピーダンスをZant、送信端子T2のインピーダンスをZtxおよび受信端子T3のインピーダンスをZrxとしたとき、Ztx<Zant<Zrxである。例えば、Zantは、アンテナ端子T1における送信帯域の信号の出力インピーダンスであり、受信帯域の信号の入力インピーダンスである。Ztxは、送信端子T2における送信帯域の信号の入力インピーダンスである。Zrxは、受信端子T3における受信帯域の信号の出力インピーダンスである。
 各インピーダンスを上記のように設定する理由を以下に説明する。図2は、実施例1に係る分波器周辺の回路図である。図2に示すように、端子T4と送信端子T2との間にPA(パワーアンプ)22が接続されている。端子T5と受信端子T3との間にLNA(ローノイズアンプ)24が接続されている。PA22は端子T4から入力した信号を増幅し送信端子T2に出力する。LAN24は受信端子T3から出力された信号を増幅し端子T5に出力する。
 PA22およびLNA24に用いられるアンプは、入力インピーダンスが高く、出力インピーダンスが低い。図3(a)および図3(b)は、アンプの例を示す回路図である。図3(a)は、トランジスタ1段、図3(b)はトランジスタが2段の増幅回路を示している。PA22には、バイポーラトランジスタの場合エミッタ接地回路が用いられ、FET(Field Effect Transistor)の場合ソース接地回路が用いられることが多い。図3(a)および図3(b)においては、バイポーラトランジスタのエミッタ接地回路を例に説明する。図3(a)に示すように、トランジスタ30のエミッタEが接地され、ベースBが入力端子Tinに電気的に接続され、コレクタCが出力端子Toutに接続されている。エミッタ接地回路およびソース接地回路の場合、入力端子Tinにおける入力インピーダンスに比べ、出力端子Toutにおける出力インピーダンスが低い。
 図3(b)を参照し、2段の増幅回路においては、初段のトランジスタ30の出力端子Toutが次段のトランジスタ30の入力端子Tinに電気的に接続されている。このため、次段のトランジスタ30の出力端子Toutにおける出力インピーダンスは、図3(a)の出力インピーダンスよりさらに低くなる。移動体通信端末に用いられる送信電力は、例えば数百から数千mWである。このため、PA22は信号を数百から数千mWの電力に増幅する。このため、複数段のトランジスタが接続されている。よって、PA22の出力インピーダンスは低くなる。例えば、PA22の出力インピーダンスは20Ω程度である。
 図2に戻り、上述のように、PA22の出力インピーダンスは約20Ωである。アンテナ20のインピーダンスは、一般的には50Ωである。LNA24の入力インピーダンスは、アンプの入力インピーダンスのため一般的に高く、例えば200Ω以上である。
 そこで、実施例1においては、Ztx<Zant<Zrxとする。これにより、例えば、送信端子T2の入力インピーダンスZtxをPA22の出力インピーダンスとする。これにより、PA22と送信端子T2との間に、PA22の出力インピーダンスを送信端子T2の入力インピーダンスに整合させる整合回路を設けなくてもよい。また、アンテナ端子T1の入出力インピーダンスをアンテナ20の入出力インピーダンスとする。さらに、受信端子T3の出力インピーダンスZrxをLNA24の入力インピーダンスとする。これにより、整合回路を設けなくともよくなる。よって、整合回路による挿入損失を抑制できる。さらに、小型化が可能となる。
 なお、送信端子T2の入力インピーダンスZtxとPA22の出力インピーダンスとは完全に一致していなくともよい。送信端子T2の入力インピーダンスZtxとPA22の出力インピーダンスとが近ければ、インピーダンス不整合による損失を小さくすることができる。さらに、仮にPA22と送信端子T2との間に整合回路を設けたとしても、これらのインピーダンス差が小さければ、整合回路は小さくてよく、整合回路による挿入損失を抑制できる。アンテナ端子T1および受信端子T3についても同様である。
 送信端子T2のインピーダンスZtxとしては、例えば20Ω±15Ωとすることができる。20Ω±10Ωでもよい。アンテナ端子T1のインピーダンスZantとしては、例えば50Ω±10Ωとすることができる。50Ω±5Ωでもよい。受信端子T3のインピーダンスZrxとしては、例えば200Ω以上とすることができる。300Ω以上でもよい。また、Ztx/Zantは0.6以下が好ましく、0.5以下、または0.4以下がより好ましい。
 送信フィルタ12および受信フィルタ14としては、例えば弾性波フィルタを用いることができる。弾性波フィルタは、弾性表面波共振子、ラブ波共振子または弾性境界波共振子等のIDT(Interdigital Transducer)を含む共振子を用いたラダー型フィルタおよび多重モードフィルタの少なくとも1つを含むことができる。これらのフィルタにおいては、IDTの開口長または/およびIDTの電極指の対数を調整することにより、入力インピーダンスまたは/および出力インピーダンスを設定することができる。また、弾性波フィルタは、圧電薄膜共振子を用いたラダー型フィルタまたは多重モードフィルタとすることができる。これらのフィルタにおいては、圧電薄膜を挟み下部電極と上部電極とが重なる領域の面積を調整することにより、入力インピーダンスまたは/および出力インピーダンスを設定することができる。
 実施例2は、送信端子を複数有する分波器の例である。図4は、実施例2に係る分波器周辺の回路図である。図4に示すように、PA22の2つの出力端子と2つの送信端子T21およびT22とが電気的に接続されている。PA22は、90°位相が異なる信号を出力する。PA22が90°位相の異なる信号を出力するのは、PA22における高調波を抑制するためである。送信端子T21およびT22は、互いに位相が略90°シフトした信号が入力する。送信フィルタ12は、2つの信号のうち一方の信号の位相を90°シフトさせることにより、2つの信号の位相差をほとんどなくす。その後、2つの信号を合成する。合成した信号をフィルタリングした後、アンテナ端子T1に出力する。信号の位相のシフトは、例えば、IDTの電極指の間隔を調整することにより行うことができる。
 実施例2によれば、複数の送信端子T21およびT22に互いに位相が異なる信号が入力する。これにより、PA22が複数の位相が異なる信号を出力する場合においても、PA22と送信端子との間に複数の位相が異なる信号を合成する回路を設けなくともよい。よって、回路の小型化が可能となる。
 実施例3は、実施例1に係る分波器を備えるモジュールの例である。図5は、実施例3に係るモジュールの回路図である。図5に示すように、モジュール40は、基板42、分波器10、PA22、LNA24、送信伝送線路26および受信伝送線路28を備えている。分波器10、PA22、LNA24は基板42に搭載されている。送信伝送線路26および受信伝送線路28は基板42に形成されている。
 基板42は、例えば導電層と絶縁層とを含む。分波器10、PA22およびLAN24は、基板42上に搭載されていてもよく、基板42の絶縁層内に埋め込まれていてもよい。送信伝送線路26および受信伝送線路28は、例えば基板42の導電層と絶縁層とにより形成されたマイクロストリップ線路またはストリップ線路である。
 分波器10は実施例1に係る分波器である。PA22は、複数段のトランジスタ30を備えている。モジュール40の端子T4とPA22の入力端子T7とが電気的に接続されている。PA22の出力端子T8と分波器10の送信端子T2とは送信伝送線路26により電気的に接続されている。分波器10のアンテナ端子T1とモジュール40の端子T6とは電気的に接続されている。端子T6はアンテナ20に電気的に接続されている。分波器10の受信端子T3とLNA24の入力端子T9とは受信伝送線路28により電気的に接続されている。LNA24の出力端子T10とモジュール40の端子T5とは電気的に接続されている。
 実施例3によれば、送信伝送線路26を用い、送信端子T2とPA22とが接続されている。これにより、PA22と送信端子T2間の信号の損失を抑制できる。送信伝送線路26と送信端子T2との間のインピーダンス不整合を抑制するため、送信伝送線路26の特性インピーダンスは、送信端子T2のインピーダンスZtxであることが好ましい。さらに、PA22と送信伝送線路26との間のインピーダンス不整合を抑制するため、送信伝送線路26の特性インピーダンスは、PA22の出力インピーダンスであることが好ましい。
 特性インピーダンスの小さな伝送線路を形成するためには、伝送線路の信号線路の幅を大きくすることになる。実施例3においては、基板42にPA22および分波器10を搭載し、基板42に形成された送信伝送線路26により、PA22と分波器10とを接続する。このため、送信伝送線路26の長さを小さくできる。例えば、送信伝送線路26の長さを数mm以下とすることができる。よって、モジュールの小型化が可能となる。
 さらに、受信伝送線路28を用い、受信端子T3とLNA24とが接続されている。これにより、受信端子T3とLNA24間の信号の損失を抑制できる。受信端子T3と受信伝送線路28との間のインピーダンス不整合を抑制するため、受信伝送線路28の特性インピーダンスは、受信端子T3のインピーダンスZrxであることが好ましい。さらに、受信伝送線路28とLNA24との間のインピーダンス不整合を抑制するため、受信伝送線路28の特性インピーダンスは、LNA24の入力インピーダンスであることが好ましい。
 実施例3においては、モジュール40がPA22およびLNA24を備える例を説明したが。モジュール40は、PA22およびLNA24の少なくとも一方を備えていればよい。また、モジュール40は、実施例2に係る分波器を備えてもよい。
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 10   分波器
 12   送信フィルタ
 14   受信フィルタ
 20   アンテナ
 22   PA
 24   LNA
 26   送信伝送線路
 28   受信伝送線路
 40   モジュール
 42   基板
 T1   アンテナ端子
 T2   送信端子
 T3   受信端子

Claims (7)

  1.  アンテナ端子と送信端子との間に接続された送信フィルタと、
     前記アンテナ端子と受信端子との間に接続された受信フィルタと、
    を具備し、
     前記アンテナ端子のインピーダンスをZant、前記送信端子のインピーダンスをZtx、前記受信端子のインピーダンスをZrxとしたとき、Ztx<Zant<Zrxであることを特徴とする分波器。
  2.  前記Zantは50±10Ωであり、前記Ztxは20±15Ωであることを特徴とする請求項1記載の分波器。
  3.  前記送信端子は複数設けられ、複数の前記送信端子には互いに位相が異なる信号が入力することを特徴とする請求項1または2記載の分波器。
  4.  基板と、
     前記基板に搭載され、請求項1から3のいずれか一項に記載された分波器と、
     前記基板に搭載され、前記送信端子に電気的に接続されたパワーアンプと、
     前記基板に形成され、前記送信端子と前記パワーアンプとを接続する送信伝送線路と、
    を具備することを特徴とするモジュール。
  5.  前記送信伝送線路の特性インピーダンスは、前記Ztxであることを特徴とする請求項4記載のモジュール。
  6.  前記基板に搭載され、前記受信端子に電気的に接続されたローノイズアンプと、
     前記受信端子と前記ローノイズアンプとを接続する受信伝送線路と、
    を具備することを特徴とする請求項4または5記載のモジュール。
  7.  前記受信伝送線路の特性インピーダンスは前記Zrxであることを特徴とする請求項6記載のモジュール。
PCT/JP2012/052601 2012-02-06 2012-02-06 分波器およびモジュール WO2013118239A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052601 WO2013118239A1 (ja) 2012-02-06 2012-02-06 分波器およびモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052601 WO2013118239A1 (ja) 2012-02-06 2012-02-06 分波器およびモジュール

Publications (1)

Publication Number Publication Date
WO2013118239A1 true WO2013118239A1 (ja) 2013-08-15

Family

ID=48947045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052601 WO2013118239A1 (ja) 2012-02-06 2012-02-06 分波器およびモジュール

Country Status (1)

Country Link
WO (1) WO2013118239A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137655A (ja) * 2017-02-23 2018-08-30 株式会社村田製作所 マルチプレクサ、送信装置および受信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936698A (ja) * 1995-07-21 1997-02-07 Canon Inc 弾性表面波装置及びこれを用いた受信装置及び通信システム
US5905418A (en) * 1997-02-12 1999-05-18 Oki Electric Industry Co., Ltd. Surface-acoustic-wave filters with poles of attenuation created by impedance circuits
JP2006074749A (ja) * 2004-08-04 2006-03-16 Matsushita Electric Ind Co Ltd アンテナ共用器、ならびに、それを用いた高周波モジュールおよび通信機器
JP2008532334A (ja) * 2005-02-28 2008-08-14 松下電器産業株式会社 圧電フィルタならびにそれを用いた共用器および通信機器
JP2009544201A (ja) * 2006-07-20 2009-12-10 エプコス アクチエンゲゼルシャフト 電気モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936698A (ja) * 1995-07-21 1997-02-07 Canon Inc 弾性表面波装置及びこれを用いた受信装置及び通信システム
US5905418A (en) * 1997-02-12 1999-05-18 Oki Electric Industry Co., Ltd. Surface-acoustic-wave filters with poles of attenuation created by impedance circuits
JP2006074749A (ja) * 2004-08-04 2006-03-16 Matsushita Electric Ind Co Ltd アンテナ共用器、ならびに、それを用いた高周波モジュールおよび通信機器
JP2008532334A (ja) * 2005-02-28 2008-08-14 松下電器産業株式会社 圧電フィルタならびにそれを用いた共用器および通信機器
JP2009544201A (ja) * 2006-07-20 2009-12-10 エプコス アクチエンゲゼルシャフト 電気モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137655A (ja) * 2017-02-23 2018-08-30 株式会社村田製作所 マルチプレクサ、送信装置および受信装置
CN108471299A (zh) * 2017-02-23 2018-08-31 株式会社村田制作所 多工器、发送装置、接收装置及多工器的阻抗匹配方法

Similar Documents

Publication Publication Date Title
US10141643B2 (en) High-frequency filter including matching circuit
JP5823168B2 (ja) 通信モジュール
JP6965581B2 (ja) 高周波モジュール及び通信装置
US9722576B2 (en) Elastic wave filter and duplexer using same
CN107689778B (zh) 高频模块以及通信装置
WO2017073509A1 (ja) スイッチモジュール
JP2009021895A (ja) アンテナ共用器とそれを用いた通信機器
US7795999B2 (en) Filter having multiple surface acoustic wave filters connected in parallel
CN112019182B (zh) 高频电路以及通信装置
KR102546485B1 (ko) 멀티플렉서
WO2019235181A1 (ja) 高周波フロントエンドモジュールおよび通信装置
JP2008172543A (ja) フィルタ
KR101119619B1 (ko) 표면탄성파로 작동하는 전자소자
JP2003309450A (ja) バンドパスフィルタ及び通信機
US11444597B2 (en) Acoustic wave filter device
JP2013168692A (ja) 弾性波分波器
US10812047B2 (en) Elastic wave filter apparatus
WO2013118239A1 (ja) 分波器およびモジュール
US10361663B2 (en) Low-noise amplifier and electronic device
JP2020027968A (ja) フィルタ装置及び高周波モジュール
JPWO2018180420A1 (ja) 複合フィルタ装置
JP5235004B2 (ja) フィルタ、デュープレクサ、通信モジュール、通信装置
WO2021100259A1 (ja) 高周波回路、高周波フロントエンド回路及び通信装置
JPWO2013118239A1 (ja) 分波器およびモジュール
JP2015065559A (ja) 電力増幅器、及び電力増幅方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867813

Country of ref document: EP

Kind code of ref document: A1