JP6116928B2 - CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium - Google Patents

CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium Download PDF

Info

Publication number
JP6116928B2
JP6116928B2 JP2013028726A JP2013028726A JP6116928B2 JP 6116928 B2 JP6116928 B2 JP 6116928B2 JP 2013028726 A JP2013028726 A JP 2013028726A JP 2013028726 A JP2013028726 A JP 2013028726A JP 6116928 B2 JP6116928 B2 JP 6116928B2
Authority
JP
Japan
Prior art keywords
soft magnetic
film layer
corrosion resistance
magnetic recording
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013028726A
Other languages
Japanese (ja)
Other versions
JP2014156639A (en
Inventor
澤田 俊之
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2013028726A priority Critical patent/JP6116928B2/en
Priority to PCT/JP2014/053312 priority patent/WO2014126143A1/en
Priority to CN201480009279.8A priority patent/CN105074041B/en
Priority to MYPI2015702518A priority patent/MY180011A/en
Priority to SG11201505980UA priority patent/SG11201505980UA/en
Priority to TW103105279A priority patent/TWI627286B/en
Publication of JP2014156639A publication Critical patent/JP2014156639A/en
Application granted granted Critical
Publication of JP6116928B2 publication Critical patent/JP6116928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/667Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、垂直磁気記録媒体における軟磁性薄膜層用CoFe系合金およびスパッタリングターゲット材に関するものである。   The present invention relates to a CoFe alloy for a soft magnetic thin film layer and a sputtering target material in a perpendicular magnetic recording medium.

近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められており、過去に普及していた面内磁気記録媒体より更に高記録密度が実現できる、垂直磁気記録方式が実用化されている。   In recent years, magnetic recording technology has been remarkably advanced, and in order to increase the capacity of the drive, the recording density of the magnetic recording medium has been increased, and the recording density is higher than that of the in-plane magnetic recording medium that has been widely used in the past. A realizable perpendicular magnetic recording system has been put into practical use.

垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する2層記録媒体が開発されている。この磁気記録膜層には一般的にCoCrPt−SiO2 系合金が用いられている。また、さらに高い記録密度を実現できる熱アシストやマイクロ波アシスト方式の垂直磁気記録媒体も研究されている。 The perpendicular magnetic recording system is a method suitable for high recording density, in which the easy magnetization axis is oriented in the perpendicular direction with respect to the medium surface in the magnetic film of the perpendicular magnetic recording medium. In the perpendicular magnetic recording system, a two-layer recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed. A CoCrPt—SiO 2 alloy is generally used for the magnetic recording film layer. In addition, thermal assist and microwave assist type perpendicular magnetic recording media capable of realizing higher recording density have been studied.

一方、従来の軟磁性膜層には、高い飽和磁束密度(以下、Bsと記す)と非晶質性が必要であり、さらに垂直磁気記録媒体の用途や使用環境によっては、高耐食性、高硬度など様々な特性が付加的に要求されてきた。例えば、特開2008−299905号公報(特許文献1)に提案されているように、Feを添加することにより高Bsを得ており、Bを添加することにより高い硬度を得ている。また、特開2011−68985号公報(特許文献2)に提案されているように、YやTiの添加により耐食性(耐候性)を改善している。   On the other hand, a conventional soft magnetic film layer needs to have a high saturation magnetic flux density (hereinafter referred to as Bs) and an amorphous property. Further, depending on the application and use environment of the perpendicular magnetic recording medium, it has high corrosion resistance and high hardness. Various characteristics have been additionally required. For example, as proposed in JP 2008-299905 A (Patent Document 1), high Bs is obtained by adding Fe, and high hardness is obtained by adding B. Further, as proposed in Japanese Patent Application Laid-Open No. 2011-68985 (Patent Document 2), the corrosion resistance (weather resistance) is improved by adding Y or Ti.

また、近年では、ドライブ中の読書き用ヘッドの改良や、軟磁性合金の磁束密度を調整し軟磁性膜とRu膜との交換結合磁界を最適化することにより、従来よりも低い磁束での書き込みが可能となってきている。したがって、記録層の下に配置される軟磁性層として、従来のような高Bsではなく、比較的低Bsの非晶質合金が用いられるようになってきた。   In recent years, by improving the read / write head during driving and adjusting the magnetic flux density of the soft magnetic alloy to optimize the exchange coupling magnetic field between the soft magnetic film and the Ru film, Writing is possible. Therefore, a relatively low Bs amorphous alloy is used instead of the conventional high Bs as the soft magnetic layer disposed below the recording layer.

このように、低Bs合金を垂直磁気記録媒体の軟磁性層として用いると、軟磁性膜中の記録磁化が過度に周囲に磁気的な影響を与えることがなく、結果として小さなスペースに記録可能となる。この現象は、「書き滲み」の低減による、見かけ上の記録密度改善と考えられている。しかしながら、最低限のBsを確保することは未だ必要である。これらから、概ね0.95〜1.35T程度の飽和磁束密度を有するものが良好なようである。   As described above, when the low Bs alloy is used as the soft magnetic layer of the perpendicular magnetic recording medium, the recording magnetization in the soft magnetic film does not excessively affect the surroundings, and as a result, recording can be performed in a small space. Become. This phenomenon is considered to improve the apparent recording density by reducing the “writing blur”. However, it is still necessary to secure the minimum Bs. From these, it seems that what has a saturation magnetic flux density of about 0.95-1.35T is good.

さらに近年では、ディスク内の記録層とヘッドの距離を極端に小さくし、より低いヘッドからの磁界で着磁出来るように改良がなされるようになってきた。ここで、記録層とヘッドの距離を縮めるために、記録層の上に配置されるカーボン保護膜を極力薄くすることが望ましい。しかしながら、このカーボン保護膜が薄くなると、大気中の酸素の透過により、これより下部の層が酸化してしまう問題が発生する。   Further, in recent years, improvements have been made so that the distance between the recording layer in the disk and the head can be made extremely small and magnetized by a magnetic field from a lower head. Here, in order to reduce the distance between the recording layer and the head, it is desirable to make the carbon protective film disposed on the recording layer as thin as possible. However, when this carbon protective film becomes thin, there arises a problem that the lower layer is oxidized due to permeation of oxygen in the atmosphere.

また、ディスク内の多層構造において、多くの場合軟磁性膜が最も耐食性が低いため、この層を保護することを律速とし必要なカーボン保護膜の厚さが決まる。したがって、軟磁性膜の耐食性を従来よりも高くすることが出来れば、カーボン保護膜を薄くすることが可能となり、結果として記録層とヘッドとの距離を縮めることができ、記録容量の向上につなげることが出来る。   In many cases, the soft magnetic film has the lowest corrosion resistance in the multi-layer structure in the disk. Therefore, the thickness of the required carbon protective film is determined by limiting the protection of this layer. Therefore, if the corrosion resistance of the soft magnetic film can be made higher than before, the carbon protective film can be made thinner, and as a result, the distance between the recording layer and the head can be reduced, leading to an improvement in recording capacity. I can do it.

このように、従来のように通常の環境で発銹しない最低限の耐食性を持たせるという考えではなく、近年では、より過酷な環境でも発銹しない著しく優れた耐食性を軟磁性層に持たせることが重要となってきている。したがって、このような著しく高い耐食性を得るためには、従来検討されてきた耐食性改善元素を用いると添加量が多くなりすぎ、結果として最低限のBsを確保することが困難となってくる。このような背景から発明者は、Bsの低下幅が小さく、かつ大きな耐食性改善効果が得られる新たな添加元素を検討してきた。
特開2008−299905号公報 特開2011−68985号公報
Thus, it is not the idea of giving the minimum corrosion resistance that does not occur in a normal environment as in the past, but in recent years, the soft magnetic layer should have remarkably excellent corrosion resistance that does not generate even in a harsh environment. Has become important. Therefore, in order to obtain such a remarkably high corrosion resistance, the use of a corrosion resistance improving element that has been studied in the past increases the amount of addition, and as a result, it becomes difficult to ensure the minimum Bs. From such a background, the inventor has studied a new additive element that has a small decrease in Bs and has a large effect of improving corrosion resistance.
JP 2008-299905 A JP 2011-68985 A

しかしながら、上述した特許文献1では、Feを添加することにより高Bsを得ており、Bを添加することにより高い硬度を得ている点で優れているが、しかし、より過酷な環境でも発銹しない耐食性に優れる垂直磁気記録媒体用軟磁性合金を得るには不十分である。また、特許文献2では、YやTiの添加により耐食性(耐候性)を改善しているが、しかし、これら添加元素はBsの低下幅が大きく、かつ大きな耐食性改善効果を得るには十分でない。   However, in Patent Document 1 described above, high Bs is obtained by adding Fe, and it is excellent in that high hardness is obtained by adding B. However, it is also found in a harsh environment. Insufficient corrosion resistance is not sufficient to obtain a soft magnetic alloy for perpendicular magnetic recording media. In Patent Document 2, the corrosion resistance (weather resistance) is improved by adding Y or Ti. However, these additive elements have a large decrease in Bs and are not sufficient for obtaining a large corrosion resistance improvement effect.

上述したような問題を解決するために、発明者らは軟磁性用アモルファス合金における耐食性とその他の特性に及ぼす種々の添加元素の影響について鋭意検討した。その結果、 Ru,Rh,Pd,Re,Os,Ir,Ptを少量添加することにより、Bsを著しく低下させることなく、耐食性を大幅に改善できることを見出し、本発明に至った。 In order to solve the problems described above, the inventors diligently studied the influence of various additive elements on the corrosion resistance and other properties of the soft magnetic amorphous alloy. as a result, The inventors have found that the addition of a small amount of Ru, Rh, Pd, Re, Os, Ir, and Pt can significantly improve the corrosion resistance without significantly reducing Bs, and have led to the present invention.

さらに、垂直磁気記録媒体に用いる軟磁性アモルファス薄膜において、従来よりTi,Zr,Hf,V,Nb,Ta,Cr,Mo,Wなどが耐食性改善元素と考えられてきたがRu,Rh,Pd,Re,Os,Ir,Ptの少量添加は、従来より用いられてきた元素に対し、Bsの下がり幅に対する耐食性改善効果が著しいことを新規に見出し、特に、耐食性に優れる垂直磁気記録媒体用軟磁性合金およびこの合金の薄膜を作製するためのスパッタリングターゲット材を提供することにある。 Furthermore, the soft magnetic amorphous thin film used in the perpendicular magnetic recording medium, Ti conventionally, Zr, Hf, V, Nb , Ta, Cr, Mo, but W and has been considered that the corrosion resistance improving element, Ru, Rh, Pd , Re, Os, Ir, and Pt are newly found to have a remarkable effect of improving the corrosion resistance with respect to the decrease in Bs with respect to the conventionally used elements. In particular, the softness for perpendicular magnetic recording media having excellent corrosion resistance is found. It is an object of the present invention to provide a sputtering target material for producing a magnetic alloy and a thin film of this alloy.

その発明の要旨とするところは、
(1)原子%でRu,Rh,Pd,Re,Os,Ir,Ptを1種以上、Sc,Y,ランタノイド(原子番号57〜71),Ti,Zr,Hf,V,Nb,Ta,Mo,W,Bを1種以上、残部Co,Feおよび不可避的不純物からなり、下記の式(1)〜(4)を全て満たすことを特徴とした、垂直磁気記録媒体における軟磁性膜層用合金。
(1)0.1%≦TCR≦10%
(2)5%≦TAM≦25%
(3)13%≦TCR/2+TAM+TNM≦25%
(4)0≦Fe%/(Fe%+Co%)≦0.80
ただし、
TCR=Ru%+Rh%+Pd%+Re%+Os%+Ir%+Pt%
TAM=Sc%+Y%+ランタノイドの合計%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+B%/2。
Bは、非晶質促進効果が他の元素の約2倍のため1/2で扱う。
TNM=C%+Al%+Si%+P%+Cr%+Mn%+Ni%/3+Cu%/3+Zn%+Ga%+Sn%
Ni,Cuは飽和磁束密度の低下が他の元素の約1/3であるため1/3で扱う。
The gist of the invention is that
(1) in atomic%, Ru, Rh, Pd, Re, Os, Ir, Pt and one or more, Sc, Y, lanthanoids (atomic numbers 57~71), Ti, Zr, Hf , V, Nb, Ta, For a soft magnetic film layer in a perpendicular magnetic recording medium, characterized by comprising at least one of Mo, W, and B, the balance Co, Fe, and inevitable impurities, and satisfying all the following formulas (1) to (4) alloy.
(1) 0.1% ≦ TCR ≦ 10%
(2) 5% ≦ TAM ≦ 25%
(3) 13% ≦ TCR / 2 + TAM + TNM ≦ 25%
(4) 0 ≦ Fe% / (Fe% + Co%) ≦ 0.80
However,
TCR = Ru % + Rh% + Pd% + Re% + Os% + Ir% + Pt%
TAM = Sc% + Y% + Total% of lanthanoid + Ti% + Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + B% / 2.
B is treated as 1/2 because the amorphous promoting effect is about twice that of other elements.
TNM = C% + Al% + Si% + P% + Cr% + Mn% + Ni% / 3 + Cu% / 3 + Zn% + Ga% + Sn%
Ni and Cu are handled as 1/3 because the decrease in saturation magnetic flux density is about 1/3 of other elements.

(2)前記(1)に記載の軟磁性膜層用合金に、さらにC,Al,Si,P,Cr,Mn,Ni,Cu,Zn,Ga,Snを1種以上を含有させたことを特徴とする垂直磁気記録媒体における軟磁性膜層用合金。
(3)前記(1)または(2)に記載の軟磁性膜層用合金からなるスパッタリングターゲット材にある。
(2) The soft magnetic film layer alloy according to (1) further includes one or more of C, Al, Si, P, Cr, Mn, Ni, Cu, Zn, Ga, and Sn. An alloy for a soft magnetic film layer in a perpendicular magnetic recording medium.
(3) A sputtering target material comprising the soft magnetic film layer alloy according to (1) or (2).

以上述べたように、本発明により、特に耐食性に優れる垂直磁気記録媒体用軟磁性合金、および、この合金の薄膜を作製するためのスパッタリングターゲット材を提供することが出来る極めて優れた効果を奏するものである。   As described above, according to the present invention, it is possible to provide a soft magnetic alloy for perpendicular magnetic recording media that is particularly excellent in corrosion resistance, and a sputtering target material for producing a thin film of this alloy. It is.

Bsと溶出量に及ぼす添加元素の種類の影響について示す図である。It is a figure shown about the influence of the kind of additive element which acts on Bs and the elution amount. 溶出量に及ぼす添加元素量の種類の影響について示す図である。It is a figure shown about the influence of the kind of additive element amount which acts on the elution amount. 添加量と溶出量とBsとの関係を示す図である。It is a figure which shows the relationship between the addition amount, the elution amount, and Bs.

以下、本発明に係る成分組成の限定理由を述べる。
0.1%≦TCR≦10%
本発明におけるRu,Rh,Pd,Re,Os,Ir,Ptは、Bsを著しく低下することなく、耐食性を大幅に増加させる必須元素であり、その添加量の合計が0.1%未満では耐食性改善の効果が見られず、10%を超えると必要以上にBsを低下させてしまう。また、コスト高となってしまう。好ましくは0.5〜7%、より好ましくは1〜5%である。また、元素の種類としては、Ru,Rh,Ptが好ましい。
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
0.1% ≦ TCR ≦ 10%
R u that put the present invention, Rh, Pd, Re, Os , Ir, Pt , without significantly reducing the Bs, an essential element to significantly increase the corrosion resistance, the sum of the amount added is 0.1% If it is less than 10%, the effect of improving the corrosion resistance is not seen, and if it exceeds 10%, Bs is lowered more than necessary. In addition, the cost becomes high. Preferably it is 0.5-7%, More preferably, it is 1-5%. As the kinds of elements, Ru, Rh, Pt is good preferable.

5%≦TAM≦25%
本発明におけるSc,Y,ランタノイド(原子番号57〜71),Ti,Zr,Hf,V,Nb,Ta,Mo,W,Bは非晶質性を高めるための必須元素であり、その添加量の合計が5%未満では十分な非晶質性が得られず、25%を超えると必要以上にBsを低下させてしまう。好ましくは10〜23%、より好ましくは15〜20%である。
5% ≦ TAM ≦ 25%
In the present invention, Sc, Y, lanthanoid (atomic number 57 to 71), Ti, Zr, Hf, V, Nb, Ta, Mo, W, and B are essential elements for increasing the amorphous property, and the amount of addition thereof If the total amount of these is less than 5%, sufficient amorphousness cannot be obtained, and if it exceeds 25%, Bs is unnecessarily lowered. Preferably it is 10-23%, More preferably, it is 15-20%.

13%≦TCR/2+TAM+TNM≦25%
TCR,TAM,TNMに属する元素はいずれもBsを低下させる元素である。したがって、その合計量を規定する必要がある。TCR/2+TAM+TNMが13%未満ではBsが高すぎ、近年のディスクに必要とされる軟磁性膜のBsより大きくなってしまい、25%を超えると十分なBsが得られない。好ましくは15〜23%、より好ましくは17〜20%である。
13% ≤ TCR / 2 + TAM + TNM ≤ 25%
All of the elements belonging to TCR, TAM, and TNM are elements that lower Bs. Therefore, it is necessary to define the total amount. If TCR / 2 + TAM + TNM is less than 13%, Bs is too high, and becomes larger than Bs of a soft magnetic film required for recent disks. If it exceeds 25%, sufficient Bs cannot be obtained. Preferably it is 15 to 23%, more preferably 17 to 20%.

0≦Fe%/(Fe%+Co%)≦0.80
本発明におけるCoおよびFeは強磁性を持たせるための必須元素であるが、Fe%/(Fe%+Co%)が0.80を超えるとキュリー点が著しく低下し、室温において十分なBsが得られない。好ましくは0.30〜0.70、より好ましくは0.40〜0.65である。
0 ≦ Fe% / (Fe% + Co%) ≦ 0.80
Co and Fe in the present invention are essential elements for imparting ferromagnetism, but when Fe% / (Fe% + Co%) exceeds 0.80, the Curie point is remarkably lowered, and sufficient Bs is obtained at room temperature. I can't. Preferably it is 0.30-0.70, More preferably, it is 0.40-0.65.

以下、本発明について実施例によって具体的に説明する。
通常、垂直磁気記録媒体における軟磁性膜層は、その成分と同じ成分のスパッタリングターゲット材をスパッタし、ガラス基板などの上に成膜し得られる。ここでスパッタにより成膜された薄膜は急冷されている。これに対し、以下に示す実験AおよびBでは、供試材として、単ロール式の液体急冷装置にて作製した急冷薄帯を用いている。これは実際にスパッタにより急冷され成膜された薄膜の、成分による諸特性への影響を、簡易的に液体急冷薄帯により評価したものである。
Hereinafter, the present invention will be specifically described with reference to examples.
Usually, a soft magnetic film layer in a perpendicular magnetic recording medium can be formed on a glass substrate or the like by sputtering a sputtering target material having the same component. Here, the thin film formed by sputtering is rapidly cooled. On the other hand, in the experiments A and B shown below, a quenching ribbon manufactured by a single roll type liquid quenching apparatus is used as a specimen. This is a simple evaluation of the influence of the components on various properties of a thin film formed by quenching by sputtering in a simple manner using a liquid quenching ribbon.

次いで実験Cとして、実際にスパッタリングターゲット材を作製し、これをスパッタして作製した薄膜について評価した。
[急冷薄帯の作製条件]
所定の成分に秤量した30gの原料を直径10×長さ40mm程度の水冷銅鋳型にて減圧Ar中でアーク溶解し、急冷薄帯の溶解母材とした。急冷薄帯の作製条件は、単ロール方式で、直径15mmの石英管中にこの溶解母材にセットし、出湯ノズル径を1mmとし、雰囲気圧61kPa、噴霧差圧69kPa、銅ロール(直径300mm)の回転数3000rpm、銅ロールと出湯ノズルのギャップ0.3mmにて出湯した。出湯温度は各溶解母材の溶け落ち直後とした。このようにして作製した急冷薄帯を供試材とし、飽和磁束密度(以下Bsと記す)と非晶質性を評価した。なお、Bsを算出する際の試料の体積は、電子天秤で測定した重量と組成比から計算した平均比重より算出した。平均比重は、試料を構成する元素の純物質としての比重を組成比率で平均したものである。
Next, as Experiment C, a sputtering target material was actually produced and a thin film produced by sputtering was evaluated.
[Conditions for quenching ribbon]
30 g of raw material weighed to a predetermined component was arc-melted in a reduced pressure Ar using a water-cooled copper mold having a diameter of about 10 × 40 mm in length to obtain a rapidly cooled ribbon base material. The conditions for preparing the rapidly cooled ribbon are a single roll method, set in this molten base material in a quartz tube with a diameter of 15 mm, a tapping nozzle diameter of 1 mm, an atmospheric pressure of 61 kPa, a spray differential pressure of 69 kPa, and a copper roll (diameter of 300 mm). The hot water was discharged at a rotation speed of 3000 rpm and a gap between the copper roll and the hot water nozzle of 0.3 mm. The hot water temperature was set immediately after each molten base material was melted. The quenched ribbon thus produced was used as a test material, and the saturation magnetic flux density (hereinafter referred to as Bs) and amorphousness were evaluated. In addition, the volume of the sample at the time of calculating Bs was calculated from the average specific gravity calculated from the weight measured with the electronic balance and the composition ratio. The average specific gravity is obtained by averaging the specific gravity of the elements constituting the sample as a pure substance by the composition ratio.

[急冷薄帯のBs]
VSM装置(振動試料型磁力計)にて、印加磁場1200kA/mで室温のBsを測定した。
[Quenched ribbon Bs]
Bs at room temperature was measured with an applied magnetic field of 1200 kA / m with a VSM apparatus (vibrating sample magnetometer).

[急冷薄帯の非晶質性の評価]
通常、非晶質材料のX線回折パターンを測定すると、回折ピークが見られず、非晶質特有のハローパターンとなる。また、完全な非晶質でない場合は、回折ピークは見られるものの、結晶材料と比較しピーク高さが低くなり、かつ、ハローパターンも見られる。そこで、下記の方法にて非晶質性を評価した。
[Evaluation of amorphous nature of quenched ribbon]
Usually, when an X-ray diffraction pattern of an amorphous material is measured, a diffraction peak is not seen and a halo pattern peculiar to amorphous is obtained. Moreover, when it is not completely amorphous, although a diffraction peak is seen, a peak height becomes low compared with a crystalline material, and a halo pattern is also seen. Therefore, amorphousness was evaluated by the following method.

ガラス板に両面テープで供試材を貼り付け、X線回折装置にて回折パターンを得た。このとき、測定面は急冷薄帯の銅ロール接触面となるように供試材をガラス板に貼り付けた。X線源はCu−Kα線で、スキャンスピード4°/minで測定した。この回折パターンにハローパターンが確認できるものを○、全くハローパターンが見られないものを×として非晶質性の評価とした。   The test material was attached to a glass plate with a double-sided tape, and a diffraction pattern was obtained with an X-ray diffractometer. At this time, the test material was affixed on the glass plate so that the measurement surface was a copper roll contact surface of a quenched ribbon. The X-ray source was Cu—Kα ray, and measurement was performed at a scan speed of 4 ° / min. In this diffraction pattern, the evaluation of the amorphous property was evaluated as ◯ when the halo pattern could be confirmed, and x when no halo pattern was observed.

[急冷薄帯の耐食性の評価]
急冷薄帯を50mg秤量し、3質量%の硝酸溶液10mlに60min浸漬した。その後、FeおよびCoイオンの溶出量をICP法により測定した。なお溶出量の評価には、FeとCoの溶出イオンの合計量を試験した急冷薄帯の重量で除し、ppmに換算した値を用いた。
[Evaluation of corrosion resistance of quenched ribbon]
50 mg of the quenched ribbon was weighed and immersed in 10 ml of 3% by mass nitric acid solution for 60 min. Thereafter, the elution amounts of Fe and Co ions were measured by ICP method. For the evaluation of the elution amount, the total amount of Fe and Co elution ions was divided by the weight of the quenched ribbon, and the value converted to ppm was used.

[スパッタリングターゲット材の作製]
所定の成分に秤量した5kgの母材を耐火物坩堝中で、減圧Ar下で誘導溶解した後、凝固させた。坩堝のサイズは、直径120mm、高さ150mmである。このインゴットの下部から、旋盤加工、ワイヤーカット加工、平面研磨加工にて、直径95mm、厚さ2mmのスパッタリングターゲット材を作製した。
[Production of sputtering target material]
A 5 kg base material weighed to a predetermined component was induction-dissolved under reduced pressure Ar in a refractory crucible and then solidified. The size of the crucible is 120 mm in diameter and 150 mm in height. From the lower part of the ingot, a sputtering target material having a diameter of 95 mm and a thickness of 2 mm was produced by lathe processing, wire cutting processing, and plane polishing processing.

[スパッタ膜の作製およびBs,非晶質性評価]
チャンバー内を1×10-4Pa以下に真空排気し、純度99.99%のArガスを0.6Pa投入しスパッタを行なった。薄膜は厚さ1mmのガラス基板上に500nmの厚さで生成させた。この薄膜試料について急冷薄帯と同様にBsおよび非晶質性を評価した。なお、Bsを算出する際の試料の体積は、薄膜試料の面積とTEM装置にて観察した薄膜厚さにより算出した。
[Preparation of sputtered film and evaluation of Bs and amorphousness]
The inside of the chamber was evacuated to 1 × 10 −4 Pa or less, and Ar gas with a purity of 99.99% was charged with 0.6 Pa to perform sputtering. The thin film was formed to a thickness of 500 nm on a glass substrate having a thickness of 1 mm. This thin film sample was evaluated for Bs and amorphousness in the same manner as the quenched ribbon. Note that the volume of the sample when calculating Bs was calculated from the area of the thin film sample and the thin film thickness observed with a TEM apparatus.

[スパッタ膜の耐食性評価]
作製したスパッタ膜をガラス板ごと10×25mmに切り出し、10質量%の硝酸溶液10mlに60min浸漬した。その後、FeおよびCoイオンの溶出量をICP法により測定した。なお溶出量の評価には、FeとCoの溶出イオンの合計量を試験に用いた水溶液の容積で除し、mg/lに換算した値を用いた。
[Evaluation of corrosion resistance of sputtered film]
The produced sputtered film was cut into a glass plate of 10 × 25 mm and immersed in 10 ml of a 10% by mass nitric acid solution for 60 min. Thereafter, the elution amounts of Fe and Co ions were measured by ICP method. For the evaluation of the elution amount, the total amount of eluted ions of Fe and Co was divided by the volume of the aqueous solution used in the test, and a value converted to mg / l was used.

まず初めに、添加元素の種類によるBsおよび耐食性への影響を検討するため、(Co50Fe50)78−Zr8−B6−M8(M=添加元素)を基本組成とし、種々の添加元素を添加した急冷リボンを評価した(実験A)。次に、TCRに属する元素の代表としてRu,Pt,比較としてTi,Hf,Wを選択し、添加量を変化させた急冷リボンにより、Bsおよび耐食性に及ぼすこれら元素の添加量の影響について評価した(実験B)。最後に、種々の元素の影響を評価するため、スパッタ膜によりBs、耐食性、非晶質性を評価した(実験C)。 First, in order to examine the effect of Bs and corrosion resistance due to the type of additive element, (Co 50 Fe 50 ) 78 —Zr 8 —B 6 —M 8 (M = additive element) is used as a basic composition, and various additions are made. The quenched ribbon with added elements was evaluated (Experiment A). Next, R u as a representative of the element belonging to TCR, Pt, Ti as a comparison, Hf, select W, rapidly cooled ribbon varying amount, the effect of the addition amount of these elements on the Bs and corrosion resistance Evaluation (Experiment B). Finally, in order to evaluate the influence of various elements, Bs, corrosion resistance, and amorphousness were evaluated using a sputtered film (Experiment C).

実験Aにおいては、(Co50Fe5078−Zr8−B6−M8(M=添加元素)を基本組成とした添加元素種類の影響(添加量一定での評価)を表1に示す。すなわち、表1は様々な元素を添加して急冷薄帯の諸特性について示す。なお、無添加の組成は(Co50Fe5086−Zr8−B6 であり、表1の成分のFe%/(Fe%+Co%)は全て0.50である。 In Experiment A, Table 1 shows the influence (evaluation with a constant addition amount) of the type of additive element having (Co 50 Fe 50 ) 78 —Zr 8 —B 6 —M 8 (M = added element) as a basic composition. . That is, Table 1 shows various properties of the quenched ribbon with various elements added. The additive-free composition is (Co 50 Fe 50 ) 86 —Zr 8 —B 6 , and the Fe% / (Fe% + Co%) of the components in Table 1 are all 0.50.

また、表1におけるBsと溶出量をプロットした図を図1に示す。図1はBsと溶出量に及ぼす添加元素種類の影響(実験A)を示す。この図1より、溶出量が低く高い耐食性を有する添加元素のうち、Ru,Rh,Pd,Re,Os,Ir,Ptは比較的高いBsを確保できている。一方、V,Nb,Ta,Cr,Mo,Wは溶出量が少ないが、Bs低下幅が大きい。さらに、そのほかの添加元素は耐食性改善の効果が小さい。なお、添加元素の添加量を一定としたこの実験Aでは、Ti,Hf添加はTCRに属する元素から除外している。 Moreover, the figure which plotted Bs and elution amount in Table 1 is shown in FIG. FIG. 1 shows the influence of Bs and the kind of additive element on the elution amount (Experiment A). From FIG. 1, among the additive elements having a low elution amount and high corrosion resistance, Ru, Rh, Pd, Re, Os, Ir, and Pt are able to secure a relatively high Bs . Hand, V, Nb, Ta, Cr , Mo, W is a small amount of elution, Bs decline is large. Further, other additive elements have a small effect of improving the corrosion resistance. In this experiment A the amount was fixed additive element, T i, the Hf addition are excluded from the elements belonging to the TCR.

次に、実験B(Co35Fe65(76-x)−Ta8−B8−Mn8−Mx(M=添加元素)を基本組成とした添加元素量の影響を表2に示す。この表2は添加元素の添加量を変化させた急冷薄帯の諸特性を示している。なお、無添加の組成は(Co35Fe6576−Ta8−B8−Mn8である。 Next, Table 2 shows the influence of the amount of added elements having the basic composition of Experiment B (Co 35 Fe 65 ) (76-x) -Ta 8 -B 8 -Mn 8 -M x (M = added element). Table 2 shows various characteristics of the quenched ribbon with the addition amount of the additive element changed. The composition of additive-free is a (Co 35 Fe 65) 76 -Ta 8 -B 8 -Mn 8.

表2における各種元素の添加量と溶出量の関係を図2に示す。TCRに属するRu,Ptはわずかな添加量においても耐食性改善の効果が高い。一方、これに属さないTi,Hf,Wは、添加量とともに耐食性が改善するが、比較的多量の添加が必要であることがわかる。さらに、図3に表2における結果のBsと溶出量のプロットを示す。図3のとおり、Ru,Ptを添加した組成は他の添加元素と比較し、高いBsと低い溶出量が得られている。 FIG. 2 shows the relationship between the amount of each element added and the elution amount in Table 2. Belonging to the TCR R u, Pt has a higher effect of corrosion resistance improvement in small amount. On the other hand, it can be seen that Ti, Hf, and W, which do not belong to this, improve the corrosion resistance with the addition amount, but a relatively large amount of addition is necessary. Further, FIG. 3 shows a plot of Bs and elution amount of the results in Table 2. As shown in FIG. 3, the composition to which Ru and Pt are added has a higher Bs and a lower amount of elution than the other additive elements.

以上の実験A,BによりTCRに属する元素を添加した場合、その他の元素を添加した場合と比較し、Bsの低下幅を小さく抑制しながら、高い耐食性が得られることがわかった。次に、様々な組成において、TCRに属する元素を添加した組成と、添加していない組成で、スパッタリングターゲット材を作製し、これを用いたスパッタ薄膜の評価を実施した(実験C)。   From the above experiments A and B, it was found that when an element belonging to TCR was added, high corrosion resistance was obtained while suppressing a decrease in Bs to a smaller extent than when other elements were added. Next, in various compositions, sputtering target materials were prepared using a composition in which an element belonging to TCR was added and a composition in which no element was added, and a sputtered thin film was evaluated using the sputtering target material (Experiment C).

実験Cは、種々の元素の影響を評価するため、スパッタ膜により、Bs、耐食性、非晶質性を評価した。表3に示すように、様々な組成におけるスパッタ膜の諸特性を示す。No.1〜は本発明例であり、No.8〜13は比較例である。比較例No.はTAMおよびTCR/2+TAM+TNMの値が低いためにBsが過度に高く、非晶質性に劣り、耐食性も悪い。比較例No.はTAM、TCR/2+TAM+TNMの値が高いために、Bsが低い。 In Experiment C, in order to evaluate the influence of various elements, Bs, corrosion resistance, and amorphousness were evaluated using a sputtered film. As shown in Table 3, various properties of the sputtered film having various compositions are shown. No. 1-7 is an example of the present invention, No. 8 to 13 are comparative examples. Comparative Example No. No. 8 has a low value of TAM and TCR / 2 + TAM + TNM, so Bs is excessively high, poor in amorphousness, and poor in corrosion resistance. Comparative Example No. No. 9 has a low Bs because the values of TAM and TCR / 2 + TAM + TNM are high.

比較例No.10はTCR/2+TAM+TNMが低いためにBsが過度に高い。比較例No.11、12はFe含有量が高いために、Bsが低い。比較例No.13はTCRを含有しないために耐食性が劣ることが分かる。
これに対して、本発明例No.1〜はいずれも条件を満足し、Bs、耐食性に優れて
いることが分かる。
Comparative Example No. 10 has an excessively high Bs because TCR / 2 + TAM + TNM is low. Comparative Example No. Since 11 and 12 have high Fe content, Bs is low. Comparative Example No. It can be seen that No. 13 does not contain TCR and is therefore inferior in corrosion resistance.
On the other hand, the present invention example No. It can be seen that 1 to 7 all satisfy the conditions and are excellent in Bs and corrosion resistance.

以上述べたように、本発明により、低コストでしかもBsの低下を小さくしつつ、特に耐食性を大幅にアップすることを可能とした極めて優れた垂直磁気記録媒体における軟磁性膜層用合金、およびこの合金の薄膜を作製するためのスパッタリングターゲット材を提供するものである。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, according to the present invention, an alloy for a soft magnetic film layer in an extremely excellent perpendicular magnetic recording medium capable of significantly improving the corrosion resistance at a low cost and reducing the decrease in Bs, and A sputtering target material for producing a thin film of this alloy is provided.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (3)

原子%で、
Ru,Rh,Pd,Re,Os,Ir,Ptを1種以上、Sc,Y,ランタノイド(原子番号57〜71),Ti,Zr,Hf,V,Nb,Ta,Mo,W,Bを1種以上、残部Co,Feおよび不可避的不純物からなり、下記の式(1)〜(4)を全て満たすことを特徴とした、垂直磁気記録媒体における軟磁性膜層用合金。
(1)0.1%≦TCR≦10%
(2)5%≦TAM≦25%
(3)13%≦TCR/2+TAM+TNM≦25%
(4)0≦Fe%/(Fe%+Co%)≦0.80
ただし、
TCR=Ru%+Rh%+Pd%+Re%+Os%+Ir%+Pt%
TAM=Sc%+Y%+ランタノイドの合計%+Ti%+Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+B%/2
Bは、非晶質促進効果が他の元素の約2倍のため1/2で扱う。
TNM=C%+Al%+Si%+P%+Cr%+Mn%+Ni%/3+Cu%/3+Zn%+Ga%+Sn%
Ni,Cuは飽和磁束密度の低下が他の元素の約1/3であるため1/3で扱う。
Atomic%
One or more of Ru, Rh, Pd, Re, Os, Ir, and Pt, 1 of Sc, Y, lanthanoid (atomic number 57 to 71), Ti, Zr, Hf, V, Nb, Ta, Mo, W, and B An alloy for a soft magnetic film layer in a perpendicular magnetic recording medium, comprising at least a seed, the balance Co, Fe, and inevitable impurities, and satisfying all of the following formulas (1) to (4):
(1) 0.1% ≦ TCR ≦ 10%
(2) 5% ≦ TAM ≦ 25%
(3) 13% ≦ TCR / 2 + TAM + TNM ≦ 25%
(4) 0 ≦ Fe% / (Fe% + Co%) ≦ 0.80
However,
TCR = Ru % + Rh% + Pd% + Re% + Os% + Ir% + Pt%
TAM = Sc% + Y% + Total of lanthanoid + Ti% + Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + B% / 2
B is treated as 1/2 because the amorphous promoting effect is about twice that of other elements.
TNM = C% + Al% + Si% + P% + Cr% + Mn% + Ni% / 3 + Cu% / 3 + Zn% + Ga% + Sn%
Ni and Cu are handled as 1/3 because the decrease in saturation magnetic flux density is about 1/3 of other elements.
請求項1に記載の軟磁性膜層用合金に、さらにC,Al,Si,P,Cr,Mn,Ni,Cu,Zn,Ga,Snを1種以上を含有させたことを特徴とする垂直磁気記録媒体における軟磁性膜層用合金。 The perpendicular magnetic film according to claim 1, further comprising at least one of C, Al, Si, P, Cr, Mn, Ni, Cu, Zn, Ga, and Sn in the soft magnetic film layer alloy. Alloy for soft magnetic film layer in magnetic recording media. 請求項1または2に記載の軟磁性膜層用合金からなるスパッタリングターゲット材。 A sputtering target material comprising the soft magnetic film layer alloy according to claim 1.
JP2013028726A 2013-02-18 2013-02-18 CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium Active JP6116928B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013028726A JP6116928B2 (en) 2013-02-18 2013-02-18 CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
PCT/JP2014/053312 WO2014126143A1 (en) 2013-02-18 2014-02-13 Cofe system alloy for soft magnetic film layers in perpendicular magnetic recording media, and sputtering target material
CN201480009279.8A CN105074041B (en) 2013-02-18 2014-02-13 For the CoFe systems alloy and sputtering target material of the soft magnetism film layer in perpendicular magnetic recording media
MYPI2015702518A MY180011A (en) 2013-02-18 2014-02-13 Cofe-based alloy for soft magnetic film layer in perpendicular magnetic recording medium and sputtering target material
SG11201505980UA SG11201505980UA (en) 2013-02-18 2014-02-13 Cofe-based alloy for soft magnetic film layer in perpendicular magnetic recording medium and sputtering target material
TW103105279A TWI627286B (en) 2013-02-18 2014-02-18 CoFe-based alloy for soft magnetic film layer and sputtering target for perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028726A JP6116928B2 (en) 2013-02-18 2013-02-18 CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016210293A Division JP6442460B2 (en) 2016-10-27 2016-10-27 CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2014156639A JP2014156639A (en) 2014-08-28
JP6116928B2 true JP6116928B2 (en) 2017-04-19

Family

ID=51354142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028726A Active JP6116928B2 (en) 2013-02-18 2013-02-18 CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium

Country Status (6)

Country Link
JP (1) JP6116928B2 (en)
CN (1) CN105074041B (en)
MY (1) MY180011A (en)
SG (1) SG11201505980UA (en)
TW (1) TWI627286B (en)
WO (1) WO2014126143A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506659B2 (en) * 2015-08-24 2019-04-24 山陽特殊製鋼株式会社 Amorphous alloy for magnetic recording, sputtering target material and magnetic recording medium
CN105200298A (en) * 2015-09-08 2015-12-30 杨雯雯 Nanocrystalline soft magnetic alloy material and preparation method thereof
JP6442460B2 (en) * 2016-10-27 2018-12-19 山陽特殊製鋼株式会社 CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
TWI652356B (en) * 2017-07-31 2019-03-01 台耀科技股份有限公司 Soft magnetic alloy
CN107675079A (en) * 2017-09-30 2018-02-09 邓宏运 Colliery disintegrating machine hammer body multicomponent microalloying high toughness wear resistant steel formula and technique
JP7096113B2 (en) * 2018-09-19 2022-07-05 デクセリアルズ株式会社 Mn-Ta-W-Cu-O-based sputtering target and its manufacturing method
JP2020135907A (en) * 2019-02-18 2020-08-31 山陽特殊製鋼株式会社 Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof
CN111139404A (en) * 2020-01-17 2020-05-12 陕西新精特钢研精密合金有限公司 High-strength soft magnetic alloy and manufacturing method thereof
JP2021127490A (en) 2020-02-13 2021-09-02 山陽特殊製鋼株式会社 Sputtering target material and method for manufacturing the same
CN114807787A (en) * 2020-09-27 2022-07-29 浙江大学台州研究院 Amorphous alloy razor blade and method of making same
CN114134472A (en) * 2020-12-24 2022-03-04 佛山市中研非晶科技股份有限公司 Cobalt-based amorphous alloy thin film, preparation method thereof, electromagnetic shielding film and equipment applying cobalt-based amorphous alloy thin film
CN115125428B (en) * 2022-08-09 2023-03-10 杭州电子科技大学 Wide-temperature-zone trans-room-temperature Magnetitum material and preparation method and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439253A (en) * 1982-03-04 1984-03-27 Allied Corporation Cobalt rich manganese containing near-zero magnetostrictive metallic glasses having high saturation induction
JPS5990219A (en) * 1982-11-12 1984-05-24 Tdk Corp Magnetic head
JPS59182938A (en) * 1983-04-01 1984-10-17 Sumitomo Special Metals Co Ltd Amorphous alloy having high magnetic permeability
JPH01118244A (en) * 1987-04-17 1989-05-10 Mitsui Petrochem Ind Ltd Magneto-optical recording film
CA1298704C (en) * 1987-09-28 1992-04-14 Kunihiko Mizumoto Magnetooptical recording medium
JPH0877544A (en) * 1994-06-30 1996-03-22 Fuji Electric Co Ltd Magnetic recording medium and its production
JP2001049425A (en) * 1999-08-05 2001-02-20 Sumitomo Metal Mining Co Ltd Rare earth element-transition metal series sintered body for sputtering target and its production
JP2001312815A (en) * 2000-04-27 2001-11-09 Showa Denko Kk Magnetic recording medium, method of manufacturing the same, sputtering target and magnetic recording and reproducing device
US20080090106A1 (en) * 2006-10-13 2008-04-17 David Braunstein Soft underlayer for perpendicular media with mechanical stability and corrosion resistance
JP5031443B2 (en) * 2007-05-29 2012-09-19 山陽特殊製鋼株式会社 Alloy for soft magnetic film layer in perpendicular magnetic recording media
JP2010150591A (en) * 2008-12-25 2010-07-08 Hitachi Metals Ltd Cobalt-iron based alloy for soft-magnetic film
JP5698023B2 (en) * 2011-02-16 2015-04-08 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP5778052B2 (en) * 2012-02-03 2015-09-16 山陽特殊製鋼株式会社 Alloy for soft magnetic film layer having low saturation magnetic flux density used for magnetic recording medium and sputtering target material
JP6405261B2 (en) * 2014-05-01 2018-10-17 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium

Also Published As

Publication number Publication date
TW201437386A (en) 2014-10-01
CN105074041B (en) 2018-06-01
MY180011A (en) 2020-11-19
SG11201505980UA (en) 2015-08-28
TWI627286B (en) 2018-06-21
JP2014156639A (en) 2014-08-28
WO2014126143A1 (en) 2014-08-21
CN105074041A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6116928B2 (en) CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
JP5698023B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP6405261B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
WO2010074171A1 (en) Sputtering target and method of film formation
JP5917045B2 (en) Alloy and sputtering target material for soft magnetic thin film layer in perpendicular magnetic recording medium
WO2014027601A1 (en) Soft magnetic alloy for magnetic recording purposes, sputtering target material, and magnetic recording medium
JP6431496B2 (en) Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium
JP5631659B2 (en) Soft magnetic alloy and sputtering target material for perpendicular magnetic recording medium, and magnetic recording medium
JP5714397B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP6442460B2 (en) CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
JP5425530B2 (en) CoFeNi alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
JP5474902B2 (en) An alloy used for a soft magnetic thin film layer in a perpendicular magnetic recording medium, a sputtering target material, and a perpendicular magnetic recording medium having a soft magnetic thin film layer.
JP5797398B2 (en) Ni-based alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP5031443B2 (en) Alloy for soft magnetic film layer in perpendicular magnetic recording media
JP2010150591A (en) Cobalt-iron based alloy for soft-magnetic film
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
CN107251139B (en) Alloy for seed layer of Ni-Cu magnetic recording medium, sputtering target material, and magnetic recording medium
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof
JP6506659B2 (en) Amorphous alloy for magnetic recording, sputtering target material and magnetic recording medium
JP2013011018A (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170303

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6116928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250