WO2013115067A1 - 核酸合成反応の向上方法 - Google Patents

核酸合成反応の向上方法 Download PDF

Info

Publication number
WO2013115067A1
WO2013115067A1 PCT/JP2013/051490 JP2013051490W WO2013115067A1 WO 2013115067 A1 WO2013115067 A1 WO 2013115067A1 JP 2013051490 W JP2013051490 W JP 2013051490W WO 2013115067 A1 WO2013115067 A1 WO 2013115067A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
nucleic acid
amino acid
acid synthesis
reaction solution
Prior art date
Application number
PCT/JP2013/051490
Other languages
English (en)
French (fr)
Inventor
清之 松村
上森 隆司
向井 博之
Original Assignee
タカラバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカラバイオ株式会社 filed Critical タカラバイオ株式会社
Priority to US14/372,558 priority Critical patent/US9689013B2/en
Priority to EP13743868.5A priority patent/EP2811020B1/en
Priority to KR1020147022078A priority patent/KR20140127819A/ko
Priority to CN201380007277.0A priority patent/CN104093835B/zh
Priority to JP2013556356A priority patent/JP5849107B2/ja
Publication of WO2013115067A1 publication Critical patent/WO2013115067A1/ja
Priority to US15/602,456 priority patent/US10093968B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1276RNA-directed DNA polymerase (2.7.7.49), i.e. reverse transcriptase or telomerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07007DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase

Definitions

  • the present invention relates to a method for improving the reactivity of a nucleic acid synthesis reaction, a composition for a nucleic acid synthesis reaction, and a reaction buffer for a nucleic acid synthesis reaction.
  • a nucleic acid synthesis method in particular, a polymerase chain reaction (PCR) method, is a technique for simply amplifying a desired nucleic acid fragment in a test tube.
  • PCR polymerase chain reaction
  • Non-patent Documents 1 and 2 In nucleic acid synthesis reactions using DNA polymerase such as PCR, reactivity such as specificity often becomes a problem. In order to avoid non-specific nucleic acid synthesis reactions, attempts have been made to develop new DNA polymerases, improve primer design methods, optimize reaction solution compositions, add compounds, and the like. For example, it has been found that addition of betaine is effective for amplification of a GC-rich template (Non-patent Documents 1 and 2).
  • An object of the present invention is to provide a method for improving the reactivity of a nucleic acid synthesis reaction, a composition for a nucleic acid synthesis reaction, and a reaction buffer for a nucleic acid synthesis reaction.
  • the present inventors have found that the reactivity of the nucleic acid synthesis reaction can be improved by adding an ⁇ -amino acid to the reaction solution of the nucleic acid synthesis reaction, and the present invention has been completed.
  • the present invention [1] A method for improving the reactivity of a nucleic acid synthesis reaction, comprising a step of adding an ⁇ -amino acid to a reaction solution, [2] The method according to [1], wherein the ⁇ -amino acid is a compound represented by the following formula 1: (Wherein n is an integer of 2 or more), [3] The method according to [2], wherein n is an integer of 2 or more and 7 or less.
  • nucleic acid synthesis reaction is a polymerase chain reaction
  • method according to [1] comprising a step of preparing a reaction solution containing an ⁇ -amino acid, a DNA polymerase, at least one primer, and at least one deoxyribonucleotide triphosphate.
  • composition according to [7], further containing betaine [10] Reaction buffer for nucleic acid synthesis reaction containing ⁇ -amino acid, [11] The reaction buffer according to [10], wherein the ⁇ -amino acid is a compound represented by formula 1 represented by [2], [12] The reaction buffer according to [10], further containing betaine, [13] A kit for nucleic acid synthesis reaction comprising the following components: DNA polymerase, reaction buffer, at least one deoxyribonucleotide triphosphate, and ⁇ -amino acid, [14] The kit according to [13], wherein the ⁇ -amino acid is a compound represented by formula 1 represented by [2]. [15] The kit according to [13], further comprising betaine.
  • the present invention provides a method for improving the reactivity of a nucleic acid synthesis reaction, a composition for a nucleic acid synthesis reaction excellent in reactivity, and a reaction buffer for a nucleic acid synthesis reaction.
  • FIG. 3 is a diagram showing the results of agarose gel electrophoresis in Example 1.
  • FIG. 6 is a diagram showing the results of agarose gel electrophoresis in Example 2.
  • FIG. 6 is a diagram showing the results of agarose gel electrophoresis in Example 3. It is a figure which shows the result of the agarose gel electrophoresis in Example 4. It is a figure which shows the result of the agarose gel electrophoresis in Example 5.
  • the method for improving the reactivity of the nucleic acid synthesis reaction of the present invention includes a step of adding ⁇ -amino acid to the reaction solution.
  • the reactivity of the nucleic acid synthesis reaction can be improved by performing a nucleic acid synthesis reaction with DNA polymerase in a reaction solution containing ⁇ -amino acids.
  • the present invention also provides a method for synthesizing a nucleic acid having excellent reactivity.
  • the nucleic acid synthesis reaction in the method of the present invention is not particularly limited as long as it is a reaction that synthesizes DNA or RNA as a template and complementary DNA thereto.
  • Primer extension reaction, reverse transcription reaction, PCR, reverse transcription polymerase chain Well-known nucleic acid synthesis reactions such as reaction (RT-PCR), ICAN method, LAMP method, SDA method and the like are exemplified.
  • the improvement in the reactivity of the nucleic acid synthesis reaction is not particularly limited to the present invention.
  • the reactivity of the nucleic acid synthesis reaction can be improved by adding an ⁇ -amino acid to the reaction solution.
  • the present invention is not particularly limited, it is estimated from the effect of improving the reactivity of the nucleic acid synthesis reaction produced by the ⁇ -amino acid revealed by the present invention, the specificity of primer priming in the nucleic acid synthesis reaction is estimated by the ⁇ -amino acid.
  • the reactivity of a nucleic acid synthesis reaction with ⁇ -amino acid is improved by, for example, performing a nucleic acid synthesis reaction using a reaction solution containing ⁇ -amino acid and a reaction solution not containing ⁇ -amino acid, and then reacting the reaction solution after the reaction. Can be confirmed by comparing the reaction specificity of the nucleic acid synthesis reaction and the synthesis amount of DNA having the target nucleic acid sequence.
  • nucleic acid amplification is monitored using intercalating dyes or FRET (Fluorescence Resonance Energy Transfer) labeled probes, and the reaction specificity of the nucleic acid synthesis reaction or the amount of DNA synthesized having the target nucleic acid sequence is added to the reaction solution. This can also be confirmed by comparing with and without the ⁇ -amino acid.
  • the improvement in the reaction specificity is evaluated, for example, from a decrease in the frequency of nonspecific nucleic acid amplification and a decrease in the amount of synthesis of the nucleic acid.
  • an amino acid means an amino acid in a broad sense, and includes those containing a sulfonic acid group instead of a carboxyl group.
  • the ⁇ -amino acid is an amino acid having a primary amino group bonded to the end of the carbon chain opposite to the carbon to which the carboxyl group or sulfonic acid group is bonded, and is classified as an ⁇ -amino acid. It means the amino acid except.
  • ⁇ -amino acids also include ⁇ -amino acids, ⁇ -amino acids, ⁇ -amino acids, and ⁇ -amino acids.
  • ⁇ -amino acids used in the present invention include ⁇ -amino acids having 3 or more carbon atoms, and ⁇ -amino acids having 3 to 8 carbon atoms are preferred. Is exemplified. Examples of such ⁇ -amino acids include the following: (In the formula, n is an integer of 2 or more.) In particular, compounds in which n is an integer of 2 or more and 7 or less in the compound represented by Formula 1 are more preferable.
  • Examples of the ⁇ -amino acid represented by the above formula 1 include ⁇ -alanine, ⁇ -amino-n-butyric acid (GABA), ⁇ -aminopentanoic acid (5-aminopentanoic acid), ⁇ -aminohexanoic acid (6 -Aminohexanoic acid), ⁇ -aminoheptanoic acid (7-aminoenanthic acid), and 8-aminooctanoic acid, 9-aminononanoic acid, and 10-aminodecanoic acid.
  • GABA ⁇ -aminopentanoic acid
  • 5-aminopentanoic acid ⁇ -aminohexanoic acid
  • 6 -Aminohexanoic acid ⁇ -aminoheptanoic acid
  • 8-aminooctanoic acid 9-aminononanoic acid, and 10-aminodecanoic acid.
  • ⁇ -amino acid is added to the reaction solution in an amount effective for improving the reactivity of the nucleic acid synthesis reaction by DNA polymerase.
  • concentration of the ⁇ -amino acid in the reaction solution that can be expected to improve the reactivity of the nucleic acid synthesis reaction can be easily determined by, for example, the confirmation method for the improvement of the reactivity of the nucleic acid synthesis reaction described above.
  • the present invention is not particularly limited, for example, when 6-aminohexanoic acid is used as the ⁇ -amino acid in the method of the present invention, the concentration of 6-aminohexanoic acid in the reaction solution is preferably less than 300 mM.
  • the concentration of ⁇ -alanine in the reaction solution is preferably 1 M or less, more preferably 100 mM to 500 mM, further preferably 250 to 500 mM, for example 500 mM. .
  • the optimal concentration range of the ⁇ -amino acid in the reaction solution can be easily confirmed according to the type of DNA polymerase used, the target sequence, and the like, for example, by the same method as in Example 4 and Example 5 described later. it can.
  • the reaction solution for the nucleic acid synthesis reaction in the method of the present invention comprises a composition containing ⁇ -amino acid, DNA polymerase, reaction buffer, at least one primer, at least one deoxyribonucleotide, and a nucleic acid as a template.
  • a composition comprising a DNA polymerase, a reaction buffer, at least one primer, at least one deoxyribonucleotide, and an ⁇ -amino acid is an aspect of the present invention.
  • a kit containing a DNA polymerase, a reaction buffer, at least one deoxyribonucleotide triphosphate, and an ⁇ -amino acid is also an embodiment of the present invention.
  • the kit may contain one or more primers.
  • any DNA polymerase can be used in the present invention as long as it has an activity of synthesizing DNA complementary to DNA or RNA as a template.
  • the DNA polymerase used in the present invention is particularly preferably a heat-resistant DNA-dependent DNA polymerase.
  • thermostable DNA polymerases derived from eubacteria such as DNA polymerases derived from Thermos bacteria (Thermus aquaticus-derived DNA polymerases) and thermophilic Bacillus bacteria-derived DNA polymerases (Bacillus caldotenax-derived DNA polymerases, etc.), And Pyrococcus archaea-derived DNA polymerase (Pyrococcus sp.-derived DNA polymerase, etc.) and Thermococcus archaea-derived DNA polymerase (Thermococcus kodakaraensis-derived DNA polymerase etc.) are exemplified.
  • Two or more DNA polymerases may be used in combination as the DNA polymerase.
  • Examples of the two or more types of DNA polymerases include a combination of a DNA polymerase having 3 ′ ⁇ 5 ′ exonuclease activity and a DNA polymerase having substantially no 3 ′ ⁇ 5 ′ exonuclease activity.
  • a technique for performing PCR using a reaction solution containing two types of DNA polymerases is known as LA-PCR (Long and Accurate PCR).
  • the amount of DNA polymerase used in the method of the present invention is not particularly limited.
  • an amount used in a conventional nucleic acid synthesis reaction may be used.
  • suitable amounts of DNA polymerase used are well known to those skilled in the art.
  • the amount of the enzyme in the reaction solution is 0.125 U to 5 U.
  • the reaction buffer means a compound or a mixture having an action of reducing the fluctuation of the hydrogen ion concentration (pH) of the reaction solution.
  • a mixed solution of a weak acid and its salt or a weak base and its salt is widely used as a reaction buffer for the purpose of pH control because it has a strong buffering action.
  • Various reaction buffers known in the biochemical field can be used in the present invention.
  • reaction buffers such as Good buffer such as Tris hydrochloric acid, Tris acetic acid, HEPES potassium hydroxide, and HEPES sodium hydroxide, and phosphate buffer can be used.
  • the pH of the reaction solution in the method of the present invention is suitably set in the usual range in which the gene amplification reaction is carried out, for example, the pH at 25 ° C. is in the range of 8.0 to 9.5.
  • the primer is an oligonucleotide having a base sequence complementary to the template nucleic acid, and is not particularly limited as long as it anneals to the template nucleic acid under the reaction conditions used.
  • the primer chain length is preferably 6 nucleotides or more, more preferably 10 nucleotides or more from the viewpoint of specific annealing, and preferably 100 nucleotides or less, more preferably from the viewpoint of oligonucleotide synthesis. Is 30 nucleotides or less.
  • the oligonucleotide may be chemically synthesized by a known method, for example. Moreover, it may be an oligonucleotide derived from a biological sample, for example, isolated from a restriction endonuclease digest of DNA prepared from a natural sample.
  • Deoxyribonucleotide is a compound in which a phosphate group is bonded to deoxyribose bonded to an organic base via a phosphoester bond.
  • deoxyribonucleotides each having adenine, guanine, cytosine and thymine bases, are found in natural DNA.
  • the bases adenine, guanine, cytosine, and thymine are often abbreviated as A, G, C, and T, respectively.
  • Deoxyribonucleotides include free monophosphate, diphosphate, and triphosphate types (ie, the phosphate group has one, two, or three phosphate moieties, respectively).
  • deoxyribonucleotide triphosphates having hypoxanthine or uracil in the base moiety can also be used for nucleic acid synthesis reactions.
  • at least one of deoxyribonucleotide triphosphates eg, dATP, dCTP, dITP, dGTP, and dTTP
  • deoxyribonucleotide triphosphates contained in the composition of the present invention include four types of mixtures of dATP, dCTP, dGTP, and dTTP.
  • the step of adding the ⁇ -amino acid to the reaction solution in the method of the present invention may be carried out at any stage of the preparation of the reaction solution, and preferably before the reaction solution is incubated at a temperature suitable for the nucleic acid synthesis reaction.
  • a ⁇ -amino acid is added in advance to a solution containing a reaction buffer (reaction buffer), and the reaction buffer, at least one primer, at least one deoxyribonucleotide triphosphate, and a template are added.
  • a nucleic acid synthesis reaction may be carried out after preparing a reaction solution by combining with a nucleic acid.
  • a reaction buffer for nucleic acid synthesis containing ⁇ -amino acids is a preferred embodiment of the present invention.
  • the reaction buffer may further contain divalent cations and / or monovalent cations, their salts, and other components useful for nucleic acid synthesis reactions.
  • the divalent cation include divalent metal ions such as magnesium ions and manganese ions.
  • the monovalent cation sodium ion, potassium ion, ammonium ion and the like are preferably exemplified.
  • Preferred examples of other components useful for the nucleic acid synthesis reaction include anionic surfactants, nonionic surfactants, tetramethylammonium salts, and the like.
  • the method of the present invention may further include a step of adding betaine to the reaction solution.
  • the step of adding betaine to the reaction solution in the method of the present invention may be carried out at any stage of the preparation of the reaction solution, preferably before the reaction solution is subjected to incubation at a temperature suitable for the nucleic acid synthesis reaction. Is done.
  • the composition of the present invention and the reaction buffer of the present invention may contain betaine.
  • betaine has a positive charge and a negative charge at non-adjacent positions in the same molecule, and a positively charged atom has no dissociable hydrogen atom bonded thereto, and the molecule as a whole has a charge. It refers to the generic term for compounds that do not exist. Examples of typical betaines include trimethylglycine and its derivatives.
  • Betaine is known as an additive for improving the reactivity of nucleic acid synthesis reaction.
  • the inventors of the present application have found that ⁇ -amino acid and betaine have a synergistic effect on improving the reactivity of the nucleic acid synthesis reaction.
  • the addition of a high concentration of ⁇ -amino acid can suppress the nucleic acid amplification reaction, but it has also been observed that this suppression is eliminated by the addition of betaine.
  • the amount of betaine added in the method of the present invention is not particularly limited as long as the reactivity of the nucleic acid synthesis reaction by betaine is improved, but is preferably 0.1 M or more and 3 M or less, more preferably 0.3 M or more. 2.5M or less.
  • the present invention can also be used for real-time PCR capable of monitoring nucleic acid amplification using an intercalating dye, a FRET labeled probe, or the like.
  • the reaction solution, the composition of the present invention, and the reaction buffer of the present invention in the method of the present invention may contain an intercalating dye or a FRET labeled probe.
  • Example 1 After dissolving ⁇ -alanine (SIGMA-ALDRICH) in ultrapure water (Milli-Q water), 5M ⁇ -alanine adjusted to pH 8.5 by dropwise addition of Tris acetate buffer (pH 8.9). A solution was prepared. Similarly, 2M 6-aminohexanoic acid solution prepared by dissolving 6-aminohexanoic acid (SIGMA-ALDRICH) in MilliQ water and then adjusting the pH to 8.5, and 8-aminooctanoic acid (SIGMA-ALDRICH) was dissolved in Milli-Q water, and then a 1M 8-aminooctanoic acid solution having a pH adjusted to 8.5 was prepared. Betaine (trimethylglycine; SIGMA-ALDRICH, B2629) was dissolved in milliQ water to prepare a 5M betaine solution. These were used for the preparation of the following reaction solutions.
  • Human genomic DNA 100 ng as a template, using a primer consisting of the base sequence of SEQ ID NO: 1 and a primer consisting of the base sequence of SEQ ID NO: 2 as a primer pair, 987 bp of the TGF ⁇ 1 gene region (GC ratio 72.3%)
  • a PCR reaction solution for amplifying the protein was prepared on ice using TaKaRa Ex Taq (registered trademark) Hot Start Version (Takara Bio Inc.).
  • the PCR reaction solution is a ⁇ -amino acid having a final concentration of 500 mM ⁇ -alanine, a final concentration of 100 mM 6-aminohexanoic acid, or a final concentration of 50 mM 8 mM.
  • -Four kinds of reaction liquids were prepared in total: 20 ⁇ L reaction liquid containing aminooctanoic acid and 20 ⁇ L reaction liquid not containing ⁇ -amino acid as a control.
  • four kinds of reaction solutions containing betaine (trimethylglycine) having a final concentration of 300 mM were prepared.
  • Example 2 PCR reaction such that Pyrobest (registered trademark) DNA Polymerase (Takara Bio) is used instead of TaKaRa Ex Taq (registered trademark) (Takara Bio), and the final concentration of betaine is 1 M in the reaction solution containing betaine
  • Pyrobest (registered trademark) DNA Polymerase is available from Pyrococcus sp. This product contains the derived DNA polymerase.
  • FIG. 2 shows the results of subjecting 4 ⁇ L of the reaction solution after PCR to agarose gel electrophoresis.
  • M indicates a lane subjected to electrophoresis of 200 ng of a 1 kb DNA Ladder (Takara Bio) marker.
  • Takara Bio DNA Ladder
  • the PCR reaction solution contained betaine in addition to the ⁇ -amino acid, almost no non-specific amplification was observed, and the desired product of 987 bp was specifically amplified.
  • the reaction solution containing ⁇ -alanine and the PCR reaction solution containing 6-aminohexanoic acid and betaine the amplification amount of the target product of 987 bp was increased as compared with the reaction using the PCR reaction solution containing only betaine. .
  • Example 3 Instead of the primer pair that amplifies the TGF ⁇ 1 gene region, Homo sapiens DNA, translocation breakpoint sequences on 22q11: Type C (GenBank: AB261999.1) region of 965 bp (GC ratio 35.4%) The effect of the ⁇ -amino acid was confirmed in the same manner as in Example 1 except that the primer having the base sequence of No. 4 and the primer having the base sequence of SEQ ID NO: 4 were used.
  • FIG. 3 shows the results of subjecting 4 ⁇ L of the reaction solution after PCR to agarose gel electrophoresis.
  • M indicates a lane subjected to electrophoresis of 200 ng of a 1 kb DNA Ladder (Takara Bio) marker.
  • Example 4 The concentration of 6-aminohexanoic acid effective for improving the reactivity of the nucleic acid synthesis reaction was verified.
  • Nine kinds of reaction solutions were prepared in combination with 20 ⁇ L of the reaction solution as a control not containing.
  • PCR was performed in the same manner as in Example 1, and 4 ⁇ L of each reaction solution was subjected to agarose gel electrophoresis to confirm the chain length and amplification amount of the amplification product.
  • the results of agarose gel electrophoresis are shown in FIG. In the figure, M indicates a lane subjected to electrophoresis of 200 ng of a 1 kb DNA Ladder (Takara Bio) marker.
  • the addition of 20 mM or more of 6-aminohexanoic acid allows the observation of a band that appears to be derived from the target amplified DNA, and the addition of 200 mM of 6-aminohexanoic acid enables amplification of only the target DNA. Became.
  • Example 5 Instead of a primer pair that amplifies the TGF ⁇ 1 gene region, homo sapiens DNA, translocation breakpoint sequences on 22q11: Type C (GenBank: AB261999.1) region primer pair (primer consisting of the nucleotide sequence of SEQ ID NO: 3) The effective concentration of 6-aminohexanoic acid effective for improving the reactivity of the nucleic acid synthesis reaction was examined in the same manner as in Example 4 except that a primer having a base sequence was used.
  • FIG. 5 shows the results of subjecting 4 ⁇ L of the reaction solution after PCR to agarose gel electrophoresis.
  • M indicates a lane subjected to electrophoresis of 200 ng of a 1 kb DNA Ladder (Takara Bio) marker.
  • the addition of 10 mM or more of 6-aminohexanoic acid resulted in the observation of a band considered to be derived from the target amplified DNA, and the addition of 50 mM, 100 mM, or 200 mM of 6-aminohexanoic acid only allowed the target DNA.
  • the present invention is useful in a wide range of fields such as genetic engineering, biology, medicine and agriculture.
  • SEQ ID NO: 1 Synthetic primer for PCR to amplify of TGF-beta 1 gene.
  • SEQ ID NO: 2 Synthetic primer for PCR to amplify of TGF-beta 1 gene.
  • SEQ ID NO: 3 Synthetic primer for PCR to amplify of translocation breakpoint sequence region.
  • SEQ ID NO: 4 Synthetic primer for PCR to amplify of translocation breakpoint sequence region.

Abstract

 ω-アミノ酸を反応液に添加する工程を含む酸合成反応の反応性の向上方法、DNAポリメラーゼ、反応緩衝剤、少なくとも1種のプライマー、少なくとも1種のデオキシリボヌクレオチド三リン酸、及びω-アミノ酸を含有する核酸合成反応用の組成物、並びにω-アミノ酸を含有する核酸合成反応用の反応緩衝液を提供する。

Description

核酸合成反応の向上方法
 本発明は、核酸合成反応の反応性の向上方法、核酸合成反応用の組成物、及び核酸合成反応用の反応緩衝液に関する。
 核酸合成方法、特にポリメラーゼ連鎖反応(Polymerase Chain Reaction、PCR)法は、試験管内において簡便に所望の核酸断片を増幅する技術であり、近年、遺伝子に関する研究のみならず、生物学、医学、農業等の幅広い分野において不可欠な実験手法となっている。
 PCR等のDNAポリメラーゼを用いる核酸合成反応では、その特異性等の反応性がしばしば問題となる。非特異的な核酸合成反応を回避するために、新たなDNAポリメラーゼの開発、プライマーの設計方法の改善、反応液組成の至適化、化合物の添加等の試みがなされている。例えば、GCリッチな鋳型の増幅に、ベタインの添加が効果的であることが見出されている(非特許文献1、2)。
"American Journal of Human Genetics"、1994年9月1日、第55巻、補遺第3号、第A238頁 "Nucleic Acids Research"、1997年10月1日、第25巻、第19号、第3957頁~第3958頁
 核酸合成反応は、その反応性について改善の試みがなされてきたが、現在においても非特異的な反応が生じる場合や十分な量のDNAを合成することができない場合がある。このため、核酸合成反応の反応性の更なる改善が望まれている。本発明の目的は、核酸合成反応の反応性の向上方法、核酸合成反応用の組成物、及び核酸合成反応用の反応緩衝液を提供することにある。
 本発明者らは、核酸合成反応の反応液にω-アミノ酸を添加することにより、核酸合成反応の反応性を向上させることが可能であることを見出し、本発明を完成させるに至った。
 すなわち本発明は、
[1]核酸合成反応の反応性の向上方法であって、ω-アミノ酸を反応液に添加する工程を含む方法、
[2]ω-アミノ酸が、下記の式1で表される化合物である、[1]に記載の方法、
Figure JPOXMLDOC01-appb-C000002
(式中nは、2以上の整数である)、
[3]式中nが2以上、7以下の整数である、[2]に記載の方法。
[4]核酸合成反応がポリメラーゼ連鎖反応である、[1]に記載の方法、
[5]ω-アミノ酸、DNAポリメラーゼ、少なくとも1種のプライマー、及び少なくとも1種のデオキシリボヌクレオチド三リン酸を含有する反応液を調製する工程を含む、[1]に記載の方法、
[6]さらに、ベタインを反応液に添加する工程を含む、[1]に記載の方法、
[7]核酸合成反応用の組成物であって、DNAポリメラーゼ、反応緩衝剤、少なくとも1種のプライマー、少なくとも1種のデオキシリボヌクレオチド三リン酸、及びω-アミノ酸を含有する組成物、
[8]ω-アミノ酸が、[2]に示される式1で表される化合物である、[7]に記載の組成物、
[9]さらに、ベタインを含有する、[7]に記載の組成物、
[10]ω-アミノ酸を含有する核酸合成反応用の反応緩衝液、
[11]ω-アミノ酸が、[2]に示される式1で表される化合物である、[10]に記載の反応緩衝液、
[12]さらに、ベタインを含有する、[10]に記載の反応緩衝液、
[13]核酸合成反応のためのキットであって、以下の構成品を含むキット:DNAポリメラーゼ、反応緩衝剤、少なくとも1種のデオキシリボヌクレオチド三リン酸、及びω-アミノ酸、
[14]ω-アミノ酸が、[2]に示される式1で表される化合物である、[13]に記載のキット、
[15]さらに、ベタインを含有する、[13]に記載のキット
に関する。
 本発明により、核酸合成反応の反応性の向上方法、反応性に優れた核酸合成反応用の組成物、及び核酸合成反応用の反応緩衝液が提供される。
実施例1におけるアガロースゲル電気泳動の結果を示す図である。 実施例2におけるアガロースゲル電気泳動の結果を示す図である。 実施例3におけるアガロースゲル電気泳動の結果を示す図である。 実施例4におけるアガロースゲル電気泳動の結果を示す図である。 実施例5におけるアガロースゲル電気泳動の結果を示す図である。
 本発明の核酸合成反応の反応性の向上方法は、ω-アミノ酸を反応液に添加する工程を含む。ω-アミノ酸を含有する反応液でDNAポリメラーゼによる核酸合成反応を行うことにより、核酸合成反応の反応性を向上させることができる。また、本発明は反応性に優れた核酸の合成方法を提供する。
 本発明の方法における核酸合成反応としては、DNA又はRNAを鋳型としてこれに相補的なDNAを合成する反応であれば特に限定はないが、プライマー伸長反応、逆転写反応、PCR、逆転写ポリメラーゼ連鎖反応(RT-PCR)、ICAN法、LAMP法、SDA法等の当分野で周知の核酸合成反応が例示される。
 本発明をPCRの反応性の向上に利用する場合、PCRの温度サイクル条件としては一般的な条件が適用できる。例えば、二本鎖鋳型DNAの一本鎖への解離(変性)、一本鎖鋳型DNAへのプライマーのアニーリング、プライマーからの相補鎖合成(伸長)の3つのステップからなる反応により、又は「シャトルPCR」[『PCR法最前線』、「蛋白質核酸  酵素」別冊、第41巻、第5号、425頁~428頁(1996)]と呼ばれる、前述の3ステップ反応のうちプライマーのアニーリング及び伸長のステップを同一温度で行なう2ステップ反応によりPCRが実施される。
 本明細書において核酸合成反応の反応性の向上とは、本発明を特に限定するものではないが、例えば反応特異性の向上、及び標的とする核酸配列を有するDNAの合成量の増大からなる群より選択される効果のことをいう。本発明によれば、ω-アミノ酸を反応液に添加することによって、核酸合成反応の反応性を向上させることができる。本発明を特に限定するものではないが、本発明により明らかになったω-アミノ酸が奏する核酸合成反応の反応性の向上効果から推測すると、ω-アミノ酸が核酸合成反応におけるプライマーのプライミングの特異性を向上させる性質を有している可能性がある。ω-アミノ酸による核酸合成反応の反応性の向上は、例えばω-アミノ酸を含む反応液と、ω-アミノ酸を含まない反応液とを用いてそれぞれ核酸合成反応を行った後、反応後の反応液をアガロースゲル電気泳動に供し、核酸合成反応の反応特異性や標的とする核酸配列を有するDNAの合成量を比較することにより確認することができる。また、インターカレーティング色素やFRET(Fluorescence Resonance Energy Transfer)標識プローブ等を用いて核酸の増幅をモニターし、核酸合成反応の反応特異性や標的とする核酸配列を有するDNA合成量を、反応液にω-アミノ酸を含む場合と含まない場合とで比較することによっても確認できる。前記の反応特異性の向上は、例えば非特異的な核酸の増幅が起こる頻度の減少や当該核酸の合成量の減少から評価される。
 本明細書においてアミノ酸とは、広義のアミノ酸を意味し、カルボキシル基の代わりにスルホン酸基を含むものも含まれる。本明細書においてω-アミノ酸とは、カルボキシル基又はスルホン酸基の結合した炭素と反対側の炭素鎖末端に第一級アミノ基が結合したアミノ酸であって、α-アミノ酸に分類されるアミノ酸を除くアミノ酸のことをいう。本明細書におけるω-アミノ酸には、β-アミノ酸、γ-アミノ酸、δ-アミノ酸、及びε-アミノ酸も含まれる。本発明を特に限定するものではないが、本発明に使用されるω-アミノ酸としては、炭素数が3個以上のω-アミノ酸が例示され、炭素数が3~8個のω-アミノ酸が好適に例示される。このようなω-アミノ酸としては、例えば下記の
Figure JPOXMLDOC01-appb-C000003
(式中nは、2以上の整数である。)
で表わされる化合物が例示され、なかでも前記の式1で表わされる化合物においてnが2以上、7以下の整数である化合物がより好適に例示される。
 前記の式1で表わされるω-アミノ酸としては、例えば、β-アラニン、γ-アミノ-n-酪酸(GABA)、δ-アミノペンタン酸(5-アミノペンタン酸)、ε-アミノヘキサン酸(6-アミノヘキサン酸)、ω-アミノヘプタン酸(7-アミノエナント酸)、及び8-アミノオクタン酸、9-アミノノナン酸、及び10-アミノデカン酸が挙げられる。
 本発明の方法においてω-アミノ酸は、DNAポリメラーゼによる核酸合成反応の反応性の向上に効果のある量で反応液に添加される。核酸合成反応の反応性の向上が期待できる反応液中のω-アミノ酸の濃度は、例えば前記の核酸合成反応の反応性の向上の確認方法により容易に決定できる。本発明を特に限定するものではないが、例えば本発明の方法におけるω-アミノ酸として6-アミノヘキサン酸を利用する場合は、反応液中の6-アミノヘキサン酸の濃度は300mM未満が好ましく、10~200mMがより好ましく、20~200mM、例えば100mMが更により好ましい。また、本発明の方法におけるω-アミノ酸としてβ-アラニンを用いる場合は、反応液中のβ-アラニンの濃度は1M以下が好ましく、100mM~500mMがより好ましく、250~500mM、例えば500mMがさらに好ましい。反応液中のω-アミノ酸の至適な濃度範囲は、例えば後述の実施例4や実施例5と同様の方法により、使用するDNAポリメラーゼの種類や標的配列等に応じて容易に確認することができる。
 本発明の方法における核酸合成反応のための反応液は、ω-アミノ酸、DNAポリメラーゼ、反応緩衝剤、少なくとも1種のプライマー、少なくとも1種のデオキシリボヌクレオチド、及び鋳型となる核酸を含む組成物等を組み合わせて調製することができる。DNAポリメラーゼ、反応緩衝剤、少なくとも1種のプライマー、少なくとも1種のデオキシリボヌクレオチド、及びω-アミノ酸を含有する組成物は、本発明の一態様である。また、DNAポリメラーゼ、反応緩衝剤、少なくとも1種のデオキシリボヌクレオチド三リン酸、及びω-アミノ酸を含有するキットも本発明の一態様である。このキットは、1種以上のプライマーを含んでいてもよい。
 DNAポリメラーゼは、DNA又はRNAを鋳型としてこれに相補的なDNAを合成する活性を有するものであれば、いずれのDNAポリメラーゼであっても本発明に使用できる。本発明に使用されるDNAポリメラーゼとしては、特に耐熱性のDNA依存性DNAポリメラーゼが好ましい。このようなDNAポリメラーゼとしては、Thermus属細菌由来DNAポリメラーゼ(Thermus aquaticus由来DNAポリメラーゼ等)や好熱性Bacillus属細菌由来DNAポリメラーゼ(Bacillus caldotenax由来DNAポリメラーゼ等)等の真正細菌由来の耐熱性DNAポリメラーゼ、及びPyrococcus属古細菌由来DNAポリメラーゼ(Pyrococcus sp.由来DNAポリメラーゼ等)やThermococcus属古細菌由来DNAポリメラーゼ(Thermococcus Kodakaraensis由来DNAポリメラーゼ等)の古細菌由来の耐熱性DNAポリメラーゼが例示される。
 DNAポリメラーゼとして2種以上のDNAポリメラーゼを組み合わせて使用してもよい。2種類以上のDNAポリメラーゼとしては、3´→5´エキソヌクレアーゼ活性を有するDNAポリメラーゼと3´→5´エキソヌクレアーゼ活性を実質的に有さないDNAポリメラーゼとの組み合わせが例示される。なお、このような2種類のDNAポリメラーゼを含む反応液でPCRを行う技術は、LA-PCR(Long and Accurate PCR)として知られている。
 本発明の方法におけるDNAポリメラーゼの使用量は、特に限定はないが、例えば従来の核酸合成反応において使用されている量を使用すればよい。PCR法の場合、好適なDNAポリメラーゼの使用量は当業者に周知である。例えばThermus aquaticus由来DNAポリメラーゼを用いて反応液量25μLでDNA合成反応を行う場合、反応液中の該酵素量は0.125U~5Uである。
 本明細書において反応緩衝剤とは、反応液の水素イオン濃度(pH)の変動を和らげる作用を持つ化合物又は混合物のことをいう。一般に弱酸とその塩、あるいは弱塩基とその塩の混合溶液は、強い緩衝作用を持つため反応緩衝剤としてpHコントロールの目的で広く用いられている。本発明には生化学分野で公知の、各種の反応緩衝剤を使用することができる。例えば、Tris塩酸、Tris酢酸、HEPES水酸化カリウム、HEPES水酸化ナトリウムなどのグッドバッファーやリン酸バッファー等の反応緩衝剤が挙げられる。本発明の方法における反応液のpHは、遺伝子増幅反応が実施される通常の範囲、例えば25℃におけるpHが8.0~9.5の範囲に設定されるのが適当である。
 プライマーは、鋳型となる核酸に相補的な塩基配列を有するオリゴヌクレオチドであり、使用される反応条件において鋳型となる核酸に対してアニールするものであれば特に限定されるものではない。本発明をPCRに利用する場合には、標的配列を増幅可能な互いに対向する2種又はそれ以上のプライマーを設計して用いればよい。プライマーの鎖長は、特異的なアニーリングを行う観点から、好ましくは6ヌクレオチド以上であり、更に好ましくは10ヌクレオチド以上であり、オリゴヌクレオチドの合成の観点から、好ましくは100ヌクレオチド以下であり、更に好ましくは30ヌクレオチド以下である。前記オリゴヌクレオチドは、例えば公知の方法で化学的に合成されたものであっても良い。また、生物試料由来のオリゴヌクレオチドであっても良く、例えば天然の試料より調製したDNAの制限エンドヌクレアーゼ消化物から単離して作製しても良い。
 デオキシリボヌクレオチドは、有機塩基に結合したデオキシリボースにホスホエステル結合を介してリン酸基が結合した化合物である。それぞれアデニン、グアニン、シトシン及びチミン塩基を有する4種のデオキシリボヌクレオチドが天然型DNAに見られる。塩基のアデニン、グアニン、シトシン、及びチミンはそれぞれ、A、G、C、及びTと略されることが多い。デオキシリボヌクレオチドは、遊離の一リン酸型、二リン酸型及び三リン酸型(すなわち、リン酸基が、それぞれ、1つ、2つ又は3つのリン酸部分を有する)を含む。また、塩基部分にヒポキサンチンやウラシルを有するデオキシリボヌクレオチド三リン酸も核酸合成反応に使用できることが知られている。本発明には、デオキシリボヌクレオチド三リン酸(例えば、dATP、dCTP、dITP、dGTP及びdTTP)及びそれらの誘導体の少なくとも1種が使用される。本発明の組成物に含まれるデオキシリボヌクレオチド三リン酸としては、好適にはdATP、dCTP、dGTP、及びdTTPの4種類の混合物が例示される。
 本発明の方法におけるω-アミノ酸を反応液に添加する工程は、反応液の調製のいずれの段階において実施されてもよく、好ましくは反応液を核酸合成反応に適した温度でのインキュベートに供する前に実施される。例えば、反応緩衝剤を含む溶液(反応緩衝液)にω-アミノ酸を予め添加し、この反応緩衝液と、DNAポリメラーゼ、少なくとも1種のプライマー、少なくとも1種のデオキシリボヌクレオチド三リン酸、及び鋳型となる核酸とを組み合わせて反応液を調製した後に、核酸合成反応を実施してもよい。
 従って、ω-アミノ酸を含有する核酸合成用の反応緩衝液は、本発明の好適な一態様である。反応緩衝液には、ω-アミノ酸や反応緩衝剤の他に、2価陽イオン及び/又は1価陽イオンやそれらの塩、核酸合成反応に有用なその他の成分をさらに含んでいてもよい。2価の陽イオンとしては、マグネシウムイオンやマンガンイオン等の2価の金属イオンが好適に例示される。1価の陽イオンとしては、ナトリウムイオン、カリウムイオン、アンモニウムイオン等が好適に例示される。核酸合成反応に有用なその他の成分としては、陰イオン性の界面活性剤、非イオン性の界面活性剤、テトラメチルアンモニウム塩等が好適に例示される。
 本発明の方法は、さらにベタインを反応液に添加する工程を含んでいてもよい。本発明の方法におけるベタインを反応液に添加する工程は、反応液の調製のいずれの段階において実施されてもよく、好ましくは反応液を核酸合成反応に適した温度でのインキュベーションに供する前に実施される。また、本発明の組成物や本発明の反応緩衝液は、ベタインを含んでいてもよい。本発明においてベタインとは、正電荷と負電荷を同一分子内の隣り合わない位置に持ち、正電荷をもつ原子には解離しうる水素原子が結合しておらず、分子全体としては電荷を持たない化合物の総称のことを指す。代表的なベタインの例としては、トリメチルグリシンやその誘導体が挙げられる。
 ベタインは、核酸合成反応の反応性を向上させる添加物として公知である。本願発明者らは、ω-アミノ酸とベタインとは、核酸合成反応の反応性の向上に関して相乗効果を奏することを見出した。また、高濃度のω-アミノ酸の添加により核酸増幅反応が抑制されることがあるが、この抑制がベタインの添加により解消されることも観察している。本発明の方法におけるベタインの添加量は、ベタインによる核酸合成反応の反応性の向上が認められる範囲であれば特に限定はないが、好ましくは0.1M以上3M以下、さらに好ましくは0.3M以上2.5M以下である。
 本発明は、インターカレーティング色素やFRET標識プローブ等を用いる核酸の増幅をモニタリング可能なリアルタイムPCRにも利用できる。この場合、本発明の方法における反応液、本発明の組成物、及び本発明の反応緩衝液は、インターカレーティング色素やFRET標識プローブを含みうる。
 以下に実施例を挙げて本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、以下の実施例におけるPCRの反応装置としては、TaKaRa PCR Thermal Cycler Dice(登録商標) Gradient(タカラバイオ社)を使用した。
実施例1
 β―アラニン(SIGMA-ALDRICH社)を超純水(ミリQ水)に溶解した後、トリス酢酸緩衝液(pH8.9)を滴下することでpHを8.5に調整した5Mのβ-アラニン溶液を調製した。同様にして、6-アミノヘキサン酸(SIGMA-ALDRICH社)をミリQ水に溶解した後にpHを8.5に調整した2Mの6-アミノヘキサン酸溶液、及び8-アミノオクタン酸(SIGMA-ALDRICH社)をミリQ水に溶解した後にpHを8.5に調整した1Mの8-アミノオクタン酸溶液を調製した。また、ベタイン(トリメチルグリシン;SIGMA-ALDRICH社、B2629)をミリQ水に溶解し、5Mのベタイン溶液を調製した。これらを下記の反応液の調製に用いた。
 Human genomic DNA(クロンテック社) 100ngを鋳型とし、プライマー対として配列番号1の塩基配列からなるプライマー及び配列番号2の塩基配列からなるプライマーを用い、TGFβ1遺伝子領域の987bp(GC比率72.3%)を増幅するためのPCR反応液を、TaKaRa Ex Taq(登録商標) Hot Start Version(タカラバイオ社)を用いて氷上調製した。PCR反応液は、製品に添付の説明書に記載の反応液の組成に加えて、ω-アミノ酸として終濃度500mMのβ-アラニン、終濃度100mMの6-アミノヘキサン酸、又は終濃度50mMの8-アミノオクタン酸を含む20μLの反応液、及びω-アミノ酸を含まない対照としての20μLの反応液、の合わせて4種類の反応液を調製した。また、これらの反応液の組成に加えてさらに終濃度300mMのベタイン(トリメチルグリシン)を含む反応液を4種類調製した。次に、氷上調製したこれらのPCR反応液について、94℃、1分の活性化反応後、98℃、10秒~55℃、30秒~72℃、1分を1サイクルとする35サイクルのPCRを実施した。PCR終了後、各反応液のうち4μLをアガロースゲル電気泳動に供して増幅産物の鎖長と増幅量を確認した。アガロースゲル電気泳動の結果を図1に示す。図中Mは、1kb DNA Ladder(タカラバイオ社)マーカー200ngの電気泳動を行ったレーンであることを示す。
 その結果、PCR反応液中にω-アミノ酸を含まない場合は、987bpの目的増幅産物に相当するバンドがほとんど認められなかった。これに対し、各種ω-アミノ酸を含むPCR反応液では、987bpの目的増幅産物に相当するバンドが認められた。また、ω-アミノ酸に加えてベタインを含むPCR反応液では、987bpの目的増幅産物の増幅量が増加した。さらに、β―アラニンを含むPCR反応液や6-アミノヘキサン酸とベタインとを含むPCR反応液では、987bpの目的増幅産物の特異的な増幅が認められた。
実施例2
 TaKaRa Ex Taq(登録商標)(タカラバイオ社)に代えてPyrobest(登録商標) DNA Polymerase(タカラバイオ社)を用いる点、及びベタインを含む反応液についてベタインの終濃度が1MとなるようにPCR反応液を調製する点以外は実施例1と同様の方法で、ω-アミノ酸の効果を検討した。なお、Pyrobest(登録商標) DNA Polymeraseは、Pyrococcus sp.由来DNAポリメラーゼを含む製品である。
 PCR後の反応液のうち4μLをアガロースゲル電気泳動に供した結果を図2に示す。図中Mは、1kb DNA Ladder(タカラバイオ社)マーカー200ngの電気泳動を行ったレーンであることを示す。その結果、PCR反応液中にω-アミノ酸やベタインを含まない場合、非特異的増幅産物のみが認められた。これに対し、PCR反応液中にω-アミノ酸が含まれる場合には、主要な増幅産物として987bpの目的産物が認められ、さらには増幅産物量の増大も認められた。また、PCR反応液中にω-アミノ酸に加えてベタインを含む場合には、非特異的増幅はほとんど観察されず、987bpの目的産物が特異的に増幅していた。また、β―アラニンを含む反応液や6-アミノヘキサン酸とベタインとを含むPCR反応液では、ベタインのみを含むPCR反応液による反応に比べて、987bpの目的産物の増幅量が増加していた。
実施例3
 TGFβ1遺伝子領域を増幅するプライマー対に代えてHomo sapiens DNA, translocation breakpoint sequences on 22q11: Type C(GenBank:AB261999.1)領域の965bp(GC比率35.4%)を増幅するプライマー対(配列番号3の塩基配列からなるプライマー、及び配列番号4の塩基配列からなるプライマー)を使用する以外は、実施例1と同様の方法で、ω-アミノ酸の効果を確認した。
 PCR後の反応液のうち4μLをアガロースゲル電気泳動に供した結果を図3に示す。図中Mは、1kb DNA Ladder(タカラバイオ社)マーカー200ngの電気泳動を行ったレーンであることを示す。その結果、PCR反応液中にω-アミノ酸を含まない場合は、目的産物以外に非特異的な増幅が観察されたが、各種ω-アミノ酸を含むPCR反応液では、これらの非特異的な増幅は抑制されていた。
 以上のことより、GC比率の高い鋳型ばかりではなく、GC比率の低い(AT比率の高い)増幅困難な鋳型DNAに対してもPCR反応液へのω-アミノ酸の添加は有効であることが示された。
実施例4
 核酸合成反応の反応性の向上に有効な6-アミノヘキサン酸の濃度を検証した。各種のω-アミノ酸の代わりに終濃度2mM、5mM、10mM、20mM、50mM、100mM、200mM、又は300mMの6-アミノヘキサン酸を含む以外は実施例1と同様の反応液、及びω-アミノ酸を含まない対照としての20μLの反応液、の合わせて9種類の反応液を調製した。次に、実施例1と同様の方法でPCRを行った後、各反応液のうち4μLをアガロースゲル電気泳動に供して増幅産物の鎖長と増幅量を確認した。アガロースゲル電気泳動の結果を図4に示す。図中Mは、1kb DNA Ladder(タカラバイオ社)マーカー200ngの電気泳動を行ったレーンであることを示す。
 その結果、20mM以上の6-アミノヘキサン酸の添加で目的の増幅DNAに由来すると思われるバンドが観察されるようになり、200mMの6-アミノヘキサン酸の添加で目的のDNAのみの増幅が可能になった。
実施例5
 TGFβ1遺伝子領域を増幅するプライマー対に代えてHomo sapiens DNA, translocation breakpoint sequences on 22q11: Type C(GenBank:AB261999.1)領域のプライマー対(配列番号3の塩基配列からなるプライマー、及び配列番号4の塩基配列からなるプライマー)を使用する以外は実施例4と同様の方法で、核酸合成反応の反応性の向上に有効な6-アミノヘキサン酸の有効濃度を検討した。
 PCR後の反応液のうち4μLをアガロースゲル電気泳動に供した結果を図5に示す。図中Mは、1kb DNA Ladder(タカラバイオ社)マーカー200ngの電気泳動を行ったレーンであることを示す。その結果、10mM以上の6-アミノヘキサン酸の添加で目的の増幅DNAに由来すると思われるバンドが観察されるようになり、50mM、100mM、200mMの6-アミノヘキサン酸の添加で目的のDNAのみの増幅が可能になった。
 本発明は、遺伝子工学、生物学、医学、農業等の幅広い分野において有用である。
SEQ ID NO:1 ; Synthetic primer for PCR to amplify of TGF-beta 1 gene.
SEQ ID NO:2 ; Synthetic primer for PCR to amplify of TGF-beta 1 gene.
SEQ ID NO:3 ; Synthetic primer for PCR to amplify of translocation breakpoint sequence region.
SEQ ID NO:4 ; Synthetic primer for PCR to amplify of translocation breakpoint sequence region.

Claims (15)

  1.  核酸合成反応の反応性の向上方法であって、ω-アミノ酸を反応液に添加する工程を含む方法。
  2.  ω-アミノ酸が、下記の式1で表される化合物である、請求項1に記載の方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中nは、2以上の整数である。)
  3.  式中nが2以上、7以下の整数である、請求項2に記載の方法。
  4.  核酸合成反応がポリメラーゼ連鎖反応である、請求項1に記載の方法。
  5.  ω-アミノ酸、DNAポリメラーゼ、少なくとも1種のプライマー、及び少なくとも1種のデオキシリボヌクレオチド三リン酸を含有する反応液を調製する工程を含む、請求項1に記載の方法。
  6.  さらに、ベタインを反応液に添加する工程を含む、請求項1に記載の方法。
  7.  核酸合成反応用の組成物であって、
    DNAポリメラーゼ、
    反応緩衝剤、
    少なくとも1種のプライマー、
    少なくとも1種のデオキシリボヌクレオチド三リン酸、及び
    ω-アミノ酸
    を含有する組成物。
  8.  ω-アミノ酸が、請求項2に示される式1で表される化合物である、請求項7に記載の組成物。
  9.  さらに、ベタインを含有する、請求項7に記載の組成物。
  10.  ω-アミノ酸を含有する核酸合成反応用の反応緩衝液。
  11.  ω-アミノ酸が、請求項2に示される式1で表される化合物である、請求項10に記載の反応緩衝液。
  12.  さらに、ベタインを含有する、請求項10に記載の反応緩衝液。
  13.  核酸合成反応のためのキットであって、以下の構成品を含むキット:
    DNAポリメラーゼ、
    反応緩衝剤、
    少なくとも1種のデオキシリボヌクレオチド三リン酸、及び
    ω-アミノ酸。
  14.  ω-アミノ酸が、請求項2に示される式1で表される化合物である、請求項13に記載のキット。
  15.  さらに、ベタインを含有する、請求項13に記載のキット。
PCT/JP2013/051490 2012-01-31 2013-01-24 核酸合成反応の向上方法 WO2013115067A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/372,558 US9689013B2 (en) 2012-01-31 2013-01-24 Method for improving nucleic acid synthesis reaction
EP13743868.5A EP2811020B1 (en) 2012-01-31 2013-01-24 Method for improving nucleic acid synthesis reaction
KR1020147022078A KR20140127819A (ko) 2012-01-31 2013-01-24 핵산합성반응의 향상방법
CN201380007277.0A CN104093835B (zh) 2012-01-31 2013-01-24 用于改进核酸合成反应的方法
JP2013556356A JP5849107B2 (ja) 2012-01-31 2013-01-24 核酸合成反応の向上方法
US15/602,456 US10093968B2 (en) 2012-01-31 2017-05-23 Method for improving nucleic acid synthesis reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-017665 2012-01-31
JP2012017665 2012-01-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/372,558 A-371-Of-International US9689013B2 (en) 2012-01-31 2013-01-24 Method for improving nucleic acid synthesis reaction
US15/602,456 Division US10093968B2 (en) 2012-01-31 2017-05-23 Method for improving nucleic acid synthesis reaction

Publications (1)

Publication Number Publication Date
WO2013115067A1 true WO2013115067A1 (ja) 2013-08-08

Family

ID=48905108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051490 WO2013115067A1 (ja) 2012-01-31 2013-01-24 核酸合成反応の向上方法

Country Status (6)

Country Link
US (2) US9689013B2 (ja)
EP (1) EP2811020B1 (ja)
JP (1) JP5849107B2 (ja)
KR (1) KR20140127819A (ja)
CN (1) CN104093835B (ja)
WO (1) WO2013115067A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050980A (ja) * 2013-09-09 2015-03-19 東洋紡株式会社 非特異増幅を低減させる方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279184A (ja) * 1999-02-03 2000-10-10 Ortho Clinical Diagnostics Inc 核酸増幅法
JP2003144169A (ja) * 2001-11-14 2003-05-20 Toyobo Co Ltd Dna合成反応を促進する添加剤
JP2010246528A (ja) * 2009-03-27 2010-11-04 Toyobo Co Ltd 核酸増幅のための新規な核酸増幅用組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787305B1 (en) * 1998-03-13 2004-09-07 Invitrogen Corporation Compositions and methods for enhanced synthesis of nucleic acid molecules
EP1452593B1 (en) * 2001-11-14 2009-04-08 Toyo Boseki Kabushiki Kaisha Dna synthesis promoters, dna polymerase-associated factors and utilization thereof
US7955795B2 (en) * 2003-06-06 2011-06-07 Qiagen Gmbh Method of whole genome amplification with reduced artifact production
EP1930422B1 (en) 2005-08-19 2013-01-23 Sumitomo Bakelite Company, Ltd. Method for producing cdna and rna chains and nucleotide-immobilized support
US8470573B2 (en) 2011-06-21 2013-06-25 Bio-Rad Laboratories, Inc. Hybrid polymerases having the ability to produce long amplicons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279184A (ja) * 1999-02-03 2000-10-10 Ortho Clinical Diagnostics Inc 核酸増幅法
JP2003144169A (ja) * 2001-11-14 2003-05-20 Toyobo Co Ltd Dna合成反応を促進する添加剤
JP2010246528A (ja) * 2009-03-27 2010-11-04 Toyobo Co Ltd 核酸増幅のための新規な核酸増幅用組成物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"PCR method-Forefront (SaiZenSen", PROTEIN, NUCLEIC ACID, AND ENZYME, vol. 41, no. 5, 1996, pages 425 - 428
AMERICAN JOURNAL OF HUMAN GENETICS, vol. 55, no. 3, 1 September 1994 (1994-09-01), pages A238
HENKE W. ET AL.: "Betaine improves the PCR amplification of GC-rich DNA sequences.", NUCLEIC ACIDS RES., vol. 25, no. 19, 1997, pages 3957 - 3958, XP002171292 *
NUCLEIC ACIDS RESEARCH, vol. 25, no. 19, 1 October 1997 (1997-10-01), pages 3957 - 3958

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050980A (ja) * 2013-09-09 2015-03-19 東洋紡株式会社 非特異増幅を低減させる方法

Also Published As

Publication number Publication date
EP2811020A1 (en) 2014-12-10
CN104093835B (zh) 2015-12-02
JP5849107B2 (ja) 2016-01-27
US10093968B2 (en) 2018-10-09
EP2811020A4 (en) 2015-12-23
US20170260578A1 (en) 2017-09-14
CN104093835A (zh) 2014-10-08
US20140363849A1 (en) 2014-12-11
EP2811020B1 (en) 2018-06-27
KR20140127819A (ko) 2014-11-04
US9689013B2 (en) 2017-06-27
JPWO2013115067A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6068365B2 (ja) Dna合成のためのテンプレートスイッチの使用
US10793896B2 (en) Methods for RT-PCR comprising an anionic polymer
US20230002754A1 (en) Vitro Cleavage of DNA Using Argonaute
AU2017265723B2 (en) Method of amplifying circular dna
JP6316505B2 (ja) 易熱性エキソヌクレアーゼ
US20200048693A1 (en) Method for nucleic acid amplification
JP6029636B2 (ja) Rnaの検出方法
EP3099810A1 (en) Cation chelator hot start
US10093968B2 (en) Method for improving nucleic acid synthesis reaction
JP5279339B2 (ja) 逆転写反応用組成物
US11597920B2 (en) Compositions and methods for enhancing reverse transcriptase activity and/or reducing the inhibition of reverse transcriptase
WO2009039862A2 (en) Enzymatic incorporation of lna nucleotides
JP4942160B2 (ja) RecAタンパク質を利用した核酸の等温増幅法
van Pelt-Verkuil et al. Deoxynucleotide triphosphates and buffer components
JP2008017851A (ja) Dna合成反応を促進する添加剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556356

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14372558

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013743868

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147022078

Country of ref document: KR

Kind code of ref document: A