WO2013117168A1 - 发光二极管球泡灯及其制造方法 - Google Patents

发光二极管球泡灯及其制造方法 Download PDF

Info

Publication number
WO2013117168A1
WO2013117168A1 PCT/CN2013/071527 CN2013071527W WO2013117168A1 WO 2013117168 A1 WO2013117168 A1 WO 2013117168A1 CN 2013071527 W CN2013071527 W CN 2013071527W WO 2013117168 A1 WO2013117168 A1 WO 2013117168A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
heat pipe
leather
emitting diode
light
Prior art date
Application number
PCT/CN2013/071527
Other languages
English (en)
French (fr)
Inventor
赵依军
李文雄
Original Assignee
Zhao Yijun
Li Wenxiong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhao Yijun, Li Wenxiong filed Critical Zhao Yijun
Publication of WO2013117168A1 publication Critical patent/WO2013117168A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/33Elongate light sources, e.g. fluorescent tubes curved annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to semiconductor lighting technology, and more particularly to LED bulbs
  • LED light sources have a number of advantages not found in other light sources, such as non-contamination, long life, low energy consumption, vibration resistance, ease of control, and ease of dimming. Faced with the huge market and potential business opportunities in the future, the industry has invested a lot of manpower and material resources in the commercialization of LED lighting devices.
  • a light-emitting diode (LED) currently used as a light source in a lighting device is a solid-state semiconductor device, and its basic structure generally includes a leaded bracket, a semiconductor wafer disposed on the bracket, and an encapsulating material that seals the periphery of the wafer.
  • the above semiconductor wafer contains a PN structure. When a current passes, electrons are pushed toward the P region, where electrons recombine with holes and then emit energy in the form of photons. The wavelength is determined by the material that forms the PN structure.
  • the substrate is a multi-layer structure, and the intermediate layer uses an insulating layer material having a high thermal conductivity, so that the thermal energy of the LED chip passes through the lower layer.
  • the aluminum plate spreads quickly and passes out.
  • the common heat dissipation strategy is to configure the LED fixture with heat dissipation components (such as fins, heat pipes, temperature equalization plates, loop heat pipes, and piezoelectric fans), so that the heat generated by the LEDs can be quickly dissipated by its rapid heat dissipation capability.
  • heat dissipation components such as fins, heat pipes, temperature equalization plates, loop heat pipes, and piezoelectric fans
  • 8,508,782 discloses an LED lamp comprising a cooling structure, an LED module, a transparent leather and a lamp cap, wherein the cooling structure comprises a heat conducting plate and cooling fins disposed around the heat conducting plate, and the LED module comprises a circuit substrate mounted on one surface of the heat conducting plate, an LED disposed on the circuit substrate, and first and second leads electrically connected to the circuit substrate, the transparent leather and the heat conducting plate are fixedly coupled together and the LED module is fixed, and the lamp head includes The shrink member, the electrical connector and the hollow tube into which the ends of the cooling fins can be inserted.
  • the object of the present invention is to provide a light-emitting diode bulb which has the advantages of simple manufacturing process and excellent heat dissipation effect.
  • An LED bulb comprising: a lamp leather;
  • LED wick including:
  • At least one light emitting diode unit At least one light emitting diode unit
  • a driving power source electrically connected to the light emitting diode
  • a heat dissipating tube disposed in a space defined by the lamp cap and the lamp leather, which is composed of a normal temperature infrared radiation material or a portion composed of a normal temperature infrared radiation material, wherein the light emitting diode unit is disposed in the heat dissipation tube
  • An outer surface of one end and the drive power source is disposed inside the heat pipe.
  • the heat generated by the LED unit and the driving power source can be mainly radiated to the environment by heat radiation, which greatly improves the heat dissipation efficiency.
  • the heat pipe mainly dissipates heat by means of heat radiation, it does not need to be in direct contact with the environment but can be installed in the lamp army.
  • This layout makes it possible to design the LED lamp to have a structure similar to that of an ordinary incandescent lamp. Thus, a simple and mature incandescent lamp manufacturing process can be applied to LED lamps.
  • the heat pipe serves as a heat sink while also functioning as a substrate for the circuit, thereby eliminating the cost of a specially provided printed circuit board.
  • the normal temperature infrared radiation material is selected from at least one of the following materials: magnesium oxide, aluminum oxide, calcium oxide, titanium oxide, silicon oxide, chromium oxide, iron antimonide, Manganese telluride, zirconium telluride, cerium oxide, cordierite, mullite, boron carbide, silicon carbide, titanium carbide, molybdenum carbide, tungsten carbide, zirconium carbide, tantalum carbide, boron nitride, aluminum nitride, silicon nitride And zirconium nitride, titanium nitride, titanium silicide, molybdenum silicide, tungsten silicide, titanium boride, zirconium boride and chromium boride. More preferably, the room temperature infrared radiation material is made of carbonized silicon.
  • the above LED bulb further comprising a wiring layer formed on an outer surface and an inner surface of one of the ends to provide an electrical connection between the LED unit and the driving power source
  • the above cover structure facilitates the installation of the LED unit and the drive power supply, reducing manufacturing/ Hey.
  • the portion of the heat pipe away from the one end portion has a size larger than the size of the open end of the lamp leather.
  • a light-emitting diode bulb comprising:
  • LED wick including:
  • At least one light emitting diode unit At least one light emitting diode unit
  • a driving power source electrically connected to the light emitting diode
  • a heat dissipating tube disposed in a space defined by the lamp cap and the lamp cover, at least partially covering a surface of a normal temperature infrared radiant material, the light emitting diode unit being disposed at an outer surface of one of the ends of the heat pipe and said A driving power source is disposed inside the heat pipe.
  • the heat pipe is made of a ceramic material.
  • the normal temperature red ray-receiving material is selected from at least one of the following materials: magnesium oxide, aluminum oxide, calcium telluride, titanium oxide, silicon oxide, chromium oxide, Iron oxide, manganese oxide, zirconium oxide, cerium oxide, cordierite, mullite, boron carbide, silicon carbide, titanium carbide, molybdenum carbide, tungsten carbide, zirconium carbide, tantalum carbide, boron nitride, aluminum nitride, nitriding Silicon, zirconium nitride, titanium nitride, titanium silicide, molybdenum silicide, tungsten silicide, titanium boride, zirconium boride and chromium boride. More preferably, the room temperature infrared radiation material is silicon carbide.
  • the above LED bulb further comprising a wiring layer formed on an outer surface and an inner surface of the one end portion to provide an electrical connection between the LED unit and the driving power source,
  • the one end portion includes a cover plate, and the light-emitting diode unit and the driving power source are respectively disposed on an outer surface and an inner surface of the cover plate, and further include forming A wiring layer on the outer and inner surfaces of the cover plate to provide an electrical connection between the light emitting diode unit and the driving power source.
  • the above cover structure facilitates installation of the LED unit and the driving power source, and reduces manufacturing.
  • the portion of the heat pipe away from the one end portion has a size larger than the size of the open end of the lamp leather.
  • Still another object of the present invention is to provide a method of manufacturing the above-described light-emitting diode bulb which has the advantage of a simple manufacturing process.
  • a method for manufacturing the above LED bulb comprising the steps of: extending one of the ends of the heat pipe of the LED wick into the lamp army and making the open end card of the lamp army On the outer surface of the heat pipe;
  • the outer surface of the base is heated by a heading machine.
  • Loading 1 J 9 ⁇ 6 "X .k_ ⁇ , ⁇ -txt ⁇ . J- tk m L. 11 ⁇ Jr m , 1. ⁇ » -J, M i. Can be realized on existing bulb production lines.
  • the outer surface of the portion of the heat pipe exposing the lamp leather is provided with at least one groove to provide a passage for the adhesive to flow to the open end of the lamp cover.
  • the design facilitates the diffusion of the adhesive, thereby more securely securing the lamp cap, the lamp leather and the LED wick tube together.
  • the outer surface of the base is heated by a flame or a high temperature gas.
  • Still another object of the present invention is to provide a method for manufacturing the above light-emitting diode bulb, which has the advantages of simple manufacturing process.
  • a method for manufacturing the above-mentioned LED bulb, the lamp army is composed of glass, white. ⁇ 1 boat 3 ⁇ 4 ⁇
  • Having the one end of the heat pipe of the light emitting diode projecting into the lamp heat pipe and the open end glaze portion comprises a pre-formed glass glaze coating
  • the portion of the heat pipe that is in contact with the open end is heated by a sealing machine or a sealing machine.
  • the outer surface of the lamp cap is heated by a heading machine.
  • the heading machine, the sealing machine and the sealing machine are all widely used equipment in the manufacture of ordinary light bulbs, and thus the method of the present embodiment can be realized on an existing light bulb production line.
  • the outer surface of the base is heated by a flame or a high temperature gas.
  • Another aspect of the present invention is to provide a method for manufacturing a light-emitting diode bulb, which has the advantages of simple manufacturing process.
  • a method of manufacturing the above light-emitting diode bulb, the lamp leather being composed of glass comprising the following steps:
  • the heat pipe and the heat sealing tube are heated by a sealing machine or a sealing machine
  • the outer surface of the lamp cap The heading machine, the sealing machine and the sealing machine are all widely used equipment in the manufacture of ordinary light bulbs, so the method of the present embodiment can be realized on the existing bulb production line.
  • the outer surface of the base is heated by a flame or a high temperature gas.
  • FIG. 1 is a schematic view of a light emitting diode wick in accordance with one embodiment of the present invention.
  • FIG. 2 shows a schematic view of a light emitting diode wick in accordance with another embodiment of the present invention.
  • FIG. 3 shows a schematic view of a light emitting diode wick in accordance with still another embodiment of the present invention.
  • FIG. 4A and 4B are schematic views showing a cover plate after mounting an LED unit and a driving circuit according to an embodiment of the present invention, wherein FIG. 4A shows the installation of a light-emitting diode A view of the surface of the tube unit, and Fig. 4B shows a view of the surface on which the driving power source is mounted.
  • Figure 5 is a schematic view showing a cover plate after mounting an LED unit and a driving circuit according to another embodiment of the present invention.
  • FIG. 6 is an exploded perspective view of a light emitting diode bulb according to an embodiment of the present invention.
  • Figure 7 is a cross-sectional view of the LED bulb shown in Figure 6.
  • Figure 8 is a cross-sectional view of a light emitting diode bulb in accordance with another embodiment of the present invention.
  • Figure 9 is a flow chart showing a method of fabricating an LED bulb according to an embodiment of the present invention.
  • Fig. 10 is a view showing an assembled state in the manufacturing method of the embodiment shown in Fig. 9.
  • FIG. 11 is a view showing a manufacturing method of a light-emitting diode bulb according to another embodiment of the present invention.
  • Figure 12 shows a light-emitting diode bulb manufacturing method according to another embodiment of the present invention.
  • Figures 13A and 13B show a side view m of the LED wick before and after the glass ring is placed. detailed description
  • the term "lighting device” should be understood broadly to mean all devices capable of providing practical or aesthetic effects by providing light, including but not limited to bulbs, table lamps, wall lamps, spotlights, chandeliers, ceiling lamps. , street lights, flashlights, stage set lights and city lights.
  • semiconductor wafer refers to a plurality of individual single circuits formed on a semiconductor material (eg, silicon, gallium arsenide, etc.), “semiconductor wafer” or “die”” refers to this single circuit, and "packaged chip” refers to the physical structure formed by the semiconductor wafer after packaging, in a typical physical junction
  • the semiconductor wafer is mounted, for example, on a support and encapsulated with a sealing material.
  • light emitting diode unit refers to a unit comprising an electroluminescent material, examples of which include, but are not limited to, P-N junction inorganic semiconductor light emitting diodes and organic light emitting diodes (OLEDs and polymer light emitting diodes (PLEDs)).
  • OLEDs organic light emitting diodes
  • PLEDs polymer light emitting diodes
  • the PN junction inorganic semiconductor light emitting diode may have different structural forms, such as but not limited to a light emitting diode die and a light emitting diode cell.
  • light emitting diode die refers to an electroluminescent property including a PN structure.
  • the semiconductor wafer, and “light emitting diode cell” refers to the physical structure formed by packaging the die. In a typical such physical structure, the die is mounted, for example, on a support and encapsulated with a sealing material.
  • wiring refers to conductive patterns disposed on an insulating surface for electrical connection between components, including but not limited to traces.
  • thermal radiation refers to It is a phenomenon in which an object radiates electromagnetic waves due to temperature. ⁇ . "/4 I , — p ⁇ ⁇ ⁇ ⁇ " Ti "ci w . iwt 53 ⁇ 4 m. ⁇ , my A heat-dissipating tube covering the infrared radiation material or a material having both insulating heat conduction and infrared radiation function
  • thermal conduction refers to the way heat is transferred from a higher temperature part to a lower temperature part in a solid.
  • ceramic material generally refers to non-metallic inorganic materials that require high temperature processing or densification, including but not limited to silicates, L compounds, carbides, nitrides, sulfides, borides, and the like.
  • thermally conductive insulating polymer composite material refers to a polymer material which has a high thermal conductivity by forming a thermally conductive network chain by filling a metal or inorganic filler having high thermal conductivity, and a thermally conductive insulating polymer composite material such as These include, but are not limited to, polypropylene materials with added alumina, polycarbonates with added alumina, silicon carbide and antimony telluride, and acrylonitrile-butadiene-styrene terpolymers.
  • infrared radiation material refers to a material that is engineered to absorb heat and emit a large amount of infrared light, which has a high emissivity. Further, it can be employed in the present invention
  • the ambient temperature infrared ceramic radiation material is used as an infrared radiation material covering the surface of the heat dissipation pipe or an infrared radiation material constituting the heat dissipation pipe, which includes, for example but not limited to, at least one of the following materials: graphite, magnesium oxide, aluminum oxide, calcium telluride, Titanium telluride, silicon oxide, chromium oxide, iron oxide, manganese oxide, zirconium hydride, cerium oxide, cordierite, mullite, boron carbide, silicon carbide, titanium carbide, molybdenum carbide, tungsten carbide, zirconium carbide, tantalum carbide Boron nitride, aluminum nitride, silicon nitride, zirconium nitride,
  • Drive power supply or “LED drive power supply” refers to an “electronic control device” between an alternating current (AC) or direct current (DC) power source connected to the outside of the illuminator and a light emitting diode as a light source for providing the light emitting diode
  • AC alternating current
  • DC direct current
  • the current or voltage required eg constant current, constant voltage or constant power, etc.
  • the LED wick 10 includes a heat dissipation tube 110, a plurality of light emitting diode units 120, and a driving power source (not shown).
  • the heat pipe is entirely composed of an insulating heat conductive material (for example, ceramic or thermally conductive insulating polymer composite), but it is also feasible and beneficial for the heat pipe 110 to be composed only of an insulating heat conductive material (for example, when The use of a small amount of insulating and thermally conductive material can meet the need to conduct heat to infrared radiation materials and reduce the cost of materials.
  • heat generated by the light emitting diode unit and the driving power source is radiated to the environment mainly by means of heat radiation. To this end, in the embodiment shown in Fig.
  • the entire heat dissipating tube 110 The outer surface is covered with an infrared radiation material (for example, a normal temperature infrared ceramic radiation material such as silicon carbide), but alternatively, only a part of the surface of the heat dissipation tube 110 may be covered with the infrared radiation material. For example, it may only be in the heat pipe 110
  • an infrared radiation material for example, a normal temperature infrared ceramic radiation material such as silicon carbide
  • the infrared radiation material has good insulation and thermal conductivity (such as silicon carbide)
  • J j3 ⁇ 4ia, - L heat pipe no can be only a part (for example, the heat pipe is provided with a part other than the part of the light-emitting diode unit or the drive circuit)
  • An infrared radiation material such as graphite
  • the rest is made of an insulating heat conductive material or other material suitable for use as a printed circuit board substrate (for example, a ceramic material or an aluminum substrate having weak infrared radiation capability).
  • the side outer surface of the heat pipe 110 includes a plurality of annular convex portions to increase the surface area, thereby further enhancing the heat radiation capability of the heat pipe.
  • the heat pipe is not limited to the inner hollow case, and It may also be solid. In this case, it may be considered to arrange the LED unit and the driving power source outside the heat pipe.
  • the outer surface of the heat pipe may adopt other shapes, and FIGS. 2 and 3 show that the outer surface has different shapes.
  • the heat pipe 110 has a cylindrical shape, one of which is provided with a light emitting portion.
  • the end of the diode unit 120 which is located near the bottom of the paper in the figure, so hereinafter referred to as "bottom", is smaller than the opposite one.
  • the end (the end of the figure is near the top of the paper in the figure, so it will be referred to as “top” below).
  • a plurality of LED units 120 are disposed on the outer surface of the bottom of the heat pipe 110, which are electrically connected to a driving power source.
  • the driving power source is disposed inside the heat pipe 110, which extends from the heat pipe 110.
  • the first lead 130A and the second lead 130B are connected to an external power source such as various DC power sources or AC power sources.
  • the first lead 130A and the second lead 130B are respectively associated with a first electrode region of the cap (eg, an end of the cap made of a conductive material) and The second electrode region (for example, a portion of the side of the lamp cap made of a conductive material) is electrically connected.
  • the second lead 130B is folded back after the heat pipe 110 is taken out, so that the inner surface of the lamp cap can be abutted when the wick is mounted in the lighting device to achieve electrical connection.
  • the bottom of the heat pipe 110 includes a cover plate 111.
  • the cover plate 111 and the other portions of the heat pipe may be separated, that is, the cover plate 111 is spatially separable from other portions of the heat pipe if necessary.
  • the LED unit 120 and the driving electric field may be first mounted on the surface of the cover plate 111, and then the cover plate 111 and the remaining portion of the heat dissipating tube are fixedly connected together (for example, by heat conduction). Glued, thermally conductive double-sided film is bonded to the rest).
  • the cover plate 111 may be made of the same or different material as the other portions of the heat pipe 110.
  • the cover plate 111 may be made of an infrared radiation material and a ceramic material like the rest of the heat pipe 110, or may be made of an aluminum substrate.
  • the cover 111 is located at the bottom of the heat pipe 110, the cover plate 111 may be provided at other positions (e.g., side faces) of the heat pipe as needed for practical applications.
  • FIGS. 4A and 4B are views showing a cover plate after mounting the light emitting diode unit and the driving circuit according to an embodiment of the present invention, wherein Fig. 4A shows a view of a surface on which the light emitting diode unit is mounted, and Fig. 4B shows A view of the surface on which the drive power is installed.
  • the cover plate 111 is made of an insulating heat conductive material (for example, a ceramic material or a thermally conductive insulating polymer composite material) or an infrared radiation material (for example, silicon carbide) having both insulating and heat conducting properties.
  • the light emitting diode unit 120 and the driving power source 140 are respectively disposed on both surfaces 111A and 111B of the cap plate 111 by means of wirings 112 and 112 formed on both surfaces (for example, by ceramic material or infrared
  • the silver paste pattern is sintered on the radiation material to form a wiring layer, and the light emitting diode unit 120 and the driving power source 140 are connected together. Therefore, in the embodiment shown in FIGS.
  • the cover plate 111 is equivalent to a printed wiring board on the one hand
  • the light emitting diode unit and the driving power source provide a bearing platform and an electrical connection, and on the other hand, function to dissipate heat generated by the light emitting diode unit 120 and the driving power source 140.
  • the cover plate made of a ceramic material can be formed by a die pressing method, and the cover plate produced by this method is thick (for example, 1.5-3 mm) and has high hardness.
  • the light emitting diode units 120 are in the form of a die which are disposed on the surface 111A of the cover plate 111 by adhesion to form a better between the LED unit 120 and the cover plate 111. Thermal conduction.
  • the wiring 112 on the surface 111A includes a plurality of pads 1121 and traces 1122A and 1122B, and the light emitting diode unit 120 is directly connected to the pad 1121 by a wire 113 such as a gold wire, a silver wire or an alloy wire.
  • the light emitting diode units at both ends of the light emitting diode group are connected to the traces 1122A and 1122B through the lead 113, and the traces 1122A and 1122B are ⁇ lil ⁇ 1 1 4 66 -5- ⁇ ifo i* 3 ⁇ 4 $ f* - ⁇ 1 ⁇ 2 1 1 1 ⁇ 5 ⁇ 1 1 1 R on the driving power supply 140.
  • the bonding process can be used to implement the light emitting diode
  • a fluorescent layer may be coated on the surface of the light-emitting diode unit 120 by using a mixed fluorescent device, and then bonded to the surface 111A by means of epoxy or silica gel. .
  • a driving power source 140 is disposed on the other surface 111B of the cover 111.
  • the driving power supply can adopt various topological architecture circuits, such as but not limited to non-isolated buck topology circuit structure, flyback topology circuit structure and half bridge LLC topology circuit structure.
  • topological architecture circuits such as but not limited to non-isolated buck topology circuit structure, flyback topology circuit structure and half bridge LLC topology circuit structure.
  • a detailed description of the driver power circuit can be found in the first edition of the People's Posts and Telecommunications Press, May 2011, "LED Lighting Driver Power and Lamp Design", which is included in this manual in full text.
  • the drive power supply can provide a suitable current or voltage to the LED unit 120 in a variety of drive modes (e.g., constant voltage supply, constant current supply, and constant voltage constant current supply), which can be comprised of one or more separate components.
  • one or more components of the driving power source are implemented in the form of a wafer or a packaged chip, and a component realized in the form of a wafer or a packaged chip in the driving power source is hereinafter referred to as a "driving controller".
  • circuits for implementing other functions may also be integrated in the driving power source 120. These circuits may be driven
  • the controller is integrated in the same semi-conductor Within the bulk or packaged chip, or the circuits may be provided separately in the form of a semiconductor wafer or packaged chip, or some or all of these circuits may be combined and provided in the form of a semiconductor wafer or packaged chip,
  • the terminals 141A and 141B are electrically connected to the first and second leads 130A and 130B, respectively, in the embodiment shown in FIGS. 1-3, thereby causing an external power source (for example, various DC power sources or AC power sources).
  • an external power source for example, various DC power sources or AC power sources.
  • Accessing the rectifier circuit 142 (implemented here in the form of an integrated circuit package chip), and the driver circuit 143 (here implemented in the form of an integrated circuit package chip, such as the MAX16820 LED driver manufactured by Maxim Integrated Products, Inc., NXP Semiconductors' flyback driver SSL series control IC, Clare's HB LED driver MXHV9910, ON Semiconductor's LED driver NCP1351, Active Semiconductor's LED driver 3 ⁇ 4 ⁇ ⁇ ifi ⁇ ⁇ ⁇ ⁇ h Mi Hr ⁇ s 11 , _3 ⁇ 4 , : # ⁇ . ⁇ ⁇ by .
  • ⁇ ⁇ Drive circuit 143 is also routed 112, with capacitors 144A and 144B and other functions ytA l ⁇ rm C- / - ⁇ ⁇ & ⁇ ⁇ AC . Tr.l ⁇ «b ⁇ ⁇ 1 ⁇ 2 4 ⁇ ⁇ m A n
  • the output end of the driving power source 140 passes through the wires 115A and 115B of the through hole 114 and is located at the cover ⁇ ⁇ i i iA ⁇ ⁇ thousand " ⁇
  • a drive controller in the form of a packaged chip and a circuit for realizing other functions for example, it can be directly connected to the wiring 112 of the surface 111B by a soldering process, and for the wafer form.
  • the driving controller and the circuit for realizing other functions for example, may be directly connected to the wiring 112 of the surface 111B by a bonding process or a flip-chip on board (FCOB) process, and, alternatively, may also be employed
  • the power conversion component such as the rectifier circuit 142 and the drive circuit 143 are integrated in a packaged chip.
  • the LED unit 120 in the form of a die is directly connected to the wiring 112 by a bonding process, it is also possible to use a flip chip on the board (FCOB). The process electrically connects the LED die to the wiring.
  • FCOB flip chip on the board
  • the light emitting diode units 120 are connected in series in the embodiment shown in Figs. 4A and 4B, they may be connected in parallel, hybrid or cross array.
  • the above described cover structure is not required.
  • the heat pipe 110 may also be an integrally formed member.
  • the drive power source can be in the form of a physically separate circuit module (for example, molded as an independent The circuit module can be disposed in the internal space of the heat pipe 110 and electrically connected to the LED unit 120.
  • Figure 5 is a schematic view of a cover plate after mounting an LED unit and a drive circuit in accordance with another embodiment of the present invention.
  • the main difference of the present embodiment is the form of the light emitting diode unit 120 as compared with the embodiment shown in Figs. 4A and 4B, so that only the view of the surface of the cover plate on which the light emitting diode unit is disposed is shown here.
  • a wiring 112 is formed on the surface 111A of the cap plate 111, and the light emitting diode unit 120 in the form of a packaged chip is soldered on the wiring 112 to form a heat conduction ⁇ with the cap plate 111 in order to enhance heat conduction, for example, it is also possible to use a paste.
  • the LED unit 120 is bonded to the surface 111A, and in FIG. 5, the wiring 112 is divided into a plurality of segments to place a plurality of LEDs (i) ( ⁇ iyt*J*i*i-j5P-, «*. ⁇ . - i6 ill jfe--J -t ⁇ - ⁇ "iS J ⁇ . 114.
  • the wiring 112 is electrically connected to the cover ill ny 7/ by the wires 115A and 115B that pass through the through hole 114.
  • the LED bulb 1 is an exploded perspective view of a light emitting diode bulb according to an embodiment of the present invention.
  • the LED bulb 1 according to the present embodiment includes a light-emitting diode wick 10, a lamp cap 20, and a lamp army 30.
  • the LED wick 10 can employ the embodiments described above in connection with Figures 1-5 and variations thereof.
  • the lamp cap 20 provides an interface for the LED wick 10 to be electrically connected to an external power source (for example, various DC power sources or AC power sources), which may be, for example, a threaded screw interface or a rotary bayonet similar to an ordinary incandescent lamp and an energy saving lamp.
  • an external power source for example, various DC power sources or AC power sources
  • Light leather 30 is made of a transparent or translucent material that protects the light source and functional circuitry and allows the light to be softer and more evenly dissipated into space. Referring to Fig. 6, the lamp leather 30 can be fixed to the base 20 to form a space for accommodating the LED wick 10.
  • the LED wick 10 dissipates the heat generated by the LED unit and the driving power source to the environment by means of heat radiation. Therefore, the lamp cover should be made of materials that have a transmittance of infrared radiation to meet the practical application requirements (for example, Glass, etc.).
  • Figure 7 is a cross-sectional view of the LED bulb shown in Figure 6, showing the state of the LED wick 10, the lamp cap 20 and the lamp army 30 assembled together.
  • the lamp cap 20 includes an end portion 210 made of a conductive material such as metal, an insulating portion 220, and a threaded portion 230 made of a conductive material having a threaded outer surface, wherein the insulating portion 220 Disposed between the end portion 210 and the threaded portion 230, it may be made of an insulating material such as plastic.
  • the end portion 210 and the threaded portion 230 are respectively adapted to be coupled to the two electrodes of the socket (not shown).
  • the upper end portion 116 of the heat pipe 110 of the LED wick 10 extends into the base 20 and is secured to the inner and/or inner sides of the base 20 by an adhesive (e.g., glue), first
  • the lead 130A extends to be in contact with the end 210, and the second lead 130B folds back down against the inner surface of the threaded portion 230 after extending the heat pipe 110, whereby the external power source can pass through the base 20 to the LED wick 10 powered by.
  • the LED wick 10, the lamp cap 20 and the lamp leather 30 can be fixed by bonding, for example, by a bonding method.
  • the open end 310 extends into the inside of the threaded portion 230 and is fixed to the outer surface of the heat pipe 110. .L ⁇ ⁇ . nn ⁇ -in -> «1 AA ⁇ ⁇ ; ⁇ * ⁇ A* adhesive, the open end can be 310 is fixed to the inner surface of the threaded portion 230.
  • the step 117 can provide support for the lamp leather 30; in addition, the open end 310 of the lamp leather 30 is contracted inwardly to increase the contact area of the inner surface with the outer surface of the heat pipe 110, thereby improving the light emitting diode The bonding strength between the wick 10, the base 20 and the lamp leather 30.
  • the open end of the lamp leather 30 is not closed and the outer diameter is large, it is also conceivable to completely set the lamp leather 30 outside the threaded portion 230.
  • the lamp holder 20 and the lamp leather 30 are fixed together, and the lamp army 30 can be fixed together with the heat pipe 110 (for example, the edge and the inner surface of the open end 310 are bonded to the outer surface of the heat pipe 110), and then The heat pipe 110 is secured to the threaded portion 230 (e.g., the upper end 116 of the heat pipe 110 extends into the base 20 and adheres to the inner bottom and/or sides of the base 20).
  • the driving power source (not shown) of the LED wick 10 can be electrically connected to an external power source, such as 220V AC or The 6V/12V/24V DC power is converted into the current and/or voltage required for the operation of the LED unit 130.
  • an external power source such as 220V AC or The 6V/12V/24V DC power is converted into the current and/or voltage required for the operation of the LED unit 130.
  • the heat generated by the LED unit 130 and the driving power source is basically transferred to the heat pipe by heat conduction. 110, the above heat is absorbed by the heat pipe 110 and is mainly converted into infrared rays.
  • the lampshade 30 is launched into the environment.
  • Figure 8 is a cross-sectional view of a light emitting diode bulb in accordance with another embodiment of the present invention.
  • the main difference of this embodiment is that the arrangement of the joint portion between the LED wick 10, the base 20 and the lamp leather 30 and the outer portion of the heat pipe 110 are compared with the embodiment shown in FIGS. 6 and 7 described above.
  • the surface shape, therefore only the cross-sectional view of the bulb is shown here, and the same aspects as the embodiment shown in Figs. 6 and 7 are omitted.
  • the threaded portion 230 of the cap 20 is slightly contracted inwardly near the open end, and the outer surface of the upper portion of the heat dissipating tube 110 of the LED wick 10 is also formed with a step 117 when the heat pipe 110 is fitted into the threaded portion 230. Thereafter, the inner edge of the open end of the threaded portion 230 just blocks the step 117 to prevent the upper portion of the heat pipe 110 from slipping out of the threaded portion 230.
  • the open end 310 of the bulb 30 extends between the heat pipe 110 and the threaded portion 230, the outer edge of the open end of the threaded portion 230 provides support for the lamp leather 30.
  • the inner surface of 230 is coated with an adhesive (for example, a cement), and then the light-emitting diode wick 10 is
  • FIG 9 is a flow chart showing a method of fabricating an LED bulb according to an embodiment of the present invention. For the sake of convenience, this embodiment is described by taking the LED bulb shown in Figure 6-8 as an example.
  • step S910 the LED wick 10 and the lampshade 30 are assembled together'
  • Fig. 10 is a view showing a state in which the LED wick 10 is assembled with the lamp leather 30.
  • the heat pipe 110 is provided with a lower end of the light emitting diode unit 120. The portion extends into the inner cavity of the lamp cover 30.
  • the outer diameter of the upper end portion of the heat pipe 110 can be made larger than the open end of the lamp army 30, thereby making the lamp The open end of the military 30 is caught on the outer surface of the heat pipe 110.
  • the outer dimension or outer diameter is increased by forming the step 117 on the outer surface of the upper end portion of the heat pipe 110, but other forms are also possible, for example, the outer diameter of the heat pipe 110 can be made from the lower end portion. The upper end gradually increases.
  • step S910 can be performed on a typical bulb production line (e.g., an incandescent lamp production line).
  • a typical bulb production line e.g., an incandescent lamp production line.
  • the lamp arm 30 with the open end upward can be transported to the corresponding assembly station through the conveyor belt, and the LED wick 10 can be inserted into the inner cavity of the lamp army 30 by manual or mechanical installation of the pattern shown in FIG.
  • the open end can be caught on the outer surface of the heat pipe 110 to form a loose fit.
  • the assembly operation is not uniquely limited to one thousand "hi”, ", “, ⁇ , ⁇ , ⁇ h ⁇ fi , -fe ⁇ . ⁇ ,r ⁇ - ⁇ , ⁇ ⁇ *. ⁇ i8 ⁇ * ⁇ , in ⁇ ', the belt is transported to the assembly station, and the light end of the light leather 30 is placed on the heat pipe by manual or mechanical
  • step S920 the inner surface of the cap 20 is covered with an adhesive (e.g., cement).
  • an adhesive e.g., cement
  • the F'J TJ ⁇ JC mud machine extrudes the cement onto the inner surface of the base 20.
  • an adhesive may also be applied on the outer surface of the portion of the heat pipe 110 that exposes the lamp army 30, which is the outer surface of the step 117 of the heat pipe 110 in this embodiment;
  • the inner surface of the base 20 and the outer surface of the portion of the heat pipe 110 that exposes the base 30 are covered with an adhesive.
  • the LED wick 10, the lamp cap 20 and the lamp army 30 are assembled.
  • the base 30 surrounds the portion of the heat pipe 110 that exposes the lamp leather 30 and the open end of the lamp leather 30.
  • the first lead 130A of the LED wick 10 extends to the base.
  • the ends 210 of the 20 are joined, and the second lead 130B is folded back down against the inner surface of the threaded portion 230 of the cap 20 after extending the heat pipe 110.
  • the assembly operation of this step can also be done on a typical bulb production line.
  • the LED wick 10 and the lamp leather 30 which are assembled in step S910 can be transported through a conveyor belt to a corresponding assembly station, where it will be manually or mechanically
  • the adhesive-coated LED wick 10 and the tactile leather 30 in the step S920 can be transported through a conveyor belt to a corresponding assembly station, where it is manually or mechanically
  • the cap 20 covers the portion of the heat pipe 110 that is not surrounded by the lamp cover 30.
  • the inner surface of the base 20, and the open end of the lamp leather 30, the portion of the heat pipe 110 where the lamp leather 30 is exposed may be considered.
  • the outer surface is provided with one or more grooves extending longitudinally (in the up and down direction of the paper in Fig. 10) so that the adhesive can flow under gravity to the vicinity of the open end of the lamp army 30.
  • the setting of the groove is not necessary.
  • the adhesive may also flow toward the open end of the lamp leather 30 due to the expansion effect.
  • the LED wick 10, the lamp cap 20 and the lamp army 30 in the assembly operation are completed. Fixed together
  • Curing of the adhesive can also be accomplished using typical bulb production equipment. For example, you can benefit
  • « ⁇ 30 is delivered to the heading machine for sealing the lamp cap and the lamp leather in the production process of the incandescent lamp, where the adhesive is cured by heating the outer surface of the lamp cap 20.
  • the heading machine is generally The flame is used to heat the outer surface of the lamp cap, but other heating means may be used, such as using a high temperature gas as the heating medium.
  • Figure 11 is a flow chart showing a method of fabricating a light-emitting diode bulb according to another embodiment of the present invention. For the sake of convenience, this embodiment also describes the LED lamp shown in Figure 6-8 as an example.
  • the main difference of this embodiment is that the LED wick 10 and the lamp army 30 are first fixed together, and then the LED wick 10 and the lamp leather 30 are fixed together. The combination is fixed to the base 20.
  • step S1110 the LED wick 10 is assembled with the lamp cover 30.
  • the lower end portion of the heat dissipation tube 110 provided with the LED unit 120 extends into the inner cavity of the lamp army 30.
  • the outer diameter of the upper end portion of the heat pipe 110 can be set larger than the open end of the lamp army 30, so that the lamp leather 30 is stuck on the outer surface of the heat pipe 110.
  • the assembly operation of step S1110 can also be performed in a typical bulb production. Finished online.
  • step S1120 the LED wick 10 and the lamp leather 30 are fixed together by, for example, sintering.
  • the open end of the heat pipe 110 and the lamp leather 30 can be The area of contact is pre-formed with a glass glaze coating (for example by purchasing a light-emitting diode wick with a glass glaze coating on the outer surface area of the heat pipe or by setting a glass glaze coating step prior to step S1110).
  • the glass glaze coating is fused with the glass shield of the lamp leather 30, thereby fixing the LED wick 10 to the lamp army 30.
  • step S1120 can be accomplished by means of a typical bulb production apparatus such as a sealer or sealer for sealing the bulb and glass stem together on the bulb line.
  • a typical bulb production apparatus such as a sealer or sealer for sealing the bulb and glass stem together on the bulb line.
  • step S1130 cover the adhesive on the inner surface of the lamp cap 20; or alternatively, bamboo ⁇ ) ⁇ complex llU ⁇ 3 ⁇ 4 ⁇ ⁇ 3 ⁇ 4 W early "HJ 7 "cloth back; ⁇ optionally, at the base 20
  • the inner surface and the outer surface of the portion of the heat pipe 110 that exposes the lamp leather 30 are covered with an adhesive. Again, this step can be accomplished using existing lamp production equipment.
  • the LED wick 10, the lamp cap 20 and the lamp cover 30 are assembled together.
  • the lamp cap 30 surrounds the portion of the heat pipe 110 that exposes the lamp army 30 and the open end of the lamp leather 30, and emits light.
  • the first lead 130A and the second lead 130B of the diode wick 10 are in contact with the end portion 210 of the base 20 and the inner surface of the threaded portion 230, respectively.
  • the assembling operation of this step can be performed on a typical bulb production line as in the step S930 of the above embodiment.
  • the portion of the lamp army 30 is exposed.
  • the outer surface, the inner surface of the lamp cap 20 and the open end of the lamp cover 30 may be provided with one or more longitudinal extensions on the outer surface of the portion of the heat pipe 110 where the lamp leather 30 is exposed.
  • step S1150 the adhesive is cured by heating, thereby fixing the LED wick 10, the lamp cap 20 and the lamp army 30 which are completed in the assembly operation in step S1140 to manufacture the LED bulb 1 as a finished product, and sticking
  • the curing of the mixture can also be as -HJi-
  • a flame or a high temperature gas can be used as the heating medium.
  • the above description about forming a glass glaze coating on the area of the heat pipe 110 in contact with the open end of the lampshade 30 should be broadly understood to mean that the glass glaze coating is formed at least at the open end of the heat pipe 110 and the lamp leather 30. The area of contact. Due to process implementation, it may sometimes be more advantageous to form a glass glaze coating over a larger area of the outer surface of the heat pipe 110.
  • step S1140 the portion of the heat pipe 110 that exposes the lamp cover 30 and the open end of the lamp leather 30 are surrounded by the lamp cap 20, which makes the structure of the LED bulb more robust.
  • the LED wick 10 and the lamp cover 30 have been sintered together, the LED wick 10, the lamp cap 20 and the lamp army 30 can be fixed by fixing the lamp cap 20 and the diode wick 10 together.
  • the base 20 surrounds at least a portion of the heat pipe that exposes the light 30.
  • FIG. 12 shows a light-emitting diode bulb manufacturing method according to another embodiment of the present invention.
  • ⁇ ⁇ * - The tube bulb lamp is described as an example.
  • the main difference of this embodiment is that the outer surface of the heat dissipation tube 110 of the LED wick 10 is covered with a glass ring, and the open end of the lamp cover 30 is in contact with the glass ring. Therefore, the glass material of the two is sintered together by heating the contact area, thereby achieving the purpose of fixing the LED wick 10 and the lamp army 30 together.
  • step S1210 the LED wick 10 is assembled with the lamp unit 30. Obviously, the assembly operation of step S1210 can also be completed on a typical bulb production line.
  • FIGS 13A and 13B show side views of the LED wick 10 in front of and behind the glass ring.
  • the outer surface of the heat pipe 110 is covered with a glass ring 150 having an outer diameter larger than the inner diameter of the open end of the lamp leather 30.
  • the heat pipe 110 is provided with the light emitting diode unit 120. The lower end portion will extend into the inner cavity of the lamp army 30, and the open end of the lamp cover 30 will abut against the glass ring 150, so that a part of the heat pipe 110 is exposed to the lamp cover 30.
  • the glass ring 150 shown in FIG. 13 can be fixed (for example, by bonding) on the outer surface of the heat pipe 110. To do this, you can set it before step S1210. A bonding step bonds the glass ring 150 to the outer surface of the heat pipe 110.
  • the glass ring 150 and the heat dissipation tube 110 do not need to be fixed together in advance. For example, when the lower end portion of the heat dissipation tube 110 provided with the LED unit 120 faces downward, the glass ring 150 can be sleeved down on the heat dissipation tube 110 to form a loose tube.
  • step S1220 the LED wick 10 and the lamp leather 30 are fixed together by, for example, sintering.
  • sintering As described above, since the open end of the lamp leather 30 is in contact with the glass ring 150 that is sleeved on the outer surface of the heat pipe 110, when the contact area is heated, the glass materials of the two are fused together, thereby causing the LED wick 10 to The light leather 30 is fixed together.
  • the sintering operation of step S1220 can also be performed by a capping machine or a sealing machine.
  • step S1230 the inner surface of the base 20 is covered with an adhesive; or alternatively, an adhesive is applied to the outer surface of the portion of the heat pipe 110 that exposes the lamp army 30; or ⁇ 5 ⁇ *. ⁇ 3 ⁇ 4 *. . t *r4r ,n ⁇ * ift
  • step S1240 can also use the existing bulb production equipment to proceed to step S1240, and the LED wick 10, the base 20 and the lampshade 30 ⁇ « ⁇ ⁇ £ ⁇ - f
  • Portions of the military 30, and the first lead 130A and the second lead 130B of the LED wick 10 are in contact with the end 210 of the base 20 and the inner surface of the threaded portion 230, respectively.
  • the assembling operation of this step can be performed on a typical bulb production line as in the steps S930 and S1140 of the above embodiment.
  • the lamp leather 30 is exposed.
  • the outer surface of the portion, the inner surface of the base 20, and the open end of the lamp leather 30 may be provided with one or more longitudinal extensions on the outer surface of the portion of the heat pipe 110 that exposes the lamp cover 30.
  • step S1250 the adhesive is cured by heating, thereby fixing the LED wick 10, the lamp cap 20 and the lamp leather 30 which are completed in the assembly operation in step S1240.
  • the curing of the adhesive can also be carried out using a typical bulb production apparatus as in the steps S940 and S1150 of the above embodiment, and a flame or a high temperature gas can be used as the heating medium. While some aspects of the present invention have been shown and described, it will be appreciated by those skilled in the art that the invention may be practiced without departing from the spirit and scope of the invention. And equivalent content is limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

一种发光二极管球泡灯及其制作方法,该方法包括以下步骤:利用封排机或封口机加热散热管(110)与开口端接触的部分,并且利用装头机加热灯头(20)的外表面。由于装头机、封排机和封口机都是普通灯泡制造过程中常用的设备,因此该方法可以在现有的灯泡生产线上实现。

Description

i k ^ it L -r ^ , tt jt>l <jk _2- - '丄
3L L»一 ^' . J¾ C» J 升 Tp'J 'rR 技术领域
本发明涉及半导体照明技术, 特别涉及发光二极管球泡灯
( bulb-type lamp )及其制造方法。 背景技术
发光二极管 (LED )光源具有其它光源所不具备的一系列优点, 例如无污染、 寿命长、 能耗低、 耐振动、 控制方便和便于调光等。 面 对未来的巨大市场和潜在商机,业界在 LED照明装置的商品化方面已 经投入了大量的人力和物力.
目前在照明装置中用作光源的发光二极管 (LED )是一种固态的 半导体器件, 它的基本结构一般包括带引线的支架、 设置在支架上的 半导体晶片以及将该晶片四周密封起来的封装材料(例如荧光硅胶或 环氧树脂) , 上述半导体晶片包含有 P-N结构, 当电流通过时, 电子 被推向 P区,在 P区里电子跟空穴复合, 然后以光子的形式发出能量, 而光的波长则是由形成 P-N结构的材料决定的。
LED在工作过程中, 只有一部分电能被转换为热能, 其余部分都 转换成为热能, 从而导致 LED的温度升高, 这是其性能劣化和失效的 主要原因。 可以说, 散热问题已经成为当前半导体照明技术发展的技 术瓶颈。 为此, 业界已经从芯片、 电路板到系统的每一个层面, 针对 散热问题提出了各种优化设计, 以获得最佳的散热效果。
就芯片层面而言, 一般可以通过增加芯片尺寸和改变材料结构来 提高散热能力.
在电路板层面, 目前许多 LED灯具中都采用铝基板作为印刷电路 板, 这种基板为多层结构, 中间层使用具有较高导热系数的绝缘层材 料, 从而使 LED芯片的热能透过下层的铝板快速扩散并传递出去。
对于系统层面, 常用的散热策略是为 LED灯具配置散热组件(例 如鳍片、 热管、 均温板、 回路式热管及压电风扇等) , 从而借助其快 速的散热能力将 LED产生的热量迅速散发到周围环境中。例如题为"球 形 LED灯" 的美国专利 US8058782公开了一种 LED灯, 包括冷却结 构、 LED模组、 透明革和灯头, 其中, 冷却结构包括导热板和配置在 导热板周边的冷却翅片, LED模组包括安装在导热板一个表面上的电 路基板、设置在电路基板上的 LED以及与电路基板电气连接的第一和 第二引线, 透明革与导热板固定连接在一起并且革住 LED模组, 灯头 包括可使冷却翅片的端部插入其中的收缩件、 电气连接体和空心管。 该篇参考文献的内容以整体引用的方式包含在本说明书中。
但是需要指出的是, 散热效果的改善往往是以制造成本的上升和 灯具结构的复杂化为代价的, 而这不利于 LED照明装置的普及推广。 发明内容
本发明的目的是提供一种发光二极管球泡灯, 其具有制造工艺简 单和散热效果优良等优点.
本发明的上述目的可通过下列技术方案实现:
一种发光二极管球泡灯, 包括: 灯革; 以及
发光二极管灯芯, 包括:
至少一个发光二极管单元;
与所述发光二极管电气连接的驱动电源; 以及
设置在由所述灯头和所述灯革限定的空间内的散热管, 其由 常温红外辐射材料构成或者包含由常温红外辐射材料构成的部 分, 所述发光二极管单元设置在所述散热管的其中一个端部的外 表面并且所述驱动电源设置在所述散热管的内部。
通过采用红外辐射材料制作散热管, 可使发光二极管单元和驱动 电源产生的热量主要以热辐射的方式散发到环境中去, 这大大提高了 散热效率。 另一方面, 由于散热管主要以热辐射的方式散热, 因此其 无需与环境直接接触而是可以安装在灯軍内,这种布局使得将 LED灯 设计为具有与普通白炽灯类似的结构成为可能, 从而能够将简单、 成 熟的白炽灯制造工艺应用于 LED灯。 此外, 散热管在用作散热器的同 时, 还起着承栽电路的基板的作用, 因而可以省去专门配备的印刷电 路板的成本。 优选地, 在上述发光二极管球泡灯中, 所述常温红外辐射材料选 自下列材料中的至少一种: 氧化镁、 氧化铝、 氧化钙、 氧化钛、 氧化 硅、 氧化铬、 氡化铁、 氡化锰、 氡化锆、 氧化钡、 堇青石、 莫来石、 碳化硼、 碳化硅、 碳化钛、 碳化钼、 碳化钨、 碳化锆、 碳化钽、 氮化 硼、 氮化铝、 氮化硅、 氮化锆、 氮化钛、 硅化钛、 硅化钼、 硅化钨、 硼化钛、 硼化锆和硼化铬, 更为优选地, 所述常温红外辐射材料选用 碳化娃。
优选地, 在上述发光二极管球泡灯中, 进一步包含形成于所述其 中一个端部的外表面和内表面上的布线层以提供所述发光二极管单元 与所述驱动电源之间的电气连接
优选地, 在上述发光二极管球泡灯中, 所迷其中一个端部包含盖 面和内表面, 并且进一步包含形成于所述盖板的外表面和内表面上的 ^tr ^ i3. λ^ 6Λ- Χί 4i ^f- - -ka ^ i6 4r 1=. VN ^ , Λ> fJS ^ t«\ Ah Λ, ^ a. 上述盖板结构方便了发光二极管单元和驱动电源的安装, 降低了制造 /夂。
优选地, 在上述发光二极管球泡灯中, 所述散热管远离所述其中 一个端部的部分的尺寸大于所述灯革的开口端的尺寸。 本发明的上迷目的还可通过下列技术方案实现:
一种发光二极管球泡灯, 包括:
灯头;
灯革; 以及
发光二极管灯芯, 包括:
至少一个发光二极管单元;
与所述发光二极管电气连接的驱动电源; 以及
设置在由所述灯头和所述灯罩限定的空间内的散热管,其至少 部分表面覆盖常温红外辐射材料,所述发光二极管单元设置在所述 散热管的其中一个端部的外表面并且所述驱动电源设置在所述散 热管的内部。
优选地, 在上迷发光二极管球泡灯中, 所迷散热管由陶瓷材料构 成。 优选地, 在上述发光二极管球泡灯中, 所述常温红夕卜辖射材料选 自下列材料中的至少一种: 氧化镁、 氧化铝、 氡化钙、 氧化钛、 氧化 硅、 氧化鉻、 氧化铁、 氧化锰、 氧化锆、 氧化钡、 堇青石、 莫来石、 碳化硼、 碳化硅、 碳化钛、 碳化钼、 碳化钨、 碳化锆、 碳化钽、 氮化 硼、 氮化铝、 氮化硅、 氮化锆、 氮化钛、 硅化钛、 硅化钼、 硅化钨、 硼化钛、 硼化锆和硼化铬. 更好地, 所述常温红外辐射材料选用碳化 硅。
优选地, 在上述发光二极管球泡灯中, 进一步包含形成于所述其 中一个端部的外表面和内表面上的布线层以提供所述发光二极管单元 与所述驱动电源之间的电气连接,
优选地, 在上述发光二极管球泡灯中, 所述其中一个端部包含盖 板, 所述发光二极管单元和所述驱动电源分别设置在所述盖板的外表 面和内表面, 并且进一步包含形成于所述盖板的外表面和内表面上的 布线层以提供所迷发光二极管单元与所迷驱动电源之间的电气连接。 上述盖板结构方便了发光二极管单元和驱动电源的安装, 降低了制造
, ^「✓疮人
优选地, 在上述发光二极管球泡灯中, 所述散热管远离所述其中 一个端部的部分的尺寸大于所述灯革的开口端的尺寸。 本发明还有一个目的是提供一种制造上述发光二极管球泡灯的方 法, 其具有制造工艺简单的优点,
本发明的上述目的可通过下列技术方案实现:
一种制造上述发光二极管球泡灯的方法, 包含下列步骤: 使所述发光二极管灯芯的所述散热管的所述其中一个端部伸入所 迷灯軍并且使所述灯軍的开口端卡在所述散热管的外表面上;
在所述灯头的内表面和 /或所述散热管的露出所述灯革的部分的外 表面覆盖粘合剂;
使所述灯头包围所述散热管的露出所述灯革的部分和所述灯軍的 开口端; 以及
加热所述灯头的外表面以使所述粘合剂固化, 从而使所述灯头、 所述灯軍和所述发光二极管灯芯管固定在一起.
优选地, 在上述方法中, 利用装头机加热所述灯头的外表面。 装 1 J 9 λ6 "X .k_ Λ,Λ -txt ΛΛ. J- t-k m L. 11· Jr m , 1. ^ΐ» -J, M i. 可以在现有的灯泡生产线上实现.
优选地, 在上述方法中, 所述散热管的露出所述灯革的部分的外 表面上开设有至少一条凹槽以提供使所述粘合刑流动至所述灯罩的开 口端的通道. 凹槽的设计有助于粘合剂的扩散, 从而更为牢固地将灯 头、 灯革和发光二极管灯芯管固定在一起。
优选地, 在上述方法中, 利用火焰或高温气体加热所述灯头的外 表面。 本发明还有一个目的是提供一种制造上述发光二极管球泡灯的方 法, 其具有制造工艺简单的优点.
本发明的上述目的可通过下列技术方案实现:
一种制造上述发光二极管球泡灯的方法, 所述灯軍由玻璃构成, 白. 卞 1舟 ¾ ·
使所述发光二极管的所述散热管的所述其中一个端部伸入所述灯 散热管与所述开口端接釉的部分包含预先形成的玻璃釉涂层;
加热所述散热管与所述开口端接触的部分以使所述发光二极管灯 芯与所述灯革固定在一起;
在所述灯头的内表面和 /或所述散热管的露出所述灯革的部分的外 表面覆盖粘合剂;
使所述灯头包围所述散热管的露出所述灯革的部分; 以及
加热所述灯头的外表面以使所述粘合剂固化, 从而使所述灯头与 所迷发光二极管灯芯固定在一起.
优选地, 在上述方法中, 利用封排机或封口机加热所述散热管与 所述开口端接触的部分. 优选地, 在上述方法中, 利用装头机加热所 述灯头的外表面. 装头机、 封排机和封口机都是普通灯泡制造过程中 被广泛使用的设备, 因此本实施例的方法可以在现有的灯泡生产线上 实现。
优选地, 在上述方法中, 利用火焰或高温气体加热所述灯头的外 表面。 本发明还有一个 Θ的是提供一种制造上迷发光二极管球泡灯的方 法, 其具有制造工艺简单的优点.
本发明的上述目的可通过下列技术方案实现:
一种制造上述发光二极管球泡灯的方法, 所述灯革由玻璃构成, 包含下列步猓:
使套有玻璃环的所述发光二极管的所述散热管的所述其中一个端 部伸入所述灯革并且使所述灯革的开口端与所述玻璃环接触;
加热所述开口端与所述玻璃环接触的部分以使所述发光二极管灯 芯与所述灯罩固定在一起;
在所述灯头的内表面和 /或所述散热管的露出所述灯罩的部分的外 表面覆盖粘合剂;
使所述灯头包围所述散热管的露出所述灯革的部分; 以及
加热所述灯头的外表面以使所迷粘合刑固化, 从而使所述灯头与
Figure imgf000008_0001
优选地, 在上述方法中, 利用封排机或封口机加热所述散热管与
Jki, i.C
Figure imgf000008_0002
w 〃1 述灯头的外表面. 装头机、 封排机和封口机都是普通灯泡制造过程中 被广泛使用的设备, 因此本实施例的方法可以在现有的灯泡生产线上 实现。
优选地, 在上述方法中, 利用火焰或高温气体加热所述灯头的外 表面。 附图说明
本发明的上述和 /或其它方面和优点将通过以下结合附图的各个方 面的描述变得更加清晰和更容易理解, 附图中相同或相似的单元采用 相同的标号表示, 附图包括:
图 1为按照本发明一个实施例的发光二极管灯芯的示意图。
图 2示出了按照本发明另一个实施例的发光二极管灯芯的示意图。 图 3示出了按照本发明还有一个实施例的发光二极管灯芯的示意 图。
图 4A和 4B示出了按照本发明一个实施例的安装了发光二极管单 元和驱动电路之后的盖板的示意图,其中, 图 4A示出了安装发光二极 管单元的表面的视图, 图 4B示出了安装驱动电源的表面的视图。
图 5示出了按照本发明另一个实施例的安装了发光二极管单元和 驱动电路之后的盖板的示意图.
图 6为按照本发明一个实施例的发光二极管球泡灯的分解示意图。 图 7为图 6所示发光二极管球泡灯的剖视图。
图 8为按照本发明另一个实施例的发光二极管球泡灯的剖视图。 图 9示出了按照本发明一个实施例的发光二极管球泡灯制造方法 的流程图。
图 10示出了图 9所示实施例的制造方法中的一个装配状态的示意 图。
图 11示出了按照本发明另一个实施例的发光二极管球泡灯制造方 ,,,一
图 12示出了按照本发明另一个实施例的发光二极管球泡灯制造方 d ΛΑ ^ HO
图 13A 和 13B 示出了套设玻璃环前后的发光二极管灯芯的侧视 m。 具体实施方式
下面参照其中图示了本发明示意性实施例的附图更为全面地说明 本发明。 但本发明可以按不同形式来实现, 而不应解读为仅限于本文 给出的各实施例. 给出的上述各实施例旨在使本文的披露全面完整, 更为全面地传达给本领域技术人员本发明的保护范围。 术语
在本说明书中, 术语 "照明装置" 应该广义地理解为所有能够通 过提供光线以实现实用的或美学的效果的设备, 包括但不限于球泡灯、 台灯、 壁灯、 射灯、 吊灯、 吸顶灯、 路灯、 手电筒、 舞台布景灯和城 市景观灯等.
除非特别说明, 在本说明书中, 术语 "半导体晶圆" 指的是在半 导体材料(例如硅、 砷化镓等) 上形成的多个独立的单个电路, "半 导体晶片" 或 "晶片 (die ) " 指的是这种单个电路, 而 "封装芯片" 指的是半导体晶片经过封装后形成的物理结构, 在典型的这种物理结 构中, 半导体晶片例如被安装在支架上并且用密封材料封装。
术语 "发光二极管单元" 指的是包含电致发光材料的单元, 这种 单元的例子包括但不限于 P-N结无机半导体发光二极管和有机发光二 极管 (OLED和聚合物发光二极管 (PLED ) ) .
P-N 结无机半导体发光二极管可以具有不同的结构形式, 例如包 括但不限于发光二极管管芯和发光二极管单体. 其中, "发光二极管 管芯" 指的是包含有 P-N结构的、 具有电致发光能力的半导体晶片, 而 "发光二极管单体" 指的是将管芯封装后形成的物理结构, 在典型 的这种物理结构中, 管芯例如被安装在支架上并且用密封材料封装。
术语 "布线" 、 "布线图案" 和 "布线层" 指的是在绝缘表面上 布置的用于元器件间电气连接的导电图案, 包括但不限于走线( trace ) 术语 "热辐射" 指的是物体由于具有温度而辐射电磁波的现象。 ■^τ·^. "/4 I , — p ~ ~ ^ ^" Ti "ci w . iwt 5¾ m.^, my 覆盖红外辐射材料的散热管或者由兼具绝缘导热和红外辐射功能的材
JJ. _5. Λ Α ί V 丄 »Χ 、" ,1 - ^ id. -L> J.
^FT J ^ ^jK^, 土^:»^:«¾ ^ ^4¾«^"¾^ *1、 丫*¾"。
术语 "热传导" 指的是热量在固体中从温度较高的部分传送到温 度较低的部分的传递方式.
术语 "陶瓷材料" 泛指需高温处理或致密化的非金属无机材料, 包括但不限于硅酸盐、 L化物、 碳化物、 氮化物、 硫化物、 硼化物等。
术语 "导热绝缘高分子复合材料"指的是这样的高分子材料, 通 过填充高导热性的金属或无机填料在其内部形成导热网链, 从而具备 高的导热系数, 导热绝缘高分子复合材料例如包括但不限于添加氧化 铝的聚丙烯材料、 添加氧化铝、 碳化硅和氡化铋的聚碳酸酯和丙烯腈- 丁二烯-苯乙烯三元共聚物等. 有关导热绝缘高分子复合材料的具体描 述可参见李丽等人的论文 "聚碳酸酯及聚碳酸醏合金导热绝缘高分子 材料的研究" (《材料热处理学报》 2007年 8月, Vol. 28, No.4, pp51-54 ) 和李冰等人的论文" L化铝在导热绝缘高分子复合材料中的应用"(《塑 料助剂》 2008年第 3期, ppl4-16 ) , 这些文献以全文引用的方式包含 在本说明书中。
术语 "红外辐射材料" 指的是在工程上能够吸收热量而发射大量 红外线的材料, 其具有较高的发射率。 进一步地, 在本发明中可采用 常温红外陶瓷辐射材料作为覆盖在散热管表面的红外辐射材料或构成 散热管的红外輻射材料,其例如包括但不限于下列材料中的至少一种: 石墨、 氧化镁、 氧化铝、 氡化钙、 氡化钛、 氧化硅、 氧化铬、 氧化铁、 氧化锰、 氡化锆、 氧化钡、 苴青石、 莫来石、 碳化硼、 碳化硅、 碳化 钛、 碳化钼、 碳化钨、 碳化锆、 碳化钽、 氮化硼、 氮化铝、 氮化硅、 氮化锆、 氮化钛、 硅化钛、 硅化钼、 硅化钨、 硼化钛、 硼化锆和硼化 铬。 有关红外陶瓷辐射材料的详细描述可参见李红涛和刘建学等人的 论文 "高效红外辐射陶瓷的研究现状及应用" ( 《现代技术陶瓷》 2005 年第 2期 (总第 104期), pp24-26)和王黔平等人的论文 "高辐射红 外陶瓷材料的研究进展及应用" ( 《陶瓷学报》 2011年第 3期) , 这 些文献以全文引用的方式包含在本说明书中. 中一个考虑因素: 在设定的发光二极管单元的 P-N结温度(例如 50-80 xS, ^ I£1 f^i AA ^ . ± \ ,?l -tr ir *S kX.4^ i rt II ½lr i¾ * AA ^
•WSL 7 r BV— Ί » S^'LB. *> Γ , " W^ Π Ί / WiT 人 口 V久 射率 (例如大于或等于 70%) .
e J-Λ > f- -ΐ. _η A /J. - ¾_ -
— ¾i 迁妖 JSL 3J¾酐刀 ^^^-m^^- U^^i JL-ec^^^B&^-^ 电信号的情形, 或者经过一个或多个第三单元间接传送电能量或电信 号的情形。
"驱动电源" 或 "LED驱动电源" 指的是连接在照明装置外部的 交流(AC) 或直流(DC) 电源与作为光源的发光二极管之间的 "电 子控制装置" , 用于为发光二极管提供所需的电流或电压 (例如恒定 电流、 恒定电压或恒定功率等) 。
诸如 "包含" 和 "包括" 之类的用语表示除了具有在说明书和权 利要求书中有直接和明确表述的单元和步猓以外, 本发明的技术方案 也不排除具有未被直接或明确表述的其它单元和步骤的情形。
诸如 "第 " 和 "笫二" 之类的用语并不表示单元在时间、 空间、 大小等方面的顺序而仅仅是作区分各单元之用, 以下借助附图描述本发明的实施例。 发光二极管灯芯
图 1为按照本发明一个实施例的发光二极管灯芯的示意图。 按照本实施例的发光二极管灯芯 10包括散热管 110、 多个发光二 极管单元 120以及驱动电源 (未画出) .
在图 1 所示的实施例中, 散热管全部由绝缘导热材料(例如陶瓷 或导热绝缘高分子复合材料)构成, 但是散热管 110仅仅一部分由绝 缘导热材料构成也是可行的和有益的 (例如当采用少量绝缘导热材料 就能够满足将热量传导给红外辐射材料的需求并且需要降低材料成本 时) 。 如前面所述, 在本发明中, 主要借助热辐射的方式将发光二极 管单元和驱动电源产生的热量散发到环境中去. 为此, 在图 1 所示实 施例中, 在散热管 110的整个外表面覆盖红外辐射材料(例如诸如碳 化硅之类的常温红外陶瓷辐射材料) , 但是可选地, 也可以仅在散热 管 110的一部分表面覆盖红外輻射材料。 例如可以仅在散热管 110的
Figure imgf000012_0001
应避免在设置或靠近发光二极管单元和驱动电源的表面区域覆盖红外 如果红外辐射材料同时具有较好的绝缘导热性能 (例如碳化硅材
) , ^a^ ιιυ j " 田 £L7「 ) ww^ft^i风。 "J j¾ia, - L 热管 no可以仅仅一部分(例如散热管上设置发光二极管单元或驱动 电路的部分以外的部分) 由红外辐射材料(例如石墨)构成, 而其余 部分则采用适合用作印刷电路板基板的绝缘导热材料或其他材料(例 如红外辐射能力较弱的陶瓷材料或铝基板) ,
除非特别指明, 下面将要描述的内容都同时适用于红外辐射材料 管 ^等' 形. ' 、 ' '
参见图 1,散热管 110的侧部外表面包含多个环形外凸部分以增加 表面积, 从而进一步增强散热管的热辐射能力, 值得指出的是, 散热 管并不局限于内部空心的情形, 其也可以是实心的, 此时可以考虑将 发光二极管单元和驱动电源设置在散热管的外部. 此外, 散热管的外 表面也可以采用其它形状, 图 2和 3示出了外表面具有不同形状的散 热管。 如图 2所示, 散热管 110的側部外表面上设置纵向延伸的凸块 以达到增加表面积的目的. 而在图 3中, 散热管 110呈圓筒状, 其中 一个端部 (即设置发光二极管单元 120的端部, 在图中该端部靠近纸 面的下方, 因此以下将其又称为 "底部" ) 的面积小于相对的另一个 端部(在图中该端部靠近纸面的上方, 因此以下将其又称为 "顶部" ) 的面积。
参见图 1-3,多个发光二极管单元 120被设置在散热管 110的底部 的外表面, 它们与驱动电源电气连接.驱动电源则被设置在散热管 110 的内部, 其经由从散热管 110延伸出来的第一引线 130A和第二引线 130B与外部电源 (例如各种直流电源或交流电源)相连。 当将本实施 例的灯芯安装到照明装置(例如球泡灯)内时, 第一引线 130A和第二 引线 130B分别与灯头的第一电极区(例如灯头的由导电材料构成的端 部)和第二电极区 (例如灯头側面由导电材料构成的部分) 电气连接。 如图 1-3所示, 第二引线 130B在引出散热管 110后向上折返, 从而在 灯芯安装到照明装置内时可抵靠住灯头的内側表面以实现电气连接。
在图 1-3所示的实施例中, 散热管 110的底部包含盖板 111。 该盖 板 111与散热管的其它部分可以处于分离状态, 也就是说, 如果需要, 盖板 111 与散热管的其它部分在空间上是可以分离的。 例如, 出于降 低制造工艺难度的需要, 可以先在盖板 111 的表面安装发光二极管单 元 120和驱动电涯, 然后再将盖板 111与散热管的其佘部分固定连接 在一起(例如借助导热胶、 导热的双面胶片与其余部分粘合在一起)。 盖板 111可以采用与散热管 110其它部分相同或不同的材料制成, 例 如盖板 111可以与嗷热管 110的其余部分一样由红外辐射材料和陶瓷 材料制成, 也可以采用铝基板制成.
虽然在本实施例中, 盖板 111位于散热管 110的底部, 但是视实 际应用需要, 也可以将盖板 111设于散热管的其它位置(例如侧面)。
图 4A和 4B示出了按照本发明一个实施例的安装了发光二极管单 元和驱动电路之后的盖板的示意图, 其中, 图 4A示出了安装发光二极 管单元的表面的视图, 图 4B示出了安装驱动电源的表面的视图。
盖板 111采用绝缘导热材料(例如陶瓷材料或导热绝缘高分子复 合材料等)或兼具绝缘导热能力的红外辐射材料(例如碳化硅)制成。 参见图 4A和 4B, 发光二极管单元 120和驱动电源 140分别设置在盖 板 111的两个表面 111A和 111B上,借助形成在两个表面上的布线 112 和 112, (例如通过在陶瓷材料或红外辐射材料上烧结银浆图案而形成 布线层) , 发光二极管单元 120和驱动电源 140连接在一起。 因此在 图 4A和 4B所示的实施例中, 盖板 111一方面相当于印刷线路板, 为 发光二极管单元和驱动电源提供承栽平台和电气连接, 另一方面其还 起着将发光二极管单元 120和驱动电源 140所产生的热量散发出去的 作用。 优选地, 可以采用模具压制法来制作陶瓷材料构成的盖板, 这 种方法制造的盖板较厚 (例如 1.5-3mm ) 并且硬度高。
在图 4A和 4B所示的实施例中, 发光二极管单元 120采用管芯形 式, 它们通过粘附方式设置在盖板 111的表面 111A上以在 LED单元 120与盖板 111之间形成较好的热传导. 另一方面, 位于表面 111A上 的布线 112包含多个焊盘 1121和走线 1122A和 1122B,发光二极管单 元 120通过引线 113 (例如金丝、银丝或合金丝)直接连接至焊盘 1121 以形成串联的发光二极管组, 该发光二极管組两端的发光二极管单元 通过引线 113连接至走线 1122A和 1122B, 而走线 1122A和 1122B则 ^ lil 』 1 1 4 66 -5-^ ifo i* ¾. $ f* -^ ½ 1 1 1 ι5τ 1 1 1 R 上的驱动电源 140.在本实施例中,可以利用绑定工艺实现发光二极管
Figure imgf000014_0001
如果需要调整发光二极管单元 120的发光波长, 可以用混合荧光 ^ε, i 山 《 一 i 在发光二极管单元 120的表面涂覆荧光层, 再将其借助环氧树脂或硅 胶粘合到表面 111A上。
参见图 4B, 在盖板 111的另一表面 111B上设置有驱动电源 140。 根据外部供电的方式, 驱动电源可采用各种拓朴架构的电路, 例如包 括但不限于非隔离降压型拓朴电路结构、 反激式拓朴电路结构和半桥 LLC拓朴电路结构等. 有关驱动电源电路的详细描述可参见人民邮电 出版社 2011年 5月第 1版的 《LED照明驱动电源与灯具设计》一书, 该出版物以全文引用方式包含在本说明书中.
驱动电源可以多种驱动方式(例如恒压供电、 恒流供电和恒压恒 流供电等方式) 向发光二极管单元 120提供合适的电流或电压, 其可 以由一个或多个独立的部件组成。 在本实施例中, 驱动电源中的一个 或多个部件以晶片或封装芯片的形式实现, 以下将驱动电源中以晶片 或封装芯片的形式实现的部件称为 "驱动控制器" 。
可选地, 在驱动电源 120中还可以集成实现其它功能的电路, 例 如调光控制电路、 传感电路、 功率因数校正电路、 智能照明控制电路、 通信电路和保护电路等. 这些电路可以与驱动控制器集成在同一半导 体晶片或封装芯片内, 或者这些电路可以单独地以半导体晶片或封装 芯片的形式提供, 或者这些电路中的一些或全部可以组合在一起并以 半导体晶片或封装芯片的形式提供,
如图 4B所示, 接线柱 141A和 141B分别与图 1-3所示实施例中 的第一和第二引线 130A和 130B电气连接, 由此使得外部电源 (例如 各种直流电源或交流电源)接入整流电路 142 (在这里以集成电路封装 芯片的形式实现), 而驱动电路 143 (在这里以集成电路封装芯片的形 式实现, 例如可以是美信(Maxim )集成产品公司制造的 LED驱动器 MAX16820, 恩智浦 (NXP )半导体公司制造的反激式驱动器 SSL系 列控制 IC、 Clare公司制造的 HB LED驱动器 MXHV9910、 安森美公 司制造的 LED驱动器 NCP1351、 Active半导体公司制造的 LED驱动 ¾ Α Γτ^^ςΔ答) 婁 ifi ι ι ι η h Mi Hr ^s 11 ,_¾ 、:#由. Λ Ι 由. ^ ϋ 驱动电路 143还经布线 112,与电容器 144A和 144B以及实现其它功能 ytA l^r m C- /-^ Δλ^ & \Χ Λ A C . Tr.l \ «b ^ ^ ½ 4^ ΐΐ\ m A n 驱动电源 140的输出端经穿越通孔 114的导线 115A和 115B与位于盖 ^^ ^ i i iA工^ 一 千 "υ
在图 4A和 4B所示的实施例中, 对于封装芯片形式的驱动控制器 和实现其它功能的电路, 例如可以利用焊接工艺将其直接连接到表面 111B的布线 112,上, 而对于晶片形式的驱动控制器和实现其它功能的 电路, 例如可以利用绑定工艺或在板上倒装芯片 (FCOB )工艺将其直 接连接到表面 111B的布线 112,上, 此外, 可选地, 也可以采用将整流 电路 142之类的电源变换元器件与驱动电路 143集成在一个封装芯片 内的结构。
值得指出的是, 虽然在图 4Α和 4Β所示的实施例中, 利用绑定工 艺将管芯形式的发光二极管单元 120直接连接到布线 112上, 但是也 可以利用在板上倒装芯片( FCOB )工艺将发光二极管管芯与布线电气 连接。 此外, 虽然在图 4Α和 4Β所示实施例中, 发光二极管单元 120 以串联方式连接在一起, 但是也可以并联、 混联或交叉阵列的形式连 接在一起。
还需要指出的是, 上述盖板结构并非是必需的。 可选地, 散热管 110也可以是一体成型的构件。 对于这种结构, 为了便于装配, 驱动电 源可以采用物理上独立的电路模块的形式(例如被塑封为一个独立的 部件) 来实现, 此时该电路模块可被设置于教热管 110的内部空间并 且与发光二极管单体 120电气连接在一起.
图 5为按照本发明另一个实施例的装了发光二极管单元和驱动电 路之后的盖板的示意图.
与上述借助图 4A和 4B所示的实施例相比, 本实施例的主要不同 之处在于发光二极管单元 120的形式, 因此这里仅示出设置发光二极 管单元的盖板表面的视图.
参见图 5, 在盖板 111的表面 111A上形成布线 112, 采用封装芯 片形式的发光二极管单元 120被焊接在布线 112上从而与盖板 111之 间形成热传导 β为了加强热传导,例如还可以用粘合刑将 LED单元 120 粘合在表面 111A上, 在图 5中, 布线 112分为多段以将多个 LED单 ^ i7(\ ^iyt *J*i* i-j5P— ,«*.^. - i6 ill jfe--J -t§- ^"iS J\. 114. 布线 112借助穿越通孔 114的导线 115A和 115B电气连接至设置于盖 ill ny 7/
Figure imgf000016_0001
il l 部的电路模块形式的驱动电源, 发光二极管球泡灯
图 6为按照本发明一个实施例的发光二极管球泡灯的分解示意图。 如图 6所示, 按照本实施例的发光二极管球泡灯 1 包括发光二极 管灯芯 10、 灯头 20和灯軍 30。
在图 6所示的实施例中,发光二极管灯芯 10可以采用上面结合图 1-5所描述的实施例及其它们的变化形式。 灯头 20为发光二极管灯芯 10提供了与外部电源 (例如各种直流电源或交流电源) 电气连接的接 口, 其例如可采用与普通白炽灯和节能灯类似的螺纹状旋接口或旋转 卡口等形式。 灯革 30采用透明或半透明材料制成, 可以起到保护光源 和功能电路以及使光线更柔和、更均匀地向空间发散的作用。参见图 6, 灯革 30可以与灯头 20固定在一起, 从而形成可容纳发光二极管灯芯 10的空间。 如上所述, 发光二极管灯芯 10借助热辐射的方式将 LED 单元和驱动电源产生的热量散发到环境中去, 因此应选择对红外辐射 的透过率能满足实际应用需求的材料来制作灯罩(例如玻璃等) 。
图 7为图 6所示发光二极管球泡灯的剖视图, 其示出了发光二极 管灯芯 10、 灯头 20和灯軍 30装配在一起后的状态. 参见图 6和 7, 灯头 20包括由诸如金属之类的导电材料制成的端 部 210、绝缘部分 220和外表面呈螺纹状的、 由导电材料制成的螺紋部 分 230, 其中, 绝缘部分 220设置在端部 210与螺纹部分 230之间, 其 可采用塑料之类的绝缘材料制成. 端部 210和螺纹部分 230分别适于 与灯座(未画出) 的两个电极相连接。
继续参见图 6和 7,发光二极管灯芯 10的散热管 110的上端部 116 伸入灯头 20内并且与灯头 20的内底面和 /或内侧面通过粘合剂 (例如 胶泥)固定在一起, 第一引线 130A延伸至与端部 210相接, 而第二引 线 130B在伸出散热管 110之后向下折返并抵靠住螺紋部分 230的内表 面, 由此外部电源可经灯头 20向发光二极管灯芯 10供电。
发光二极管灯芯 10、 灯头 20和灯革 30例如可通过粘合方式固定 it一 A ^ ^ .-ba m 7 ήτ -πτ ΑΑ «?.^ i* lie ΐί ^ T .
的开口端 310伸入螺纹部分 230内部并且与散热管 110的外表面固定 ― .L ^ ^. nn ^ -i n -> «1 AA ^ πϋ; τ*ι A* 粘合剂, 可以将开口端 310与的螺纹部分 230的内表面固定在一起。
,
■yp o
Figure imgf000017_0001
fs 下时, 该台阶 117可为灯革 30提供支承; 此外, 灯革 30的开口端 310 向内收缩以使其内表面与散热管 110的外表面的接触面积增大, 从而 提高了发光二极管灯芯 10、 灯头 20和灯革 30之间的结合强度。
可选地, 当灯革 30的开口端未收口而导致外径较大时, 也可以考 虑将灯革 30完全设置在螺纹部分 230之外. 在这种布置下, 为了使发 光二极管灯芯 10、 灯头 20和灯革 30三者固定在一起, 可先使灯軍 30 与散热管 110固定在一起(例如将开口端 310的边沿和部分内表面与 散热管 110的外表面粘合) , 然后将散热管 110与螺纹部分 230固定 在一起(例如将散热管 110的上端部 116伸入灯头 20内并且与灯头 20 的内底面和 /或侧面粘合) .
当将图 6和 7所示实施例的照明装置 1的灯头 20插入灯座后,发 光二极管灯芯 10的驱动电源(未画出)即可电气连接至外部电源, 将 外部电力 (例如 220V交流电或者 6V/12V/24V直流电)转换为发光二 极管单元 130工作所需的电流和 /或电压. 另一方面, 发光二极管单元 130 和驱动电源工作时产生的热量基本上以热传导的方式被传递到散 热管 110,上述热量进而被散热管 110吸收并且主要转换为红外线后透 过灯罩 30发射到环境中去.
图 8为按照本发明另一个实施例的发光二极管球泡灯的剖视图。 与上述借助图 6和 7所示的实施例相比, 本实施例的主要不同之 处在于发光二极管灯芯 10、 灯头 20和灯革 30三者之间的结合部位的 布置以及散热管 110的外表面形状, 因此这里仅示出该球泡灯的剖视 图, 并且省略描述与图 6和 7所示的实施例相同的方面。
参见图 8, 灯头 20的螺纹部分 230在开口端附近向内略微收缩, 而发光二极管灯芯 10的散热管 110 的上部的外表面上也形成有台阶 117, 当散热管 110装入螺紋部分 230内之后, 螺纹部分 230开口端的 内边沿恰好阻挡住台阶 117, 以阻止散热管 110的上部从螺纹部分 230 滑出。 另一方面, 当灯革 30的开口端 310伸入散热管 110与螺紋部分 230之间时, 螺紋部分 230的开口端的外边沿可为灯革 30提供支承。 在图 8所示的实施例中, 为了使发光二极管灯芯 10、 灯头 20和灯罩
- t
Figure imgf000018_0001
. PI ^Ί、ϋ- *Ί,^
230的内表面涂覆粘合剂 (例如胶泥) , 接着将发光二极管灯芯 10的
JJ> t t -L_^_ 3? AZ. ^ -t t\ ιε·« Λ3β hi. ΛιΤ * . J /.i Φ fSLiW ^ ι ιυ 'Τ') -ψ- JU BV 7T J i υ ^ so *g 3¾.·ΡΙ» JU Π W >TS , 最后使粘合剂固化以使发光二极管灯芯 10、 灯头 20和灯罩 30固定在 一起。
虽然在上面借助图 6-8 描述的实施例中都以结构类似于普通白炽 灯的球泡灯作为照明装置的示例,但是对于本领域内的技术人员来说, 在阅读本说明书之后将会认识到, 本发明的上述内容也可以应用于其 它类型的照明装置, 它们例如包括但不限于 LED射灯、 LED筒灯和 LED日光灯等。 发光二极管球泡灯的制造方法
图 9示出了按照本发明一个实施例的发光二极管球泡灯制造方法 的流程图。 为阐述方便起见, 本实施例以图 6-8 所示的发光二极管球 泡灯为例进行描述.
如图 9所示, 首先在步骤 S910中, 将发光二极管灯芯 10与灯罩 30装配在一起'
图 10示出了发光二极管灯芯 10与灯革 30装配在一起时的状态示 意图。 如图 10所示, 散热管 110的设置有发光二极管单元 120的下端 部延伸入灯罩 30的内腔. 与此同时, 为了阻止了散热管 110全部落入 灯罩 30内腔, 散热管 110上端部的外径可制作得大于灯軍 30的开口 端, 由此使得灯軍 30的开口端卡在散热管 110的外表面。 在本实施例 中, 通过在散热管 110上端部的外表面上形成台阶 117来增大其外部 尺寸或外径, 但是其它的形式也是可行的, 例如可以使散热管 110的 外径从下端部向上端部逐渐增大。
步骤 S910的装配操作可以在典型的灯泡生产线(例如白炽灯生产 线)上完成。 例如, 可以将开口端向上的灯軍 30通过传输带输送到相 应的装配工位, 由人工或机械安装图 10所示的样式将发光二极管灯芯 10插入灯軍 30内腔, 此时灯革 30的开口端能够卡在散热管 110的外 表面上从而形成松配合. 但是需要指出的是, 装配操作并非唯一地局 限千― h i一"*—,, 、. ^、β,,ή h ^fi, -fe^.^,r ν -λ , ^ ·^ *.^i8 ^ *τ, in ― '、 带输送到装配工位, 由人工或机械将灯革 30开口端朝下地套在散热管
1 1 n AA ^S- ¥ 4? - -fat ¾ ι ,η ΛΑ -di;
随后进入步骤 S920,在灯头 20的内表面覆盖粘合剂(例如胶泥 )。
J ^ , T¾ ^-^ vi ΚΛ yS^i W 王广 T3 會元 , -HP kX? F'J TJ ^JC 泥机将胶泥挤出到灯头 20的内表面。 可选地, 在本步骤中, 也可以将 粘合剂涂覆在散热管 110的露出灯軍 30的部分的外表面,在本实施例 中即为散热管 110的台阶 117的外表面; 或者可选地, 可以考虑在灯 头 20的内表面和敉热管 110的露出灯革 30的部分的外表面都覆盖粘 合剂。
接着进入步骤 S930, 将发光二极管灯芯 10、 灯头 20和灯軍 30装 配在一起。 例如参照图 6和 7, 在该装配状态下, 灯头 30包围散热管 110的露出灯革 30的部分和灯革 30的开口端,此时,发光二极管灯芯 10的第一引线 130A延伸至与灯头 20的端部 210相接, 而第二引线 130B在伸出散热管 110之后向下折返并抵靠住灯头 20的螺紋部分 230 的内表面。
同样, 本步骤的装配操作也可以在典型的灯泡生产线上完成。 例 如对于仅在灯头 20内表面涂覆粘合剂的情形, 可以将步驟 S910中完 成装配的发光二极管灯芯 10与灯革 30通过传输带输送到相应的装配 工位,在那里由人工或机械将内表面覆盖粘合剂的灯头 20盖住散热管 110的未被灯罩 30包围的部分。对于在散热管 110的露出灯革 30的部 分的外表面涂覆粘合剂的情形,可以将步猓 S920中完成粘合剂涂覆的 发光二极管灯芯 10与灯革 30通过传输带输送到相应的装配工位, 在 那里由人工或机械将灯头 20盖住散热管 110的未被灯罩 30包围的部 分。
为了使粘合剂更为均匀地分布于散热管 110露出灯革 30的部分的 外表面、灯头 20内表面以及灯革 30的开口端,可以考虑在散热管 110 的露出灯革 30的部分的外表面上开设有一条或多条纵向延伸(在图 10 中沿着纸面的上下方向) 的凹槽, 这样, 粘合剂可在重力作用下流动 至灯軍 30的开口端附近。 但是需要理解的是, 凹槽的设置并非是必需 的。 在下面将要描述的粘合剂加热固化过程中, 得益于膨胀作用, 粘 合剂也可而向灯革 30的开口端流动. 中完成装配操作的发光二极管灯芯 10、 灯头 20和灯軍 30固定在一起
1
Figure imgf000020_0001
1。
粘合剂的固化也可以利用典型的灯泡生产设备完成。 例如可以利
一 、, «八 和灯軍 30输送到白炽灯生产过程中用于封接灯头和灯革的装头机, 在 那里通过加热灯头 20的外表面使粘合剂固化. 虽然装头机一般都是利 用火焰来加热灯头的外表面, 但是也可以采用其它加热方式, 例如利 用高温气体作为加热介质。 图 11示出了按照本发明另一个实施例的发光二极管球泡灯制造方 法的流程图。 为阐述方便起见, 本实施例同样以图 6-8 所示的发光二 极管球泡灯为例进行描述.
与图 9所示的实施例相比, 本实施例的主要不同之处在于, 首先 将发光二极管灯芯 10与灯軍 30固定在一起, 然后再将固定在一起的 发光二极管灯芯 10和灯革 30的组合与灯头 20固定在一起。
参见图 11, 在步猓 S1110中, 将发光二极管灯芯 10与灯罩 30装 配在一起. 在完成装配操作之后, 散热管 110的设置有发光二极管单 元 120的下端部延伸入灯軍 30的内腔, 并且可以将散热管 110上端部 的外径设定得大于灯軍 30的开口端,从而使得灯革 30卡在散热管 110 的外表面, 显然, 步驟 S1110的装配操作同样可以在典型的灯泡生产 线上完成。
随后进入步骤 S1120,将发光二极管灯芯 10与灯革 30例如通过烧 结方式固定在一起, 为此, 对于在步猓 S1110中装配的发光二极管灯 芯 10,可在散热管 110的与灯革 30开口端接触的区域预先形成玻璃釉 涂层 (例如通过采购散热管的外表面区域具有玻璃釉涂层的发光二极 管灯芯或者在步骤 S1110之前设置一个玻璃釉涂覆步骤实现) 。 当在 步驟 S1120中对散热管 110与灯革 30的开口端接触的区域进行加热时, 玻璃釉涂层与灯革 30的玻璃材盾融合在一起,从而使发光二极管灯芯 10与灯軍 30固定在一起.
步骤 S1120的烧结搮作可以借助典型的灯泡生产设备(例如灯泡 生产线上用于将泡壳与玻璃芯柱封接在一起的封排机或封口机)完成。
il如 ·5Γ以 1^·*·速 su m Φ ' . ^ ^ Sf. ^ # #.^1*5 ^· m J^ r . m ^ 组合通过传输带揄送到封排机或封口机, 在那里通过对散热管 110与
,ΚΡ ¾ ΛΛ ½ &Ι> ΠΓ J l tir ―土 Λ - 4τ一 ^
随后进入步猓 S1130, 在灯头 20的内表面羞盖粘合剂; 或者可选 , 竹 ^ ) ^復 llU ^ ¾· ί¾ W早《HJ 7「衣囬; ^有 可选地, 在灯头 20的内表面和散热管 110的露出灯革 30的部分的外 表面都覆盖粘合剂. 同样, 该步骤也可以利用现有的灯泡生产设备完 成。
接着进入步稞 S1140, 将发光二极管灯芯 10、 灯头 20和灯罩 30 装配在一起.在该装配状态下,灯头 30包围散热管 110的露出灯軍 30 的部分和灯革 30的开口端, 并且发光二极管灯芯 10的第一引线 130A 和第二引线 130B分别与灯头 20的端部 210和螺紋部分 230的内表面 接触。
同样,本步骤的装配操作也可以如在上述实施例的步骤 S930中那 样, 在典型的灯泡生产线上完成. 并且为了使粘合剂更为均匀地分布 于散热管 110露出灯軍 30的部分的外表面、 灯头 20内表面以及灯罩 30的开口端,可以在散热管 110的露出灯革 30的部分的外表面上开设 有一条或多条纵向延伸.
随后进入步骤 S1150, 通过加热使粘合剂固化, 从而将步骤 S1140 中完成装配操作的发光二极管灯芯 10、 灯头 20和灯軍 30固定在一起 从而制造出作为成品的发光二极管球泡灯 1 ,粘合剂的固化也可以如在 -HJi-
Figure imgf000022_0001
可以采用火焰或高温气体作为加热介质。
需要指出的是,上面关于在教热管 110的与灯罩 30开口端接触的 区域预先形成玻璃釉涂层的表述应该广义地理解为玻璃釉涂层至少形 成在散热管 110的与灯革 30开口端接触的区域。由于工艺实施的原因, 有时候在散热管 110外表面的更大区域内形成玻璃釉涂层可能更为有 利。
还需要指出的是, 在步骤 S1140中, 散热管 110的露出灯罩 30的 部分和灯革 30的开口端都被灯头 20包围, 这使得发光二极管球泡灯 的结构更为牢固。 但是这并非是必需的, 由于发光二极管灯芯 10与灯 罩 30已经烧结在一起, 因此只要使灯头 20与二极管灯芯 10固定在一 起即可使发光二极管灯芯 10、 灯头 20和灯軍 30三者固定在一起, 也 就是说, 在本实施例中, 灯头 20至少包围散热管的露出灯革 30的部 分。
图 12示出了按照本发明另一个实施例的发光二极管球泡灯制造方
Figure imgf000022_0002
Μι ύ * - 极管球泡灯为例进行描述。
与图 11所示的实旄例相比, 本实施例的主要不同之处在于, 在发 光二极管灯芯 10的散热管 110的外表面套有玻璃环, 而灯罩 30的开 口端与该玻璃环接触, 因此通过加热接触区域使二者的玻璃材质烧结 在一起, 实现将发光二极管灯芯 10与灯軍 30固定在一起的目的。
参见图 12, 在步骤 S1210中, 将发光二极管灯芯 10与灯軍 30装 配在一起。 显然, 同样可以在典型的灯泡生产线上完成步驟 S1210的 装配操作。
图 13A和 13B示出了套设玻璃环前后的发光二极管灯芯 10的侧 视图。 如图 13B所示, 在散热管 110的外表面套有玻璃环 150, 其外 径大于灯革 30的开口端的内径. 在完成步骤 S1210的装配操作之后, 散热管 110的设置有发光二极管单元 120的下端部将延伸入灯軍 30的 内腔, 灯罩 30的开口端则与玻璃环 150相抵, 使得散热管 110有一部 分露出灯罩 30。
需要指出的是, 图 13所示的玻璃环 150可以预先固定(例如通过 粘合方式)在散热管 110的外表面。 为此, 可在步骤 S1210之前设置 一个粘合步骤, 将玻璃环 150粘合在散热管 110的外表面。 但是玻璃 环 150与散热管 110之间不必预先固定在一起, 例如当散热管 110的 设置有发光二极管单元 120的下端部朝下时, 玻璃环 150可以向下套 在散热管 110上从而形成松配合,
随后进入步猓 S1220,将发光二极管灯芯 10与灯革 30例如通过烧 结方式固定在一起。如上所述,由于灯革 30的开口端与套在散热管 110 外表面的玻璃环 150接触, 因此当对接触区域进行加热时, 二者的玻 璃材质融合在一起,从而使发光二极管灯芯 10与灯革 30固定在一起。 同样, 步骤 S1220的烧结操作也可以利用封排机或封口机完成。
随后进入步猓 S1230, 在灯头 20的内表面覆盖粘合剂; 或者可选 地, 将粘合剂涂覆在欹热管 110的露出灯軍 30的部分的外表面; 或者 ■5Γί*. ·¾*. . t *r4r ,n Λ * ift
Figure imgf000023_0001
表面都覆盖粘合剂. 同样, 该步楝也可以利用现有的灯泡生产设备完 接着进入步骤 S1240, 将发光二极管灯芯 10、 灯头 20和灯罩 30 Μτ «一 ·£· - f
衣 gCi ft一? ¾ , /ft¾t
Figure imgf000023_0002
軍 30的部分, 并且发光二极管灯芯 10的第一引线 130A和第二引线 130B分别与灯头 20的端部 210和螺纹部分 230的内表面接触。
同样,本步骤的装配操作也可以如在上述实施例的步骤 S930和步 骤 S1140中那样, 在典型的灯泡生产线上完成. 并且为了使粘合剂更 为均匀地分布于散热管 110露出灯革 30的部分的外表面、 灯头 20内 表面以及灯革 30的开口端, 可以在散热管 110的露出灯罩 30的部分 的外表面上开设有一条或多条纵向延伸。
随后进入步猓 S1250, 通过加热使粘合剂固化, 从而将步骤 S1240 中完成装配操作的发光二极管灯芯 10、灯头 20和灯革 30固定在一起。 粘合剂的固化也可以如在上述实施例的步骤 S940和 S1150中那样,利 用典型的灯泡生产设备完成, 并且可以采用火焰或高温气体作为加热 介质。 虽然已经展现和讨论了本发明的一些方面, 但是本领域内的技术 人员应该意识到, 可以在不背离本发明原理和精神的奈件下对上述方 面进行改变, 因此本发明的范围将由权利要求以及等同的内容所限定。

Claims

1、 一种发光二极管球泡灯, 包括:
灯头;
灯革; 以及
发光二极管灯芯, 包括:
至少一个发光二极管单元;
与所述发光二极管电气连接的驱动电源; 以及
设置在由所述灯头和所述灯革限定的空间内的散热管, 其由 常温红外辐射材料构成或者包含由常温红外辐射材料构成的部 分, 所述发光二极管单元设置在所述散热管的其中一个端部的外 表面并且所述驱动电源设置在所迷散热管的内部,
征在于, 包含下列步骤:
Figure imgf000024_0001
x r | 述灯罩并且使所述灯革的开口端卡在所述散热管的外表面上;
在所述灯头的内表面和 /或所述散热管的露出所述灯軍的部分的外 表面覆盖粘合剂;
使所述灯头包围所述散热管的露出所述灯革的部分和所述灯罩的 开口端; 以及
加热所述灯头的外表面以使所述粘合剂固化, 从而使所述灯头、 所述灯軍和所述发光二极管灯芯管固定在一起,
3、 如权利要求 2所述的方法, 其中, 利用装头机加热所述灯头的 外表面。
4、 一种制造如权利要求 1所述的发光二极管球泡灯的方法, 所述 灯革由玻璃构成, 其特征在于, 包含下列步稞:
使所述发光二极管的所述散热管的所述其中一个端部伸入所述灯 罩并且使所述灯革的开口端卡在所述散热管的外表面上, 其中, 所述 散热管与所述开口端接触的部分包含预先形成的玻璃釉涂层; 加热所述散热管与所述开口端接觫的部分以使所述发光二极管灯 芯与所迷灯革固定在一起; 表面覆盖粘合剂; ' ' ' ' "
使所述灯头包围所述散热管的露出所述灯革的部分; 以及
加热所迷灯头的外表面以使所述粘合剂固化, 从而使所述灯头与 所迷发光二极管灯芯固定在一起。
5、 如权利要求 4所述的方法, 其中, 利用封排机或封口机加热所 述散热管与所述开口端接触的部分 β
灯革由玻璃构成, 其特征在于, 包含下列步猓:
太女 sir ^i -a: kit ύϋ- i Φ ^ ^ -kit i& Ait iH- i^ Jti- Ά Af^ 6fi- ti- dj— . «* 部伸入所述灯革并且使所述灯革的开口端与所述玻璃环接触;
丄 — 、 , 、
尸Γ ΤΓ w 尸 w、«"«s 尸 r¾^ c— " J 芯与所述灯罩固定在一起;
在所述灯头的内表面和 /或所述散热管的露出所述灯革的部分的外 表面覆盖粘合剂;
使所述灯头包围所述敉热管的露出所述灯革的部分; 以及
加热所述灯头的外表面以使所述粘合剂固化, 从而使所述灯头与 所述发光二极管灯芯固定在一起.
7、 一种发光二极管球泡灯, 包括:
灯头;
灯軍; 以及
发光二极管灯芯, 包括:
至少一个发光二极管单元;
与所述发光二极管电气连接的驱动电源; 以及
设置在由所述灯头和所述灯軍限定的空间内的散热管,其至少 部分表面覆盖常温红外辐射材料,所述发光二极管单元设置在所述 散热管的其中一个端部的外表面并且所述驱动电源设置在所述散 热管的内部.
8、 一种制造如权利要求 7所述的发光二极管球泡灯的方法, 其特 征在于, 包含下列步跺:
使所述发光二极管灯芯的所述散热管的所述其中一个端部伸入所 述灯革并且使所述灯革的开口端卡在所述敉热管的外表面上;
在所述灯头的内表面和 /或所述散热管的露出所述灯革的部分的外 表面覆盖粘合剂;
使所述灯头包围所述散热管的露出所述灯革的部分和所述灯罩的 开口端; 以及
加热所述灯头的外表面以使所述粘合剂固化, 从而使所述灯头、
^ ^ ^T ^ ^a f!r ^ * ^· *Τ
Figure imgf000026_0001
Ste ffi Λ—*£
A
Figure imgf000026_0002
灯革由玻璃构成, 其特征在于, 包含下列步猓:
,、 瞧一 ,
尸 Γ 反 二 ^产 θ ^尸/ Γ T— 碼^ 甲八尸 ¾^ J 軍并且使所述灯革的开口端卡在所述散热管的外表面上, 其中, 所述 散热管与所述开口端接触的部分包含预先形成的玻璃釉涂层;
加热所述散热管与所述开口端接触的部分以使所述发光二极管灯 芯与所述灯軍固定在一起;
在所述灯头的内表面和 /或所述散热管的露出所述灯革的部分的外 表面覆盖粘合剂;
使所述灯头包围所述散热管的露出所述灯革的部分; 以及
加热所述灯头的外表面以使所述粘合剂固化, 从而使所述灯头与 所述发光二极管灯芯固定在一起。
10、 一种制造如权利要求 7所述的发光二极管球泡灯的方法, 所 述灯革由玻璃构成, 其特征在于, 包含下列步猓:
使套有玻璃环的所述发光二极管的所述散热管的所述其中一个端 部伸入所述灯罩并且使所述灯罩的开口端与所述玻璃环接触;
加热所述开口端与所述玻璃环接触的部分以使所述发光二极管灯 芯与所述灯革固定在一起; 在所述灯头的内表面和 /或所述散热管的露出所述灯軍的部分的外 表面覆盖粘合剂;
使所述灯头包围所述散热管的露出所述灯革的部分; 以及
加热所述灯头的外表面以使所述粘合剂固化, 从而使所述灯头与 所述发光二极管灯芯固定在一起.
PCT/CN2013/071527 2012-02-08 2013-02-07 发光二极管球泡灯及其制造方法 WO2013117168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100277299A CN103244838A (zh) 2012-02-08 2012-02-08 发光二极管球泡灯及其制造方法
CN201210027729.9 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013117168A1 true WO2013117168A1 (zh) 2013-08-15

Family

ID=48924565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071527 WO2013117168A1 (zh) 2012-02-08 2013-02-07 发光二极管球泡灯及其制造方法

Country Status (2)

Country Link
CN (1) CN103244838A (zh)
WO (1) WO2013117168A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103939838A (zh) * 2014-05-07 2014-07-23 江苏达伦电子股份有限公司 一种耐高温吸顶灯罩
CN104266149B (zh) * 2014-09-12 2017-02-15 济宁润泰电器有限公司 一种led灯泡灯头连接工艺
CN104879661A (zh) * 2015-05-20 2015-09-02 浙江阳光照明电器集团股份有限公司 一种led灯
CN107726134A (zh) * 2017-10-12 2018-02-23 泉州市泉港鑫林机械科技有限公司 一种低功率蓝牙控制的被动散热型led灯装置
CN110195890A (zh) * 2019-05-15 2019-09-03 张先良 一种具有热辐射加热空气的暖气加热器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598272A (zh) * 2009-07-13 2009-12-09 深圳市稀路电器有限公司 Led灯泡
CN101699135A (zh) * 2009-10-19 2010-04-28 上海海丰照明电器有限公司 Led普泡型灯泡
CN201462475U (zh) * 2009-06-30 2010-05-12 姚力生 一种led照明灯泡
TW201018842A (en) * 2008-11-13 2010-05-16 Yeh Chiang Technology Corp LED lamp
CN101799152A (zh) * 2010-04-09 2010-08-11 白建国 一种小功率led灯泡的散热头及制造方法
CN201885028U (zh) * 2010-12-11 2011-06-29 山东开元电子有限公司 全方位led球泡灯
CN102235610A (zh) * 2011-08-16 2011-11-09 彭雯 Led球泡
CN202074282U (zh) * 2011-05-05 2011-12-14 邹正康 Led灯泡

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482257A (zh) * 2008-12-03 2009-07-15 刘端蓉 Led灯的散热方法、散热结构及led灯
CN101649965B (zh) * 2009-08-20 2012-08-22 艾迪光电(杭州)有限公司 液冷配光中空式led灯
DE102010003680A1 (de) * 2010-04-07 2011-10-13 Osram Gesellschaft mit beschränkter Haftung Halbleiterlampe
CN102213367A (zh) * 2010-04-09 2011-10-12 富士迈半导体精密工业(上海)有限公司 发光二极管灯具、发光二极管模组及其散热器
CN201696946U (zh) * 2010-06-25 2011-01-05 王树潘 一种氧化铝陶瓷散热基片的led灯
CN102291927B (zh) * 2011-04-30 2013-08-28 深圳市易特照明有限公司 一种led灯陶瓷基板和led灯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201018842A (en) * 2008-11-13 2010-05-16 Yeh Chiang Technology Corp LED lamp
CN201462475U (zh) * 2009-06-30 2010-05-12 姚力生 一种led照明灯泡
CN101598272A (zh) * 2009-07-13 2009-12-09 深圳市稀路电器有限公司 Led灯泡
CN101699135A (zh) * 2009-10-19 2010-04-28 上海海丰照明电器有限公司 Led普泡型灯泡
CN101799152A (zh) * 2010-04-09 2010-08-11 白建国 一种小功率led灯泡的散热头及制造方法
CN201885028U (zh) * 2010-12-11 2011-06-29 山东开元电子有限公司 全方位led球泡灯
CN202074282U (zh) * 2011-05-05 2011-12-14 邹正康 Led灯泡
CN102235610A (zh) * 2011-08-16 2011-11-09 彭雯 Led球泡

Also Published As

Publication number Publication date
CN103244838A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
WO2014187335A1 (zh) Led灯芯和包含其的led球泡灯
CN104421682B (zh) Led光源模块和包含该模块的led球泡灯
WO2013139295A1 (zh) 具有强散热能力的发光二极管球泡灯及其制造方法
CN103363332B (zh) 具有大发光角度的发光二极管球泡灯及其制造方法
WO2013067945A1 (zh) 发光二极管灯芯和采用发光二极管作为光源的照明装置
TWM437919U (en) Light emission device
WO2013117168A1 (zh) 发光二极管球泡灯及其制造方法
TWI273858B (en) Light-emitting diode cluster lamp
CN103672459B (zh) 具有紧凑结构的提供定向光束的发光二极管照明装置
US9466772B2 (en) Method and apparatus for providing high-temperature multi-layer optics
CN103470968A (zh) 大发光角度的发光二极管灯芯及包含该灯芯的照明装置
CN103375704B (zh) 大功率发光二极管灯及其制造方法
WO2013097755A1 (zh) 高度集成化的发光二级管灯芯和包含其的照明装置
CN103322438A (zh) 大功率发光二极管投光灯及其制造方法
CN103579210B (zh) 发光二极管单元与散热基板的连接
WO2018133509A1 (zh) 一种led模组及照明灯具
CN203413588U (zh) Led光源板组件、led灯芯和led照明装置
CN110260178A (zh) 一种cob封装带有散热的小功率360°led灯泡
JP6145774B2 (ja) 照明用光源及び照明装置
TWM406145U (en) Heat sink and light emitting diode lamp
CN211371990U (zh) 一种垂直散热式的led灯
JP2011091213A (ja) 発光モジュールおよび照明装置
TWM393807U (en) Light source module for direct heat conduction
CN106098920A (zh) 一种半导体发光单元的散热结构
JP3191670U (ja) Ledランプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747168

Country of ref document: EP

Kind code of ref document: A1