WO2013115384A1 - Alloy for soft magnetic film layers, which has low saturation magnetic flux density and is to be used in magnetic recording medium, and sputtering target material - Google Patents
Alloy for soft magnetic film layers, which has low saturation magnetic flux density and is to be used in magnetic recording medium, and sputtering target material Download PDFInfo
- Publication number
- WO2013115384A1 WO2013115384A1 PCT/JP2013/052400 JP2013052400W WO2013115384A1 WO 2013115384 A1 WO2013115384 A1 WO 2013115384A1 JP 2013052400 W JP2013052400 W JP 2013052400W WO 2013115384 A1 WO2013115384 A1 WO 2013115384A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tam
- alloy
- magnetization
- tnm
- hbias
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 89
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 40
- 239000000956 alloy Substances 0.000 title claims abstract description 40
- 238000005477 sputtering target Methods 0.000 title claims abstract description 12
- 239000013077 target material Substances 0.000 title claims abstract description 12
- 230000004907 flux Effects 0.000 title claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 12
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 12
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 12
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 11
- 229910052718 tin Inorganic materials 0.000 claims abstract description 11
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 239000010409 thin film Substances 0.000 claims description 11
- 239000010408 film Substances 0.000 description 66
- 230000005415 magnetization Effects 0.000 description 64
- 230000000694 effects Effects 0.000 description 19
- 239000010410 layer Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 11
- 229910001004 magnetic alloy Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 239000002356 single layer Substances 0.000 description 10
- 230000000740 bleeding effect Effects 0.000 description 9
- 230000002730 additional effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000005280 amorphization Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 101000993059 Homo sapiens Hereditary hemochromatosis protein Proteins 0.000 description 1
- 241000053208 Porcellio laevis Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/66—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
- G11B5/667—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/851—Coating a support with a magnetic layer by sputtering
Definitions
- the present invention relates to an alloy for a soft magnetic film layer having a low saturation magnetic flux density and a sputtering target material used for a magnetic recording medium.
- the magnetic recording technology has been remarkably advanced, and the recording density of magnetic recording media has been increased to increase the capacity of the drive, realizing a higher recording density than the conventional in-plane magnetic recording media.
- a perpendicular magnetic recording system capable of being used has been put into practical use. Further, a method of assisting recording by applying heat or microwaves by applying a perpendicular magnetic recording method has been studied.
- the perpendicular magnetic recording method is a method suitable for high recording density, in which the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium.
- a two-layer recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed.
- a CoCrPt—SiO 2 alloy is used for the magnetic recording film layer.
- a Ru film is inserted between soft magnetic film layers, and due to antiferromagnetic coupling between the soft magnetic film and the Ru film (hereinafter referred to as AFC coupling), a dead zone against an external magnetic field (hereinafter referred to as Hbias).
- AFC coupling antiferromagnetic coupling between the soft magnetic film and the Ru film
- Hbias a dead zone against an external magnetic field
- Patent Document 1 the resistance to an external noise magnetic field in the use environment of the magnetic recording medium is increased.
- the alloy for soft magnetic film layers according to the present invention can be used for these perpendicular magnetic recording media.
- a conventional soft magnetic film layer must have a high saturation magnetic flux density (hereinafter referred to as Bs) and a high amorphous forming ability (hereinafter referred to as amorphous).
- Bs saturation magnetic flux density
- amorphous high amorphous forming ability
- various properties such as high corrosion resistance and high hardness have been additionally required.
- high Bs is particularly important.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2011-181140
- Patent Document 3 Japanese Patent Application Laid-Open No. 2008-299905
- Patent Document 3 have a high Bs. I am aiming.
- the reason why such a high Bs is required is that a Bs of a certain value or more is necessary to stabilize the magnetization of the recording film and that a large Hbias is provided.
- the rise of magnetization for a magnetic field of Hbias and higher is schematically shown in FIG.
- a magnetic field sufficient to saturate the magnetization of the soft magnetic film is applied. Therefore, if the rise of magnetization becomes dull, it is necessary to apply a magnetic field that is large for magnetization.
- the two recording density reduction phenomena are also referred to as so-called “writing bleeding”, and suppression of one phenomenon has an effect of improving writing bleeding. However, suppression of both phenomena further has an effect of improving writing bleeding.
- the inventors have made extensive developments. As a result, the inventors have relatively low Bs exceeding 0.5 T, which is considered to be the minimum Bs that stabilizes the magnetization of the recording film. If a soft magnetic alloy having a high Hbias even in Bs and having a sharp rise in magnetization even in high Hbias is found, it is considered that both high resistance to external magnetic fields and high recording density by suppressing “writing bleeding” can be achieved. It was.
- TNM Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
- the alloy has the following formula (4): (4) 0.25 ⁇ (Nb% + Ta%) / (TAM + TNM) ⁇ 1.00 It is preferable to satisfy.
- the alloy has the following formula (5) and / or (6): (5) 0 ⁇ Ti% + Zr% + Hf% + B% / 2 ⁇ 5 (6) 0 ⁇ Cu% + Sn% + Zn% + Ga% ⁇ 10 It is preferable to satisfy.
- the alloy is Selected from the group consisting of Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge, Sn
- TNM Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn% It is preferable that
- the saturation magnetic flux density of the alloy is preferably more than 0.5T and less than 1.1T.
- a sputtering target material made of an alloy according to any one of the above aspects.
- the present invention is a soft magnetic amorphous alloy having a low saturation magnetic flux density.
- a multilayer film in which a nonmagnetic thin film such as Ru is inserted between the alloy thin films and antiferromagnetically coupled Further, it is possible to provide an alloy having a large insensitive range against magnetic field, a soft magnetic alloy for magnetic recording media having a good rise in magnetization with respect to an external magnetic field exceeding the insensitive region, and a sputtering target material for producing a thin film of this alloy.
- a soft magnetic alloy of this application there has been no idea in the past to actively aim for low Bs. This concept is the most characteristic idea in the present invention.
- the present invention relates to an alloy for a soft magnetic thin film layer in a magnetic recording medium, and this alloy includes Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, and Al.
- This alloy includes Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, and Al.
- the alloys according to the present invention are at% and have the following formulas (1) to (3): (1) 0.50 ⁇ Fe% / (Fe% + Co%) ⁇ 0.90 (2) 5 ⁇ TAM ⁇ 25 (3) 15 ⁇ TAM + TNM ⁇ 25
- TNM Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn% It is.
- Hbias was evaluated for soft magnetic films of various compositions. Not only the size of Bs but also Fe% / (Fe% + Co%). It was found that the size of Hbias changed. That is, even if it is a soft magnetic film having a Bs exceeding 0.5T and less than 1.1T and relatively lower than the conventional example, by setting it to a predetermined Fe% / (Fe% + Co%) range, It was found that high Hbias can be obtained.
- Fe% / (Fe% + Co%) ⁇ 0.90 Fe and Co are elements for imparting the minimum necessary magnetization to stabilize the magnetization of the recording film, and Bs And Fe% / (Fe% + Co%) behavior is shown in a so-called slater poling curve. Furthermore, Fe% / (Fe% + Co%) is also an important factor for providing high Hbias even at relatively low Bs. When Fe% / (Fe% + Co%) is less than 0.50, Hbias becomes small as compared with a soft magnetic film having the same degree of Bs and 0.50 or more.
- the range of preferable Fe% / (Fe% + Co%) is 0.55 or more and 0.85 or less, More preferably, it is 0.60 or more and 0.80 or less.
- Ti, Zr, Hf, and B are elements that promote amorphization and lower Bs, and are elements that significantly slow the rise of magnetization.
- B can be treated as B% / 2 in TAM because the effect of Bs reduction and increase in amorphousness is about 1 ⁇ 2 compared to Ti, Zr, and Hf.
- B generates a particularly hard compound (for example, boride), and it is necessary to reduce the processing speed during machining, so that B alone is an element classified as TAM. It is preferable to add in combination rather than adding.
- (B / 2) / TAM is preferably 0.8 or less, and more preferably 0.5 or less.
- Y, V, Cr, Mo, and W are elements that cause a decrease in Bs and slightly slow the rise of magnetization.
- Y and V also contribute to the promotion of amorphization.
- Nb and Ta are important elements that have effects of promoting amorphization and lowering Bs and sharpening the rise of magnetization.
- Mn, Al, Si, Ge, and P are elements that cause a decrease in Bs and slightly slow the rise of magnetization.
- Ni and Cu are elements with a small decrease width of Bs, and Cu has an effect of sharpening the rise of magnetization by adding a small amount, but addition of a large amount is an element that slightly lowers the rise of magnetization.
- Ni and Cu are treated as Ni% / 3 and Cu% / 3 in TNM because the decrease in Bs is about 1/3 compared to other elements classified as TAM and TNM. it can.
- Ga, Sn, and Zn have an effect of sharpening the rise of magnetization when added in a small amount as Bs decreases, but addition of a large amount is an element that slightly slows down the rise of magnetization.
- all elements have the effect of lowering Bs, and there are also elements that affect the effect of improving amorphousness and the rise of magnetization. By optimizing these addition amounts, the alloy according to the invention is obtained.
- TAM is 5 or more and 25 or less, preferably 7 or more and 23 or less, more preferably 9 or more and less than 20. Since Nb and Ta generate a brittle intermetallic compound with Fe or Co in the sputtering target material, when only Nb or / and Ta is added as TAM, cracks and chips do not occur during machining. It is necessary to reduce the processing speed. In consideration of this point, when only Nb or / and Ta is added as TAM, TAM is preferably less than 20.
- TAM + TNM When TAM + TNM is less than 15, Bs increases and Hbias increases, but the rise of magnetization becomes dull. If TAM + TNM exceeds 25, Bs is small and Hbias is small. Therefore, TAM + TNM is 15 or more and 25 or less, preferably 17 or more and 23 or less, more preferably 18 or more and 21 or less.
- Nb and Ta are important elements having an additional effect of sharpening the rise of magnetization in this alloy.
- (Nb% + Ta%) / (TAM + TNM) is less than 0.25, this effect cannot be obtained.
- the upper limit of (Nb% + Ta%) / (TAM + TNM) is necessarily 1.00. Therefore, (Nb% + Ta%) / (TAM + TNM) is 0.25 or more and 1.00 or less, preferably 0.40 or more and less than 1.00, more preferably 0.60 or more and less than 1.00. is there.
- Ti, Zr, Hf, and B are magnetized in this alloy. Therefore, by sharply defining the upper limit of the total amount, a sharper magnetization rise can be obtained as an additional effect. If Ti% + Zr% + Hf% + B% / 2 exceeds 5, the effect of sharpening the rise of magnetization cannot be obtained. Therefore, Ti% + Zr% + Hf% + B% / 2 is 0 or more and 5 or less, preferably 3 or less, more preferably 0.
- Cu, Sn, Zn, and Ga are elements having an additional effect of sharpening the rise of magnetization when added in a small amount in this alloy. Therefore, when added in a small amount, Cu, Sn, Zn, and Ga are sharper. A rise in magnetization is obtained. However, if Cu% + Sn% + Zn% + Ga% exceeds 10, this effect cannot be obtained. Therefore, Cu% + Sn% + Zn% + Ga% is more than 0 and 10 or less, preferably 1 or more and 8 or less, more preferably 2 or more and 6 or less. In addition, even when both of these formulas satisfy only one of them, an additional effect of sharpening the rise of magnetization can be obtained.
- Ti, Zr, Hf, and B that make the rise of magnetization significantly slow are particularly stable in amorphous.
- Cu, Ga, Sn, and Zn are elements that reduce the amorphous nature.
- Nb and Ta, which are important elements that sharpen the rise of magnetization, are elements that have a lower effect of promoting amorphization than Ti, Zr, Hf, and B.
- Soft magnetic alloy powders having the compositions shown in Table 1 were prepared by gas atomization.
- the molten base material was induction-melted at 25 kg in reduced pressure Ar, the molten alloy was discharged from a nozzle having a diameter of 8 mm, and immediately after that, high-pressure Ar gas was sprayed and atomized.
- This powder was classified to 500 ⁇ m or less and used as a raw material powder for HIP molding (hot isostatic pressing).
- the billet for HIP molding was prepared by filling a raw material powder into a carbon steel can having a diameter of 200 mm and a length of 10 mm, followed by vacuum degassing and sealing.
- This powder-filled billet was HIP-molded under the conditions of a temperature of 1100 ° C., a pressure of 120 MPa, and a holding time of 2 hours. Thereafter, a soft magnetic alloy sputtering target material having a diameter of 95 mm and a thickness of 2 mm was produced from the compact. A soft magnetic thin film was produced using this soft magnetic alloy sputtering target material.
- a commercially available Ru metal sputtering target material was used for the production of the Ru thin film.
- the inside of the chamber was evacuated to 1 ⁇ 10 ⁇ 4 Pa or less, and Ar gas with a purity of 99.99% was charged with 0.6 Pa to perform sputtering.
- a 20 nm soft magnetic alloy thin film (lower soft magnetic layer) is formed on a cleaned glass substrate, a 0.8 nm Ru film is formed thereon, and a 20 nm same as the above-described film is formed thereon.
- a soft magnetic alloy thin film (upper soft magnetic layer) was formed to produce a multilayer film. The same alloy was used for the upper and lower soft magnetic films of the multilayer film in all Examples and Comparative Examples.
- a single-layer film in which only the lower soft magnetic layer was formed was also used for evaluation of Bs, crystal structure, and surface roughness of the soft magnetic film.
- the single-layer film thus prepared is used as a sample, Bs is VSM (sample vibration type magnetometer), crystal structure is X-ray diffraction, arithmetic average roughness Ra (surface roughness) is AFM (atomic force microscope).
- Bs VSM (sample vibration type magnetometer)
- crystal structure is X-ray diffraction
- arithmetic average roughness Ra surface roughness
- AFM atomic force microscope
- FIG. 1 is a schematic diagram of a magnetization curve of a multilayer film.
- Hbias is the applied magnetic field when the magnetization of the multilayer film rises, and the sharpness of the magnetization is evaluated by the ratio of the applied magnetic field (Hsat) where the magnetization of the multilayer film is saturated to Hbias, that is, Hsat / Hbias. did.
- FIG. 1A shows an example in which Hbias is large and the rise of magnetization is sharp
- FIG. 1B shows an example in which Hbias is small and the rise of magnetization is slow. That is, the smaller this value is and the closer it is to 1, the sharper the rise of magnetization.
- ⁇ ⁇ is less than 1.2
- ⁇ is 1.2 or more and less than 1.4
- ⁇ is 1.4 or more and less than 1.8
- ⁇ is 1.8 or more.
- Nos. 1 to 28 are examples of the present invention.
- Reference numerals 29 to 39 are comparative examples.
- FIG. 2 is a diagram in which the results of Table 2 are plotted with the Hbias of the multilayer film on the vertical axis and the Bs of the single layer film on the horizontal axis. It can be seen that high Bs is necessary to obtain high Hbias, as indicated by the solid oval in this figure. Note that the data in the solid oval are all in the range of Fe% / (Fe% + Co%) of 0.5 to 0.9. On the other hand, in Comparative Example No. 1 located below the solid ellipse in FIG. In 29-31, since Fe% / (Fe% + Co%) is less than 0.5, Hbias remains at a low value while having Bs equivalent to the data in the solid ellipse. That is, by setting Fe% / (Fe% + Co%) to 0.50 to 0.90, high Hbias is obtained even with relatively low Bs.
- Comparative Example No. No. 39 is a high Bs composition often seen in the prior art, with a composition as low as Fe% / (Fe% + Co%) as low as 0.4 and TAM + TNM as small as less than 15. This composition is a plot located to the right of the solid ellipse in FIG. 2. Compared with the composition in the solid ellipse, a significantly large Bs is required to obtain an equivalently high Hbias. The composition causes so-called “writing bleeding”.
- FIG. 3 plots the Hbias of the multilayer film on the vertical axis and the Ra of the single layer film on the horizontal axis for the results in Table 2, and the mark of the plot is the magnetization of the multilayer film when an external magnetic field of Hbias or higher is applied. It is changed according to the sharpness of the rise. From this figure, it can be seen that even in the case of a multilayer film having the same Hbias, when the surface roughness (Ra) of the single layer film is large, the rise of magnetization deteriorates.
- Comparative Example No. Since 29 to 31 have low Fe% / (Fe% + Co%) values, high Hbias is not obtained despite having Bs of 0.80 to 0.86 T. Comparative Example No. Nos. 32 and 33 have excessively high Fe% / (Fe% + Co%) values. Nos. 34 and 35 have high TAM + TNM. Since 36 has high TAM and TAM + TNM, both Bs are remarkably low, and high Hbias is not obtained.
- Comparative Example No. 37 has high Bs because TAM + TNM is low, and high Hbias is obtained, but the rise of magnetization with respect to an external magnetic field exceeding Hbias is slow.
- Comparative Example No. No. 38 has a low TAM, is crystalline, has a high Ra due to irregularities on the surface of the single layer film caused by crystal grains, and has a slow rise in magnetization with respect to an external magnetic field exceeding Hbias.
- Comparative Example No. No. 39 has a low Fe% / (Fe% + Co%) value and a low TAM + TNM, so even though the Bs is remarkably high, only Hbias of the same level as in the example was obtained. A high composition causes so-called “writing bleeding”.
- Example No. Since 1 to 28 are all within the scope of the present invention, Bs is less than 1.1T and Bs lower than that of the prior art, and has a high Hbias, and further has a sharp magnetization with respect to an applied magnetic field exceeding Hbias. It can be seen that it shows a rise. With such a composition, both resistance to a high external noise magnetic field and suppression of writing bleeding due to excessively high Bs can be achieved.
- Example No. In Nos. 8 to 12 since (Nb% + Ta%) / (TAM + TNM) is in the range of 0.5 to 1.0, Example No. An additional effect that the roughness (Ra) of the single-layer film is smaller and the rise of magnetization is sharper than 1 to 7 is also obtained.
- An additional effect that the roughness (Ra) of the single-layer film is smaller and the rise of magnetization is sharper than 1 to 7 is also obtained.
- Example No. No. 23 has the highest Hbias in the Examples, but Ti% + Zr% + Hf% + B% / 2 is 5 or less. It can be seen that the magnetization rise is about the same as 1-7.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Physical Vapour Deposition (AREA)
- Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Provided are: an alloy for soft magnetic film layers, which has low saturation magnetic flux density and is to be used in a magnetic recording medium; and a sputtering target material. This alloy contains one or more elements selected from the group consisting of Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge and Sn, with the balance made up of Co and Fe, while satisfying, in at%, the following formulae (1)-(3). (1) 0.50 ≤ Fe%/(Fe% + Co%) ≤ 0.90 (2) 5 ≤ TAM ≤ 25 (3) 15 ≤ TAM + TNM ≤ 25 In this connection, the above-mentioned TAM and TNM are respectively defined as TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B%/2 and TNM = Cr% + Mo% + W% + Mn% + Ni%/3 + Cu%/3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%.
Description
この出願は、2012年2月3日に出願された日本国特許出願2012-22096号に基づく優先権を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。
This application claims priority based on Japanese Patent Application No. 2012-22096 filed on Feb. 3, 2012, the entire disclosure of which is incorporated herein by reference.
本発明は、磁気記録媒体に用いる低飽和磁束密度を有する軟磁性膜層用合金およびスパッタリングターゲット材に関するものである。
The present invention relates to an alloy for a soft magnetic film layer having a low saturation magnetic flux density and a sputtering target material used for a magnetic recording medium.
近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められており、従来普及していた面内磁気記録媒体より更に高記録密度が実現できる、垂直磁気記録方式が実用化されている。更に、垂直磁気記録方式を応用し、熱やマイクロ波により記録をアシストする方法も検討されている。
In recent years, the magnetic recording technology has been remarkably advanced, and the recording density of magnetic recording media has been increased to increase the capacity of the drive, realizing a higher recording density than the conventional in-plane magnetic recording media. A perpendicular magnetic recording system capable of being used has been put into practical use. Further, a method of assisting recording by applying heat or microwaves by applying a perpendicular magnetic recording method has been studied.
上記、垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する2層記録媒体が開発されている。この磁気記録膜層には一般的にCoCrPt-SiO2 系合金が用いられている。
The perpendicular magnetic recording method is a method suitable for high recording density, in which the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium. In the perpendicular magnetic recording system, a two-layer recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed. In general, a CoCrPt—SiO 2 alloy is used for the magnetic recording film layer.
また、一般に軟磁性膜層の間にはRu膜が挿入され、軟磁性膜とRu膜の反強磁性結合(以下、AFC結合と記す)により、外部磁場に対する不感域(以下、Hbiasと記す)を持たせてある。例えば特開2011-86356号公報(特許文献1)に開示されているように、磁気記録媒体の使用環境下における外部のノイズ磁場に対する耐性を高めるためである。本発明による軟磁性膜層用合金は、これらの垂直磁気記録方式の媒体に用いることができる。
In general, a Ru film is inserted between soft magnetic film layers, and due to antiferromagnetic coupling between the soft magnetic film and the Ru film (hereinafter referred to as AFC coupling), a dead zone against an external magnetic field (hereinafter referred to as Hbias). Is given. For example, as disclosed in Japanese Patent Application Laid-Open No. 2011-86356 (Patent Document 1), the resistance to an external noise magnetic field in the use environment of the magnetic recording medium is increased. The alloy for soft magnetic film layers according to the present invention can be used for these perpendicular magnetic recording media.
また、従来の軟磁性膜層には、高い飽和磁束密度(以下、Bsと記す)と高いアモルファス形成能(以下、非晶質性と記す)が必須であり、さらに垂直磁気記録媒体の用途や使用環境によっては、高耐食性、高硬度など様々な特性が付加的に要求されてきた。上記の要求特性の中でも、特に高Bsは重要であり、例えば特許文献1や特開2011-181140号公報(特許文献2)および特開2008-299905号公報(特許文献3)においても高いBsを狙いとしている。このように高いBsが要求されている理由は、記録膜の磁化を安定化させるために一定値以上のBsが必要であることと、大きいHbiasを持たせるためである。
In addition, a conventional soft magnetic film layer must have a high saturation magnetic flux density (hereinafter referred to as Bs) and a high amorphous forming ability (hereinafter referred to as amorphous). Depending on the usage environment, various properties such as high corrosion resistance and high hardness have been additionally required. Among the above required characteristics, high Bs is particularly important. For example, Patent Document 1, Japanese Patent Application Laid-Open No. 2011-181140 (Patent Document 2), and Japanese Patent Application Laid-Open No. 2008-299905 (Patent Document 3) have a high Bs. I am aiming. The reason why such a high Bs is required is that a Bs of a certain value or more is necessary to stabilize the magnetization of the recording film and that a large Hbias is provided.
しかしながら、高いBsの軟磁性膜を用いることによる弊害もある。高いBsを示す軟磁性膜を用いると、Hbiasが大きくなる傾向があり高い外部ノイズ磁場耐性が得られるが、同時に、記録磁化が着磁された場合に、この軟磁性膜が持つ過度に大きな磁束が周囲に大きく影響し、結果として書き込みに必要なスペースが大きくなり、記録密度の低下を招く。さらに、高いHbiasの膜を用いると、Hbias以上の印加磁場に対する磁化の反応(以下、磁化の立ち上がりと記す)が鈍くなる傾向も見られる。
However, there is an adverse effect of using a high Bs soft magnetic film. When a soft magnetic film exhibiting high Bs is used, Hbias tends to be large and high external noise magnetic field resistance can be obtained. At the same time, when the recording magnetization is magnetized, an excessively large magnetic flux possessed by the soft magnetic film is obtained. Greatly affects the surroundings, resulting in an increase in the space required for writing, leading to a decrease in recording density. Furthermore, when a high Hbias film is used, there is also a tendency that the magnetization response to the applied magnetic field equal to or higher than Hbias (hereinafter referred to as the rise of magnetization) becomes dull.
Hbiasおよびそれ以上の磁場に対する磁化の立ち上がりを図1に模式的に示す。一般に書き込み用ヘッドにより記録膜に着磁する場合、軟磁性膜の磁化が飽和するだけの磁界を印加する。したがって、磁化の立ち上がりが鈍くなると、着磁にそれだけ大きな磁場を印加することが必要となってしまう。このように、着磁磁場が大きくなると、過度な周囲への影響が避けられず、結果として小さな領域に限定して記録することが困難となり、やはり記録密度を低下させる原因となってしまう。上記2つの記録密度低下の現象は、いわゆる「書き滲み」とも呼ばれており、一方の現象の抑制でも書き滲み改善効果はあるが、両現象を抑制すると、さらに書き滲み改善効果がある。
The rise of magnetization for a magnetic field of Hbias and higher is schematically shown in FIG. In general, when a recording film is magnetized by a writing head, a magnetic field sufficient to saturate the magnetization of the soft magnetic film is applied. Therefore, if the rise of magnetization becomes dull, it is necessary to apply a magnetic field that is large for magnetization. As described above, when the magnetizing magnetic field is increased, an excessive influence on the surroundings cannot be avoided, and as a result, it becomes difficult to record only in a small area, which also causes a decrease in recording density. The two recording density reduction phenomena are also referred to as so-called “writing bleeding”, and suppression of one phenomenon has an effect of improving writing bleeding. However, suppression of both phenomena further has an effect of improving writing bleeding.
上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、記録膜の磁化を安定させる最低限のBsと考えられる0.5Tを超えるBsを有しながら、比較的低いBsでも高いHbiasを持ち、さらには、高いHbiasでも鋭い磁化の立ち上がりを持つ軟磁性合金を見出せれば、外部磁場に対する高い耐性と、「書き滲み」抑制による、高記録密度が両立できるものと考えた。
In order to solve the above-described problems, the inventors have made extensive developments. As a result, the inventors have relatively low Bs exceeding 0.5 T, which is considered to be the minimum Bs that stabilizes the magnetization of the recording film. If a soft magnetic alloy having a high Hbias even in Bs and having a sharp rise in magnetization even in high Hbias is found, it is considered that both high resistance to external magnetic fields and high recording density by suppressing “writing bleeding” can be achieved. It was.
本発明の一態様によれば、磁気記録媒体における軟磁性薄膜層用合金であって、前記合金が、
Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ni、Cu、Al、B、C、Si、P、Zn、Ga、Ge、Snからなる群から選択される1種以上、ならびに残部CoおよびFeを含んでなり、かつ、at%で、下記式(1)~(3):
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦25
(3)15≦TAM+TNM≦25
を満たし、
ただし、前記TAMおよびTNMがそれぞれ、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
である、合金が提供される。 According to one aspect of the present invention, an alloy for a soft magnetic thin film layer in a magnetic recording medium, wherein the alloy is
Selected from the group consisting of Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge, Sn One or more, and the balance Co and Fe, and in at%, the following formulas (1) to (3):
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 25
(3) 15 ≦ TAM + TNM ≦ 25
The filling,
However, said TAM and TNM are respectively
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
An alloy is provided.
Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ni、Cu、Al、B、C、Si、P、Zn、Ga、Ge、Snからなる群から選択される1種以上、ならびに残部CoおよびFeを含んでなり、かつ、at%で、下記式(1)~(3):
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦25
(3)15≦TAM+TNM≦25
を満たし、
ただし、前記TAMおよびTNMがそれぞれ、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
である、合金が提供される。 According to one aspect of the present invention, an alloy for a soft magnetic thin film layer in a magnetic recording medium, wherein the alloy is
Selected from the group consisting of Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge, Sn One or more, and the balance Co and Fe, and in at%, the following formulas (1) to (3):
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 25
(3) 15 ≦ TAM + TNM ≦ 25
The filling,
However, said TAM and TNM are respectively
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
An alloy is provided.
また、本発明の態様によれば、上記合金は下記の式(4):
(4)0.25≦(Nb%+Ta%)/(TAM+TNM)≦1.00
を満たすのが好ましい。 Also according to an aspect of the present invention, the alloy has the following formula (4):
(4) 0.25 ≦ (Nb% + Ta%) / (TAM + TNM) ≦ 1.00
It is preferable to satisfy.
(4)0.25≦(Nb%+Ta%)/(TAM+TNM)≦1.00
を満たすのが好ましい。 Also according to an aspect of the present invention, the alloy has the following formula (4):
(4) 0.25 ≦ (Nb% + Ta%) / (TAM + TNM) ≦ 1.00
It is preferable to satisfy.
本発明の別の態様によれば、上記合金は下記式(5)および/または(6):
(5)0≦Ti%+Zr%+Hf%+B%/2≦ 5
(6)0<Cu%+Sn%+Zn%+Ga%≦10
を満たすのが好ましい。 According to another aspect of the invention, the alloy has the following formula (5) and / or (6):
(5) 0 ≦ Ti% + Zr% + Hf% + B% / 2 ≦ 5
(6) 0 <Cu% + Sn% + Zn% + Ga% ≦ 10
It is preferable to satisfy.
(5)0≦Ti%+Zr%+Hf%+B%/2≦ 5
(6)0<Cu%+Sn%+Zn%+Ga%≦10
を満たすのが好ましい。 According to another aspect of the invention, the alloy has the following formula (5) and / or (6):
(5) 0 ≦ Ti% + Zr% + Hf% + B% / 2 ≦ 5
(6) 0 <Cu% + Sn% + Zn% + Ga% ≦ 10
It is preferable to satisfy.
本発明の別の態様によれば、上記合金は、
Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ni、Cu、Al、B、C、Si、P、Zn、Ga、Ge、Snからなる群から選択される1種以上、ならびに残部CoおよびFeのみからなり、かつ、at%で、下記式(1)~(3):
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦25
(3)15≦TAM+TNM≦25
を満たし、
ただし、前記TAMおよびTNMがそれぞれ、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
であることが好ましい。 According to another aspect of the invention, the alloy is
Selected from the group consisting of Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge, Sn The following formulas (1) to (3) consisting of at least one and the balance Co and Fe and at%:
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 25
(3) 15 ≦ TAM + TNM ≦ 25
The filling,
However, said TAM and TNM are respectively
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
It is preferable that
Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ni、Cu、Al、B、C、Si、P、Zn、Ga、Ge、Snからなる群から選択される1種以上、ならびに残部CoおよびFeのみからなり、かつ、at%で、下記式(1)~(3):
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦25
(3)15≦TAM+TNM≦25
を満たし、
ただし、前記TAMおよびTNMがそれぞれ、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
であることが好ましい。 According to another aspect of the invention, the alloy is
Selected from the group consisting of Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge, Sn The following formulas (1) to (3) consisting of at least one and the balance Co and Fe and at%:
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 25
(3) 15 ≦ TAM + TNM ≦ 25
The filling,
However, said TAM and TNM are respectively
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
It is preferable that
本発明の別の態様によれば、上記合金の飽和磁束密度が0.5Tを超え1.1T未満であることが好ましい。
According to another aspect of the present invention, the saturation magnetic flux density of the alloy is preferably more than 0.5T and less than 1.1T.
本発明の別の一態様によれば、上記いずれかの態様による合金からなるスパッタリングターゲット材が提供される。
According to another aspect of the present invention, there is provided a sputtering target material made of an alloy according to any one of the above aspects.
以上述べたように、本発明は、低い飽和磁束密度を有する軟磁性アモルファス合金であり、本合金薄膜の間にRuなどの非磁性薄膜を挿入し反強磁性結合させた多層膜において、外部磁場に対する不感域が大きい合金、さらに、不感域以上の外部磁場に対する磁化の立ち上がりが良好な磁気記録媒体用軟磁性合金およびこの合金の薄膜を作製するためのスパッタリングターゲット材を提供できることにある。このように、本用途の軟磁性合金において、積極的に低いBsを狙う思想は従来にはなかった。この考え方は本発明における最も特徴的な思想である。
As described above, the present invention is a soft magnetic amorphous alloy having a low saturation magnetic flux density. In a multilayer film in which a nonmagnetic thin film such as Ru is inserted between the alloy thin films and antiferromagnetically coupled, Further, it is possible to provide an alloy having a large insensitive range against magnetic field, a soft magnetic alloy for magnetic recording media having a good rise in magnetization with respect to an external magnetic field exceeding the insensitive region, and a sputtering target material for producing a thin film of this alloy. Thus, in the soft magnetic alloy of this application, there has been no idea in the past to actively aim for low Bs. This concept is the most characteristic idea in the present invention.
以下に本発明を具体的に説明する。特段の明示が無いかぎり、本明細書において「%」はat%を意味する。
The present invention will be specifically described below. Unless otherwise specified, “%” in the present specification means at%.
本発明は、磁気記録媒体における軟磁性薄膜層用合金に関するものであり、この合金は、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ni、Cu、Al、B、C、Si、P、Zn、Ga、Ge、Snからなる群から選択される1種以上;ならびに残部CoおよびFeを含んでなり(comprising)、好ましくはこれらの元素のみから実質的になり(consisting essentially of)、より好ましくはこれらの元素のみからなる(consisting of)。その上、本発明による合金は、at%で、下記式(1)~(3):
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦25
(3)15≦TAM+TNM≦25
を満たし、
ただし、前記TAMおよびTNMがそれぞれ、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
である。 The present invention relates to an alloy for a soft magnetic thin film layer in a magnetic recording medium, and this alloy includes Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, and Al. One or more selected from the group consisting of: B, C, Si, P, Zn, Ga, Ge, Sn; and comprising the remainder Co and Fe, preferably substantially only from these elements Consisting essentially of, more preferably consisting of only these elements. Moreover, the alloys according to the present invention are at% and have the following formulas (1) to (3):
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 25
(3) 15 ≦ TAM + TNM ≦ 25
The filling,
However, said TAM and TNM are respectively
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
It is.
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦25
(3)15≦TAM+TNM≦25
を満たし、
ただし、前記TAMおよびTNMがそれぞれ、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
である。 The present invention relates to an alloy for a soft magnetic thin film layer in a magnetic recording medium, and this alloy includes Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, and Al. One or more selected from the group consisting of: B, C, Si, P, Zn, Ga, Ge, Sn; and comprising the remainder Co and Fe, preferably substantially only from these elements Consisting essentially of, more preferably consisting of only these elements. Moreover, the alloys according to the present invention are at% and have the following formulas (1) to (3):
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 25
(3) 15 ≦ TAM + TNM ≦ 25
The filling,
However, said TAM and TNM are respectively
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
It is.
以下、本発明について詳細に説明する。
Hereinafter, the present invention will be described in detail.
まず、Hbiasに及ぼす軟磁性膜組成の影響について検討するため、様々な組成の軟磁性膜について、Hbiasを評価したところ、Bsの大きさだけでなく、Fe%/(Fe%+Co%)によってもHbiasの大きさが変化することがわかった。すなわち、0.5Tを超え、1.1T未満と、従来例よりも比較的低いBsを有する軟磁性膜であっても、所定のFe%/(Fe%+Co%)の範囲にすることにより、高いHbiasが得られることがわかった。
First, in order to examine the effect of the soft magnetic film composition on Hbias, Hbias was evaluated for soft magnetic films of various compositions. Not only the size of Bs but also Fe% / (Fe% + Co%). It was found that the size of Hbias changed. That is, even if it is a soft magnetic film having a Bs exceeding 0.5T and less than 1.1T and relatively lower than the conventional example, by setting it to a predetermined Fe% / (Fe% + Co%) range, It was found that high Hbias can be obtained.
次に、Hbias以上の印加磁場による磁化の立ち上がりについても検討したところ、Fe、Co以外の添加元素のうち、Nb、Taが多いこと、Ti、Zr、Hf、Bが少ないこと、Cu、Sn、Zn、Gaが少量添加されていることが、影響することがわかった。したがって、これらの元素を所定の添加量にすることにより、高いHbiasを有しながらも、鋭い磁化の立ち上がりを示す効果が付加的に得られることがわかった。
Next, when the rise of magnetization due to an applied magnetic field of Hbias or more was also examined, among additive elements other than Fe and Co, Nb and Ta are large, Ti, Zr, Hf and B are small, Cu, Sn, It has been found that the addition of a small amount of Zn and Ga has an effect. Therefore, it has been found that by adding these elements in predetermined amounts, an effect of showing a sharp rise in magnetization can be obtained while having high Hbias.
このような新たな知見に基づき、従来の垂直磁気記録媒体用の軟磁性膜用合金の要求特性とは全く異なり、比較的低いBsを有しながらも、大きなHbiasを示し、さらに、高いHbiasを有しながらもHbias以上の印加磁場による磁化の立ち上がりの鋭い軟磁性合金を見い出し、従来では困難であった、外部ノイズ磁場に対する高い耐性と、書き滲みの抑制による高記録密度化を両立可能とし、本発明に至った。以下に、本発明合金の限定理由を説明する。
Based on such new knowledge, the characteristics required for soft magnetic film alloys for conventional perpendicular magnetic recording media are completely different from those of the conventional alloys for soft magnetic films, exhibiting a large Hbias while having a relatively low Bs, and further exhibiting a high Hbias. A soft magnetic alloy that has a sharp rise in magnetization due to an applied magnetic field of Hbias or higher while having it, making it possible to achieve both high resistance to an external noise magnetic field and high recording density by suppressing write bleeding, The present invention has been reached. Below, the reason for limitation of this invention alloy is demonstrated.
(a)0.50≦Fe%/(Fe%+Co%)≦0.90について
FeおよびCoは、記録膜の磁化を安定させるために最低限必要な磁化を持たせるための元素であり、BsとFe%/(Fe%+Co%)の挙動は、いわゆるスレーターポーリング曲線などに示される。さらに、Fe%/(Fe%+Co%)は、比較的低いBsにおいても、高いHbiasを持たせるための重要な因子でもある。Fe%/(Fe%+Co%)が0.50未満では、同程度のBsを有し、0.50以上の軟磁性膜と比較し、Hbiasが小さくなってしまう。この現象についての詳細な理由は不明であるが、AFC結合には軟磁性膜のBsとともに、磁性元素における3d電子軌道による層間の相互作用が関与していると考えられ、FeとCoの比率によりこれが変化することが影響していると推察される。また、Fe%/(Fe%+Co%)が0.90を超えると著しくBsが低下し、十分なHbiasが得られない。なお、好ましいFe%/(Fe%+Co%)の範囲は0.55以上、0.85以下、より好ましくは0.60以上、0.80以下である。 (A) About 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90 Fe and Co are elements for imparting the minimum necessary magnetization to stabilize the magnetization of the recording film, and Bs And Fe% / (Fe% + Co%) behavior is shown in a so-called slater poling curve. Furthermore, Fe% / (Fe% + Co%) is also an important factor for providing high Hbias even at relatively low Bs. When Fe% / (Fe% + Co%) is less than 0.50, Hbias becomes small as compared with a soft magnetic film having the same degree of Bs and 0.50 or more. Although the detailed reason for this phenomenon is unknown, it is considered that the AFC coupling involves the interaction between the layers due to the 3d electron orbital in the magnetic element together with Bs of the soft magnetic film. It is inferred that this change has an effect. On the other hand, when Fe% / (Fe% + Co%) exceeds 0.90, Bs is remarkably lowered and sufficient Hbias cannot be obtained. In addition, the range of preferable Fe% / (Fe% + Co%) is 0.55 or more and 0.85 or less, More preferably, it is 0.60 or more and 0.80 or less.
FeおよびCoは、記録膜の磁化を安定させるために最低限必要な磁化を持たせるための元素であり、BsとFe%/(Fe%+Co%)の挙動は、いわゆるスレーターポーリング曲線などに示される。さらに、Fe%/(Fe%+Co%)は、比較的低いBsにおいても、高いHbiasを持たせるための重要な因子でもある。Fe%/(Fe%+Co%)が0.50未満では、同程度のBsを有し、0.50以上の軟磁性膜と比較し、Hbiasが小さくなってしまう。この現象についての詳細な理由は不明であるが、AFC結合には軟磁性膜のBsとともに、磁性元素における3d電子軌道による層間の相互作用が関与していると考えられ、FeとCoの比率によりこれが変化することが影響していると推察される。また、Fe%/(Fe%+Co%)が0.90を超えると著しくBsが低下し、十分なHbiasが得られない。なお、好ましいFe%/(Fe%+Co%)の範囲は0.55以上、0.85以下、より好ましくは0.60以上、0.80以下である。 (A) About 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90 Fe and Co are elements for imparting the minimum necessary magnetization to stabilize the magnetization of the recording film, and Bs And Fe% / (Fe% + Co%) behavior is shown in a so-called slater poling curve. Furthermore, Fe% / (Fe% + Co%) is also an important factor for providing high Hbias even at relatively low Bs. When Fe% / (Fe% + Co%) is less than 0.50, Hbias becomes small as compared with a soft magnetic film having the same degree of Bs and 0.50 or more. Although the detailed reason for this phenomenon is unknown, it is considered that the AFC coupling involves the interaction between the layers due to the 3d electron orbital in the magnetic element together with Bs of the soft magnetic film. It is inferred that this change has an effect. On the other hand, when Fe% / (Fe% + Co%) exceeds 0.90, Bs is remarkably lowered and sufficient Hbias cannot be obtained. In addition, the range of preferable Fe% / (Fe% + Co%) is 0.55 or more and 0.85 or less, More preferably, it is 0.60 or more and 0.80 or less.
(b)5≦TAM≦25および15≦TAM+TNM≦25について
Fe、Co以外の元素の効果について、下記にまとめる。Ti、Zr、Hf、Bは非晶質化の促進とBsの低下をもたらす元素であるとともに、磁化の立ち上がりを大幅に鈍くしてしまう元素でもある。なお、BについてはBs低下および非晶質性増加の効果がTi、Zr、Hfと比較し約1/2であることから、TAMの中ではB%/2として扱うことができる。ただし、スパッタリングターゲット材の中では、Bは特に硬質な化合物(例えば硼化物)を生成し、機械加工の際に加工速度を落とす必要が出てくるため、BをTAMに分類した元素として単独で添加するよりも、複合的に添加することが好ましい。この点を踏まえると、(B/2)/TAMは0.8以下が好ましく、0.5以下がより好ましい。 (B) About 5 ≦ TAM ≦ 25 and 15 ≦ TAM + TNM ≦ 25 The effects of elements other than Fe and Co are summarized below. Ti, Zr, Hf, and B are elements that promote amorphization and lower Bs, and are elements that significantly slow the rise of magnetization. Note that B can be treated as B% / 2 in TAM because the effect of Bs reduction and increase in amorphousness is about ½ compared to Ti, Zr, and Hf. However, among sputtering target materials, B generates a particularly hard compound (for example, boride), and it is necessary to reduce the processing speed during machining, so that B alone is an element classified as TAM. It is preferable to add in combination rather than adding. Considering this point, (B / 2) / TAM is preferably 0.8 or less, and more preferably 0.5 or less.
Fe、Co以外の元素の効果について、下記にまとめる。Ti、Zr、Hf、Bは非晶質化の促進とBsの低下をもたらす元素であるとともに、磁化の立ち上がりを大幅に鈍くしてしまう元素でもある。なお、BについてはBs低下および非晶質性増加の効果がTi、Zr、Hfと比較し約1/2であることから、TAMの中ではB%/2として扱うことができる。ただし、スパッタリングターゲット材の中では、Bは特に硬質な化合物(例えば硼化物)を生成し、機械加工の際に加工速度を落とす必要が出てくるため、BをTAMに分類した元素として単独で添加するよりも、複合的に添加することが好ましい。この点を踏まえると、(B/2)/TAMは0.8以下が好ましく、0.5以下がより好ましい。 (B) About 5 ≦ TAM ≦ 25 and 15 ≦ TAM + TNM ≦ 25 The effects of elements other than Fe and Co are summarized below. Ti, Zr, Hf, and B are elements that promote amorphization and lower Bs, and are elements that significantly slow the rise of magnetization. Note that B can be treated as B% / 2 in TAM because the effect of Bs reduction and increase in amorphousness is about ½ compared to Ti, Zr, and Hf. However, among sputtering target materials, B generates a particularly hard compound (for example, boride), and it is necessary to reduce the processing speed during machining, so that B alone is an element classified as TAM. It is preferable to add in combination rather than adding. Considering this point, (B / 2) / TAM is preferably 0.8 or less, and more preferably 0.5 or less.
Y、V、Cr、Mo、WはBsの低下をもたらすとともに、わずかに磁化の立ち上がりを鈍くしてしまう元素でもある。また、Y、Vは非晶質化の促進にも寄与する。Nb、Taは非晶質化の促進とBsの低下をもたらすとともに、磁化の立ち上がりを鋭くする効果がある重要な元素である。Mn、Al、Si、Ge、PはBsの低下をもたらすとともに、磁化の立ち上がりをわずかに鈍くしてしまう元素でもある。Ni、CuはBsの低下幅が小さい元素であり、Cuについては少量添加で磁化の立ち上がりを鋭くする効果もあるが多量の添加は磁化の立ち上がりをわずかに低下させる元素である。
Y, V, Cr, Mo, and W are elements that cause a decrease in Bs and slightly slow the rise of magnetization. Y and V also contribute to the promotion of amorphization. Nb and Ta are important elements that have effects of promoting amorphization and lowering Bs and sharpening the rise of magnetization. Mn, Al, Si, Ge, and P are elements that cause a decrease in Bs and slightly slow the rise of magnetization. Ni and Cu are elements with a small decrease width of Bs, and Cu has an effect of sharpening the rise of magnetization by adding a small amount, but addition of a large amount is an element that slightly lowers the rise of magnetization.
なお、Ni、Cuは他のTAMやTNMに分類した元素と比較し、Bsの低下幅が約1/3であることから、TNMの中ではNi%/3、Cu%/3として扱うことができる。Ga、Sn、ZnはBsの低下とともに、少量の添加においては磁化の立ち上がりを鋭くする効果があるが、多量の添加は磁化の立ち上がりをわずかに鈍くする元素である。このように、全ての元素がBsを低下させる効果を有しているとともに、非晶質性改善の効果や磁化の立ち上がりに影響する元素もある。これらの添加量を最適化することにより、本発明による合金が得られる。
Note that Ni and Cu are treated as Ni% / 3 and Cu% / 3 in TNM because the decrease in Bs is about 1/3 compared to other elements classified as TAM and TNM. it can. Ga, Sn, and Zn have an effect of sharpening the rise of magnetization when added in a small amount as Bs decreases, but addition of a large amount is an element that slightly slows down the rise of magnetization. Thus, all elements have the effect of lowering Bs, and there are also elements that affect the effect of improving amorphousness and the rise of magnetization. By optimizing these addition amounts, the alloy according to the invention is obtained.
TAMが5未満では十分な非晶質性が得られず、25を超えるとBsが低くなり、十分なHbiasが得られない。したがってTAMは5以上、25以下であり、好ましくは7以上、23以下、より好ましくは9以上、20未満である。なお、NbとTaはスパッタリングターゲット材において、FeやCoと脆性な金属間化合物を生成するため、TAMとしてNbまたは/およびTaのみを添加する場合は、機械加工時に割れや欠けが発生しないように、加工速度を落とす必要がある。この点を考慮すると、TAMとして、Nbまたは/およびTaのみを添加する場合、TAMは20未満とすることが好ましい。
If the TAM is less than 5, sufficient amorphousness cannot be obtained, and if it exceeds 25, Bs becomes low and sufficient Hbias cannot be obtained. Therefore, TAM is 5 or more and 25 or less, preferably 7 or more and 23 or less, more preferably 9 or more and less than 20. Since Nb and Ta generate a brittle intermetallic compound with Fe or Co in the sputtering target material, when only Nb or / and Ta is added as TAM, cracks and chips do not occur during machining. It is necessary to reduce the processing speed. In consideration of this point, when only Nb or / and Ta is added as TAM, TAM is preferably less than 20.
TAM+TNMが15未満ではBsが大きくなるためHbiasは増加するものの、磁化の立ち上がりが鈍くなってしまう。TAM+TNMが25を超えるとBsが小さく、Hbiasが小さくなってしまう。したがって、TAM+TNMは15以上、25以下であり、好ましくは17以上、23以下、より好ましくは18以上、21以下である。
When TAM + TNM is less than 15, Bs increases and Hbias increases, but the rise of magnetization becomes dull. If TAM + TNM exceeds 25, Bs is small and Hbias is small. Therefore, TAM + TNM is 15 or more and 25 or less, preferably 17 or more and 23 or less, more preferably 18 or more and 21 or less.
(c)0.25≦(Nb%+Ta%)/(TAM+TNM)≦1.00について
上述したように、Nb、Taは本合金において、磁化の立ち上がりを鋭くする付加的な効果のある重要な元素であるが、(Nb%+Ta%)/(TAM+TNM)が0.25未満では、この効果が得られない。また、TAMにはNbとTaの添加量も含まれているため、必然的に(Nb%+Ta%)/(TAM+TNM)の上限は1.00となる。したがって、(Nb%+Ta%)/(TAM+TNM)は0.25以上、1.00以下であり、好ましくは0.40以上、1.00未満、より好ましくは0.60以上、1.00未満である。 (C) 0.25 ≦ (Nb% + Ta%) / (TAM + TNM) ≦ 1.00 As described above, Nb and Ta are important elements having an additional effect of sharpening the rise of magnetization in this alloy. However, if (Nb% + Ta%) / (TAM + TNM) is less than 0.25, this effect cannot be obtained. Further, since the amount of Nb and Ta is included in TAM, the upper limit of (Nb% + Ta%) / (TAM + TNM) is necessarily 1.00. Therefore, (Nb% + Ta%) / (TAM + TNM) is 0.25 or more and 1.00 or less, preferably 0.40 or more and less than 1.00, more preferably 0.60 or more and less than 1.00. is there.
上述したように、Nb、Taは本合金において、磁化の立ち上がりを鋭くする付加的な効果のある重要な元素であるが、(Nb%+Ta%)/(TAM+TNM)が0.25未満では、この効果が得られない。また、TAMにはNbとTaの添加量も含まれているため、必然的に(Nb%+Ta%)/(TAM+TNM)の上限は1.00となる。したがって、(Nb%+Ta%)/(TAM+TNM)は0.25以上、1.00以下であり、好ましくは0.40以上、1.00未満、より好ましくは0.60以上、1.00未満である。 (C) 0.25 ≦ (Nb% + Ta%) / (TAM + TNM) ≦ 1.00 As described above, Nb and Ta are important elements having an additional effect of sharpening the rise of magnetization in this alloy. However, if (Nb% + Ta%) / (TAM + TNM) is less than 0.25, this effect cannot be obtained. Further, since the amount of Nb and Ta is included in TAM, the upper limit of (Nb% + Ta%) / (TAM + TNM) is necessarily 1.00. Therefore, (Nb% + Ta%) / (TAM + TNM) is 0.25 or more and 1.00 or less, preferably 0.40 or more and less than 1.00, more preferably 0.60 or more and less than 1.00. is there.
(d)0≦Ti%+Zr%+Hf%+B%/2≦5、および0<Cu%+Sn%+Zn%+Ga%≦10について
上述したように、Ti、Zr、Hf、Bは本合金において、磁化の立ち上がりを大幅に鈍くしてしまう元素であることから、その合計量の上限を厳しく規定することにより、より鋭い磁化の立ち上がりが付加的な効果として得られる。Ti%+Zr%+Hf%+B%/2が5を超えると磁化の立ち上がりを鋭くする効果が得られない。したがって、Ti%+Zr%+Hf%+B%/2は0以上、5以下であり、好ましくは3以下、より好ましくは0である。 (D) 0 ≦ Ti% + Zr% + Hf% + B% / 2 ≦ 5 and 0 <Cu% + Sn% + Zn% + Ga% ≦ 10 As described above, Ti, Zr, Hf, and B are magnetized in this alloy. Therefore, by sharply defining the upper limit of the total amount, a sharper magnetization rise can be obtained as an additional effect. If Ti% + Zr% + Hf% + B% / 2 exceeds 5, the effect of sharpening the rise of magnetization cannot be obtained. Therefore, Ti% + Zr% + Hf% + B% / 2 is 0 or more and 5 or less, preferably 3 or less, more preferably 0.
上述したように、Ti、Zr、Hf、Bは本合金において、磁化の立ち上がりを大幅に鈍くしてしまう元素であることから、その合計量の上限を厳しく規定することにより、より鋭い磁化の立ち上がりが付加的な効果として得られる。Ti%+Zr%+Hf%+B%/2が5を超えると磁化の立ち上がりを鋭くする効果が得られない。したがって、Ti%+Zr%+Hf%+B%/2は0以上、5以下であり、好ましくは3以下、より好ましくは0である。 (D) 0 ≦ Ti% + Zr% + Hf% + B% / 2 ≦ 5 and 0 <Cu% + Sn% + Zn% + Ga% ≦ 10 As described above, Ti, Zr, Hf, and B are magnetized in this alloy. Therefore, by sharply defining the upper limit of the total amount, a sharper magnetization rise can be obtained as an additional effect. If Ti% + Zr% + Hf% + B% / 2 exceeds 5, the effect of sharpening the rise of magnetization cannot be obtained. Therefore, Ti% + Zr% + Hf% + B% / 2 is 0 or more and 5 or less, preferably 3 or less, more preferably 0.
上述したように、Cu、Sn、Zn、Gaは本合金において、少量添加において磁化の立ち上がりを鋭くする付加的な効果のある元素であることから、少量の範囲では積極添加することで、より鋭い磁化の立ち上がりが得られる。しかし、Cu%+Sn%+Zn%+Ga%が10を超えると、この効果が得られない。したがって、Cu%+Sn%+Zn%+Ga%は0より多く、10以下であり、好ましくは1以上、8以下、より好ましくは2以上、6以下である。なお、この両式は、いずれか一方のみを満たす場合でも、磁化の立ち上がりを鋭くする付加的な効果が得られる。
As described above, Cu, Sn, Zn, and Ga are elements having an additional effect of sharpening the rise of magnetization when added in a small amount in this alloy. Therefore, when added in a small amount, Cu, Sn, Zn, and Ga are sharper. A rise in magnetization is obtained. However, if Cu% + Sn% + Zn% + Ga% exceeds 10, this effect cannot be obtained. Therefore, Cu% + Sn% + Zn% + Ga% is more than 0 and 10 or less, preferably 1 or more and 8 or less, more preferably 2 or more and 6 or less. In addition, even when both of these formulas satisfy only one of them, an additional effect of sharpening the rise of magnetization can be obtained.
以上のように様々な元素がBsへの影響以外に磁化の立ち上がりに影響し、その詳細な理由については不明であるが、以下のことが推察される。Hbias以上の印加磁場に対する磁化の立ち上がりの鋭さには、軟磁性合金のスパッタ膜の表面粗さが影響している傾向が見られる。Hbias以上の外部磁場により磁化が立ち上がる現象は、軟磁性膜とRu膜との界面におけるAFC結合が大きな印加磁場に耐えられず磁化反転を起こすと考えられるが、軟磁性膜の表面が粗く、両膜の界面に凹凸が存在すると、局所的に磁化反転が早く起こる部位と、遅く起こる部位が混在する可能性がある。
As described above, various elements affect the rise of magnetization in addition to the influence on Bs, and the detailed reason is unknown, but the following is presumed. There is a tendency that the surface roughness of the sputtered film of the soft magnetic alloy has an influence on the sharpness of the rising of the magnetization with respect to the applied magnetic field of Hbias or higher. The phenomenon that magnetization rises due to an external magnetic field of Hbias or higher is considered that the AFC coupling at the interface between the soft magnetic film and the Ru film cannot withstand a large applied magnetic field and causes magnetization reversal, but the surface of the soft magnetic film is rough, If there is unevenness at the interface of the film, there is a possibility that a part where the magnetization reversal occurs locally and a part where the magnetization reversal occur locally.
このように、部位により磁化反転挙動に不一致が発生すると、膜全体としては磁化の立ち上がりが緩やかとなってしまう。このため、スパッタ膜の表面粗さと磁化の立ち上がりの鋭さに相関が見られるのではないかと考えられる。さらに、スパッタ膜の表面粗さへの添加元素の影響については、非晶質合金としての自由体積および過剰自由体積が影響している可能性が推察される。これらの両体積は、非晶質合金において原子と原子の間の隙間に相当する体積であり、これが大きい場合、合金中で原子が密に詰まっておらず、したがって、スパッタ膜において原子サイズのレベルでの表面粗さが大きくなると考えられる。
As described above, when the magnetization reversal behavior is inconsistent depending on the part, the magnetization rises slowly for the entire film. For this reason, it is considered that there is a correlation between the surface roughness of the sputtered film and the sharpness of the rise of magnetization. Furthermore, regarding the influence of the additive element on the surface roughness of the sputtered film, it is presumed that the free volume and excess free volume as an amorphous alloy may have an influence. Both of these volumes are the volume corresponding to the gap between atoms in an amorphous alloy, and when this is large, the atoms are not densely packed in the alloy, and therefore the atomic size level in the sputtered film. It is believed that the surface roughness at
なお、両体積には非晶質の安定性が関係する可能性が示唆されているが、本発明において、磁化の立ち上がりを大幅に鈍くするTi、Zr、Hf、Bは特に非晶質を安定化する元素であり、少量添加で磁化の立ち上がりを鋭くするCu、Ga、Sn、Znは非晶質性を低下させる元素である。更に、磁化の立ち上がりを鋭くする重要な元素であるNb、Taは、Ti、Zr、Hf、Bと比較すると、非晶質化を促進する効果が低い元素である。
Although it has been suggested that both volumes may be related to amorphous stability, in the present invention, Ti, Zr, Hf, and B that make the rise of magnetization significantly slow are particularly stable in amorphous. Cu, Ga, Sn, and Zn are elements that reduce the amorphous nature. Furthermore, Nb and Ta, which are important elements that sharpen the rise of magnetization, are elements that have a lower effect of promoting amorphization than Ti, Zr, Hf, and B.
以下、本発明について実施例によって具体的に説明する。
Hereinafter, the present invention will be specifically described with reference to examples.
表1に示す組成でガスアトマイズ法により軟磁性合金粉末を作製した。溶解母材は25kgで減圧Ar中にて誘導溶解し、直径8mmのノズルから合金溶湯を出湯し、直後に高圧Arガスを噴霧しアトマイズした。この粉末を500μm以下に分級し、HIP成形(熱間等方圧プレス)の原料粉末として用いた。HIP成形用ビレットは、直径200mm、長さ10mmの炭素鋼製缶に原料粉末を充填したのち、真空脱気、封入し作製した。この粉末充填ビレットを、温度1100℃、圧力120MPa、保持時間2時間の条件でHIP成形した。その後、成形体から直径95mm、厚さ2mmの軟磁性合金スパッタリングターゲット材を作製した。この軟磁性合金製のスパッタリングターゲット材を用いて軟磁性薄膜を作製した。また、Ru薄膜の作製には、市販のRu金属製のスパッタリングターゲット材を用いた。
Soft magnetic alloy powders having the compositions shown in Table 1 were prepared by gas atomization. The molten base material was induction-melted at 25 kg in reduced pressure Ar, the molten alloy was discharged from a nozzle having a diameter of 8 mm, and immediately after that, high-pressure Ar gas was sprayed and atomized. This powder was classified to 500 μm or less and used as a raw material powder for HIP molding (hot isostatic pressing). The billet for HIP molding was prepared by filling a raw material powder into a carbon steel can having a diameter of 200 mm and a length of 10 mm, followed by vacuum degassing and sealing. This powder-filled billet was HIP-molded under the conditions of a temperature of 1100 ° C., a pressure of 120 MPa, and a holding time of 2 hours. Thereafter, a soft magnetic alloy sputtering target material having a diameter of 95 mm and a thickness of 2 mm was produced from the compact. A soft magnetic thin film was produced using this soft magnetic alloy sputtering target material. For the production of the Ru thin film, a commercially available Ru metal sputtering target material was used.
チャンバー内を1×10-4Pa以下に真空排気し、純度99.99%のArガスを0.6Pa投入しスパッタを行なった。まず、洗浄したガラス基板上に20nmの軟磁性合金薄膜(下軟磁性層)を成膜し、その上に0.8nmのRu膜を成膜し、さらにその上に上述した膜と同じ20nmの軟磁性合金薄膜(上軟磁性層)を成膜し、多層膜を作製した。なお、全ての実施例および比較例における多層膜の上下の軟磁性膜には同じ合金を用いた。また、軟磁性膜のBs、結晶構造、表面粗さの評価用として下軟磁性層のみ成膜した単層膜も作製した。
The inside of the chamber was evacuated to 1 × 10 −4 Pa or less, and Ar gas with a purity of 99.99% was charged with 0.6 Pa to perform sputtering. First, a 20 nm soft magnetic alloy thin film (lower soft magnetic layer) is formed on a cleaned glass substrate, a 0.8 nm Ru film is formed thereon, and a 20 nm same as the above-described film is formed thereon. A soft magnetic alloy thin film (upper soft magnetic layer) was formed to produce a multilayer film. The same alloy was used for the upper and lower soft magnetic films of the multilayer film in all Examples and Comparative Examples. In addition, a single-layer film in which only the lower soft magnetic layer was formed was also used for evaluation of Bs, crystal structure, and surface roughness of the soft magnetic film.
このようにして作製した単層膜を試料とし、BsはVSM(試料振動型磁束計)、結晶構造はX線回折、算術平均粗さRa(表面粗さ)はAFM(原子間力顕微鏡)を用いてそれぞれ評価した。結晶構造については、非晶質を○、非晶質の中に一部微結晶が見られるものを△、結晶を×とした。さらに多層膜によりHbiasおよび磁化の立ち上がりの鋭さを評価した。これらの結果は表2に示す通りであった。
The single-layer film thus prepared is used as a sample, Bs is VSM (sample vibration type magnetometer), crystal structure is X-ray diffraction, arithmetic average roughness Ra (surface roughness) is AFM (atomic force microscope). Each was evaluated. Regarding the crystal structure, the amorphous structure was indicated by ◯, the amorphous structure in which some microcrystals were observed was indicated by Δ, and the crystal was indicated by ×. Furthermore, the sharpness of the rise of Hbias and magnetization was evaluated by the multilayer film. These results are shown in Table 2.
図1は、多層膜の磁化曲線の模式図である。この図に示すように、Hbiasは多層膜の磁化が立ち上がる時の印加磁場、磁化の立ち上がりの鋭さは、多層膜の磁化が飽和する印加磁場(Hsat)とHbiasの比、すなわちHsat/Hbiasで評価した。図1(a)はHbiasが大きく、磁化の立ち上がりが鋭い例を示し、図1(b)はHbiasが小さく、磁化の立ち上がりが鈍い例を示している。すなわち、この値が小さく1に近いほど磁化の立ち上がりが鋭いことを示す。この値が、1.2未満を◎、1.2以上1.4未満を○、1.4以上1.8未満を△、1.8以上を×とした。
FIG. 1 is a schematic diagram of a magnetization curve of a multilayer film. As shown in this figure, Hbias is the applied magnetic field when the magnetization of the multilayer film rises, and the sharpness of the magnetization is evaluated by the ratio of the applied magnetic field (Hsat) where the magnetization of the multilayer film is saturated to Hbias, that is, Hsat / Hbias. did. FIG. 1A shows an example in which Hbias is large and the rise of magnetization is sharp, and FIG. 1B shows an example in which Hbias is small and the rise of magnetization is slow. That is, the smaller this value is and the closer it is to 1, the sharper the rise of magnetization. In this value, 未 満 is less than 1.2, ○ is 1.2 or more and less than 1.4, Δ is 1.4 or more and less than 1.8, and × is 1.8 or more.
図2は、表2の結果について、多層膜のHbiasを縦軸、単層膜のBsを横軸にプロットした図である。この図中の実線の楕円のとおり、高いHbiasを得るためには、高いBsが必要であることがわかる。なお、この実線の楕円中のデータはいずれもFe%/(Fe%+Co%)が0.5~0.9の範囲のものである。これに対し、図2中でこの実線の楕円より下に位置する比較例No.29~31は、Fe%/(Fe%+Co%)が0.5未満であるため、実線楕円内のデータと同等のBsを有しながら、Hbiasは低い値にとどまってしまっている。すなわち、Fe%/(Fe%+Co%)を0.50~0.90とすることで、比較的低いBsでも高いHbiasが得られている。
FIG. 2 is a diagram in which the results of Table 2 are plotted with the Hbias of the multilayer film on the vertical axis and the Bs of the single layer film on the horizontal axis. It can be seen that high Bs is necessary to obtain high Hbias, as indicated by the solid oval in this figure. Note that the data in the solid oval are all in the range of Fe% / (Fe% + Co%) of 0.5 to 0.9. On the other hand, in Comparative Example No. 1 located below the solid ellipse in FIG. In 29-31, since Fe% / (Fe% + Co%) is less than 0.5, Hbias remains at a low value while having Bs equivalent to the data in the solid ellipse. That is, by setting Fe% / (Fe% + Co%) to 0.50 to 0.90, high Hbias is obtained even with relatively low Bs.
一方、図2中で左下の点線の楕円内に位置する比較例No.32~36は、Bsが著しく低いためHbiasも低くなってしまっている。また、比較例No.39は、Fe%/(Fe%+Co%)が0.4と低く、TAM+TNMが15未満と小さい組成で、従来技術で多く見られる高Bs組成である。この組成は図2中において、実線の楕円の右に位置するプロットであり、実線の楕円中の組成と比較し、同等の高いHbiasを得るために、著しく大きいBsを必要としており、このような組成はいわゆる「書き滲み」を引き起こしてしまう。
On the other hand, Comparative Example No. located in the dotted ellipse at the lower left in FIG. In 32 to 36, Bs is remarkably low, so Hbias is also low. Comparative Example No. No. 39 is a high Bs composition often seen in the prior art, with a composition as low as Fe% / (Fe% + Co%) as low as 0.4 and TAM + TNM as small as less than 15. This composition is a plot located to the right of the solid ellipse in FIG. 2. Compared with the composition in the solid ellipse, a significantly large Bs is required to obtain an equivalently high Hbias. The composition causes so-called “writing bleeding”.
図3は、表2の結果について、多層膜のHbiasを縦軸、単層膜のRaを横軸にプロットし、プロットのマークを、Hbias以上の外部磁場を印加したときの多層膜の磁化の立ち上りの鋭さごとに変化させたものである。この図から、同等のHbiasを有する多層膜であっても、単層膜の表面粗さ(Ra)が大きい場合に、磁化の立上りが劣化することがわかる。
FIG. 3 plots the Hbias of the multilayer film on the vertical axis and the Ra of the single layer film on the horizontal axis for the results in Table 2, and the mark of the plot is the magnetization of the multilayer film when an external magnetic field of Hbias or higher is applied. It is changed according to the sharpness of the rise. From this figure, it can be seen that even in the case of a multilayer film having the same Hbias, when the surface roughness (Ra) of the single layer film is large, the rise of magnetization deteriorates.
次に、表2に示す個々の比較例データについて説明する。比較例No.29~31はFe%/(Fe%+Co%)値がいずれも低いため、0.80~0.86TのBsを有しているにもかかわらず、高いHbiasが得られていない。比較例No.32および33はFe%/(Fe%+Co%)値が過度に高く、比較例No.34および35はTAM+TNMが高く、比較例No.36はTAMおよびTAM+TNMが高いため、いずれもBsが著しく低く、高いHbiasが得られていない。
Next, individual comparative example data shown in Table 2 will be described. Comparative Example No. Since 29 to 31 have low Fe% / (Fe% + Co%) values, high Hbias is not obtained despite having Bs of 0.80 to 0.86 T. Comparative Example No. Nos. 32 and 33 have excessively high Fe% / (Fe% + Co%) values. Nos. 34 and 35 have high TAM + TNM. Since 36 has high TAM and TAM + TNM, both Bs are remarkably low, and high Hbias is not obtained.
比較例No.37はTAM+TNMが低いためBsが高く、高いHbiasは得られるが、Hbiasを超える外部磁場に対する磁化の立ち上がりが鈍い。比較例No.38はTAMが低く、結晶質であり、結晶粒に起因する単層膜表面の凹凸によりRaが高く、Hbiasを超える外部磁場に対する磁化の立ち上がりが鈍い。比較例No.39は、Fe%/(Fe%+Co%)値が低く、TAM+TNMが低いため、著しくBsが高いにもかかわらず、実施例と同等レベルのHbiasしか得られておらず、このように著しくBsの高い組成は、いわゆる「書き滲み」を起こしてしまう。
Comparative Example No. 37 has high Bs because TAM + TNM is low, and high Hbias is obtained, but the rise of magnetization with respect to an external magnetic field exceeding Hbias is slow. Comparative Example No. No. 38 has a low TAM, is crystalline, has a high Ra due to irregularities on the surface of the single layer film caused by crystal grains, and has a slow rise in magnetization with respect to an external magnetic field exceeding Hbias. Comparative Example No. No. 39 has a low Fe% / (Fe% + Co%) value and a low TAM + TNM, so even though the Bs is remarkably high, only Hbias of the same level as in the example was obtained. A high composition causes so-called “writing bleeding”.
これらと比較し、実施例No.1~28はいずれも本発明の範囲内であることから、1.1T未満と従来技術より低いBsでありながら、高いHbiasを有しており、さらに、Hbiasを超える印加磁場に対し鋭い磁化の立ち上りを示すことがわかる。このような組成によって、高い外部ノイズ磁場に対する耐性とBsが過度に高いことによる書き滲みの抑制が両立できる。なお、実施例No.8~12は(Nb%+Ta%)/(TAM+TNM)が0.5~1.0の範囲であることから、実施例No.1~7よりも、単層膜の粗さ(Ra)が小さく磁化の立ち上がりが鋭い付加的な効果も得られている。
In comparison with these, Example No. Since 1 to 28 are all within the scope of the present invention, Bs is less than 1.1T and Bs lower than that of the prior art, and has a high Hbias, and further has a sharp magnetization with respect to an applied magnetic field exceeding Hbias. It can be seen that it shows a rise. With such a composition, both resistance to a high external noise magnetic field and suppression of writing bleeding due to excessively high Bs can be achieved. In addition, Example No. In Nos. 8 to 12, since (Nb% + Ta%) / (TAM + TNM) is in the range of 0.5 to 1.0, Example No. An additional effect that the roughness (Ra) of the single-layer film is smaller and the rise of magnetization is sharper than 1 to 7 is also obtained.
さらに、実施例No.13~28は、Ti%+Zr%+Hf%+B%/2が5以下および/もしくはCu%+Sn%+Zn%+Ga%が0を超え、10以下であることから、実施例No.1~7よりも、単層膜の粗さ(Ra)が小さく磁化の立ち上がりが鋭い付加的な効果も得られている。なお、実施例No.23は実施例中で最高のHbiasを有しながらも、Ti%+Zr%+Hf%+B%/2が5以下であることから、実施例No.1~7と同等程度の磁化の立ち上がりを有していることがわかる。
Furthermore, Example No. In Nos. 13 to 28, Ti% + Zr% + Hf% + B% / 2 is 5 or less and / or Cu% + Sn% + Zn% + Ga% is more than 0 and 10 or less. An additional effect that the roughness (Ra) of the single-layer film is smaller and the rise of magnetization is sharper than 1 to 7 is also obtained. In addition, Example No. No. 23 has the highest Hbias in the Examples, but Ti% + Zr% + Hf% + B% / 2 is 5 or less. It can be seen that the magnetization rise is about the same as 1-7.
以上のように、記録膜の磁化を安定させる最低限のBsを有しながら、比較的低いBsでも高いHbiasを持ち、さらには、付加的な効果として鋭い磁化の立ち上がりを持つ軟磁性合金であることから、外部磁場に対する高い耐性と、「書き滲み」抑制による、高記録密度の両立が可能となる、低飽和磁束密度を有する軟磁性膜層用合金およびスパッタリングターゲット材を提供することができる極めて優れた効果を奏するものである。
As described above, it is a soft magnetic alloy having a minimum Bs for stabilizing the magnetization of the recording film, a high Hbias even at a relatively low Bs, and a sharp rise in magnetization as an additional effect. Therefore, it is possible to provide an alloy for a soft magnetic film layer having a low saturation magnetic flux density and a sputtering target material that can achieve both high resistance to an external magnetic field and high recording density by suppressing “writing bleeding”. It has an excellent effect.
Claims (6)
- 磁気記録媒体における軟磁性薄膜層用合金であって、前記合金が、
Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ni、Cu、Al、B、C、Si、P、Zn、Ga、Ge、Snからなる群から選択される1種以上、ならびに残部CoおよびFeを含んでなり、かつ、at%で、下記式(1)~(3):
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦25
(3)15≦TAM+TNM≦25
を満たし、
ただし、前記TAMおよびTNMがそれぞれ、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
である、合金。 An alloy for a soft magnetic thin film layer in a magnetic recording medium, wherein the alloy is
Selected from the group consisting of Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge, Sn One or more, and the balance Co and Fe, and in at%, the following formulas (1) to (3):
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 25
(3) 15 ≦ TAM + TNM ≦ 25
The filling,
However, said TAM and TNM are respectively
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
Is an alloy. - 下記式(4):
(4)0.25≦(Nb%+Ta%)/(TAM+TNM)≦1.00
を満たす、請求項1に記載の合金。 Following formula (4):
(4) 0.25 ≦ (Nb% + Ta%) / (TAM + TNM) ≦ 1.00
The alloy of claim 1 satisfying - 下記式(5)および/または(6):
(5)0≦Ti%+Zr%+Hf%+B%/2≦ 5
(6)0<Cu%+Sn%+Zn%+Ga%≦10
を満たす、請求項1または請求項2に記載の合金。 Following formula (5) and / or (6):
(5) 0 ≦ Ti% + Zr% + Hf% + B% / 2 ≦ 5
(6) 0 <Cu% + Sn% + Zn% + Ga% ≦ 10
The alloy according to claim 1 or 2, satisfying - 前記合金が、
Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Ni、Cu、Al、B、C、Si、P、Zn、Ga、Ge、Snからなる群から選択される1種以上、ならびに残部CoおよびFeのみからなり、かつ、at%で、下記式(1)~(3):
(1)0.50≦Fe%/(Fe%+Co%)≦0.90
(2)5≦TAM≦25
(3)15≦TAM+TNM≦25
を満たし、
ただし、前記TAMおよびTNMがそれぞれ、
TAM=Y%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+B%/2
TNM=Cr%+Mo%+W%+Mn%+Ni%/3+Cu%/3+Al%+C%+Si%+P%+Zn%+Ga%+Ge%+Sn%
である、請求項1~3のいずれか一項に記載の合金。 The alloy is
Selected from the group consisting of Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, Al, B, C, Si, P, Zn, Ga, Ge, Sn The following formulas (1) to (3) consisting of at least one and the balance Co and Fe and at%:
(1) 0.50 ≦ Fe% / (Fe% + Co%) ≦ 0.90
(2) 5 ≦ TAM ≦ 25
(3) 15 ≦ TAM + TNM ≦ 25
The filling,
However, said TAM and TNM are respectively
TAM = Y% + Ti% + Zr% + Hf% + V% + Nb% + Ta% + B% / 2
TNM = Cr% + Mo% + W% + Mn% + Ni% / 3 + Cu% / 3 + Al% + C% + Si% + P% + Zn% + Ga% + Ge% + Sn%
The alloy according to any one of claims 1 to 3, wherein - 飽和磁束密度が0.5Tを超え1.1T未満である、請求項1~4のいずれか1項に記載の合金。 The alloy according to any one of claims 1 to 4, wherein the saturation magnetic flux density is more than 0.5T and less than 1.1T.
- 請求項1~5のいずれか1項に記載の合金からなる軟磁性薄膜を製造するためのスパッタリングターゲット材。 A sputtering target material for producing a soft magnetic thin film comprising the alloy according to any one of claims 1 to 5.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380007516.2A CN104081455B (en) | 2012-02-03 | 2013-02-01 | Alloy for soft magnetic film layers, which has low saturation magnetic flux density and is to be used in magnetic recording medium, and sputtering target material |
SG11201404317QA SG11201404317QA (en) | 2012-02-03 | 2013-02-01 | Alloy for soft magnetic film layers, which has low saturation magnetic flux density and is to be used in magnetic recording medium, and sputtering target material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012022096A JP5778052B2 (en) | 2012-02-03 | 2012-02-03 | Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material |
JP2012-022096 | 2012-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013115384A1 true WO2013115384A1 (en) | 2013-08-08 |
Family
ID=48905411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/052400 WO2013115384A1 (en) | 2012-02-03 | 2013-02-01 | Alloy for soft magnetic film layers, which has low saturation magnetic flux density and is to be used in magnetic recording medium, and sputtering target material |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5778052B2 (en) |
CN (1) | CN104081455B (en) |
MY (3) | MY171769A (en) |
SG (3) | SG10201609320PA (en) |
TW (1) | TWI547567B (en) |
WO (1) | WO2013115384A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6116928B2 (en) * | 2013-02-18 | 2017-04-19 | 山陽特殊製鋼株式会社 | CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium |
JP6405261B2 (en) * | 2014-05-01 | 2018-10-17 | 山陽特殊製鋼株式会社 | Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium |
TWI646208B (en) * | 2015-02-26 | 2019-01-01 | 光洋應用材料科技股份有限公司 | Amorphous soft-magnetic target and material |
JP6442460B2 (en) * | 2016-10-27 | 2018-12-19 | 山陽特殊製鋼株式会社 | CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium |
JP6784733B2 (en) * | 2018-08-20 | 2020-11-11 | 山陽特殊製鋼株式会社 | Co-based alloy for soft magnetic layer of magnetic recording medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010287269A (en) * | 2009-06-10 | 2010-12-24 | Sanyo Special Steel Co Ltd | CoFeNi-BASED ALLOY FOR SOFT MAGNETIC FILM LAYER IN VERTICAL MAGNETIC RECORDING MEDIUM, AND SPUTTERING TARGET MATERIAL |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4919162B2 (en) * | 2007-04-10 | 2012-04-18 | 日立金属株式会社 | Fe-Co alloy sputtering target material and method for producing Fe-Co alloy sputtering target material |
JP2009070444A (en) * | 2007-09-11 | 2009-04-02 | Hitachi Global Storage Technologies Netherlands Bv | Perpendicular magnetic recording medium |
JP5397755B2 (en) * | 2008-06-17 | 2014-01-22 | 日立金属株式会社 | Fe-Co alloy sputtering target material for soft magnetic film formation |
JP5605787B2 (en) * | 2008-07-14 | 2014-10-15 | 山陽特殊製鋼株式会社 | Sputtering target material for forming an alloy for a soft magnetic film layer in a perpendicular magnetic recording medium and its manufacturing method |
JP5385018B2 (en) * | 2009-06-12 | 2014-01-08 | 山陽特殊製鋼株式会社 | Raw material powder for sputtering target material for producing soft magnetic film having high sputtering rate and sputtering target material |
JP2011181140A (en) * | 2010-03-01 | 2011-09-15 | Hitachi Metals Ltd | Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM |
-
2012
- 2012-02-03 JP JP2012022096A patent/JP5778052B2/en active Active
-
2013
- 2013-02-01 MY MYPI2014702057A patent/MY171769A/en unknown
- 2013-02-01 MY MYPI2018001725A patent/MY188941A/en unknown
- 2013-02-01 TW TW102103965A patent/TWI547567B/en not_active IP Right Cessation
- 2013-02-01 SG SG10201609320PA patent/SG10201609320PA/en unknown
- 2013-02-01 MY MYPI2018001726A patent/MY190845A/en unknown
- 2013-02-01 SG SG11201404317QA patent/SG11201404317QA/en unknown
- 2013-02-01 SG SG10201510619PA patent/SG10201510619PA/en unknown
- 2013-02-01 WO PCT/JP2013/052400 patent/WO2013115384A1/en active Application Filing
- 2013-02-01 CN CN201380007516.2A patent/CN104081455B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010287269A (en) * | 2009-06-10 | 2010-12-24 | Sanyo Special Steel Co Ltd | CoFeNi-BASED ALLOY FOR SOFT MAGNETIC FILM LAYER IN VERTICAL MAGNETIC RECORDING MEDIUM, AND SPUTTERING TARGET MATERIAL |
Also Published As
Publication number | Publication date |
---|---|
MY188941A (en) | 2022-01-13 |
JP5778052B2 (en) | 2015-09-16 |
MY171769A (en) | 2019-10-29 |
SG10201609320PA (en) | 2016-12-29 |
CN104081455B (en) | 2017-05-24 |
MY190845A (en) | 2022-05-12 |
SG10201510619PA (en) | 2016-01-28 |
TWI547567B (en) | 2016-09-01 |
TW201402835A (en) | 2014-01-16 |
JP2013161497A (en) | 2013-08-19 |
SG11201404317QA (en) | 2014-10-30 |
CN104081455A (en) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014126143A1 (en) | Cofe system alloy for soft magnetic film layers in perpendicular magnetic recording media, and sputtering target material | |
WO2013115384A1 (en) | Alloy for soft magnetic film layers, which has low saturation magnetic flux density and is to be used in magnetic recording medium, and sputtering target material | |
JP5477724B2 (en) | Co-Fe alloy for soft magnetic film, soft magnetic film and perpendicular magnetic recording medium | |
WO2012026405A1 (en) | Soft magnetic alloy for magnetic recording medium, sputtering target material, and magnetic recording medium | |
JP5980970B2 (en) | Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material | |
JP5980972B2 (en) | Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material | |
JP5403418B2 (en) | Method for producing Co-Fe-Ni alloy sputtering target material | |
JP5980971B2 (en) | Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material | |
JP6062462B2 (en) | Sputtering target material for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium | |
JP5474902B2 (en) | An alloy used for a soft magnetic thin film layer in a perpendicular magnetic recording medium, a sputtering target material, and a perpendicular magnetic recording medium having a soft magnetic thin film layer. | |
JP6302153B2 (en) | Soft magnetic thin film layer and perpendicular magnetic recording medium in perpendicular magnetic recording medium | |
JP5031443B2 (en) | Alloy for soft magnetic film layer in perpendicular magnetic recording media | |
JP6113817B2 (en) | An alloy for a soft magnetic thin film layer and a sputtering target material in a perpendicular magnetic recording medium, and a perpendicular magnetic recording medium having a soft magnetic thin film layer. | |
JP6128417B2 (en) | Soft magnetic underlayer | |
JP2011068985A (en) | Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM | |
JP6575775B2 (en) | Soft magnetic film | |
JP2013143156A (en) | Co-Fe ALLOY SOFT MAGNETIC BASE LAYER | |
JP6442460B2 (en) | CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium | |
JP2010150591A (en) | Cobalt-iron based alloy for soft-magnetic film | |
TWI671418B (en) | Sputtering target, manufacturing method of laminated film, laminated film and magnetic recording medium | |
WO2013157468A1 (en) | CrTi-BASED ALLOY FOR ADHESION FILM LAYER FOR USE IN MAGNETIC RECORDING MEDIUM, TARGET MATERIAL FOR SPUTTERING, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM OBTAINED USING SAME | |
JP5787273B2 (en) | Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium | |
JP2020135907A (en) | Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13743909 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13743909 Country of ref document: EP Kind code of ref document: A1 |