JP5787273B2 - Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium - Google Patents

Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium Download PDF

Info

Publication number
JP5787273B2
JP5787273B2 JP2011134831A JP2011134831A JP5787273B2 JP 5787273 B2 JP5787273 B2 JP 5787273B2 JP 2011134831 A JP2011134831 A JP 2011134831A JP 2011134831 A JP2011134831 A JP 2011134831A JP 5787273 B2 JP5787273 B2 JP 5787273B2
Authority
JP
Japan
Prior art keywords
underlayer film
soft magnetic
recording medium
atomic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011134831A
Other languages
Japanese (ja)
Other versions
JP2012022765A (en
Inventor
福岡 淳
淳 福岡
斉藤 和也
和也 斉藤
坂巻 功一
功一 坂巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011134831A priority Critical patent/JP5787273B2/en
Publication of JP2012022765A publication Critical patent/JP2012022765A/en
Application granted granted Critical
Publication of JP5787273B2 publication Critical patent/JP5787273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、磁気記録媒体に用いられるCo−Fe系合金の軟磁性裏打ち層膜、軟磁性裏打ち層膜形成用スパッタリングターゲット材および軟磁性裏打ち層膜の製造方法に関するものである。   The present invention relates to a soft magnetic underlayer film of a Co—Fe-based alloy used for a magnetic recording medium, a sputtering target material for forming a soft magnetic underlayer film, and a method for producing a soft magnetic underlayer film.

近年、高度情報化社会により磁気記録の高密度化が強く望まれている。この高密度化を実現する技術として、従来の面内磁気記録方式に代わり垂直磁気記録方式が実用化されている。   In recent years, high recording density has been strongly demanded by an advanced information society. As a technique for realizing this high density, a perpendicular magnetic recording system has been put into practical use instead of the conventional in-plane magnetic recording system.

垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜を媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、記録密度を上げて行ってもビット内の反磁界が小さく、記録再生特性の低下が少ない高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録層膜と軟磁性裏打ち層膜とを有する記録媒体が開発されている。   Perpendicular magnetic recording is a method in which the magnetic film of a perpendicular magnetic recording medium is formed so that the axis of easy magnetization is oriented perpendicularly to the medium surface. This is a method suitable for high recording density with a small decrease in recording and reproduction characteristics. In the perpendicular magnetic recording system, a recording medium having a magnetic recording layer film and a soft magnetic underlayer film with improved recording sensitivity has been developed.

このような磁気記録媒体の軟磁性裏打ち層膜としては、記録磁界を効率良く引き込むため高い飽和磁束密度を有すること、また、磁気記録媒体への書き込み性を向上させるため高い透磁率を有することが求められている(例えば、特許文献1および2参照)。また、軟磁性裏打ち層膜としては、表面粗さが大きくなるのを防ぎ、ヘッドの浮上量を低減するためアモルファス構造であることが求められている(例えば、特許文献3参照)。
また、これまでの軟磁性裏打ち層膜としては、高い飽和磁束密度と高い耐腐食性を有するCo−Fe−Al合金(例えば、特許文献4参照)やCo−Fe−Ni合金(例えば、特許文献5参照)が提案されている。
The soft magnetic underlayer film of such a magnetic recording medium has a high saturation magnetic flux density in order to draw a recording magnetic field efficiently, and has a high magnetic permeability in order to improve the writing property to the magnetic recording medium. (See, for example, Patent Documents 1 and 2). Further, the soft magnetic underlayer film is required to have an amorphous structure in order to prevent an increase in surface roughness and to reduce the flying height of the head (see, for example, Patent Document 3).
In addition, as a conventional soft magnetic underlayer film, a Co—Fe—Al alloy (for example, see Patent Document 4) or a Co—Fe—Ni alloy (for example, Patent Document) having a high saturation magnetic flux density and high corrosion resistance. 5) has been proposed.

特開2006−190486号公報JP 2006-190486 A 特許第4409085号公報Japanese Patent No. 4490985 特開2008−276859号公報JP 2008-276859 A 特許第4101836号公報Japanese Patent No. 4101836 国際公開第2010/007980号International Publication No. 2010/007980

上述の特許文献1および2に開示される軟磁性裏打ち層膜の合金組成は、Co−Ta−Zr合金、Co−Nb−Zr合金等のCo合金やFe合金であり、透磁率は高いが飽和磁束密度が低い合金であるか、飽和磁束密度は高いが透磁率が低い合金である。
また、特許文献4に具体的に開示される軟磁性裏打ち層膜は、原子%でCo:Fe=44:56〜78:22で高い飽和磁束密度が得られるが透磁率が低いものである。
また、特許文献5に具体的に開示される軟磁性裏打ち層合金は、Fe含有量が多いか、Ni含有量が多いCo−Fe−Ni系合金であり、飽和磁束密度は高いが透磁率が低い合金であるか、透磁率は高いが飽和磁束密度が低い合金である。
本発明の目的は、これまで検討されてこなかった飽和磁束密度と透磁率を高いレベルで両立可能なアモルファス構造を有する磁気記録媒体用の軟磁性裏打ち層膜を提供することである。
The alloy composition of the soft magnetic underlayer film disclosed in Patent Documents 1 and 2 described above is a Co alloy such as a Co—Ta—Zr alloy or a Co—Nb—Zr alloy, or an Fe alloy, and has a high magnetic permeability but is saturated. It is an alloy having a low magnetic flux density, or an alloy having a high saturation magnetic flux density but a low magnetic permeability.
Further, the soft magnetic underlayer film specifically disclosed in Patent Document 4 has a high saturation magnetic flux density at Co: Fe = 44: 56 to 78:22 in atomic%, but has a low magnetic permeability.
Further, the soft magnetic underlayer alloy specifically disclosed in Patent Document 5 is a Co—Fe—Ni alloy having a high Fe content or a high Ni content, and has a high saturation magnetic flux density but a high magnetic permeability. It is a low alloy or an alloy with high permeability but low saturation magnetic flux density.
An object of the present invention is to provide a soft magnetic underlayer film for a magnetic recording medium having an amorphous structure capable of achieving both a saturation magnetic flux density and a magnetic permeability that have not been studied so far at a high level.

本発明者らは、磁気記録媒体に用いられるCo−Fe系合金軟磁性裏打ち層膜について、CoとFeとの組成比とCo−Fe合金への添加元素および、その添加範囲について種々の検討を行った結果、高い飽和磁束密度と高い透磁率を両立するアモルファス構造の軟磁性裏打ち層膜に好適な組成範囲を見出し本発明に到達した。   The present inventors have made various studies on the composition ratio of Co and Fe, the additive element to the Co—Fe alloy, and the range of addition of the Co—Fe alloy soft magnetic underlayer film used in the magnetic recording medium. As a result, the inventors have found a composition range suitable for an amorphous soft magnetic underlayer film having both a high saturation magnetic flux density and a high magnetic permeability, and have reached the present invention.

すなわち、本発明は、Co−Fe系合金でなる磁気記録媒体用の軟磁性裏打ち層膜であって、該軟磁性裏打ち層膜における原子%で表されたCoとFeの組成の比率が88:12〜92:8の範囲内にあり、添加元素として3.0原子%以上のZrと、2.0原子%以上のB、Y、Nb、Hf、Taの群から選ばれる1種または2種以上の元素と、をいずれも含有し、かつ、前記添加元素の含有量の合計が5.0〜9.0原子%の範囲内にある磁気記録媒体用の軟磁性裏打ち層膜である。
また、前記Co−Fe系合金が、原子%でNi/(Co+Ni)≦0.1を満たすように、Coの一部をNiで置換する磁気記録媒体用の軟磁性裏打ち層膜である。
また、本発明は、Co−Fe系合金でなる磁気記録媒体用の軟磁性裏打ち層膜形成用スパッタリングターゲット材であって、該軟磁性裏打ち層膜における原子%で表されたCoとFeの組成の比率が88:12〜92:8の範囲内にあり、添加元素として3.0原子%以上のZrと、2.0原子%以上のB、Y、Nb、Hf、Taの群から選ばれる1種または2種以上の元素と、をいずれも含有し、かつ、前記添加元素の含有量の合計が5.0〜9.0原子%の範囲内にある磁気記録媒体用の軟磁性裏打ち層膜形成用ターゲット材であり、また、前記Co−Fe系合金が、原子%でNi/(Co+Ni)≦0.1を満たすように、Coの一部をNiで置換する磁気記録媒体用の軟磁性裏打ち層膜形成用スパッタリングターゲット材である。
また、本発明は、前記スパッタリングターゲット材を用いて、スパッタリング法により形成される磁気記録媒体用の軟磁性裏打ち層膜の製造方法である。
That is, the present invention is a soft magnetic underlayer film for a magnetic recording medium made of a Co—Fe-based alloy, wherein the ratio of the composition of Co and Fe expressed in atomic% in the soft magnetic underlayer film is 88: One or two selected from the group consisting of 12 to 92: 8 and an additive element of 3.0 atomic% or more of Zr and 2.0 atomic% or more of B, Y, Nb, Hf, Ta A soft magnetic underlayer film for a magnetic recording medium containing any of the above elements and having a total content of the additive elements in the range of 5.0 to 9.0 atomic%.
The Co—Fe-based alloy is a soft magnetic underlayer film for a magnetic recording medium in which a part of Co is substituted with Ni so that Ni / (Co + Ni) ≦ 0.1 in atomic percent.
The present invention also provides a sputtering target material for forming a soft magnetic underlayer film for a magnetic recording medium made of a Co—Fe-based alloy, the composition of Co and Fe expressed in atomic% in the soft magnetic underlayer film. Is in the range of 88:12 to 92: 8, and is selected from the group of 3.0 atomic% or more of Zr and 2.0 atomic% or more of B, Y, Nb, Hf, and Ta as the additive element. A soft magnetic underlayer for a magnetic recording medium containing one or more elements, and the total content of the additional elements is in the range of 5.0 to 9.0 atomic% It is a film-forming target material, and a soft for magnetic recording medium in which a part of Co is substituted with Ni so that the Co—Fe alloy satisfies Ni / (Co + Ni) ≦ 0.1 in atomic%. A sputtering target material for forming a magnetic underlayer film.
Moreover, this invention is a manufacturing method of the soft-magnetic underlayer film for magnetic recording media formed by sputtering method using the said sputtering target material.

本発明により、高い飽和磁束密度と高い透磁率を両立したアモルファス構造の磁気記録媒体に用いられるCo−Fe系合金の軟磁性裏打ち層膜を提供でき、垂直磁気記録媒体を製造する上で極めて有効な技術となる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a soft magnetic underlayer film of a Co-Fe based alloy used for an amorphous structure magnetic recording medium that has both a high saturation magnetic flux density and a high magnetic permeability, which is extremely effective in manufacturing a perpendicular magnetic recording medium. Technology.

本発明の最も重要な特徴は、軟磁性裏打ち層膜として、高い飽和磁束密度と高い透磁率を両立したアモルファス構造の膜を実現するための最適な組成範囲を見出した点にある。   The most important feature of the present invention is that an optimum composition range for realizing an amorphous structure film having both a high saturation magnetic flux density and a high magnetic permeability is found as a soft magnetic underlayer film.

まず、本発明のベースとなるCo−Fe合金に関して説明する。
本発明の合金のベースとなるCo−Fe合金は、原子%で表されたCoとFeの組成の比率が88:12〜92:8の範囲内にある組成である。Co、Feを含有する合金組成において、Coに対するFeの含有量を8〜12原子%としたのは、この組成範囲にすることで、Co−Fe合金膜の飽和磁束密度を高く維持した上で、磁歪の低減が可能となり、透磁率を高くできるためである。なお、Feの含有量が8原子%に満たない場合には、飽和磁束密度の低下が大きくなり、含有量が12原子%を超えると磁歪が大きくなり透磁率が低下するため、8〜12原子%の範囲に制御することが重要である。
First, the Co—Fe alloy as the base of the present invention will be described.
The Co—Fe alloy used as the base of the alloy of the present invention has a composition in which the ratio of the composition of Co and Fe expressed in atomic% is in the range of 88:12 to 92: 8. In the alloy composition containing Co and Fe, the content of Fe with respect to Co is set to 8 to 12 atomic% while keeping the saturation magnetic flux density of the Co—Fe alloy film high by making this composition range. This is because magnetostriction can be reduced and the magnetic permeability can be increased. When the Fe content is less than 8 atomic%, the saturation magnetic flux density is greatly decreased. When the content exceeds 12 atomic%, the magnetostriction is increased and the magnetic permeability is decreased. It is important to control to the range of%.

本発明の軟磁性裏打ち層膜のCo−Fe系合金は、上述のCo−Fe合金に、添加元素として3.0原子%以上のZrと、2.0原子%以上のB、Y、Nb、Hf、Taの群から選ばれる1種または2種以上の元素とをいずれも含有し、その添加元素の含有量の合計が5.0〜9.0原子%の範囲内にあるものである。3.0原子%以上のZrの添加を必須としているのは、ZrはCo−Fe合金に対するアモルファス形成能が特に高く、少量の添加でアモルファス化を促進させることができるためである。なお、Zrを単独で含有させてもアモルファス化の促進には十分ではないため、さらに、2.0原子%以上のB、Y、Nb、Hf、Taの群から選ばれる1種または2種以上の元素を複合的に含有させることとする。B、Y、Nb、Hf、TaはZrとともに含有させることで、Co−Fe系合金の軟磁性裏打ち層膜のアモルファス化の促進を顕著にすることが可能となる。なお、Zrと、B、Y、Nb、Hf、Taの群から選択される元素との添加量の合計が5.0原子%に満たない場合にはCo−Fe合金の軟磁性裏打ち層膜のアモルファス化が困難となり、添加量の合計が9.0原子%を超えると飽和磁束密度の低下が大きくなるため、5.0〜9.0原子%の範囲に制御をすることが重要である。なお、Zrの添加量は軟磁性裏打ち層膜のアモルファス化の促進のため4.0原子%以上であることが望ましい。   The Co—Fe-based alloy of the soft magnetic underlayer film of the present invention includes the above-described Co—Fe alloy with an addition element of 3.0 atomic% or more of Zr and 2.0 atomic% or more of B, Y, Nb, One or two or more elements selected from the group of Hf and Ta are contained, and the total content of the additive elements is in the range of 5.0 to 9.0 atomic%. The reason why the addition of 3.0 atomic% or more of Zr is essential is that Zr has a particularly high ability to form an amorphous phase with respect to a Co—Fe alloy, and can be made amorphous by adding a small amount. In addition, since containing Zr alone is not sufficient for promoting the amorphization, it is further one or two or more selected from the group of B, Y, Nb, Hf, Ta of 2.0 atomic% or more. These elements are included in a composite manner. By containing B, Y, Nb, Hf, and Ta together with Zr, it becomes possible to significantly promote the amorphization of the soft magnetic underlayer film of the Co—Fe based alloy. When the total amount of addition of Zr and an element selected from the group of B, Y, Nb, Hf, and Ta is less than 5.0 atomic%, the soft magnetic underlayer film of the Co—Fe alloy Amorphization becomes difficult, and when the total amount of addition exceeds 9.0 atomic%, the saturation magnetic flux density decreases greatly. Therefore, it is important to control within the range of 5.0 to 9.0 atomic%. The amount of Zr added is preferably 4.0 atomic% or more in order to promote the amorphization of the soft magnetic underlayer film.

また、本発明の軟磁性裏打ち層膜のCo―Fe合金においては、原子%でNi/(Co+Ni)≦0.1を満たすように、Coの一部をNiで置換することが望ましい。この範囲でCoの一部をNiに置換することで、高い飽和磁束密度と高い透磁率を維持したまま軟磁性裏打ち層膜の耐食性を向上させることが可能となるためである。なお、Niは、上記の範囲を超えて含有させると、Co−Fe合金の飽和磁束密度が顕著に低下するため、Niを添加する際にはその含有量をこの範囲に制御することが望ましい。   Further, in the Co—Fe alloy of the soft magnetic underlayer film of the present invention, it is desirable to replace a part of Co with Ni so that Ni / (Co + Ni) ≦ 0.1 is satisfied in atomic%. This is because by replacing a part of Co with Ni in this range, the corrosion resistance of the soft magnetic underlayer film can be improved while maintaining a high saturation magnetic flux density and a high magnetic permeability. Note that, when Ni is contained exceeding the above range, the saturation magnetic flux density of the Co—Fe alloy is remarkably lowered. Therefore, when Ni is added, it is desirable to control the content within this range.

また、本発明の軟磁性裏打ち層膜のCo−Fe系合金においては、膜としての耐食性を向上させるため、Ti、V、Mo、Wの群から選ばれる1種または2種以上の元素を添加することも可能である。但し、Ti、V、Mo、Wは、多量に添加すると飽和磁束密度の低下が大きくなるため、添加量は5.0原子%以下とすることが望ましい。   In addition, in the Co—Fe based alloy of the soft magnetic underlayer film of the present invention, one or more elements selected from the group of Ti, V, Mo and W are added in order to improve the corrosion resistance as a film. It is also possible to do. However, if Ti, V, Mo, and W are added in a large amount, the saturation magnetic flux density is greatly reduced. Therefore, the addition amount is desirably 5.0 atomic% or less.

なお、本発明の軟磁性裏打ち層膜としては、記録磁界を効率良く引き込むため、1.4T以上の高い飽和磁束密度と、磁気記録媒体への書き込み性を向上させるため、5000以上の高い最大比透磁率とを有することが望ましい。   The soft magnetic underlayer film of the present invention has a high saturation magnetic flux density of 1.4 T or more in order to efficiently draw a recording magnetic field, and a high maximum ratio of 5000 or more in order to improve the writability to the magnetic recording medium. It is desirable to have magnetic permeability.

上述したCo−Fe系合金の軟磁性裏打ち層膜を形成する方法としては、真空蒸着法、スパッタリング法および化学気相成長法を用いることができる。中でも高速に安定した膜が形成できるため、Co−Fe系合金の軟磁性裏打ち層膜と同一組成のターゲット材をスパッタリングして薄膜を形成するスパッタリング法が好ましい。   As a method for forming the above-described Co—Fe-based soft magnetic underlayer film, a vacuum deposition method, a sputtering method, and a chemical vapor deposition method can be used. Among these, a sputtering method in which a thin film is formed by sputtering a target material having the same composition as that of the soft magnetic underlayer film of a Co—Fe-based alloy is preferable because a stable film can be formed at high speed.

上述したCo−Fe系合金の軟磁性裏打ち層膜を形成するために用いられるスパッタリングターゲット材の製造方法としては、溶解鋳造法や粉末焼結法が適用可能である。溶解鋳造法では、鋳造インゴット、もしくは、鋳造インゴットに塑性加工や加圧加工を加えたバルク体とすることで製造可能となる。また、粉末焼結法では、ガスアトマイズ法でCo−Fe系合金の最終組成の合金粉末を製造し原料粉末とすることや、複数の合金粉末や純金属粉末をCo−Fe系合金の最終組成となるように混合した混合粉末を原料粉末とすることが可能である。原料粉末の焼結方法としては、熱間静水圧プレス、ホットプレス、放電プラズマ焼結、押し出しプレス焼結等の加圧焼結を用いることが可能である。   As a manufacturing method of the sputtering target material used for forming the soft magnetic underlayer film of the Co—Fe-based alloy described above, a melt casting method or a powder sintering method can be applied. In the melt casting method, it is possible to produce a cast ingot or a bulk body obtained by applying plastic processing or pressure processing to the cast ingot. Moreover, in the powder sintering method, an alloy powder having the final composition of the Co—Fe based alloy is manufactured by a gas atomizing method and used as a raw material powder, or a plurality of alloy powders and pure metal powders are combined with the final composition of the Co—Fe based alloy The mixed powder thus mixed can be used as a raw material powder. As a method for sintering the raw material powder, it is possible to use pressure sintering such as hot isostatic pressing, hot pressing, discharge plasma sintering, and extrusion press sintering.

以下の実施例で本発明をさらに詳しく説明する。
(実施例1)
純度99.9%のCo、Co90−Zr10(原子%)、Co90−Nb20(原子%)、Fe90−Zr10(原子%)合金組成となる各ガスアトマイズ粉末を準備し、(Co90−Fe1092−Nb−Zr(原子%)合金組成となるように、秤量、混合して混合粉末を作製した。得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力122MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し直径180mm×厚さ5mmのCo−Fe系合金スパッタリングターゲット材を作製した。
上記で作製したターゲット材をDCマグネトロンスパッタ装置(アネルバ社製3010)のチャンバ内に配置し、チャンバ内を真空到達度2×10−5Pa以下となるまで排気を行った後、寸法75×25mmのガラス基板上に膜厚200nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚300nmの軟磁性裏打ち層膜を形成した。なお、スパッタリング条件はArガス圧0.6Pa、投入電力500Wで行った。
The following examples further illustrate the present invention.
Example 1
Each gas atomized powder with a 99.9% purity Co, Co 90 -Zr 10 (atomic%), Co 90 -Nb 20 (atomic%), and Fe 90 -Zr 10 (atomic%) alloy composition was prepared, and (Co 90 -Fe 10) 92 -Nb 3 -Zr 5 ( atomic%) so that the alloy composition, weighed and mixed to prepare a mixed powder. The obtained mixed powder was filled in a mild steel capsule and sealed by deaeration, and then sintered by hot isostatic pressing under conditions of a temperature of 950 ° C., a pressure of 122 MPa, and a holding time of 1 hour to prepare a sintered body. The obtained sintered body was machined to produce a Co—Fe based alloy sputtering target material having a diameter of 180 mm × thickness of 5 mm.
The target material prepared above is placed in a chamber of a DC magnetron sputtering apparatus (3010 manufactured by Anerva), and the inside of the chamber is evacuated to a vacuum level of 2 × 10 −5 Pa or less, and then a size of 75 × 25 mm. A soft magnetic underlayer film having a thickness of 200 nm was formed on the glass substrate. In addition, a soft magnetic backing layer film having a thickness of 300 nm was formed on a glass substrate having a size of φ10 mm. The sputtering conditions were Ar gas pressure 0.6 Pa and input power 500 W.

(比較例1)
純度99.9%の(Co70−Fe3090−Ta−Zr−Al(原子%)合金組成となるガスアトマイズ粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力122MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し直径180mm×厚さ5mmのCo−Fe系合金スパッタリングターゲット材を作製した。そして、作製したターゲット材を使用して、寸法75×25mmのガラス基板上に膜厚200nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚300nmの軟磁性裏打ち層膜を形成した。なお、スパッタリング条件は実施例1と同一で行った。
(Comparative Example 1)
A gas atomized powder having a purity of 99.9% (Co 70 —Fe 30 ) 90 —Ta 3 —Zr 5 —Al 2 (atomic%) alloy composition was filled into a mild steel capsule, degassed and sealed, and then at a temperature of 950 ° C. Sintered by hot isostatic pressing under the conditions of a pressure of 122 MPa and a holding time of 1 hour to prepare a sintered body. The obtained sintered body was machined to produce a Co—Fe based alloy sputtering target material having a diameter of 180 mm × thickness of 5 mm. And using the produced target material, the soft-magnetic backing layer film | membrane with a film thickness of 200 nm was formed on the glass substrate of a dimension 75x25 mm. In addition, a soft magnetic backing layer film having a thickness of 300 nm was formed on a glass substrate having a size of φ10 mm. The sputtering conditions were the same as in Example 1.

(比較例2)
純度99.9%の原料を用い(Co80−Fe10−Ni1092−Nb−Zr(原子%)組成の合金溶湯を真空溶解し、Cu製定盤上に外径280mm、内径200mm、高さ25mmの鋳鉄製リングを設置した鋳型に鋳造し、インゴットを作製した。そして、機械加工を施し直径190mm×厚さ5mmのCo−Fe系合金ターゲット材を得た。そして、作製したターゲット材を使用して、寸法75×25mmのガラス基板上に膜厚200nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚300nmの軟磁性裏打ち層膜を形成した。なお、スパッタリング条件は実施例1と同一で行った。
(Comparative Example 2)
Using a raw material with a purity of 99.9%, a molten alloy having a composition of (Co 80 —Fe 10 —Ni 10 ) 92 —Nb 3 —Zr 5 (atomic%) was vacuum-melted, and the outer diameter was 280 mm and the inner diameter was 200 mm on a Cu surface plate. The ingot was produced by casting in a mold provided with a cast iron ring having a height of 25 mm. Then, machining was performed to obtain a Co—Fe based alloy target material having a diameter of 190 mm × thickness of 5 mm. And using the produced target material, the soft-magnetic backing layer film | membrane with a film thickness of 200 nm was formed on the glass substrate of a dimension 75x25 mm. In addition, a soft magnetic backing layer film having a thickness of 300 nm was formed on a glass substrate having a size of φ10 mm. The sputtering conditions were the same as in Example 1.

上記でガラス基板(寸法75×25mm)上に形成した実施例1、比較例1、比較例2の軟磁性裏打ち層膜の試料について(株)リガク製X線回折装置RINT2500Vを使用し、線源にCoを用いてX線回折測定を行った。その結果、全ての試料において得られたX線回折パターンはブロードなピークであり、軟磁性裏打ち層膜がアモルファス構造であることを確認した。   Using the Rigaku X-ray diffractometer RINT2500V for the samples of the soft magnetic underlayer films of Example 1, Comparative Example 1 and Comparative Example 2 formed on the glass substrate (dimension 75 × 25 mm) as described above, a radiation source X-ray diffraction measurement was performed using Co. As a result, the X-ray diffraction patterns obtained in all the samples were broad peaks, and it was confirmed that the soft magnetic underlayer film had an amorphous structure.

次に、上記でガラス基板(φ10mm)上に形成した実施例1、比較例1、比較例2の軟磁性裏打ち層膜の試料について、東英工業(株)製振動試料型磁力計VSM−5−15型を使用し、面内方向のB−Hカーブを測定した。得られた最大印加磁場8000A/mのB−Hカーブから飽和磁束密度を求め、最大印加磁場800A/mのB−Hカーブから最大比透磁率を求めた。その結果を表1に示す。   Next, with respect to the samples of the soft magnetic underlayer films of Example 1, Comparative Example 1 and Comparative Example 2 formed on the glass substrate (φ10 mm) as described above, the vibration sample type magnetometer VSM-5 manufactured by Toei Kogyo Co., Ltd. Using a -15 type, the BH curve in the in-plane direction was measured. The saturation magnetic flux density was determined from the BH curve with the maximum applied magnetic field of 8000 A / m, and the maximum relative magnetic permeability was determined from the BH curve with the maximum applied magnetic field of 800 A / m. The results are shown in Table 1.

Figure 0005787273
Figure 0005787273

表1から、本発明の実施例1のCo−Fe系合金の軟磁性裏打ち層膜は、1.60Tと高い飽和磁束密度を有し、最大比透磁率も18000と高い値を有していることが分かり、アモルファス構造を有した上で高飽和磁束密度と高透磁率を実現できている。一方、比較例1のCo−Fe系合金の軟磁性裏打ち層膜は、Fe:Co=30:70とFeの含有量が多いため最大比透磁率が低い、また、比較例2のCo−Fe系合金の軟磁性裏打ち層膜は、Niの含有により最大比透磁率は高いが、Coとの対比でNi含有量が多いため飽和磁束密度が低いことがわかる。   From Table 1, the soft magnetic underlayer film of the Co—Fe-based alloy of Example 1 of the present invention has a high saturation magnetic flux density of 1.60 T, and the maximum relative magnetic permeability is also high as 18000. It can be seen that a high saturation magnetic flux density and a high magnetic permeability can be realized while having an amorphous structure. On the other hand, the soft magnetic underlayer film of the Co—Fe-based alloy of Comparative Example 1 has a low maximum relative magnetic permeability because of the large Fe content of Fe: Co = 30: 70, and the Co—Fe of Comparative Example 2 It can be seen that the soft magnetic underlayer film of the alloy is high in maximum relative magnetic permeability due to the Ni content but has a low saturation magnetic flux density due to the high Ni content in contrast to Co.

(実施例2)
純度99.9%のCo、Co90−Ta10−Zr(原子%)、Co90−Zr10(原子%)、Fe90−Zr10(原子%)合金組成となる各ガスアトマイズ粉末を準備し、(Co92−Fe92−Ta−Zr(原子%)合金組成となるように、秤量、混合して混合粉末を作製した。得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力122MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し直径180mm×厚さ4mmのCo−Fe系合金スパッタリングターゲット材を作製した。
上記で作製したターゲット材をDCマグネトロンスパッタ装置(アネルバ社製3010)のチャンバ内に配置し、チャンバ内を真空到達度2×10−5Pa以下となるまで排気を行った後、寸法75×25mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。なお、スパッタリング条件はArガス圧0.6Pa、投入電力1000Wで行った。
(Example 2)
Each gas atomized powder having a 99.9% purity Co, Co 90 -Ta 10 -Zr 2 (atomic%), Co 90 -Zr 10 (atomic%), and Fe 90 -Zr 10 (atomic%) alloy composition was prepared. , (Co 92 -Fe 8 ) 92 -Ta 3 -Zr 5 (atomic%) were weighed and mixed to produce a mixed powder so as to have an alloy composition. The obtained mixed powder was filled in a mild steel capsule and sealed by deaeration, and then sintered by hot isostatic pressing under conditions of a temperature of 950 ° C., a pressure of 122 MPa, and a holding time of 1 hour to prepare a sintered body. The obtained sintered body was machined to produce a Co—Fe based alloy sputtering target material having a diameter of 180 mm and a thickness of 4 mm.
The target material prepared above is placed in a chamber of a DC magnetron sputtering apparatus (3010 manufactured by Anerva), and the inside of the chamber is evacuated to a vacuum level of 2 × 10 −5 Pa or less, and then a size of 75 × 25 mm. A soft magnetic underlayer film having a thickness of 40 nm was formed on the glass substrate. In addition, a soft magnetic backing layer film having a thickness of 40 nm was formed on a glass substrate having a size of φ10 mm. The sputtering conditions were Ar gas pressure 0.6 Pa and input power 1000 W.

(実施例3)
純度99.9%のCo、Co90−Zr10(原子%)、Co88−B12(原子%)、Fe90−Zr10(原子%)合金組成となる各ガスアトマイズ粉末と純度99.9%のNi粉末を準備し、(Co85−Fe12−Ni92−Zr−B(原子%)合金組成となるように、秤量、混合して混合粉末を作製した。得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力122MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し直径180mm×厚さ4mmのCo−Fe系合金スパッタリングターゲット材を作製した。
上記で作製したターゲット材をDCマグネトロンスパッタ装置(アネルバ社製3010)のチャンバ内に配置し、チャンバ内を真空到達度2×10−5Pa以下となるまで排気を行った後、寸法75×25mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。なお、スパッタリング条件は実施例2と同一で行った。
(Example 3)
Each gas atomized powder having a purity of 99.9%, Co 90 -Zr 10 (atomic%), Co 88 -B 12 (atomic%), Fe 90 -Zr 10 (atomic%) alloy composition and purity of 99.9% prepare the Ni powder, (Co 85 -Fe 12 -Ni 3 ) 92 -Zr 5 -B 3 ( atomic%) so that the alloy composition, weighed and mixed to prepare a mixed powder. The obtained mixed powder was filled in a mild steel capsule and sealed by deaeration, and then sintered by hot isostatic pressing under conditions of a temperature of 950 ° C., a pressure of 122 MPa, and a holding time of 1 hour to prepare a sintered body. The obtained sintered body was machined to produce a Co—Fe based alloy sputtering target material having a diameter of 180 mm and a thickness of 4 mm.
The target material prepared above is placed in a chamber of a DC magnetron sputtering apparatus (3010 manufactured by Anerva), and the inside of the chamber is evacuated to a vacuum level of 2 × 10 −5 Pa or less, and then a size of 75 × 25 mm. A soft magnetic underlayer film having a thickness of 40 nm was formed on the glass substrate. In addition, a soft magnetic backing layer film having a thickness of 40 nm was formed on a glass substrate having a size of φ10 mm. The sputtering conditions were the same as in Example 2.

(実施例4)
純度99.9%のCo、Co90−Zr10(原子%)、Co80−Nb20(原子%)、Fe90−Zr10(原子%)合金組成となる各ガスアトマイズ粉末と純度99.9%のNi粉末を準備し、(Co85−Fe10−Ni92−Nb−Zr(原子%)合金組成となるように、秤量、混合して混合粉末を作製した。得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力122MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し直径180mm×厚さ4mmのCo−Fe系合金スパッタリングターゲット材を作製した。
上記で作製したターゲット材をDCマグネトロンスパッタ装置(アネルバ社製3010)のチャンバ内に配置し、チャンバ内を真空到達度2×10−5Pa以下となるまで排気を行った後、寸法75×25mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。なお、スパッタリング条件は実施例2と同一で行った。
Example 4
Each gas atomized powder having a purity of 99.9% Co, Co 90 -Zr 10 (atomic%), Co 80 -Nb 20 (atomic%), Fe 90 -Zr 10 (atomic%) alloy composition and purity 99.9% prepare the Ni powder, (Co 85 -Fe 10 -Ni 5 ) 92 -Nb 3 -Zr 5 ( atomic%) so that the alloy composition, weighed and mixed to prepare a mixed powder. The obtained mixed powder was filled in a mild steel capsule and sealed by deaeration, and then sintered by hot isostatic pressing under conditions of a temperature of 950 ° C., a pressure of 122 MPa, and a holding time of 1 hour to prepare a sintered body. The obtained sintered body was machined to produce a Co—Fe based alloy sputtering target material having a diameter of 180 mm and a thickness of 4 mm.
The target material prepared above is placed in a chamber of a DC magnetron sputtering apparatus (3010 manufactured by Anerva), and the inside of the chamber is evacuated to a vacuum level of 2 × 10 −5 Pa or less, and then a size of 75 × 25 mm. A soft magnetic underlayer film having a thickness of 40 nm was formed on the glass substrate. In addition, a soft magnetic backing layer film having a thickness of 40 nm was formed on a glass substrate having a size of φ10 mm. The sputtering conditions were the same as in Example 2.

(実施例5)
純度99.9%のCo、Co90−Ta10−Zr(原子%)、Co90−Zr10(原子%)、Fe90−Zr10(原子%)合金組成となる各ガスアトマイズ粉末を準備し、(Co90−Fe1092−Ta−Zr(原子%)合金組成となるように、秤量、混合して混合粉末を作製した。得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力122MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し直径180mm×厚さ4mmのCo−Fe系合金スパッタリングターゲット材を作製した。
上記で作製したターゲット材をDCマグネトロンスパッタ装置(アネルバ社製3010)のチャンバ内に配置し、チャンバ内を真空到達度2×10−5Pa以下となるまで排気を行った後、寸法75×25mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。
なお、スパッタリング条件は実施例2と同一で行った。
(Example 5)
Each gas atomized powder having a 99.9% purity Co, Co 90 -Ta 10 -Zr 2 (atomic%), Co 90 -Zr 10 (atomic%), and Fe 90 -Zr 10 (atomic%) alloy composition was prepared. , (Co 90 -Fe 10 ) 92 -Ta 3 -Zr 5 (atomic%) were weighed and mixed to produce a mixed powder. The obtained mixed powder was filled in a mild steel capsule and sealed by deaeration, and then sintered by hot isostatic pressing under conditions of a temperature of 950 ° C., a pressure of 122 MPa, and a holding time of 1 hour to prepare a sintered body. The obtained sintered body was machined to produce a Co—Fe based alloy sputtering target material having a diameter of 180 mm and a thickness of 4 mm.
The target material prepared above is placed in a chamber of a DC magnetron sputtering apparatus (3010 manufactured by Anerva), and the inside of the chamber is evacuated to a vacuum level of 2 × 10 −5 Pa or less, and then a size of 75 × 25 mm. A soft magnetic underlayer film having a thickness of 40 nm was formed on the glass substrate. In addition, a soft magnetic backing layer film having a thickness of 40 nm was formed on a glass substrate having a size of φ10 mm.
The sputtering conditions were the same as in Example 2.

(実施例6)
純度99.9%の原料を用い(Co90−Fe1092−Zr−B(原子%)組成の合金溶湯を真空溶解し、Cu製定盤上に外径280mm、内径200mm、高さ25mmの鋳鉄製リングを設置した鋳型に鋳造し、インゴットを作製した。そして、機械加工を施し直径190mm×厚さ4mmのCo−Fe系合金ターゲット材を得た。そして、作製したターゲット材を使用して、寸法75×25mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。なお、スパッタリング条件は実施例2と同一で行った。
(Example 6)
An alloy melt having a composition of 99.9% purity (Co 90 -Fe 10 ) 92 -Zr 5 -B 3 (atomic%) was vacuum-dissolved, and an outer diameter of 280 mm, an inner diameter of 200 mm, and a height on a Cu surface plate An ingot was produced by casting in a mold provided with a 25 mm cast iron ring. Then, machining was performed to obtain a Co—Fe based alloy target material having a diameter of 190 mm × thickness of 4 mm. And using the produced target material, the 40-nm-thick soft magnetic backing layer film | membrane was formed on the glass substrate of a dimension 75x25 mm. In addition, a soft magnetic backing layer film having a thickness of 40 nm was formed on a glass substrate having a size of φ10 mm. The sputtering conditions were the same as in Example 2.

(実施例7)
純度99.9%の原料を用い(Co90−Fe1093−Zr−B(原子%)組成の合金溶湯を真空溶解し、Cu製定盤上に外径280mm、内径200mm、高さ25mmの鋳鉄製リングを設置した鋳型に鋳造し、インゴットを作製した。そして、機械加工を施し直径190mm×厚さ4mmのCo−Fe系合金ターゲット材を得た。そして、作製したターゲット材を使用して、寸法75×25mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。なお、スパッタリング条件は実施例2と同一で行った。
(Example 7)
Using a raw material with a purity of 99.9%, a molten alloy having a composition of (Co 90 -Fe 10 ) 93 -Zr 5 -B 2 (atomic%) was vacuum-dissolved, and an outer diameter of 280 mm, an inner diameter of 200 mm, and a height on a Cu surface plate An ingot was produced by casting in a mold provided with a 25 mm cast iron ring. Then, machining was performed to obtain a Co—Fe based alloy target material having a diameter of 190 mm × thickness of 4 mm. And using the produced target material, the 40-nm-thick soft-magnetic backing layer film | membrane was formed on the glass substrate of a dimension 75x25 mm. In addition, a soft magnetic backing layer film having a thickness of 40 nm was formed on a glass substrate having a size of φ10 mm. The sputtering conditions were the same as in Example 2.

(実施例8)
純度99.9%の原料を用い(Co90−Fe1094−Zr−B(原子%)組成の合金溶湯を真空溶解し、Cu製定盤上に外径280mm、内径200mm、高さ25mmの鋳鉄製リングを設置した鋳型に鋳造し、インゴットを作製した。そして、機械加工を施し直径190mm×厚さ4mmのCo−Fe系合金ターゲット材を得た。そして、作製したターゲット材を使用して、寸法75×25mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。なお、スパッタリング条件は実施例2と同一で行った。
(Example 8)
Using a raw material with a purity of 99.9%, a molten alloy having a composition of (Co 90 -Fe 10 ) 94 -Zr 4 -B 2 (atomic%) was vacuum-dissolved, and an outer diameter of 280 mm, an inner diameter of 200 mm, and a height on a Cu surface plate An ingot was produced by casting in a mold provided with a 25 mm cast iron ring. Then, machining was performed to obtain a Co—Fe based alloy target material having a diameter of 190 mm × thickness of 4 mm. And using the produced target material, the 40-nm-thick soft-magnetic backing layer film | membrane was formed on the glass substrate of a dimension 75x25 mm. In addition, a soft magnetic backing layer film having a thickness of 40 nm was formed on a glass substrate having a size of φ10 mm. The sputtering conditions were the same as in Example 2.

(比較例3)
純度99.9%のCo、Co90−Zr10(原子%)、Co88−B12(原子%)、Fe90−Zr10(原子%)合金組成となる各ガスアトマイズ粉末を準備し、(Co50−Fe5089−Zr−B(原子%)合金組成となるように、秤量、混合して混合粉末を作製した。得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力122MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し直径180mm×厚さ4mmのCo−Fe系合金スパッタリングターゲット材を作製した。
上記で作製したターゲット材をDCマグネトロンスパッタ装置(アネルバ社製3010)のチャンバ内に配置し、チャンバ内を真空到達度2×10−5Pa以下となるまで排気を行った後、寸法75×25mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。また、寸法φ10mmのガラス基板上に膜厚40nmの軟磁性裏打ち層膜を形成した。
なお、スパッタリング条件は実施例2と同一で行った。
(Comparative Example 3)
Each gas atomized powder having a 99.9% purity Co, Co 90 -Zr 10 (atomic%), Co 88 -B 12 (atomic%), Fe 90 -Zr 10 (atomic%) alloy composition was prepared, and (Co 50 -Fe 50) 89 -Zr 6 -B 5 ( atomic%) so that the alloy composition, weighed and mixed to prepare a mixed powder. The obtained mixed powder was filled in a mild steel capsule and sealed by deaeration, and then sintered by hot isostatic pressing under conditions of a temperature of 950 ° C., a pressure of 122 MPa, and a holding time of 1 hour to prepare a sintered body. The obtained sintered body was machined to produce a Co—Fe based alloy sputtering target material having a diameter of 180 mm and a thickness of 4 mm.
The target material prepared above is placed in a chamber of a DC magnetron sputtering apparatus (3010 manufactured by Anerva), and the inside of the chamber is evacuated to a vacuum level of 2 × 10 −5 Pa or less, and then a size of 75 × 25 mm. A soft magnetic underlayer film having a thickness of 40 nm was formed on the glass substrate. In addition, a soft magnetic backing layer film having a thickness of 40 nm was formed on a glass substrate having a size of φ10 mm.
The sputtering conditions were the same as in Example 2.

上記でガラス基板(寸法75×25mm)上に形成した実施例2、実施例3、実施例4、実施例5、実施例6、実施例7、実施例8、比較例3の軟磁性裏打ち層膜の試料について(株)リガク製X線回折装置RINT2500Vを使用し、線源にCoを用いてX線回折測定を行った。その結果、全ての試料において得られたX線回折パターンはブロードなピークであり、軟磁性裏打ち層膜がアモルファス構造であることを確認した。   Soft magnetic backing layer of Example 2, Example 3, Example 4, Example 5, Example 6, Example 7, Example 8, and Comparative Example 3 formed on a glass substrate (dimension 75 × 25 mm) as described above The film sample was subjected to X-ray diffraction measurement using Rigaku X-ray diffraction apparatus RINT2500V and Co as the radiation source. As a result, the X-ray diffraction patterns obtained in all the samples were broad peaks, and it was confirmed that the soft magnetic underlayer film had an amorphous structure.

次に、上記でガラス基板(φ10mm)上に形成した実施例2、実施例3、実施例4、実施例5、実施例6、実施例7、実施例8、比較例3の軟磁性裏打ち層膜の試料について、東英工業(株)製振動試料型磁力計VSM−5−15型を使用し、面内方向のB−Hカーブを測定した。得られた最大印加磁場8000A/mのB−Hカーブから飽和磁束密度を求め、最大印加磁場800A/mのB−Hカーブから最大比透磁率を求めた。その結果を表2に示す。   Next, the soft magnetic backing layers of Example 2, Example 3, Example 4, Example 5, Example 6, Example 7, Example 8, and Comparative Example 3 formed on the glass substrate (φ10 mm) as described above. For the film sample, a BH curve in the in-plane direction was measured using a vibrating sample magnetometer VSM-5-15 manufactured by Toei Kogyo Co., Ltd. The saturation magnetic flux density was determined from the BH curve with the maximum applied magnetic field of 8000 A / m, and the maximum relative magnetic permeability was determined from the BH curve with the maximum applied magnetic field of 800 A / m. The results are shown in Table 2.

Figure 0005787273
Figure 0005787273

表2から、本発明の実施例2、実施例3、実施例4、実施例5、実施例6、実施例7、実施例8のCo−Fe系合金の軟磁性裏打ち層膜は、1.40T以上の高い飽和磁束密度を有し、最大比透磁率も5000以上と高い値を有していることが分かり、アモルファス構造を有した上で高飽和磁束密度と高透磁率を実現できている。一方、比較例3のCo−Fe系合金の軟磁性裏打ち層膜は、Fe:Co=50:50とFeの含有量が多いため飽和磁束密度は高いが最大比透磁率が低いことが分かる。   From Table 2, the soft magnetic backing layer films of the Co—Fe based alloys of Examples 2, 3, 4, 5, 6, 7, and 8 of the present invention are: It can be seen that it has a high saturation magnetic flux density of 40T or higher and a maximum relative magnetic permeability of a high value of 5000 or higher, and has a high saturation magnetic flux density and high magnetic permeability after having an amorphous structure. . On the other hand, it can be seen that the soft magnetic underlayer film of the Co—Fe-based alloy of Comparative Example 3 has a high saturation magnetic flux density but a low maximum relative magnetic permeability because of the high Fe content of Fe: Co = 50: 50.

本発明のCo−Fe系合金の軟磁性裏打ち層膜は、高い飽和磁束密度と高い透磁率を有しているため、磁記録媒体の軟磁性裏打ち層膜として有用であり、適用が可能である。   Since the soft magnetic underlayer film of the Co—Fe-based alloy of the present invention has a high saturation magnetic flux density and a high magnetic permeability, it is useful as a soft magnetic underlayer film for magnetic recording media and can be applied. .

Claims (7)

Co−Fe系合金でなる磁気記録媒体用の軟磁性裏打ち層膜であって、
該軟磁性裏打ち層膜における原子%で表されたCoとFeの組成の比率が88:12〜92:8の範囲内にあり、
添加元素として、3.0原子%以上のZrと、2.0原子%以上のB、Y、Nb、Hf、Taの群から選ばれる1種または2種以上の元素と、をいずれも含有し、
かつ、前記添加元素の含有量の合計が前記Co、前記Fe、および前記添加元素の合計を100原子%としたとき、5.0〜.0原子%の範囲内にある
ことを特徴とする磁気記録媒体用の軟磁性裏打ち層膜。
A soft magnetic underlayer film for a magnetic recording medium made of a Co-Fe alloy,
The ratio of the composition of Co and Fe expressed in atomic% in the soft magnetic underlayer film is in the range of 88:12 to 92: 8;
As an additive element, both contain 3.0 atomic% or more of Zr and 2.0 atomic% or more of one or more elements selected from the group of B, Y, Nb, Hf, and Ta. ,
And, when the total content of the additional element is the Co, the sum of 100 atomic% of the Fe, and the additive element, 5.0 to 8. A soft magnetic underlayer film for a magnetic recording medium, characterized by being in the range of 0 atomic%.
原子%でNi/(Co+Ni)≦0.1を満たすように、Coの一部をNiで置換することを特徴とする請求項1に記載の磁気記録媒体用の軟磁性裏打ち層膜。   2. The soft magnetic underlayer film for a magnetic recording medium according to claim 1, wherein a part of Co is substituted with Ni so as to satisfy Ni / (Co + Ni) ≦ 0.1 in atomic%. 1.4T以上の飽和磁束密度、および5000以上の最大比透磁率を有することを特徴とする請求項1または2に記載の磁気記録媒体用の軟磁性裏打ち層膜。   3. The soft magnetic underlayer film for a magnetic recording medium according to claim 1, which has a saturation magnetic flux density of 1.4 T or more and a maximum relative permeability of 5000 or more. Co−Fe系合金でなる磁気記録媒体用の軟磁性裏打ち層膜形成用スパッタリングターゲット材であって、
該スパッタリングターゲット材における原子%で表れたCoとFeの組成の比率が88:12〜92:8の範囲内にあり、
添加元素として、3.0原子%以上のZrと、2.0原子%以上のB、Y、Nb、Hf、Taの群から選ばれる1種または2種以上の元素と、をいずれも含有し、
かつ、前記添加元素の含有量の合計が前記Co、前記Fe、および前記添加元素の合計を100原子%としたとき、5.0〜.0原子%の範囲にある
ことを特徴とする磁気記録媒体用の軟磁性裏打ち層膜形成用スパッタリングターゲット材。
A sputtering target material for forming a soft magnetic underlayer film for a magnetic recording medium made of a Co-Fe alloy,
The ratio of the composition of Co and Fe expressed in atomic% in the sputtering target material is in the range of 88:12 to 92: 8;
As an additive element, both contain 3.0 atomic% or more of Zr and 2.0 atomic% or more of one or more elements selected from the group of B, Y, Nb, Hf, and Ta. ,
And, when the total content of the additional element is the Co, the sum of 100 atomic% of the Fe, and the additive element, 5.0 to 8. A sputtering target material for forming a soft magnetic underlayer film for a magnetic recording medium, characterized by being in the range of 0 atomic%.
原子%でNi/(Co+Ni)≦0.1を満たすように、Coの一部をNiで置換することを特徴とする請求項4に記載の磁気記録媒体用の軟磁性裏打ち層膜形成用スパッタリングターゲット材。   5. The sputtering for forming a soft magnetic underlayer for a magnetic recording medium according to claim 4, wherein a part of Co is substituted with Ni so as to satisfy Ni / (Co + Ni) ≦ 0.1 in atomic%. Target material. 請求項4に記載の磁気記録媒体用の軟磁性裏打ち層膜形成用スパッタリングターゲット材を用いて、スパッタリング法により形成されることを特徴とする磁気記録媒体用の軟磁性裏打ち層膜の製造方法。   A method for producing a soft magnetic underlayer film for a magnetic recording medium, comprising forming the soft magnetic underlayer film sputtering target material for a magnetic recording medium according to claim 4 by a sputtering method. 請求項5に記載の磁気記録媒体用の軟磁性裏打ち層膜形成用スパッタリングターゲット材を用いて、スパッタリング法により形成されることを特徴とする磁気記録媒体用の軟磁性裏打ち層膜の製造方法。   A method for producing a soft magnetic underlayer film for a magnetic recording medium, comprising forming the soft magnetic underlayer film forming sputtering target material for a magnetic recording medium according to claim 5 by a sputtering method.
JP2011134831A 2010-06-17 2011-06-17 Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium Active JP5787273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134831A JP5787273B2 (en) 2010-06-17 2011-06-17 Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010137838 2010-06-17
JP2010137838 2010-06-17
JP2011134831A JP5787273B2 (en) 2010-06-17 2011-06-17 Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2012022765A JP2012022765A (en) 2012-02-02
JP5787273B2 true JP5787273B2 (en) 2015-09-30

Family

ID=45776906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134831A Active JP5787273B2 (en) 2010-06-17 2011-06-17 Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5787273B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4331182B2 (en) * 2006-04-14 2009-09-16 山陽特殊製鋼株式会社 Soft magnetic target material
JP2008071420A (en) * 2006-09-14 2008-03-27 Showa Denko Kk Magnetic recording medium and magnetic recording/reproducing apparatus
JP2008121071A (en) * 2006-11-13 2008-05-29 Sanyo Special Steel Co Ltd SOFT MAGNETIC FeCo BASED TARGET MATERIAL
JP5403418B2 (en) * 2008-09-22 2014-01-29 日立金属株式会社 Method for producing Co-Fe-Ni alloy sputtering target material

Also Published As

Publication number Publication date
JP2012022765A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5290468B2 (en) Fe-Pt sputtering target in which C particles are dispersed
JP5457615B1 (en) Sputtering target for forming a magnetic recording film and method for producing the same
WO2012029498A1 (en) Fe-pt-type ferromagnetic material sputtering target
JP5359890B2 (en) Fe-Co alloy sputtering target material for soft magnetic film formation
WO2013175884A1 (en) Fe-Pt-Ag-C-BASED SPUTTERING TARGET HAVING C PARTICLES DISPERSED THEREIN, AND METHOD FOR PRODUCING SAME
TWI621718B (en) Fe-Co alloy sputtering target material and soft magnetic film layer and perpendicular magnetic recording medium using same
JP2004346423A (en) Fe-Co-B ALLOY TARGET MATERIAL, ITS MANUFACTURING METHOD, SOFT MAGNETIC FILM, MAGNETIC RECORDING MEDIUM AND TMR ELEMENT
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
JP4907259B2 (en) FeCoB-based target material with Cr added
JP2010159491A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL
JP4919162B2 (en) Fe-Co alloy sputtering target material and method for producing Fe-Co alloy sputtering target material
JP5631659B2 (en) Soft magnetic alloy and sputtering target material for perpendicular magnetic recording medium, and magnetic recording medium
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP5403418B2 (en) Method for producing Co-Fe-Ni alloy sputtering target material
JP5787273B2 (en) Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium
JP6128417B2 (en) Soft magnetic underlayer
JP2009203537A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2011068985A (en) Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM
JP6575775B2 (en) Soft magnetic film
JP2016149170A (en) Fe-Co-Nb BASED ALLOY SPUTTERING TARGET MATERIAL AND SOFT MAGNETIC FILM
JP2013143156A (en) Co-Fe ALLOY SOFT MAGNETIC BASE LAYER
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
JP2010150591A (en) Cobalt-iron based alloy for soft-magnetic film
JP6156734B2 (en) Fe-Co alloy sputtering target material and method for producing the same
JP5418897B2 (en) Method for producing Co-Fe alloy sputtering target material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5787273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150719

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350