WO2013097755A1 - 高度集成化的发光二级管灯芯和包含其的照明装置 - Google Patents

高度集成化的发光二级管灯芯和包含其的照明装置 Download PDF

Info

Publication number
WO2013097755A1
WO2013097755A1 PCT/CN2012/087781 CN2012087781W WO2013097755A1 WO 2013097755 A1 WO2013097755 A1 WO 2013097755A1 CN 2012087781 W CN2012087781 W CN 2012087781W WO 2013097755 A1 WO2013097755 A1 WO 2013097755A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
light emitting
light
power source
driving power
Prior art date
Application number
PCT/CN2012/087781
Other languages
English (en)
French (fr)
Inventor
李文雄
赵依军
Original Assignee
Li Wenxiong
Zhao Yijun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Wenxiong, Zhao Yijun filed Critical Li Wenxiong
Publication of WO2013097755A1 publication Critical patent/WO2013097755A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/75Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with fins or blades having different shapes, thicknesses or spacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb

Definitions

  • the present invention relates to semiconductor lighting technology, and more particularly to a highly integrated light emitting diode wick and an illumination device including the same. Background technique
  • LED light sources have a number of advantages not found in other light sources, such as non-contamination, long life, low energy consumption, vibration resistance, ease of control, and ease of dimming. Faced with the huge market and potential business opportunities in the future, the industry has invested a lot of manpower and material resources in the commercialization of LED lighting devices.
  • Epoxy resin Epoxy resin
  • the semiconductor wafer includes a PN structure. When a current passes, electrons are pushed toward the P region. In the P region, electrons recombine with holes, and then emit energy in the form of photons, and the wavelength of the light is formed by the material forming the PN structure. decided.
  • heat dissipation can generally be improved by increasing the chip size and changing the material structure.
  • the substrate is a multi-layer structure, and the intermediate layer uses an insulating layer material having a high thermal conductivity, so that the thermal energy of the LED chip passes through the lower layer.
  • the aluminum plate spreads quickly and passes out.
  • the common heat dissipation strategy is to configure the LED fixture with heat dissipation components (such as fins, heat pipes, temperature equalization plates, loop heat pipes, and piezoelectric fans), so that the heat generated by the LEDs can be quickly dissipated by its rapid heat dissipation capability.
  • heat dissipation components such as fins, heat pipes, temperature equalization plates, loop heat pipes, and piezoelectric fans
  • an LED lamp comprising a cooling structure, an LED module, a transparent leather and a lamp cap
  • the cooling structure comprises a heat conducting plate and cooling fins disposed around the heat conducting plate
  • the LED module comprises a circuit substrate mounted on one surface of the heat conducting plate, an LED disposed on the circuit substrate, and first and second leads electrically connected to the circuit substrate, the transparent leather and the heat conducting plate are fixedly coupled together and the LED module is fixed
  • the lamp head includes A shrink member, an electrical connector, and a hollow tube into which the ends of the cooling fins can be inserted.
  • the invention has the advantages of simple manufacturing process and excellent heat dissipation effect.
  • a light-emitting diode wick comprising:
  • a driving power source which is electrically connected to the LED unit
  • the heat dissipating component of the light emitting diode unit and the driving power source is covered, and at least a part of the surface thereof is covered with an infrared radiation material.
  • the insulating and thermally conductive material is a ceramic material or a thermally conductive insulating polymer composite material.
  • the infrared radiation material is a normal temperature infrared ceramic radiation material.
  • the normal temperature infrared ceramic radiation material is selected from at least one of the following materials: magnesium oxide, aluminum oxide, calcium oxide, titanium oxide, silicon oxide, chromium oxide, antimony iron, oxidation Manganese, zirconia, antimony telluride, cordierite, mullite, boron carbide, silicon carbide, titanium carbide, molybdenum carbide, tungsten carbide, zirconium carbide, niobium carbide, boron nitride, aluminum nitride, silicon nitride, nitrogen Zirconium, titanium nitride, titanium silicide, molybdenum silicide, tungsten silicide, titanium boride, zirconium boride and chromium boride.
  • the heat dissipating member has a bright body shape
  • the light emitting diode unit is disposed on an outer surface of the housing and the driving power source is disposed inside the housing.
  • the driving power source is in the form of a circuit module
  • a wiring layer is formed on an inner surface and an outer surface of the casing to be between the light emitting diode unit and the driving power source Provide electrical connections.
  • the wiring layer is formed on the inner and outer surfaces of the casing by a printed circuit process.
  • the light-emitting diode unit is a light-emitting diode die disposed on an outer surface of the casing and through a bonding process or a flip chip on the board (FCOB) The process achieves an electrical connection.
  • FCOB flip chip on the board
  • the light-emitting diode unit is a light-emitting diode unit, which is disposed on an outer surface of the housing and electrically connected to the wiring layer by soldering.
  • the upper left, two fe ⁇ wicks Preferably, the upper left, two fe ⁇ wicks.
  • the small i# iir' photodiode units are connected in series, parallel, hybrid or cross array.
  • the wiring layer is formed on the inner surface and the outer surface of the cap plate by a printed circuit process.
  • the light-emitting diode unit is a light-emitting diode die disposed on an outer surface of the cover plate and passed through a bonding process or a flip chip on the board (FCOB) The process achieves an electrical connection.
  • FCOB flip chip on the board
  • the light-emitting diode unit is a light-emitting diode unit disposed on an outer surface of the cover plate and electrically connected to the wiring layer by means of splicing,
  • the wiring layer is such that a plurality of the light-emitting diode units are connected in series, parallel, hybrid or cross-array.
  • the driving power source includes a driving controller in the form of a semiconductor wafer, which is disposed on an inner surface of the cap plate and is flip-chip bonded to the wiring layer by a bonding process or a board
  • the (FCOB) process enables electrical connections.
  • the driving power source includes a driving controller in the form of a package chip, which is disposed on an inner surface of the cap plate and electrically connected to the wiring layer by means of splicing.
  • a driving controller in the form of a package chip, which is disposed on an inner surface of the cap plate and electrically connected to the wiring layer by means of splicing.
  • at least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • At least one of the circuits is integrated with the drive controller in the same semiconductor wafer or packaged chip.
  • the circuit is in the form of a semiconductor wafer fixed to an inner surface of the cover plate and electrically connected to the wiring layer by a bonding process or a flip chip (FCOB) process.
  • FCOB flip chip
  • the circuit is in the form of a package chip which is disposed on an inner surface of the cover plate and electrically connected to the wiring layer by a soldering process.
  • a light two-plate ⁇ wick A light two-plate ⁇ wick.
  • At least one light emitting diode unit At least one light emitting diode unit
  • the heat-dissipating component of the LED unit and the driving power source which is composed of infrared radiation
  • the heat-generating component further comprises a portion composed of an insulating heat-conductive material, and the insulating heat-conductive material is a ceramic material or a thermally conductive insulating polymer composite.
  • the infrared radiation material is a normal temperature infrared ceramic radiation material.
  • the normal temperature infrared ceramic radiation material is selected from at least one of the following materials: magnesium oxide, vaporized aluminum, calcium telluride, titanium oxide, silicon oxide, chromium telluride, germanium Iron, manganese telluride, zirconia, yttria, cordierite, mullite, boron carbide, silicon carbide, titanium carbide, molybdenum carbide, tungsten carbide, zirconium carbide, tantalum carbide, boron nitride, aluminum nitride, nitride 1. Silicon, zirconium nitride, titanium telluride, titanium silicide, molybdenum silicide, tungsten silicide, titanium boride, zirconium telluride and chromium telluride.
  • the heat dissipating member has a shape of a casing
  • the light emitting diode unit is disposed on an outer surface of the casing
  • the driving power source is disposed inside the casing.
  • the driving power source is in the form of a circuit module, and a wiring layer is formed on the inner and outer surfaces of the casing to emit light
  • An electrical connection is provided between the diode unit and the drive power source.
  • the wiring layer is formed on the inner and outer surfaces of the casing by a printed circuit process.
  • the light-emitting diode unit is a light-emitting diode die disposed on an outer surface of the casing and through a bonding process or a flip chip on the board (FCOB) ) Process to achieve electrical connection.
  • FCOB flip chip on the board
  • the light-emitting diode unit is a light-emitting diode unit which is disposed on an outer surface of the casing and electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light-emitting diode units are connected in series, parallel, hybrid or cross-array.
  • a * , ⁇ ; ⁇ , , ⁇ . ⁇ ri# ⁇ 4*L #7. ⁇ H . J, i iA, i a wiring layer is formed on the surface and the outer surface to be in the light emitting diode unit and the driving power source ⁇ ⁇ ⁇
  • the light-emitting diode unit is a light-emitting diode die disposed on an outer surface of the cover plate and passed through a bonding process or a flip chip on the board (FCOB) ) the process to achieve electrical connection,
  • FCOB flip chip on the board
  • the light-emitting diode unit is a light-emitting diode unit which is disposed on an outer surface of the cover plate and electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light-emitting diode units are connected in series, parallel, hybrid or cross-array.
  • the driving power source includes a driving controller in the form of a semiconductor wafer, which is disposed on an inner surface of the cap plate and is flip-chip bonded to the wiring layer by a bonding process or a board
  • the (FCOB) process enables electrical connections.
  • the driving power source includes a driving controller in the form of a package chip which is disposed on an inner surface of the cap plate and electrically connected to the wiring layer by soldering.
  • At least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • a sensing circuit e.g., a Bosch Sensortec BMA150 meter-to-meter-to-meter-to-meter-to-meter-to-meter-to-meter-to-meter-to-meter-to-meter-to-meter-to-meter-to-meter-to-emitting diode wick
  • at least one of the circuits is integrated with the drive controller in the same semiconductor wafer or packaged chip.
  • the circuit is in the form of a semiconductor wafer fixed to an inner surface of the cover plate and electrically connected to the wiring layer by a bonding process or a flip chip (FCOB) process. connection.
  • FCOB flip chip
  • the circuit is in the form of a package chip which is disposed on an inner surface of the cover plate and electrically connected to the wiring layer by a soldering process.
  • Still another object of the present invention is to provide an illumination device using a light-emitting diode as a light source, which has the advantages of compact structure, simple manufacturing process, and excellent heat dissipation effect.
  • a lighting device using a light emitting diode as a light source comprising: a light leather;
  • a driving power source electrically connected to the LED unit; and a heat dissipating member carrying the LED unit and the driving power source, at least a part of the surface of which is covered by the infrared radiation material and is disposed by the lamp cap and the lamp cover Within the space.
  • the heat dissipating member is disposed in a space defined by the lamp cap and the lamp arm by: an end portion of the heat dissipating member and an inner bottom surface of the lamp cap and/or The inner sides are fixed together and the open end of the light is fixed to the inner side of the base.
  • the heat dissipating member is disposed in a space defined by the lamp cap and the lamp army by: the heat dissipating member is near an outer surface of the end portion and an opening of the lamp army The ends are fixed together, and the end of the heat dissipating member is fixed to the inner bottom surface and/or the inner side surface of the lamp cap.
  • the heat dissipating member is composed of an insulating heat conductive material or a portion composed of an insulating heat conductive material, and the insulating heat conductive material is a ceramic material or a thermally conductive insulating polymer composite material.
  • the infrared radiation material is a normal temperature infrared ceramic radiation material.
  • the normal temperature infrared ceramic radiation material is selected from at least one of the following materials: magnesium oxide, aluminum telluride, calcium telluride, titanium oxide, silicon oxide, chromium oxide, iron antimonide, Manganese oxide, zirconia, yttria, cordierite, mullite, boron carbide, silicon carbide, titanium carbide, molybdenum carbide, tungsten carbide, zirconium carbide, tantalum carbide, boron nitride, aluminum nitride, silicon nitride, nitrogen Zirconium, titanium nitride, titanium silicide, molybdenum silicide, tungsten silicide, titanium boride, zirconium boride and chromium boride.
  • the heat dissipating member has a casing shape
  • the light emitting diode unit is disposed on an outer surface of the casing
  • the driving power source is disposed inside the casing.
  • the wiring layer is formed by a printed circuit process.
  • the light emitting diode unit is a light emitting diode die disposed on an outer surface of the housing. And electrically connecting to the wiring layer by a bonding process or a flip-chip on board (FCOB) process,
  • the light emitting diode unit is a light emitting diode unit disposed on an outer surface of the housing and electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light emitting diode units are connected in series, in parallel, in a mixture or in a cross array.
  • the casing includes a cover plate on which wiring layers are formed to provide an electrical connection between the light emitting diode unit and the driving power source.
  • the wiring layer is formed on an inner surface and an outer surface of the cap plate by a printed circuit process.
  • the light emitting diode unit is a light emitting diode die disposed on an outer surface of the cover plate and passed through a bonding process or a flip chip (FCOB) on the wiring layer.
  • FCOB flip chip
  • the wiring layer is such that a plurality of the light emitting diode units are connected in series, in parallel, in a mixture or in a cross array.
  • the driving power source includes a driving controller in the form of a semiconductor wafer, which is disposed on an inner surface of the cap plate and is bonded to the wiring layer by a bonding process or a flip chip on the board ( FCOB) process to achieve electrical connection,
  • a driving controller in the form of a semiconductor wafer, which is disposed on an inner surface of the cap plate and is bonded to the wiring layer by a bonding process or a flip chip on the board ( FCOB) process to achieve electrical connection
  • the driving power source comprises a driving controller in the form of a package chip, which is disposed on the inner surface of the cover plate and electrically connected to the wiring layer by soldering.
  • At least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • the controller is integrated in the same semiconductor wafer or packaged chip.
  • the circuit is in the form of a packaged chip which is disposed on an inner surface of the cover plate and is electrically connected to the wiring layer by a splicing process.
  • a lighting device using a light emitting diode as a light source comprising:
  • LED wick including:
  • At least one light emitting diode unit At least one light emitting diode unit
  • a driving power source electrically connected to the light emitting diode unit
  • a heat dissipating member carrying the light emitting diode unit and a driving power source which is composed of an infrared radiation material or a portion composed of an infrared radiation material, and is disposed in a space defined by the lamp cap and the lamp leather.
  • the heat dissipating member is disposed in a space defined by the lamp cap and the lamp leather by: the end portion of the heat dissipating member and the The inner bottom surface and/or the inner bottom surface of the lamp cap are fixed together, and the open end of the lamp army is fixed with the inner side surface of the lamp cap.
  • the heat dissipating member is disposed in a space defined by the lamp cap and the lamp leather by: the heat dissipating member is adjacent to an outer surface of the end portion and an opening of the lamp leather The ends are fixed together, and the end of the heat dissipating component is fixed to the inner bottom surface and/or the inner side surface of the lamp cap.
  • the heat dissipating member further comprises a portion composed of an insulating heat conductive material, and the insulating heat conductive material is a ceramic material or a thermally conductive insulating polymer composite material.
  • the infrared radiant material is a normal temperature infrared ceramic radiation material.
  • the ambient temperature infrared ceramic radiation material is selected from at least one of the following materials: magnesium oxide, aluminum oxide, calcium oxide, titanium telluride, silicon oxide, chromium oxide, iron oxide, oxidation Bismuth, zirconia, yttria, cordierite, mullite, boron carbide, silicon carbide, titanium carbide, molybdenum carbide, tungsten carbide, zirconium carbide, niobium carbide, boron nitride, aluminum nitride, silicon nitride, nitridation Zirconium, titanium nitride, titanium silicide, molybdenum silicide, tungsten silicide, titanium boride, zirconium boride and chromium boride,
  • the heat dissipating member has a shape of a casing
  • the light emitting diode unit is disposed on an outer surface of the casing
  • the driving power source is disposed inside the casing.
  • the driving power source is in the form of a circuit module, and a wiring layer is formed on an inner surface and an outer surface of the casing to provide between the light emitting diode unit and the driving power source Electrical connections,
  • the wiring layer is formed on the inner and outer surfaces of the casing by a printed circuit process.
  • the light emitting diode unit is a light emitting diode die disposed on an outer surface of the casing and passing through a bonding process or a flip chip (FCOB) on the wiring layer. Process to achieve electrical connection.
  • FCOB flip chip
  • the light emitting diode unit is a light emitting diode unit which is disposed on an outer surface of the casing and electrically connected to the wiring layer by means of splicing.
  • the wiring layer makes a plurality of the light emitting diodes
  • the tube cells are connected in series, in parallel, in a hybrid or in a cross array.
  • the casing includes a cover plate on which wiring layers are formed to provide an electrical connection between the light emitting diode unit and the driving power source.
  • the wiring layer is formed on the inner and outer surfaces of the cover plate by a printed circuit process.
  • the light emitting diode unit is a light emitting diode die disposed on an outer surface of the cover plate and passed through a bonding process or a flip chip (FCOB) on the wiring layer. The process achieves an electrical connection.
  • FCOB flip chip
  • the light emitting diode is a light emitting diode monomer unit, which is disposed on an outer surface of the cap plate and is connected via s contact manner with the molten wiring layer electrically
  • the wiring layer is such that a plurality of the light emitting diodes are preferably, in the lighting device, the driving power source comprises a semiconductor wafer form
  • the driving power source comprises a driving controller in the form of a packaged chip, which is disposed on the inner surface of the cover plate and electrically connected to the wiring layer by soldering.
  • At least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • At least one of the circuits is integrated in the same semiconductor wafer or packaged chip as the driving controller.
  • the circuit is in the form of a semiconductor wafer that is fixed to an inner surface of the cap plate and electrically connected to the wiring layer by a bonding process or a flip chip (FCOB) process. .
  • FCOB flip chip
  • the circuit is in the form of a packaged chip which is disposed on an inner surface of the cover plate and is electrically connected to the wiring layer by a soldering process.
  • the light emitting diode unit and the driving power source can be produced by covering the heat radiating member with the infrared radiation material or using the infrared radiation material to form the heat radiating member.
  • the heat generated is mainly radiated to the environment by heat radiation, which greatly improves the heat dissipation efficiency.
  • the heat dissipating component mainly dissipates heat by means of heat radiation, it can be installed in the lamp army without being in direct contact with the environment, and this layout makes it possible to design the LED lamp to have a structure similar to that of an ordinary incandescent lamp.
  • the heat dissipating member functions as a substrate for the circuit while serving as a heat sink, so that the cost of the specially equipped printed circuit board can be eliminated.
  • the technical solution of the present invention can be adopted for both the packaged and unencapsulated LED units, and thus the present invention has wide adaptability.
  • due to the wiring layer and the ceramic material due to the wiring layer and the ceramic material.
  • the light-emitting diode unit has good bonding ability with the ceramic material and the wiring, thereby improving the reliability of the wick structure and the structure of the lighting device.
  • FIG. 1 is a schematic view of a light emitting diode wick in accordance with one embodiment of the present invention.
  • FIG. 2 shows a schematic view of a light emitting diode wick in accordance with another embodiment of the present invention.
  • FIG. 3 shows a schematic view of a light emitting diode wick in accordance with still another embodiment of the present invention.
  • FIGS. 4A and 4B are views showing a cover plate after mounting the light emitting diode unit and the driving circuit according to an embodiment of the present invention, wherein Fig. 4A shows a view of a surface on which the light emitting diode unit is mounted, and Fig. 4B shows A view of the surface on which the drive power is installed.
  • Fig. 5 is a view showing a cover plate after mounting an LED unit and a driving circuit in accordance with another embodiment of the present invention.
  • Figure 6 is an exploded perspective view of an illumination device using a light emitting diode as a light source in accordance with one embodiment of the present invention.
  • Fig. 7 is a cross-sectional view showing the lighting device of Fig. 6 using a light emitting diode as a light source.
  • Figure 8 is a cross-sectional view of a lighting device using a light emitting diode as a light source, in accordance with another embodiment of the present invention, Specific travel mode
  • the term "lighting device” should be understood broadly to mean all devices capable of providing practical or aesthetic effects by providing light, including but not limited to table lamps, wall lamps, spotlights, chandeliers, ceiling lamps, street lamps, flashlights. , stage set lights and city lights.
  • the light source can be set, for example, in a completely enclosed or semi-closed space surrounded by the lamp housing lei db Ja 3 ⁇ 4 ⁇ v) ⁇ Sr JS jfe * ⁇ » ⁇ Xt ⁇ ih ⁇ X>
  • semiconductor wafer refers to half
  • TJL iTV thousand T 3 ⁇ 4 ⁇ , -r conductor wafer” or “die” refers to this single circuit
  • "Packaged chip” refers to a physical structure formed by packaging a semiconductor wafer. In a typical such physical structure, a semiconductor wafer is mounted, for example, on a support and encapsulated with a sealing material.
  • light emitting diode unit refers to a unit comprising an electroluminescent material, examples of which include, but are not limited to, P-N junction inorganic semiconductor light emitting diodes and organic light emitting diodes (OLEDs and polymer light emitting diodes (PLEDs)).
  • OLEDs organic light emitting diodes
  • PLEDs polymer light emitting diodes
  • the P-N junction inorganic semiconductor light emitting diodes can have different structural forms, such as, but not limited to, light emitting diode dies and light emitting diode cells.
  • light-emitting diode die refers to a semiconductor wafer having a PN structure and having electroluminescence capability
  • light-emitting diode cell refers to a physical structure formed by packaging a die, which is typical In a physical configuration, the die is mounted, for example, on a bracket and encapsulated with a sealing material.
  • wiring refers to conductive patterns disposed on an insulating surface for electrical connection between components, including but not limited to traces and holes (eg pads, Component holes, fastening holes, metallized holes, etc.).
  • traces and holes eg pads, Component holes, fastening holes, metallized holes, etc.
  • thermal radiation refers to the phenomenon that an object radiates electromagnetic waves due to its temperature.
  • the heat generated by the light emitting diode unit and the driving power source can be passed through the surface
  • a heat dissipating member covering the infrared radiant material or a heat dissipating member made of a material having both an insulating heat conduction and an infrared radiant function is mainly transmitted to the environment by heat radiation.
  • heat conduction refers to the transfer of heat from a higher temperature part to a lower temperature part in a solid.
  • ceramic material generally refers to non-metallic inorganic materials that require high temperature treatment or densification, including but not limited to silicates, tellurides, carbides, nitrides, sulfides, borides, and the like.
  • thermally conductive insulating polymer composite material refers to a polymer material which has a high thermal conductivity by forming a thermally conductive network chain inside a metal or inorganic filler filled with a high thermal conductivity.
  • the thermally conductive insulating polymer composite material includes, for example, but not limited to, a polypropylene material added with alumina, a polycarbonate added with alumina, silicon carbide and cerium oxide, and an acrylonitrile-butadiene-styrene terpolymer.
  • infrared radiation material refers to a material that is engineered to absorb heat and emit a large amount of infrared light, which has a high emissivity.
  • an infrared radiation material that is a heat dissipating member may be employed, which includes, for example, However, it is not limited to at least one of the following materials: magnesium telluride, aluminum oxide, calcium oxide, titanium oxide, silicon oxide, chromium oxide, iron oxide, manganese oxide, zirconium oxide, gasified ruthenium, cordierite, mullite, Boron carbide, silicon carbide, titanium carbide, molybdenum carbide, tungsten carbide, zirconium carbide, tantalum carbide, tantalum nitride, aluminum nitride, silicon nitride, zirconium nitride, titanium nitride, titanium silicide, molybdenum silicide, tungsten silicide, Titanium boride,
  • infrared radiation material below the PN junction temperature of the set LED unit (for example, a temperature value in the range of 50-80 degrees Celsius), infrared Radiation material still has a high hair Rate of incidence (eg greater than or equal to 70%).
  • Electrode connection should be understood to include the case where electrical energy or electrical signals are transmitted directly between two units, or where electrical energy or electrical signals are transmitted indirectly via one or more third units.
  • Drive power supply or “LED drive power supply” refers to an “electronic control device” between an alternating current (AC) or direct current (DC) power supply connected to the outside of the lighting device and a light emitting diode as a light source for providing the light emitting diode
  • AC alternating current
  • DC direct current
  • the current or voltage required eg constant current, constant voltage or constant power, etc.
  • FIG. 1 is a schematic view of a light emitting diode wick in accordance with one embodiment of the present invention.
  • the light-emitting diode wick 10 includes a heat radiating member 110, a plurality of light emitting diode units 120, and a driving power source (not shown).
  • the heat dissipating member 110 is in the shape of a casing, which is entirely composed of an insulating and thermally conductive material (for example, a ceramic or a thermally conductive insulating polymer composite material), but it is also feasible that only a part of the heat dissipating member 110 is composed of an insulating and heat conducting material. And beneficial (for example, when a small amount of insulating and thermally conductive material is used to meet the need to conduct heat to the infrared radiation material and to reduce the material cost).
  • heat generated by the light emitting diode unit and the driving power source is radiated to the environment mainly by means of heat radiation. To this end, in the embodiment shown in FIG.
  • the entire outer surface of the heat dissipating member 110 is covered with an infrared radiant material (for example, a normal temperature infrared ceramic radiant material such as silicon carbide), but alternatively, only the heat dissipating member may be used.
  • a portion of the surface of 110 covers the infrared radiation material.
  • the infrared radiation material may be covered only on the outer surface of the heat dissipation component 110; or if the infrared radiation material is a non-insulation material, the infrared radiation material should be covered in the surface area where the light emitting diode unit and the driving power source are disposed or close.
  • the heat dissipation member 110 may be entirely composed of an infrared radiation material.
  • the heat dissipating component 110 may be composed of only a part of the heat dissipating component (for example, a portion of the heat dissipating component except the portion where the LED unit or the driving circuit is disposed), and the rest is cheaper and suitable for use as a printed circuit board. Insulating thermal conductive material or other material of the substrate.
  • the following description applies to both the case where the infrared radiation material covers the surface of the heat dissipating member and the infrared radiation material forms the body of the heat dissipating member.
  • the side outer surface of the heat dissipating member 110 in the shape of a casing includes a plurality of annular convex portions to increase the surface area of the casing, thereby further enhancing the heat radiation capability of the heat dissipating member.
  • the heat dissipating member is not limited to the shape of the casing, and it may be solid, for example, in which case it is conceivable to arrange the light emitting diode unit and the driving power source outside the heat dissipating member.
  • outer surface of the heat dissipating member may take other shapes.
  • Figures 2 and 3 show the provision of longitudinally extending projections on the outer surface for the purpose of increasing the surface area. And in Figure 3,
  • a plurality of light emitting diodes 120 are disposed on the outer surface of the bottom of the heat dissipating member 110, which are electrically connected to a driving power source, and a driving power source is disposed inside the heat dissipating member 110, which extends from the heat dissipating member 110.
  • the first lead 130A and the second lead 130B are connected to an external power source such as various DC power sources or AC power sources.
  • the first lead 130A and the second lead 130B are respectively associated with the first electrode region of the cap (eg, the end of the cap made of a conductive material) and the second electrode region (eg, The part of the side of the lamp head made of electrically conductive material) is electrically connected.
  • the second lead 130B is folded back after the heat dissipating member 110 is taken out so as to be able to abut against the inner side surface of the lamp cap when the wick is mounted in the lighting device to achieve electrical connection.
  • the bottom of the heat dissipating member 110 includes a cover plate 111.
  • the cover plate 111 and the other portions of the heat dissipating member may be in a separated state, that is, the cover plate 111 and the other portions of the heat dissipating member may be spatially separable if necessary.
  • the LED unit 120 and the driving power source may be first mounted on the surface of the cover plate 111, and then the cover plate 111 and the remaining portion of the heat dissipating member may be fixedly connected together (for example, by means of a thermal conductive adhesive, The thermally conductive double-sided film is bonded to the rest).
  • the cover 111 is located at the bottom of the heat dissipating member 110, One ⁇ *, , ,
  • FIGS. 4A and 4B are views showing a cover plate after mounting a light emitting diode unit and a driving circuit according to an embodiment of the present invention, wherein Fig. 4A shows a view of a surface on which the light emitting diode unit is mounted, and Fig. 4B shows A view of the surface on which the drive power is installed.
  • the cover plate 111 is made of an insulating heat conductive material (for example, a ceramic material or a thermally conductive insulating polymer composite material) or an infrared radiation material (for example, silicon carbide) having both insulating and heat conducting properties.
  • the light emitting diode unit 120 and the driving power source 140 are respectively disposed on both surfaces 111A and 111B of the cap plate 111 by means of wirings 112 and 112 formed on both surfaces (for example, by sintering on a ceramic material)
  • the silver paste pattern forms a wiring layer), the light emitting diode unit 120 and the driving power source 140 are connected together, so in the embodiment shown in FIGS. 4A and 4B, the cover plate 111 is equivalent to a printed wiring board on the one hand, and is an LED unit and
  • the drive power supply provides a carrying platform and electrical connection, on the other hand it also acts as a light-emitting diode
  • the light emitting diode units 120 are in the form of a die which are disposed on the surface 111A of the cover plate 111 by adhesion to form a better between the LED unit 120 and the cover plate 111. Thermal conduction.
  • the wiring 112 on the surface 111A includes a plurality of pads 1121 and traces 1122A and 1122B, and the light emitting diode unit 120 is directly connected to the pad 1121 by a wire 113 such as a gold wire, a silver wire or an alloy wire.
  • the light emitting diode units at both ends of the light emitting diode group are connected to the traces 1122A and 1122B through the lead 113, and the traces 1122A and 1122B are connected to the cover through the wires 115A and 115B passing through the through hole 114.
  • 111 is the driving power source 140 on the other side.
  • the bonding process can be used to realize the connection of the LED die through the lead to the wiring.
  • the light-emitting diode unit 120 may be adhered to the surface 111A by using a ring-shaped resin or silica gel mixed with a phosphor, or a fluorescent layer may be coated on the surface of the light-emitting diode unit 120, and then Bonded to surface 111A with epoxy or silicone.
  • a driving power source 140 is disposed on the other surface 111B of the cover plate 111.
  • the driving power supply can adopt various topological architecture circuits, such as a package. But not limited to non-isolated buck topology circuit structure, flyback topology circuit structure and half bridge
  • driver power circuit For a detailed description of the driver power circuit, please refer to the book “LED Lighting Driver Power Supply and Lamp Design” in the first edition of People's Posts and Telecommunications Press, May 2011, which is included in the full text. In the manual,
  • the drive power supply can provide a suitable current or voltage to the LED unit 120 in a variety of drive modes (e.g., constant voltage supply, constant current supply, and constant voltage constant current supply), which can be comprised of one or more separate components.
  • one or more components of the driving power source are implemented in the form of a wafer or a packaged chip, and a component realized in the form of a wafer or a packaged chip in the driving power source is hereinafter referred to as a "driving controller".
  • a circuit for implementing other functions such as a dimming control circuit, a sensing circuit, a power factor correction circuit, an intelligent lighting control circuit, a ⁇ , ⁇ . ⁇ In the drive-through chip or packaged chip, or these circuits can be individually used in a semiconductor wafer or package, z,
  • ESI ⁇ ⁇ ⁇ , ⁇ . L ⁇ JJ- k. ji-1 ⁇ -a W tfil l ⁇ .
  • the first and second leads 130A and 130B are electrically connected, thereby allowing an external power source (such as various DC power sources or AC power sources) to be connected to the rectifier circuit 142 (implemented here in the form of an integrated circuit package chip), and the drive circuit 143 (implemented here in the form of an integrated circuit package chip, such as the LED driver MAX16820 manufactured by Maxim Integrated Products, Inc., NXP
  • the flyback driver SSL series control IC manufactured by the semiconductor company, the HB LED driver MXHV9910 manufactured by Clare, the LED driver NCP1351 manufactured by ON Semiconductor, the LED driver ACT355A manufactured by Active Semiconductor, etc.
  • the drive circuit 143 is also electrically connected to the capacitors 144A and 144B and the circuits for performing other functions (here, the wireless communication transceiver chip 145 is exemplified) via the wiring 112.
  • the output end of the driving power source 140 is electrically connected to the LED unit 120 on the cover surface 111A via the wires 115A and 115B that pass through the through hole 114.
  • a drive controller in the form of a packaged chip and a circuit for realizing other functions for example, it can be directly connected to the wiring 112 of the surface 111B by a soldering process, and for the wafer form.
  • Drive controllers and circuits that implement other functions, such as bonding processes or on-board flip chip (FCOB) processes Connected to the wiring 112 of the surface 111B, on.
  • FCOB on-board flip chip
  • a power conversion component such as the rectifier circuit 142 and the driving circuit 143 may be integrated into a packaged chip.
  • the LED unit 120 in the form of a die is directly connected to the wiring 112 by a bonding process, it is also possible to use a flip chip on the board (FCOB). The process electrically connects the LED die to the wiring.
  • FCOB flip chip on the board
  • the light emitting diode units 120 are connected in series in the embodiment shown in Figs. 4A and 4B, they may be connected in parallel, hybrid or cross array.
  • the above described cover structure is not required.
  • the heat dissipating member 110 may also be an integrally formed member.
  • the driving electric cymbal can be realized by the shape of the ⁇ ⁇ ⁇ ⁇ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
  • FIG. 5 is a diagram showing an LED unit and a driving unit according to another embodiment of the present invention.
  • the main difference of the present embodiment is the form of the light emitting diode unit 120 as compared with the above-described embodiment shown by Figs. 4A and 4B, and therefore only the view of the surface of the cover plate on which the light emitting diode unit is disposed is shown.
  • a wiring 112 is formed on the surface 111A of the cap plate 111, and the light emitting diode unit 120 in the form of a package chip is soldered on the wiring 112 to form heat conduction with the cap plate 111.
  • the LED unit 120 may be bonded to the surface 111A with an adhesive.
  • the wiring 112 is divided into a plurality of sections to sequentially connect the plurality of LED units 120 in series.
  • a through hole 114 is opened in the center of the cover plate 111, and the wiring 112 is electrically connected to a drive controller of a drive power source provided on the other surface of the cover plate 111 by a wire 115A and 115B passing through the through hole 114 or at a heat radiating member.
  • 111 Drive power in the form of internal circuit modules.
  • Figure 6 is an exploded perspective view of an illumination device employing a light emitting diode as a light source in accordance with one embodiment of the present invention.
  • the lighting device 1 includes a light-emitting diode wick 10, One
  • the LED wick 10 can employ the embodiments described above in connection with Figures 1-5 and variations thereof.
  • the lamp cap 20 provides an interface for the LED wick 10 to be electrically connected to an external power source (for example, various DC power sources or AC power sources), which may be, for example, a threaded screw interface or a rotary bayonet similar to an ordinary incandescent lamp and an energy saving lamp.
  • an external power source for example, various DC power sources or AC power sources
  • Light leather 30 is made of a transparent or translucent material. Its main function is to protect the light source and functional circuits and to make the light softer and more evenly distributed to the space. Referring to Figure 6, the shade 30 can be secured to the base 20 to form a space for receiving the LED wick 10.
  • the LED wick 10 dissipates the heat generated by the LED unit and the driving power source to the environment by means of heat radiation. Therefore, the material for the infrared radiation transmittance to meet the practical application requirements should be selected to make the lamp leather (such as glass, etc.).
  • Fig. 7 is a cross-sectional view showing the lighting device of Fig. 6 using a light-emitting diode as a light source, showing a state in which the LED wick 10, the lamp cap 20 and the lamp leather 30 are assembled.
  • the portion 210, the insulating portion 220 and the threaded portion of the outer surface which is made of a conductive material may be made of an insulating material such as plastic.
  • the end portion 210 and the threaded portion 230 are respectively adapted to the socket (not shown) The two electrodes are connected.
  • the upper end portion 116 of the heat dissipating component 110 of the LED wick 10 is inserted into the base 20 and secured to the inner and/or inner sides of the base 20 by an adhesive (e.g., glue), the first lead The 130A extends to be in contact with the end portion 210, and the second lead 130B folds back down against the inner surface of the threaded portion 230 after extending the heat dissipating member 110, whereby the external power source can supply power to the LED wick 10 via the base 20.
  • an adhesive e.g., glue
  • the LED wick 10, the base 20 and the base 30 can be fixed together by bonding, for example, to achieve an assembled state as shown in FIG.
  • the open end 310 of the lamp army 310 projects into the inside of the threaded portion 230 and is fixed to the outer surface of the heat dissipating member 110. Further, by filling the gap in the gap between the threaded portion 230 and the open end 310 The open end 310 can be secured to the inner surface of the threaded portion 230.
  • the outer surface of the heat dissipating member 110 is formed with a step 117 which, when in the assembled state, provides support for the lamp army 30; further, the open end 310 of the lamp leather 30 contracts inwardly to The contact area between the inner surface thereof and the outer surface of the heat dissipating member 110 is increased, thereby improving the bonding strength between the light emitting diode wick 10, the cap 20 and the lamp leather 30.
  • the open end of the lamp cover 30 is not closed and the outer diameter is large, it is also conceivable to completely dispose the lamp arm 30 outside the threaded portion 230.
  • the lamp cap 20 and the lamp army 30 are fixed together, and the lamp cover 30 can be fixed together with the heat dissipating component 110 (for example, the edge and the inner surface of the open end 310 are bonded to the outer surface of the heat dissipating component 110), and then the heat dissipating component is The 110 is secured to the threaded portion 230 (e.g., the upper end portion 116 of the heat dissipating member 110 is inserted into the base 20 and bonded to the inner bottom surface and/or the side of the base 20).
  • the threaded portion 230 e.g., the upper end portion 116 of the heat dissipating member 110 is inserted into the base 20 and bonded to the inner bottom surface and/or the side of the base 20.
  • the driving power source (not shown) of the LED wick 10 can be electrically connected to an external power source, such as 220V AC or The 6V/12V/24V DC power is converted into the current and/or voltage required for the operation of the LED unit 130.
  • an external power source such as 220V AC or The 6V/12V/24V DC power is converted into the current and/or voltage required for the operation of the LED unit 130.
  • the heat generated by the LED unit 130 and the driving power source is substantially transferred to the heat dissipating component by heat conduction. 110, the above heat is further absorbed by the heat dissipating member 110 and mainly converted into infrared rays.
  • FIG. 8 is a photo of a light emitting diode as a light source according to another embodiment of the present invention. .
  • the main difference of the present embodiment is the arrangement of the joint portion between the light-emitting diode wick 10, the base 20 and the lamp leather 30 and the outer portion of the heat radiating portion 110 as compared with the embodiment shown in FIGS. 6 and 7 described above.
  • the threaded portion 230 of the cap 20 is slightly inwardly contracted near the open end, and the outer surface of the upper portion of the heat dissipating member 110 of the LED wick 10 is also formed with a step 117 when the heat dissipating member 110 is fitted into the threaded portion 230. Thereafter, the inner edge of the open end of the threaded portion 230 just blocks the step 117 to prevent the upper portion of the heat dissipating member 110 from slipping out of the threaded portion 230.
  • the outer edge of the open end of the threaded portion 230 can provide support for the lamp army 30.
  • the following manner can be employed: First, an adhesive is applied to the inner surface of the threaded portion 230.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

高度集成化的发光二极管灯芯(10)和包含该发光二极管灯芯的照明装置。照明装置包括灯头(20)、灯罩(30)和发光二极管灯芯(10)。发光二极管灯芯(10)设置在由灯头(20)和灯罩(30)限定的空间内。该照明装置具有散热效率高,制造工艺简单和制造成本低的优点。

Description

高度集成化的发光二极管灯芯和包含其的照明装置 技术领域
本发明涉及半导体照明技术, 特别涉及一种高度集成化的发光二 极管灯芯和包含该发光二极管灯芯的照明装置。 背景技术
发光二极管 (LED ) 光源具有其它光源所不具备的一系列优点, 例如无污染、 寿命长、 能耗低、 耐振动、 控制方便和便于调光等。 面 对未来的巨大市场和潜在商机,业界在 LED照明装置的商品化方面已 经投入了大量的人力和物力。
目前 胡埜 ¥ Φ ffl ft ^¾ ^ # 二 ¾瞢 f I FTI ) ^一 S 半导体器件, 它的基本结构一般包括带引线的支架、 设置在支架上的
Figure imgf000003_0001
环氧树脂) 。 上述半导体晶片包含有 P-N结构, 当电流通过时, 电子 被推向 P区,在 P区里电子跟空穴复合, 然后以光子的形式发出能量, 而光的波长则是由形成 P-N结构的材料决定的。
LED在工作过程中, 只有一部分电能被转换为热能, 其余部分都 转换成为热能, 从而导致 LED的温度升高, 这是其性能劣化和失效的 主要原因。 可以说, 散热问题已经成为当前半导体照明技术发展的技 术瓶颈。 为此, 业界已经从芯片、 电路板到系统的每一个层面, 针对 散热问题提出了各种优化设计, 以获得最佳的散热效果。
就芯片层面而言, 一般可以通过增加芯片尺寸和改变材料结构来 提高散热能力。
在电路板层面, 目前许多 LED灯具中都采用铝基板作为印刷电路 板, 这种基板为多层结构, 中间层使用具有较高导热系数的绝缘层材 料, 从而使 LED芯片的热能透过下层的铝板快速扩散并传递出去。
对于系统层面, 常用的散热策略是为 LED灯具配置散热组件(例 如鳍片、 热管、 均温板、 回路式热管及压电风扇等) , 从而借助其快 速的散热能力将 LED产生的热量迅速散发到周围环境中。例如题为"球 形 LED灯55 的美国专利 US8058782公开了一种 LED灯, 包括冷却结 构、 LED模组、 透明革和灯头, 其中, 冷却结构包括导热板和配置在 导热板周边的冷却翅片, LED模组包括安装在导热板一个表面上的电 路基板、设置在电路基板上的 LED以及与电路基板电气连接的第一和 第二引线, 透明革与导热板固定连接在一起并且革住 LED模组, 灯头 包括可使冷却翅片的端部插入其中的收缩件、 电气连接体和空心管。 该篇参考文献的内容以整体引用的方式包含在本说明书中。
但是需要指出的是, 散热效果的改善往往是以制造成本的上升和 灯具结构的复杂化为代价的, 而这不利于 LED照明装置的普及推广。 发明内容 造工艺简单和散热效果优良等优点。
太 * BB »· 曰 ·δΓ·;8 ί^- IT *il J* J? -Sr -ffe- ^ ϊΒ .
一种发光二极管灯芯, 包括:
2:丄、 ^ *k ^ J^r ^ ^ J^ . 驱动电源, 其与所迷发光二极管单元电气连接; 以及
承栽所述发光二极管单元和驱动电源的散热部件, 其至少一部分 表面以红外辐射材料覆盖。
优选地, 在上述发光二极管灯芯中, 所述绝缘导热材料为陶瓷材 料或导热绝缘高分子复合材料 .
优选地,在上述发光二极管灯芯中,所述红外辐射材料为常温红外 陶瓷辐射材料。
优选地,在上述发光二极管灯芯中,所述常温红外陶瓷辐射材料选 自下列材料中的至少一种: 氧化镁、 氧化铝、 氧化钙、 氧化钛、 氧化 硅、 氧化铬、 氡化铁、 氧化锰、 氧化锆、 氡化钡、 堇青石、 莫来石、 碳化硼、 碳化硅、 碳化钛、 碳化钼、 碳化钨、 碳化锆、 碳化钽、 氮化 硼、 氮化铝、 氮化硅、 氮化锆、 氮化钛、 硅化钛、 硅化钼、 硅化钨、 硼化钛、 硼化锆和硼化铬。
优选地, 在上述发光二极管灯芯中, 所述散热部件呈亮体形状, 所述发光二极管单元设置在所述壳体的外表面并且所述驱动电源设置 在所述壳体的内部. 优选地,在上述发光二极管灯芯中,所述驱动电源采用电路模块的 形式, 并且在所述壳体的内表面和外表面上形成布线层以在所述发光 二极管单元与所述驱动电源之间提供电气连接.
优选地, 在上述发光二极管灯芯中, 所述布线层通过印制电路工 艺形成于所述壳体的内表面和外表面.
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管管芯, 其被设置在所迷壳体的外表面并且与所述布线层通过绑 定工艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管单体, 其被设置在所述壳体的外表面并且通过焊接方式与与所 述布线层电气连接.
优选地, 左上 ,二 fe^灯芯 Φ . 所 小所 i# iir' 光二极管单元以串联、 并联、 混联或交叉阵列的形式相连。
Ai? -bit. ή. μ * * - 1¾ ^ «h- i '^ft» xb響 , i'fr( iJ^ y ^ tis. 4a 口 ,八 A -t rfn 表面和外表面上形成布线层以在所迷发光二极管单元与所述驱动电源
-V ^1 ½
, WPT ¾i '^J¾-WC o
优选地, 在上述发光二极管灯芯中, 所述布线层通过印制电路工 艺形成于所述盖板的内表面和外表面。
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管管芯, 其被设置在所述盖板的外表面并且与所述布线层通过绑 定工艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管单体, 其被设置在所述盖板的外表面并且通过烊接方式与与所 述布线层电气连接,
优选地, 在上述发光二极管灯芯中, 所述布线层使得多个所述发 光二极管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述发光二极管灯芯中, 所述驱动电源包含半导体晶 片形式的驱动控制器, 其被设置在所述盖板的内表面并且与所述布线 层通过绑定工艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述驱动电源包含封装芯片 形式的驱动控制器, 其被设置在所述盖板的内表面并且与所述布线层 通过烊接方式电气连接。 优选地, 在上述发光二极管灯芯中, 进一步包括下列电路中的至 少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。
优选地, 在上述发光二极管灯芯中, 所迷电路的至少一种与所述 驱动控制器集成在同一半导体晶片或封装芯片内。
优选地, 在上述发光二极管灯芯中, 所述电路为半导体晶片形式, 其固定在所述盖板的内表面并且与所述布线层通过绑定工艺或板上倒 装芯片(FCOB)工艺实现电气连接,
优选地, 在上述发光二极管灯芯中, 所述电路为封装芯片形式, 其设置在所述盖板的内表面并且与所述布线层通过焊接工艺实现电气 连接。
本发明的上述目的还可通过下列技术方案实现:
一种^光二板瞢灯芯. ^括:
至少一个发光二极管单元;
、, 一 一— ι» ~"ΐ , , 、 承栽所迷发光二极管单元和驱动电源的散热部件, 其由红外辐射
TO -ri T j B I-A^ cL» i» w wrj -r-g n T"j "V r— ,
优选地, 在上述发光二极管灯芯中, 所述嗷热部件还包含由绝缘 导热材料构成的部分, 所述绝缘导热材料为陶瓷材料或导热绝缘高分 子复合材料。
优选地,在上述发光二极管灯芯中,所述红外辐射材料为常温红外 陶瓷辐射材料。
优选地,在上述发光二极管灯芯中,所述常温红外陶瓷輻射材料选 自下列材料中的至少一种: 氧化镁、 氣化铝、 氡化钙、 氧化钛、 氧化 硅、 氡化铬、 氡化铁、 氡化锰、 氧化锆、 氧化钡、 堇青石、 莫来石、 碳化硼、 碳化硅、 碳化钛、 碳化钼、 碳化钨、 碳化锆、 碳化钽、 氮化 硼、 氮化铝、 氮化硅、 氮化锆、 氳化钛、 硅化钛、 硅化钼、 硅化钨、 硼化钛、 堋化锆和碉化铬.
优选地, 在上述发光二极管灯芯中, 所述散热部件呈壳体形状, 所述发光二极管单元设置在所述壳体的外表面并且所述驱动电源设置 在所述壳体的内部.
优选地,在上述发光二极管灯芯中,所述驱动电源采用电路模块的 形式, 并且在所述壳体的内表面和外表面上形成布线层以在所述发光 二极管单元与所述驱动电源之间提供电气连接。
优选地, 在上述发光二极管灯芯中, 所述布线层通过印制电路工 艺形成于所述壳体的内表面和外表面.
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管管芯, 其被设置在所述壳体的外表面并且与所述布线层通过绑 定工艺或板上倒装芯片(FCOB)工艺实现电气连接.
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管单体, 其被设置在所述壳体的外表面并且通过焊接方式与与所 迷布线层电气连接。
优选地, 在上述发光二极管灯芯中, 所述布线层使得多个所述发 光二极管单元以串联、 并联、 混联或交叉阵列的形式相连。
A * ,二; 營 , , Φ . ^ri# ^4*L #7.^ H . J,i iA,i 表面和外表面上形成布线层以在所述发光二极管单元与所述驱动电源 ιϊΐ ϋϋ ^ ϋ
优选地, 在上述发光二极管灯芯中, 所述布线层通过印制电路工 夕 ;J»
/ «a 〃| ¾t »v
Figure imgf000007_0001
'
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管管芯, 其被设置在所述盖板的外表面并且与所述布线层通过绑 定工艺或板上倒装芯片(FCOB)工艺实现电气连接,
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管单体, 其被设置在所述盖板的外表面并且通过焊接方式与与所 述布线层电气连接。
优选地, 在上述发光二极管灯芯中, 所述布线层使得多个所述发 光二极管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述发光二极管灯芯中, 所述驱动电源包含半导体晶 片形式的驱动控制器, 其被设置在所述盖板的内表面并且与所述布线 层通过绑定工艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述驱动电源包含封装芯片 形式的驱动控制器, 其被设置在所述盖板的内表面并且与所述布线层 通过焊接方式电气连接。
优选地, 在上述发光二极管灯芯中, 进一步包括下列电路中的至 少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。 优选地, 在上迷发光二极管灯芯中, 所述电路的至少一种与所述 驱动控制器集成在同一半导体晶片或封装芯片内.
优选地, 在上述发光二极管灯芯中, 所述电路为半导体晶片形式, 其固定在所述盖板的内表面并且与所述布线层通过绑定工艺或板上倒 装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述电路为封装芯片形式, 其设置在所述盖板的内表面并且与所述布线层通过焊接工艺实现电气 连接。 本发明的还有一个目的是提供一种采用发光二极管作为光源的照 明装置, 其具有结构紧凑、 制造工艺简单和散热效果优良等优点。
太 * m Hi h i ^-ryil * 女 ^ίίϋ ·
一种采用发光二极管作为光源的照明装置, 其特征在于, 包括: 灯革; 以及
*A> «k— ife .Wr in .^. . 至少一个发光二极管单元;
驱动电源, 其与所迷发光二极管单元电气连接; 以及 承栽所述发光二极管单元和驱动电源的散热部件,其至少一部 分表面以红外辐射材料覆盖并且被设置在由所述灯头和所述灯罩 限定的空间内.
优选地, 在上述照明装置中, 通过下列方式将所述散热部件设置 在由所述灯头和所述灯軍限定的空间内: 所述散热部件的端部与所述 灯头的内底面和 /或内侧面固定在一起, 并且所述灯革的开口端与所述 灯头的内侧面固定在一起。
优选地, 在上述照明装置中, 通过下列方式将所述散热部件设置 在由所述灯头和所述灯軍限定的空间内: 所述散热部件靠近端部的外 表面与所述灯軍的开口端固定在一起, 所述散热部件的端部与所述灯 头的内底面和 /内側面固定在一起。
优选地, 在上述照明装置中, 所述散热部件由绝缘导热材料构成 或者包含绝缘导热材料构成的部分, 所述绝缘导热材料为陶瓷材料或 导热绝缘高分子复合材料。 优选地,在上述照明装置中,所述红外辐射材料为常温红外陶瓷辐 射材料。
优选地,在上述照明装置中,所述常温红外陶瓷辐射材料选自下列 材料中的至少一种: 氧化镁、 氡化铝、 氡化钙、 氧化钛、 氧化硅、 氧 化铬、 氡化铁、 氧化锰、 氧化锆、 氧化钡、 堇青石、 莫来石、 碳化硼、 碳化硅、 碳化钛、 碳化钼、 碳化钨、 碳化锆、 碳化钽、 氮化硼、 氮化 铝、 氮化硅、 氮化锆、 氮化钛、 硅化钛、 硅化钼、 硅化钨、 硼化钛、 硼化锆和硼化铬.
优选地, 在上述照明装置中, 所述散热部件呈壳体形状, 所述发 光二极管单元设置在所述壳体的外表面并且所迷驱动电源设置在所述 壳体的内部。
Figure imgf000009_0001
. 并且在所述壳体的内表面和外表面上形成布线层以在所述发光二极管 ¾ r ii m Λι fJS ^ lol 43 V4t ^ li^ ϋ
优选地, 在上述照明装置中, 所述布线层通过印制电路工艺形成 优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被设置在所述壳体的外表面并且与所述布线层通过绑定工艺 或板上倒装芯片(FCOB)工艺实现电气连接,
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 单体, 其被设置在所述壳体的外表面并且通过焊接方式与与所述布线 层电气连接.
优选地, 在上述照明装置中, 所述布线层使得多个所述发光二极 管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述照明装置中, 所述壳体包含盖板, 在其内表面和 外表面上形成布线层以在所述发光二极管单元与所述驱动电源之间提 供电气连接。
优选地, 在上述照明装置中, 所述布线层通过印制电路工艺形成 于所述盖板的内表面和外表面。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被设置在所述盖板的外表面并且与所述布线层通过绑定工艺 或板上倒装芯片(FCOB)工艺实现电气连接 . ill ^A. e ,J> 。 Jjr ££. ^ia Oa <J. ils .k
17U3¾JC» , 衣 JL T, "I — W.'W -^T Tii ^ T — ^' 单体, 其被设置在所述盖板的外表面并且通过烊接方式与与所述布线 层电气连接。
优选地, 在上述照明装置中, 所述布线层使得多个所述发光二极 管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述照明装置中, 所迷驱动电源包含半导体晶片形式 的驱动控制器, 其被设置在所述盖板的内表面并且与所迷布线层通过 绑定工艺或板上倒装芯片(FCOB)工艺实现电气连接,
优选地, 在上述照明装置中, 所迷驱动电源包含封装芯片形式的 驱动控制器, 其被设置在所述盖板的内表面并且与所述布线层通过焊 接方式电气连接.
优选地, 在上述照明装置中, 进一步包括下列电路中的至少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。 制器集成在同一半导体晶片或封装芯片内.
ή. ^ Β8 Βθ ^ ¥ 6/r ί* * Sft. ίι Ji.^>6k ϋ -B¾ ¾1 ϋΐ 定在所述盖板的内表面并且与所述布线层通过绑定工艺或板上倒装芯 片(FCOB)工艺实现电气连接,
优选地, 在上述照明装置中, 所述电路为封装芯片形式, 其设置 在所述盖板的内表面并且与所述布线层通过烊接工艺实现电气连接。
本发明的上述目的还可以通过下列技术方案实现:
一种采用发光二极管作为光源的照明装置, 包括:
灯头;
灯革; 以及
发光二极管灯芯, 包括:
至少一个发光二极管单元;
驱动电源, 其与所述发光二极管单元电气连接; 以及
承载所述发光二极管单元和驱动电源的散热部件,其由红外辐 射材料构成或者包含由红外辐射材料构成的部分,并且被设置在由 所述灯头和所述灯革限定的空间内 .
优选地, 在上迷照明装置中, 通过下列方式将所述散热部件设置 在由所迷灯头和所述灯革限定的空间内: 所述散热部件的端部与所述 灯头的内底面和 /或内倒面固定在一起, 并且所迷灯軍的开口端与所述 灯头的内侧面固定在一起.
优选地, 在上述照明装置中, 通过下列方式将所述散热部件设置 在由所述灯头和所述灯革限定的空间内: 所述散热部件靠近端部的外 表面与所述灯革的开口端固定在一起, 所述散热部件的端部与所述灯 头的内底面和 /内側面固定在一起.
优选地, 在上述照明装置中, 所述散热部件还包含由绝缘导热材 料构成的部分, 所述绝缘导热材料为陶瓷材料或导热绝缘高分子复合 材料。
优选地,在上述照明装置中,所述红外辐射材料为常温红外陶瓷辐 射材料。
优选地,在上迷照明装置中,所迷常温红外陶瓷辐射材料选自下列 材料中的至少一种: 氧化镁、 氧化铝、 氧化钙、 氡化钛、 氧化硅、 氧 化铬、 氧化铁、 氧化铥、 氧化锆、 氧化钡、 堇青石、 莫来石、 碳化硼、 碳化硅、 碳化钛、 碳化钼、 碳化钨、 碳化锆、 碳化钽、 氮化硼、 氮化 铝、 氮化硅、 氮化锆、 氮化钛、 硅化钛、 硅化钼、 硅化钨、 硼化钛、 硼化锆和硼化铬,
优选地, 在上述照明装置中, 所述散热部件呈壳体形状, 所述发 光二极管单元设置在所述壳体的外表面并且所述驱动电源设置在所述 壳体的内部.
优选地, 在上述照明装置中, 所述驱动电源采用电路模块的形式, 并且在所述壳体的内表面和外表面上形成布线层以在所述发光二极管 单元与所述驱动电源之间提供电气连接,
优选地, 在上述照明装置中, 所述布线层通过印制电路工艺形成 于所述壳体的内表面和外表面.
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被设置在所述壳体的外表面并且与所迷布线层通过绑定工艺 或板上倒装芯片(FCOB)工艺实现电气连接.
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 单体, 其被设置在所述壳体的外表面并且通过烊接方式与与所述布线 层电气连接。
优选地, 在上迷照明装置中, 所述布线层使得多个所述发光二极 管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述照明装置中, 所述壳体包含盖板, 在其内表面和 外表面上形成布线层以在所述发光二极管单元与所述驱动电源之间提 供电气连接。
优选地, 在上述照明装置中, 所述布线层通过印制电路工艺形成 于所述盖板的内表面和外表面.
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被设置在所述盖板的外表面并且与所述布线层通过绑定工艺 或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 单体, 其被设置在所述盖板的外表面并且通过烊接方式与与所述布线 层电气连接 s
优选地, 在上述照明装置中, 所述布线层使得多个所述发光二极 优选地, 在上述照明装置中, 所述驱动电源包含半导体晶片形式
^ . rrir ^i. J^>. ik>t OS -tf a? Jr ≥J> i£ J. Λ, *. i# a I- iii. ?JJ -*r τ*
¾y <2t. ifig命, -f^^^ ^~ ^x. n ¾c^ ^eL irj n T-tu^/ r/\ ^,Λ^ ¾¾ s-i? s i^- try ^ia. a¾L 绑定工艺或板上倒装芯片(FCOB)工艺实现电气连接.
优选地, 在上述照明装置中, 所述驱动电源包含封装芯片形式的 驱动控制器, 其被设置在所述盖板的内表面并且与所述布线层通过焊 接方式电气连接.
优选地, 在上述照明装置中, 进一步包括下列电路中的至少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。
优选地, 在上述照明装置中, 所述电路的至少一种与所迷驱动控 制器集成在同一半导体晶片或封装芯片内 .
优选地, 在上述照明装置中, 所述电路为半导体晶片形式, 其固 定在所述盖板的内表面并且与所述布线层通过绑定工艺或板上倒装芯 片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述电路为封装芯片形式, 其设置 在所述盖板的内表面并且与所述布线层通过焊接工艺实现电气连接。 在本发明的实施例中, 通过在散热部件上復盖红外辐射材料或者 采用红外辐射材料制作散热部件, 可使发光二极管单元和驱动电源产 生的热量主要以热辐射的方式散发到环境中去, 这大大提高了散热效 率。 另一方面, 由于散热部件主要以热辐射的方式散热, 因此其无需 与环境直接接触而是可以安装在灯軍内,这种布局使得将 LED灯设计 为具有与普通白炽灯类似的结构成为可能, 从而能够将简单、 成熟的 白炽灯制造工艺应用于 LED灯。此外,散热部件在用作散热器的同时, 还起着承栽电路的基板的作用, 因而可以省去专门配备的印刷电路板 的成本。 另外, 无论是封装还是未封装的发光二极管单元, 均可采用 本发明的技术方案, 因此本发明具有广泛的适应性, 再者, 在本发明 的实施例中, 由于布线层与陶瓷材料之间、 发光二极管单元与陶瓷材 料和布线之间均具有良好的结合能力, 因此提高了灯芯结构和照明装 置结构的可靠性。 附图说明
BB V ^L 4tal^ ^L ^ -k ^ iaJHf 占 ι ΐ "Γ *t A Ifth闳 66久 女 面的描述变得更加清晰和更容易理解, 附图中相同或相似的单元采用
Figure imgf000013_0001
图 1为按照本发明一个实施例的发光二极管灯芯的示意图。
图 2示出了按照本发明另一个实施例的发光二极管灯芯的示意图。 图 3示出了按照本发明还有一个实施例的发光二极管灯芯的示意 图。
图 4A和 4B示出了按照本发明一个实施例的安装了发光二极管单 元和驱动电路之后的盖板的示意图,其中, 图 4A示出了安装发光二极 管单元的表面的视图, 图 4B示出了安装驱动电源的表面的视图。
图 5示出了按照本发明另一个实施例的安装了发光二极管单元和 驱动电路之后的盖板的示意图。
图 6为按照本发明一个实施例的采用发光二极管作为光源的照明 装置的分解示意图.
图 7为图 6所示采用发光二极管作为光源的照明装置的剖视图。 图 8为按照本发明另一个实施例的采用发光二极管作为光源的照 明装置的剖视图, 具体实旅方式
下面参照其中图示了本发明示意性实施例的附图更为全面地说明 本发明。 但本发明可以按不同形式来实现, 而不应解读为仅限于本文 给出的各实施例。 给出的上述各实施例旨在使本文的披露全面完整, 更为全面地传达给本领域技术人员本发明的保护范围. 术语
在本说明书中, 术语 "照明装置" 应该广义地理解为所有能够通 过提供光线以实现实用的或美学的效果的设备, 包括但不限于台灯、 壁灯、 射灯、 吊灯、 吸顶灯、 路灯、 手电筒、 舞台布景灯和城市景观 灯等。
太语 "灯^ " 应该产义 理觫^ ; 闳千 鈒蛊 顼 结构, 光源例如可以设置在由灯壳壳体包围的完全封闭或半封闭的空 lei db Ja ¾Γ v) ^Sr JS jfe *τ » ^ Xt ^ ih ^ X>
'—■I r , j ΚΛ, JBL 'p- yu H V , I »T w»* «¾ r |, ^. V 。
除非特別说明, 在本说明书中, 术语 "半导体晶圆" 指的是在半
^ Ύ^ ^ ΎΤ ^ -V'i yP^ ^ I^ , 工"夕 夕 T JL iTV千 T ¾^, -r 导体晶片" 或 "晶片 (die ) " 指的是这种单个电路, 而 "封装芯片" 指的是半导体晶片经过封装后形成的物理结构, 在典型的这种物理结 构中, 半导体晶片例如被安装在支架上并且用密封材料封装。
术语 "发光二极管单元" 指的是包含电致发光材料的单元, 这种 单元的例子包括但不限于 P-N结无机半导体发光二极管和有机发光二 极管 ( OLED和聚合物发光二极管 (PLED ) ) .
P-N 结无机半导体发光二极管可以具有不同的结构形式, 例如包 括但不限于发光二极管管芯和发光二极管单体。 其中, "发光二极管 管芯" 指的是包含有 P-N结构的、 具有电致发光能力的半导体晶片, 而 "发光二极管单体" 指的是将管芯封装后形成的物理结构, 在典型 的这种物理结构中, 管芯例如被安装在支架上并且用密封材料封装。
术语 "布线" 、 "布线图案" 和 "布线层" 指的是在绝缘表面上 布置的用于元器件间电气连接的导电图案, 包括但不限于走线(trace ) 和孔(如焊盘、 元件孔、 紧固孔和金属化孔等) 。
术语 "热辐射" 指的是物体由于具有温度而輻射电磁波的现象。 在本发明中, 发光二极管单元和驱动电源产生的热量可以借助经表面 覆盖红外辐射材料的散熱部件或者由兼具绝缘导热和红外辐射功能的 材料制成的散热部件, 主要以热辐射方式被传送到环境中去。
术语 "热传导" 指的是热量在固体中从温度较高的部分传送到温 度较低的部分的传递方式,
术语 "陶瓷材料" 泛指需高温处理或致密化的非金属无机材料, 包括但不限于硅酸盐、 氡化物、 碳化物、 氮化物、 硫化物、 硼化物等。
术语 "导热绝缘高分子复合材料"指的是这样的高分子材料, 通 过填充高导热性的金属或无机填料在其内部形成导热网链, 从而具备 高的导热系数。 导热绝缘高分子复合材料例如包括但不限于添加氧化 铝的聚丙烯材料、 添加氧化铝、 碳化硅和氧化铋的聚碳酸酯和丙烯腈- 丁二烯-苯乙烯三元共聚物等. 有关导热绝缘高分子复合材料的具体描 迷可参见李丽等人的论文 "聚碳酸酯及聚瓖酸 81合金导热绝缘高分子 材料的研究" (《材料热处理学报》 2007年 8月, Vol. 28, No.4, pp51-54 ) > ^答、 人、 ΑΑ Α ^· u ^ .is. it St- ^L ^ ^ J ^^- ^ Λ.^*Ι,- Mi ^ ffl, w、 a、、- 料助剂》 2008年笫 3期, ppl4-16 ) , 这些文献以全文引用的方式包含 - ^Ή^*η -F T。
术语 "红外辐射材料" 指的是在工程上能够吸收热量而发射大量 红外线的材料, 其具有较高的发射率. 进一步地, 在本发明中可采用 成散热部件的红外辐射材料, 其例如包括但不限于下列材料中的至少 一种: 氡化镁、 氧化铝、 氧化钙、 氧化钛、 氧化硅、 氧化铬、 氧化铁、 氧化锰、 氧化锆、 氣化钡、 堇青石、 莫来石、 碳化硼、 碳化硅、 碳化 钛、 碳化钼、 碳化钨、 碳化锆、 碳化钽、 氮化碉、 氮化铝、 氮化硅、 氮化锆、 氮化钛、 硅化钛、 硅化钼、 硅化钨、 硼化钛、 硼化锆和硼化 铬。 有关红外陶瓷辐射材料的详细描述可参见李红涛和刘建学等人的 论文 "高效红外辐射陶瓷的研究现状及应用" ( 《现代技术陶瓷》 2005 年第 2期 (总笫 104期), pp24-26 )和王黔平等人的论文 "高辐射红 外陶瓷材料的研究进展及应用" ( 《陶瓷学报》 2011年第 3期) , 这 些文献以全文引用的方式包含在本说明书中。
在本发明中, 比较好的是将下列准则作为选用红外辐射材料的其 中一个考虑因素:在设定的发光二极管单元的 P-N结温度(例如 50-80 摄氏度范围内的一个温度值) 以下, 红外辐射材料仍然具有较高的发 射率(例如大于或等于 70% ) 。
"电气连接 " 应当理解为包括在两个单元之间直接传送电能量或 电信号的情形, 或者经过一个或多个第三单元间接传送电能量或电信 号的情形。
"驱动电源" 或 "LED驱动电源" 指的是连接在照明装置外部的 交流(AC ) 或直流(DC ) 电源与作为光源的发光二极管之间的 "电 子控制装置" , 用于为发光二极管提供所需的电流或电压 (例如恒定 电流、 恒定电压或恒定功率等) .
诸如 "包含" 和 "包括" 之类的用语表示除了具有在说明书和权 利要求书中有直接和明确表述的单元和步骤以外, 本发明的技术方案 也不排除具有未被直接或明确表述的其它单元和步猓的情形。
诸如 "第一" 和 "第二" 之类的用语并不表示单元在时间、 空间、 大小等方面的顺序而仅仅是作区分各单元之用。 以下借助附困描述本发明的实施例。 发光二极管灯芯
图 1为按照本发明一个实施例的发光二极管灯芯的示意图。
按照本实施例的发光二极管灯芯 10包括散热部件 110、 多个发光 二极管单元 120以及驱动电源 (未画出) 。
在图 1所示的实施例中, 散热部件 110为壳体形状, 其全部由绝 缘导热材料(例如陶瓷或导热绝缘高分子复合材料)构成, 但是散热 部件 110仅仅一部分由绝缘导热材料构成也是可行的和有益的 (例如 当采用少量绝缘导热材料就能够满足将热量传导给红外辐射材料的需 求并且需要降低材料成本时) 。 如前面所述, 在本发明中, 主要借助 热辐射的方式将发光二极管单元和驱动电源产生的热量散发到环境中 去。 为此, 在图 1所示实施例中, 在散热部件 110的整个外表面覆盖 红外辐射材料(例如诸如碳化硅之类的常温红外陶瓷辐射材料) , 但 是可选地,也可以仅在散热部件 110的一部分表面覆盖红外辐射材料。 例如可以仅在散热部件 110的外表面覆盖红外辐射材料; 或者如果红 外辐射材料是非绝缘材料时, 应避免在设置或靠近发光二极管单元和 驱动电源的表面区域覆盖红外辐射材料. 如果红外辐射材料同时具有较好的绝缘导热性能 (例如碳化娃材 料) , 则散热部件 110可以全部由红外辐射材料构成。 或者可选地, 散热部件 110可以仅仅一部分(例如散热部件上设置发光二极管单元 或驱动电路的部分以外的部分) 由红外辐射材料构成, 而其余部分则 采用更便宜的、适合用作印刷电路板基板的绝缘导热材料或其他材料。
除非特别指明, 下面将要描述的内容都同时适用于红外辐射材料 覆盖在散热部件表面和红外辐射材料构成散热部件本体这两种情形。
参见图 1,呈壳体状的散热部件 110的侧部外表面包含多个环形外 凸部分以增加壳体的表面积,从而进一步增强散热部件的热辐射能力。 值得指出的是, 散热部件并不局限于壳体形状, 其例如还可以是实心 的, 此时可以考虑将发光二极管单元和驱动电源设置在散热部件的外 部。
此外, 散热部件的外表面也可以采用其它形状. 图 2和 3示出了 外表面上设置纵向延伸的凸块以达到增加表面积的目的。 而在图 3中,
nfr -rSK ihr
Figure imgf000017_0001
WJ Ί JJ¾ w .
参见图 1-3,多个发光二极管 120被设置在散热部件 110的底部的 外表面, 它们与驱动电源电气连接,驱动电源则被设置在散热部件 110 的内部,其经由从散热部件 110延伸出来的第一引线 130A和第二引线 130B与外部电源 (例如各种直流电源或交流电源)相连。 当将本实施 例的灯芯安装到照明装置内时, 第一引线 130A和第二引线 130B分别 与灯头的第一电极区 (例如灯头的由导电材料构成的端部) 和第二电 极区 (例如灯头側面由导电材料构成的部分) 电气连接。 如图 1-3 所 示, 第二引线 130B在引出散热部件 110后向上折返,从而在灯芯安装 到照明装置内时可抵靠住灯头的内側表面以实现电气连接。
在图 1-3所示的实施例中,散热部件 110的底部包含盖板 111。 该 盖板 111与散热部件的其它部分可以处于分离状态, 也就是说, 如果 需要, 盖板 111与散热部件的其它部分在空间上是可以分离的。 例如, 出于降低制造工艺难度的需要, 可以先在盖板 111 的表面安装发光二 极管单元 120和驱动电源, 然后再将盖板 111与散热部件的其余部分 固定连接在一起(例如借助导热胶、 导热的双面胶片与其余部分粘合 在一起) . 虽然在本实施例中, 盖板 111位于散热部件 110的底部, 一 ■ * 、 、 、
^^V ^ f!fJ^ m ^ ^r * -C ffJ以付盈取 111仗卞 "ft热邢 f的异 E仅
如侧面) 。
图 4A和 4B示出了按照本发明一个实旄例的安装了发光二极管单 元和驱动电路之后的盖板的示意图,其中, 图 4A示出了安装发光二极 管单元的表面的视图, 图 4B示出了安装驱动电源的表面的视图。
盖板 111采用绝缘导热材料(例如陶瓷材料或导热绝缘高分子复 合材料等)或兼具绝缘导热能力的红外辐射材料(例如碳化硅)制成。 参见图 4A和 4B, 发光二极管单元 120和驱动电源 140分别设置在盖 板 111的两个表面 111A和 111B上,借助形成在两个表面上的布线 112 和 112, (例如通过在陶瓷材料上烧结银浆图案而形成布线层) , 发光 二极管单元 120和驱动电源 140连接在一起, 因此在图 4A和 4B所示 的实施例中, 盖板 111 一方面相当于印刷线路板, 为发光二极管单元 和驱动电源提供承载平台和电气连接, 另一方面其还起着将发光二极
^ ta•—ϋ '^Γ. Ι ^Π 4β「 8ΒΓ *Λ A 、 ± i t \ j & fy^.^ «^,山土 *t >M,「r田 Air J.J. 可以采用模具压制法来制作陶瓷材料构成的盖板, 这种方法制造的盖 ila ( IiA ^. 、 ϊέ. τ£ dP
^^ f- V' - y 1. Jill III α ^J o
在图 4A和 4B所示的实施例中, 发光二极管单元 120采用管芯形 式, 它们通过粘附方式设置在盖板 111的表面 111A上以在 LED单元 120与盖板 111之间形成较好的热传导. 另一方面, 位于表面 111A上 的布线 112包含多个焊盘 1121和走线 1122A和 1122B,发光二极管单 元 120通过引线 113 (例如金丝、银丝或合金丝)直接连接至焊盘 1121 以形成串联的发光二极管组, 该发光二极管組两端的发光二极管单元 通过引线 113连接至走线 1122A和 1122B, 而走线 1122A和 1122B则 经穿越通孔 114的导线 115A和 115B连接至位于盖板 111另一面 上的驱动电源 140。在本实施例中,可以利用绑定工艺实现发光二极管 管芯经引线到布线的连接.
如果需要调整发光二极管单元 120的发光波长, 可以用混合荧光 粉的环氡树脂或硅胶将发光二极管单元 120粘附在表面 111A上,或者 在发光二极管单元 120的表面涂復荧光层, 再将其借助环氧树脂或硅 胶粘合到表面 111A上.
参见图 4B, 在盖板 111的另一表面 111B上设置有驱动电源 140。 根据外部供电的方式, 驱动电源可采用各种拓朴架构的电路, 例如包 括但不限于非隔离降压型拓朴电路结构、 反激式拓朴电路结构和半桥
LLC拓朴电路结构等. 有关驱动电源电路的详细描述可参见人民邮电 出版社 2011年 5月第 1版的 《LED照明驱动电源与灯具设计》一书, 该出版物以全文引用方式包含在本说明书中,
驱动电源可以多种驱动方式(例如恒压供电、 恒流供电和恒压恒 流供电等方式) 向发光二极管单元 120提供合适的电流或电压, 其可 以由一个或多个独立的部件組成。 在本实施例中, 驱动电源中的一个 或多个部件以晶片或封装芯片的形式实现, 以下将驱动电源中以晶片 或封装芯片的形式实现的部件称为 "驱动控制器" 。
可选地, 在驱动电源 120中还可以集成实现其它功能的电路, 例 如调光控制电路、 传感电路、 功率因数校正电路、 智能照明控制电路、 诵信电 ^保^由 , 菩. 这 叙 ^以 驱 —卓^ 体晶片或封装芯片内, 或者这些电路可以单独地以半导体晶片或封装 , , z 、 |,、, ^ i '^. I w "^- Γ J „、 -口 O-*- J \ ,,、 半导体晶片或封装芯片的形式提供.
ESI Λ η ί,ύ. =L Λίί JJ- k. ji— 1 ^ -a W tfil l^. ESI 1 £C— 3 ^lr Ιτλ Λ s^ x∑ ID r>\ 7)、—, -ec¾¾ i. ^ 1411» m t∑) I-J〃1 w、 ^> ^aiyj丁 的第一和第二引线 130A和 130B电气连接, 由此使得外部电源 (例如 各种直流电源或交流电源)接入整流电路 142 (在这里以集成电路封装 芯片的形式实现), 而驱动电路 143 (在这里以集成电路封装芯片的形 式实现, 例如可以是美信(Maxim )集成产品公司制造的 LED驱动器 MAX16820, 恩智浦 (NXP )半导体公司制造的反激式驱动器 SSL系 列控制 IC、 Clare公司制造的 HB LED驱动器 MXHV9910、 安森美公 司制造的 LED驱动器 NCP1351、 Active半导体公司制造的 LED驱动 器 ACT355A等)经表面 111B上的布线 112,与整流电路 142电气连接。 驱动电路 143还经布线 112,与电容器 144A和 144B以及实现其它功能 的电路(这里以无线通信收发器芯片 145为例)电气连接。参见图 4B, 驱动电源 140的输出端经穿越通孔 114的导线 115A和 115B与位于盖 板表面 111A上的发光二极管单元 120电气连接,
在图 4A和 4B所示的实施例中, 对于封装芯片形式的驱动控制器 和实现其它功能的电路, 例如可以利用焊接工艺将其直接连接到表面 111B的布线 112,上, 而对于晶片形式的驱动控制器和实现其它功能的 电路, 例如可以利用绑定工艺或在板上倒装芯片 (FCOB )工艺将其直 接连接到表面 111B的布线 112,上。 此外, 可选地, 也可以采用将整流 电路 142之类的电源变换元器件与驱动电路 143集成在一个封装芯片 内的结构.
值得指出的是, 虽然在图 4A和 4B所示的实施例中, 利用绑定工 艺将管芯形式的发光二极管单元 120直接连接到布线 112上, 但是也 可以利用在板上倒装芯片(FCOB )工艺将发光二极管管芯与布线电气 连接。 此外, 虽然在图 4A和 4B所示实施例中, 发光二极管单元 120 以串联方式连接在一起, 但是也可以并联、 混联或交叉阵列的形式连 接在一起。
还需要指出的是, 上述盖板结构并非是必需的。 可选地, 散热部 件 110也可以是一体成型的构件。 对于这种结构, 为了便于装配, 驱 动电溏可以炎用 理上独立 ^ Φ ϋ^媒块的形 . (例如 谗射 一个独 立的部件)来实现, 此时该电路模块可被设置于散热部件 110的内部
Figure imgf000020_0001
图 5为按照本发明另一个实施例的装了发光二极管单元和驱动电
Figure imgf000020_0002
与上述借助图 4A和 4B所示的实施例相比, 本实施例的主要不同 之处在于发光二极管单元 120的形式, 因此这里仅示出设置发光二极 管单元的盖板表面的视图。
参见图 5, 在盖板 111的表面 111A上形成布线 112, 采用封装芯 片形式的发光二极管单元 120被焊接在布线 112上从而与盖板 111之 间形成热传导。为了加强热传导,例如还可以用粘合剂将 LED单元 120 粘合在表面 111A上。 在图 5中, 布线 112分为多段以将多个 LED单 体 120依次串联连接在一起。此外,在盖板 111的中央开设有通孔 114, 布线 112借助穿越通孔 114的导线 115A和 115B电气连接至设置于盖 板 111 的另一表面上的驱动电源的驱动控制器或者位于散热部件 111 内部的电路模块形式的驱动电源。
图 6为按照本发明一个实施例的采用发光二极管作为光源的照明 装置的分解示意图。
如图 6所示,按照本实施例的照明装置 1包括发光二极管灯芯 10、 一
? ΖΌ ; g"半 JU.
在图 6所示的实施例中,发光二极管灯芯 10可以采用上面结合图 1-5所描述的实施例及其它们的变化形式。 灯头 20为发光二极管灯芯 10提供了与外部电源 (例如各种直流电源或交流电源) 电气连接的接 口, 其例如可采用与普通白炽灯和节能灯类似的螺纹状旋接口或旋转 卡口等形式。 灯革 30采用透明或半透明材料制成, 主要作用在于保护 光源和功能电路以及使光线更柔和、 更均匀地向空间发散。 参见图 6, 灯罩 30可以与灯头 20固定在一起, 从而形成可容纳发光二极管灯芯 10的空间。 如上所述, 发光二极管灯芯 10借助热辐射的方式将 LED 单元和驱动电源产生的热量散发到环境中去, 因此应选择对红外辐射 的透过率能满足实际应用需求的材料来制作灯革(例如玻璃等) 。
图 7为图 6所示采用发光二极管作为光源的照明装置的剖视图, 其示出了发光二极管灯芯 10、灯头 20和灯革 30装配在一起后的状态。 部 210、绝缘部分 220和外表面呈螺紋状的、由导电材料制成的螺纹部 可采用塑料之类的绝缘材料制成. 端部 210和螺纹部分 230分别适于 与灯座(未画出) 的两个电极相连接.
继续参见图 6和 7, 发光二极管灯芯 10的散热部件 110的上端部 116插入灯头 20内并且与灯头 20的内底面和 /或内侧面通过粘合剂(例 如胶泥)固定在一起, 第一引线 130A延伸至与端部 210相接, 而第二 引线 130B在伸出散热部件 110之后向下折返并抵靠住螺纹部分 230的 内表面, 由此外部电源可经灯头 20向发光二极管灯芯 10供电。
发光二极管灯芯 10、 灯头 20和灯革 30例如可通过粘合方式固定 在一起, 从而实现如图 7所示的装配状态。 在该装配状态下, 灯軍 310 的开口端 310伸入螺紋部分 230内部并且与散热部件 110的外表面固 定在一起. 此外, 通过在螺纹部分 230与开口端 310之间的空隙内填 充粘合剂, 可以将开口端 310与的螺紋部分 230的内表面固定在一起。 如图 6和 7所示,散热部件 110的外表面形成有台阶 117, 当在装配状 态下时, 该台阶 117可为灯軍 30提供支承; 此外, 灯革 30的开口端 310向内收缩以使其内表面与散热部件 110的外表面的接触面积增大, 从而提高了发光二极管灯芯 10、 灯头 20和灯革 30之间的结合强度。 可选地, 当灯罩 30的开口端未收口而导致外径较大时, 也可以考 虑将灯軍 30完全设置在螺纹部分 230之外. 在这种布置下, 为了使发 光二极管灯芯 10、 灯头 20和灯軍 30三者固定在一起, 可先使灯罩 30 与散热部件 110固定在一起(例如将开口端 310的边沿和部分内表面 与散热部件 110的外表面粘合), 然后将散热部件 110与螺纹部分 230 固定在一起(例如将散热部件 110的上端部 116插入灯头 20内并且与 灯头 20的内底面和 /或侧面粘合) 。
当将图 6和 7所示实施例的照明装置 1的灯头 20插入灯座后,发 光二极管灯芯 10的驱动电源(未画出)即可电气连接至外部电源, 将 外部电力 (例如 220V交流电或者 6V/12V/24V直流电)转换为发光二 极管单元 130工作所需的电流和 /或电压, 另一方面, 发光二极管单元 130 和驱动电源工作时产生的热量基本上以热传导的方式被传递到散 热部件 110,上述热量进而被散热部件 110吸收并且主要转换为红外线 图 8为按照本发明另一个实施例的采用发光二极管作为光源的照
Figure imgf000022_0001
.
与上述借助图 6和 7所示的实施例相比, 本实施例的主要不同之 处在于发光二极管灯芯 10、 灯头 20和灯革 30三者之间的结合部位的 布置以及散热部分 110的外表面形状, 因此这里仅示出照明装置的剖 视图, 并且省略描述与图 6和 7所示的实施例相同的方面。
参见图 8, 灯头 20的螺纹部分 230在开口端附近向内略微收缩, 而发光二极管灯芯 10的散热部件 110的上部的外表面上也形成有台阶 117, 当散热部件 110装入螺紋部分 230内之后, 螺纹部分 230开口端 的内边沿恰好阻挡住台阶 117,以阻止散热部件 110的上部从螺纹部分 230滑出。 另一方面, 当灯革 30的开口端 310插入散热部件 110与螺 紋部分 230之间时, 螺纹部分 230的开口端的外边沿可为灯軍 30提供 支承。 在图 8 所示的实施例中, 为了使发光二极管灯芯 10、 灯头 20 和灯軍 30之间的结合具有足够的强度, 可以采用下列方式: 首先在螺 纹部分 230的内表面涂覆粘合剂 (例如胶泥) , 接着将发光二极管灯 芯 10的散热部件 110和灯罩 30的开口端 310装配到螺纹部分 230内 的相应位置,最后使粘合剂固化以使发光二极管灯芯 10、灯头 20和灯 軍 30固定在一起。 虽然在上面借助图 6-8描迷的实施例中都以结构类似于普通白炽 灯的球泡灯(bulb-type lamp )作为照明装置的示例, 但是对于本领域 内的技术人员来说, 在阅读本说明书之后将会认识到, 本发明的上述 内容也可以应用于其它类型的照明装置, 它们例如包括但不限于 LED 射灯、 LED筒灯和 LED日光灯等. 虽然已经展现和讨论了本发明的一些方面, 但是本领域内的技术 人员应该意识到, 可以在不背离本发明原理和精神的条件下对上述方 面进行改变, 因此本发明的范围将由权利要求以及等同的内容所限定。

Claims

1、 一种发光二极管灯芯, 其特征在于, 包括:
— T 7 一 干 ;
驱动电源, 其与所述发光二极管单元电气连接; 以及
承载所述发光二极管单元和驱动电源的教热部件, 其至少一部分 表面以红外辐射材料覆盖,
2、 如权利要求 1所述的发光二极管灯芯, 其中, 所述散热部件由 绝缘导热材料构成或者包含绝缘导热材料构成的部分, 所述绝缘导热 材料为陶瓷材料或导热绝缘高分子复合材料。
3、 如权利要求 1或 2所述的发光二极管灯芯, 其中, 所述红外辐 射材料为常温红外陶瓷辐射材料,
4、 如权利要求 3所述的发光二极管灯芯, 其中, 所述常温红外陶 瓷辐射材料选自下列材料中的至少一种: 氧化摸、 氧化铝、 氧化钙、 氧化钛、 氧化硅、 氡化铬、 氡化铁、 氡化锰、 氣化锆、 氧化钡、 堇青 石、 莫来石、 碳化碉、 碳化硅、 碳化钛、 碳化钼、 碳化钨、 碳化锆、 碳化钽、 氮化硼、 氮化铝、 氮化硅、 氮化锆、 氮化钛、 硅化钛、 硅化 钼、 硅化钨、 硼化钛、 硼化锆和硼化铬,
5、 如权利要求 1-4中任意一项所述的发光二极管灯芯, 其中, 所 述散热部件呈壳体形状, 所述发光二极管单元设置在所述壳体的外表 面并且所述驱动电源设置在所述壳体的内部,
6、 如权利要求 5所述的发光二极管灯芯, 其中, 所述驱动电源采 用电路模块的形式, 并且在所述壳体的内表面和外表面上形成布线层 以在所述发光二极管单元与所述驱动电源之间提供电气连接。
7、 如权利要求 5所述的发光二极管灯芯, 其中, 所述壳体包含盖 板, 在其内表面和外表面上形成布线层以在所述发光二极管单元与所 述驱动电源之间提供电气连接.
8、 一种发光二极管灯芯, 其特征在于, 包括:
至少一个发光二极管单元;
驱动电源, 其与所述发光二极管单元电气连接; 以及
承栽所述发光二极管羊元和驱动电源的嗷热部件, 其由红外辐射 材料构成或者包含由红外辐射材料构成的部分。
9、一种采用发光二极管作为光源的照明装置,其特征在于, 包括: 灯头;
灯革; 以及
发光二极管灯芯, 包括:
至少一个发光二极管单元;
驱动电源, 其与所述发光二极管单元电气连接; 以及
# 二; to簪 ϋ jfoSK^由.液^ *执 侔. Ji $ Ιβ 分表面以红外辐射材料覆盖并且被设置在由所述灯头和所述灯罩
ITS * ΑΑ ^ 1¾1 d
I V^ A^ »V工 I Γ '^ ο
10、 一种采用发光二极管作为光源的照明装置, 其特征在于, 包 括:
灯头;
灯革; 以及
发光二极管灯芯, 包括:
至少一个发光二极管单元;
驱动电源, 其与所述发光二极管单元电气连接; 以及
承栽所述发光二极管单元和驱动电源的散热部件,其由红外辐 射材料构成或者包含由红外辐射材料构成的部分,并且被设置在由 所述灯头和所述灯革限定的空间内。
PCT/CN2012/087781 2011-12-28 2012-12-28 高度集成化的发光二级管灯芯和包含其的照明装置 WO2013097755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011104623633A CN103185236A (zh) 2011-12-28 2011-12-28 高度集成化的发光二极管灯芯和包含其的照明装置
CN201110462363.3 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013097755A1 true WO2013097755A1 (zh) 2013-07-04

Family

ID=48676574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087781 WO2013097755A1 (zh) 2011-12-28 2012-12-28 高度集成化的发光二级管灯芯和包含其的照明装置

Country Status (2)

Country Link
CN (1) CN103185236A (zh)
WO (1) WO2013097755A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9401468B2 (en) 2014-12-24 2016-07-26 GE Lighting Solutions, LLC Lamp with LED chips cooled by a phase transformation loop

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106118042B (zh) * 2016-06-29 2019-05-07 海信集团有限公司 一种塑料制品及其制备方法和可散热的壳体
JP6817801B2 (ja) * 2016-12-08 2021-01-20 セイコーインスツル株式会社 発光素子の制御装置、および発光素子の制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482257A (zh) * 2008-12-03 2009-07-15 刘端蓉 Led灯的散热方法、散热结构及led灯
CN101852416A (zh) * 2010-06-10 2010-10-06 上海合亚经贸有限公司 一种大功率led灯散热的方法与装置
CN201934987U (zh) * 2010-12-24 2011-08-17 河源粤兴照明实业有限公司 一种散热良好的led灯泡
CN202056818U (zh) * 2011-01-26 2011-11-30 吴云肖 一种led户外照明灯散热器
CN102291927A (zh) * 2011-04-30 2011-12-21 深圳市易特照明有限公司 一种led灯陶瓷基板和led灯
CN102401284A (zh) * 2011-10-25 2012-04-04 吴俊峰 采用热辐射及分段式散热结构的led路灯

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846253A (zh) * 2010-04-20 2010-09-29 李春宪 Led灯泡
CN201875446U (zh) * 2010-05-31 2011-06-22 温辉 一种液冷真空led灯
CN201992405U (zh) * 2011-02-16 2011-09-28 浙江上光照明有限公司 一种led节能灯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482257A (zh) * 2008-12-03 2009-07-15 刘端蓉 Led灯的散热方法、散热结构及led灯
CN101852416A (zh) * 2010-06-10 2010-10-06 上海合亚经贸有限公司 一种大功率led灯散热的方法与装置
CN201934987U (zh) * 2010-12-24 2011-08-17 河源粤兴照明实业有限公司 一种散热良好的led灯泡
CN202056818U (zh) * 2011-01-26 2011-11-30 吴云肖 一种led户外照明灯散热器
CN102291927A (zh) * 2011-04-30 2011-12-21 深圳市易特照明有限公司 一种led灯陶瓷基板和led灯
CN102401284A (zh) * 2011-10-25 2012-04-04 吴俊峰 采用热辐射及分段式散热结构的led路灯

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9401468B2 (en) 2014-12-24 2016-07-26 GE Lighting Solutions, LLC Lamp with LED chips cooled by a phase transformation loop

Also Published As

Publication number Publication date
CN103185236A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
TWI333533B (en) Led lamp structure and system with high-efficiency heat-dissipating function
CN202629622U (zh) 照明源
WO2013067945A1 (zh) 发光二极管灯芯和采用发光二极管作为光源的照明装置
WO2013139295A1 (zh) 具有强散热能力的发光二极管球泡灯及其制造方法
WO2014187335A1 (zh) Led灯芯和包含其的led球泡灯
CN104421682B (zh) Led光源模块和包含该模块的led球泡灯
WO2006128327A1 (fr) Dispositif electroluminescent a semi-conducteur muni d&#39;un module de conduction/dissipation de chaleur
CN103890481A (zh) 具有非电气隔离的驱动器的半导体照明装置
EP2795654A1 (en) Light emitting system
CN103363332B (zh) 具有大发光角度的发光二极管球泡灯及其制造方法
WO2005029594A1 (fr) Structure de diode electroluminescente
WO2008043206A1 (en) A semiconductor light-emitting module
TWI273858B (en) Light-emitting diode cluster lamp
WO2013117168A1 (zh) 发光二极管球泡灯及其制造方法
CN103672459B (zh) 具有紧凑结构的提供定向光束的发光二极管照明装置
WO2013097755A1 (zh) 高度集成化的发光二级管灯芯和包含其的照明装置
WO2007019733A1 (fr) Dispositif d’eclairage a led de grande puissance et a forte capacite de dissipation thermique
CN103470968A (zh) 大发光角度的发光二极管灯芯及包含该灯芯的照明装置
CN103322438A (zh) 大功率发光二极管投光灯及其制造方法
CN103375704B (zh) 大功率发光二极管灯及其制造方法
US9466772B2 (en) Method and apparatus for providing high-temperature multi-layer optics
CN203413588U (zh) Led光源板组件、led灯芯和led照明装置
TWM366013U (en) LED lamp module
CN211371990U (zh) 一种垂直散热式的led灯
CN106098920A (zh) 一种半导体发光单元的散热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/11/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12862841

Country of ref document: EP

Kind code of ref document: A1