WO2013111776A1 - 燃料供給システム、燃料電池システム、及びそれらの運転方法 - Google Patents

燃料供給システム、燃料電池システム、及びそれらの運転方法 Download PDF

Info

Publication number
WO2013111776A1
WO2013111776A1 PCT/JP2013/051302 JP2013051302W WO2013111776A1 WO 2013111776 A1 WO2013111776 A1 WO 2013111776A1 JP 2013051302 W JP2013051302 W JP 2013051302W WO 2013111776 A1 WO2013111776 A1 WO 2013111776A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
flow meter
gas
composition
supply amount
Prior art date
Application number
PCT/JP2013/051302
Other languages
English (en)
French (fr)
Inventor
庄一 塚越
水野 康
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to CN201380006298.0A priority Critical patent/CN104067052A/zh
Priority to US14/372,113 priority patent/US20140377678A1/en
Priority to EP13740938.9A priority patent/EP2808609A1/en
Publication of WO2013111776A1 publication Critical patent/WO2013111776A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • F23K5/007Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/187Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2400/00Pretreatment and supply of gaseous fuel
    • F23K2400/20Supply line arrangements
    • F23K2400/201Control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel supply system or a fuel cell system including a fuel supply device that supplies hydrocarbon gas fuel (city gas, LPG, etc.), and more particularly to a technique for controlling the supply amount of gas fuel.
  • hydrocarbon gas fuel city gas, LPG, etc.
  • a flow meter that measures the flow rate of gas fuel is arranged in the gas fuel supply path, and the fuel supply amount is feedback-controlled based on the measured flow rate or used as another control parameter. Yes.
  • a thermal flow meter that is a mass flow meter is generally used. This is because the thermal flow meter is easy to miniaturize and has a characteristic of good response due to its small size.
  • composition and heat quantity vary depending on the gas company, and even if the gas company is the same, depending on the region, and depending on the route and distance from the supply source, Often the composition is different due to contamination.
  • the thermal flow meter does not show a correct value, and it is difficult to perform suitable control.
  • Patent Document 1 In a Karman vortex flowmeter using a thermal flow sensor, the type of gas flowing through the flow path is automatically determined. Therefore, the correlation information between the mass flow rate of the gas to be measured and the current value flowing through the heating resistor is stored for each gas type, and the mass flow rate in the flow region where the Strouhal number is constant regardless of the gas type Based on the correlation information, the type of gas to be measured is determined from the current value at that time. After the determination, the mass flow rate is corrected based on a correction coefficient specific to the gas type, so that the mass flow rate can be detected with high accuracy.
  • Patent Document 2 When mixing and supplying the gas in multiple containers, measure the flow rate of the gas to be mixed from the weight reduction amount of each container, and calculate the conversion coefficient for the thermal flow meter by calculating the composition of the mixed gas in advance. Acquire and enable precise measurement of the mass flow rate of the gas mixture.
  • Patent Document 3 Create a characteristic diagram expressing the properties of the fuel whose composition is unknown, compare the characteristic curve of the fuel whose composition is unknown shown in the characteristic diagram with the characteristic curve of the fuel whose composition is known, and determine the composition of the unknown fuel Is identified.
  • the properties of the fuel the characteristics of the air ratio and the exhaust gas oxygen concentration, that is, the relationship of the exhaust A / F to the intake A / F is used.
  • Japanese Patent Publication: JP 2011-203075 A Japanese Patent Publication: JP 2007-024511 Japanese Patent Publication: JP-A-2004-011487
  • Patent Document 1 The gas type can be determined only in the flow region where the Strouhal number is constant. In addition, since only gas types for which information is stored in advance can be determined, it is not possible to cope with dynamic changes in gas composition.
  • Patent Document 2 If the composition of the mixed gas needs to be acquired in advance, and the composition cannot be acquired, it cannot be handled.
  • Patent Document 3 In order to specify the fuel composition, it is necessary to react (combust) the fuel once, which is not only used for combustion and the like, but also cannot grasp the fuel composition before starting operation. In addition, it is necessary to shake the A / F in order to acquire data for specifying the fuel composition, and there is a possibility that the operation must be started from a state where adjustment is inappropriate.
  • the present invention has been made in view of such a situation, and the thermal flow meter is easy to miniaturize and has a characteristic of good responsiveness due to its small size. If the difference is different, the correct value is not shown and suitable control becomes difficult. Therefore, it is an object to provide a fuel supply system capable of performing suitable control even when the property of the fuel changes. And Another object of the present invention is to provide not only a general-purpose fuel supply system but also a fuel cell system that uses gas fuel by reforming it.
  • a fuel supply system includes a fuel supply device that supplies hydrocarbon gas fuel to a supply target, a flow meter that measures a flow rate of the gas fuel supplied by the fuel supply device, and a And a control device that receives a signal and controls the supply amount of the fuel supply device.
  • the flow meter includes a thermal flow meter and a composition-independent flow meter capable of measuring a flow rate without depending on the composition of the gas fuel.
  • the control device includes a measured flow rate abnormality determination unit that determines whether or not an abnormal state is based on a degree of deviation between a measured value of the thermal flow meter and a measured value of the composition-independent flow meter, and the abnormal state.
  • a conversion factor setting unit for setting a conversion factor (conversion factor) for the measured value of the thermal flow meter, and supply of the gas fuel by the fuel supply device based on the conversion factor
  • a supply amount adjusting unit that adjusts the amount.
  • the conversion coefficient setting unit may be configured to set the conversion coefficient based on the ratio between the measured value of the composition-independent flow meter and the measured value of the thermal flow meter.
  • the supply amount adjusting unit is configured to estimate a fuel property of the gas fuel based on the conversion factor set by the conversion factor setting unit; and based on the estimated fuel property, the gas fuel And a target supply amount correction unit that corrects the target supply amount.
  • the fuel property estimator is selected from predetermined subcomponent candidates according to a comparison result between the conversion coefficient set by the conversion coefficient setting unit and a conversion coefficient predetermined for the main component of the gas fuel. Identify the subcomponent, and based on the conversion factor set in the conversion factor setting unit and the conversion factor predetermined for the main component and the specified subcomponent, the main component and the specified subcomponent It is preferable to obtain a mole fraction.
  • the sub-component candidate may be a flammable component and a non-flammable component having a calorific value different from that of the main component of the gas fuel.
  • the supply target of the fuel supply system is not particularly limited and can be used as a general-purpose fuel supply system, but the present invention can also be applied to the following fuel cell system. That is, the present invention relates to a fuel reformer that generates a hydrogen-rich reformed fuel by steam reforming a hydrocarbon-based gas fuel, and a fuel that generates electric power by an electrochemical reaction between the generated reformed fuel and air.
  • a battery stack a fuel supply device that supplies the gas fuel to the reformer; a reformed water supply device that supplies the steam reforming water to the reformer; and the reformer from the fuel supply device
  • a flow meter that measures the flow rate of the gas fuel supplied to the apparatus, and a control device that receives signals from the flow meter and controls the supply amounts of the fuel supply device and the reforming water supply device. It is applicable also to the fuel cell system comprised including.
  • the supply amount adjusting unit adjusts the supply amount of the gas fuel and the supply amount of the water by the fuel supply device and the reforming water supply device based on the conversion factor.
  • the supply amount adjustment unit in this case includes a fuel property estimation unit that estimates the fuel property of the gas fuel based on the conversion factor set by the conversion factor setting unit, the estimated fuel property, and the target
  • a target supply amount calculation unit that calculates a target supply amount of the gas fuel and a target supply amount of the water based on power generation conditions may be included.
  • Schematic configuration diagram of a fuel supply system shown as the first embodiment of the present invention Functional block diagram in the control device in the first embodiment Flowchart of measurement flow rate abnormality determination in the first embodiment Flowchart of control at the time of abnormal measurement flow rate in the first embodiment
  • the schematic block diagram of the fuel cell system shown as 2nd Embodiment of this invention Functional block diagram in the control device in the second embodiment Flowchart of control at the time of abnormal measurement flow rate in the second embodiment
  • FIG. 1 is a schematic configuration diagram of a fuel supply system shown as a first embodiment of the present invention.
  • the fuel supply system according to the present embodiment includes a fuel supply device 2 that supplies hydrocarbon gas fuel to a supply target (various gas equipment) 1.
  • a supply target variable gas equipment
  • natural gas-derived city gas is supplied as gas fuel.
  • the fuel supply device 2 includes a flow control valve connected to a gas fuel supply source, and the supply amount is controlled based on a signal from the control device 7.
  • a gas fuel supply path from the fuel supply device 2 to the supply target 1 includes a thermal flow meter (thermal mass flow meter) 3, a composition-independent flow meter 4, a fuel temperature sensor 5, and a fuel pressure sensor 6. are provided.
  • the thermal flow meter 3 measures the flow rate using the thermal diffusion action of the gas, and the mass flow rate can be measured because the amount of heat that propagates changes depending on the degree of gas compression.
  • the thermal flow meter 3 is easy to miniaturize, and since it has a characteristic of good response due to its small size, it is used as a main flow meter. However, since the output varies depending on the composition of the gas to be measured, it is generally used after adjusting the composition of the gas to be measured.
  • the composition-independent flow meter 4 is a flow meter that can measure the flow rate without depending on the composition of the gas to be measured.
  • a volumetric flow meter, an ultrasonic flow meter, a Coriolis flow meter, a vortex flow meter, or the like is used. it can.
  • the composition-independent flow meter 4 is used as an auxiliary flow meter.
  • it may be either a volume flow meter or a mass flow meter, in this embodiment, it demonstrates as a volume flow meter.
  • the fuel temperature sensor 5 detects the fuel temperature Tf.
  • the fuel pressure sensor 6 detects the fuel pressure Pf. Detection signals from the thermal flow meter 3, the composition-independent flow meter 4, the fuel temperature sensor 5, and the fuel pressure sensor 6 are sent to the control device 7.
  • the control device 7 includes a microcomputer, performs arithmetic processing according to the control program, and various sensor signals including the thermal flow meter 3, the composition-independent flow meter 4, the fuel temperature sensor 5, and the fuel pressure sensor 6. , The operation of the fuel supply device 2 is controlled.
  • the control device 7 may control other various devices simultaneously with the control of the fuel supply device 2.
  • the target fuel supply amount is mainly set according to the target supply condition and the supply amount of the gas fuel is controlled via the fuel supply device 2, but feedback control is performed while referring to the measured flow rate of the thermal flow meter 3. I do. Further, the measured flow rate of the thermal flow meter 3 is used as another control parameter if necessary.
  • the control device 7 includes a measurement value of the thermal flow meter 3 and a composition-independent flow meter 4 as shown in the functional block diagram of FIG.
  • a measurement flow rate abnormality determining unit A that determines whether or not an abnormal state is present based on the degree of deviation from the measured value, and a conversion coefficient for the measured value of the thermal flow meter 3 when the abnormal state is determined.
  • a conversion coefficient setting unit B that sets (conversion factor) and a supply amount adjustment unit C that adjusts the supply amount of gas fuel by the fuel supply device 2 based on the conversion coefficient are provided.
  • the measurement flow rate abnormality determination unit A is in an abnormal state because the measured value of the thermal flow meter 3 and the measured value of the composition-independent flow meter 4 are more than a certain distance (the measured value of the thermal flow meter 3 is actually Is different from the flow rate of
  • the conversion coefficient setting unit B sets the conversion coefficient based on the ratio between the measured value of the composition-independent flow meter 4 and the measured value of the thermal flow meter 3.
  • the supply amount adjusting unit C is configured to estimate the fuel property of the gas fuel based on the conversion factor set by the conversion factor setting unit B, and based on the estimated fuel property, the fuel property estimation unit C1 And a target supply amount correction unit C2 that corrects the target supply amount.
  • the function of the measured flow rate abnormality determining unit A is realized by the flowchart of FIG. 3, and the functions of the conversion coefficient setting unit B and the supply amount adjusting unit C are realized by the flowchart of FIG.
  • FIG. 3 is a flowchart for determining the abnormality in the measured flow rate.
  • integration of the measurement value (thermal flow meter value) of the thermal flow meter 3 is started.
  • the integration of the measured value (composition independent flow meter value) of the composition independent flow meter 4 is started.
  • these integrations are executed for a predetermined time, and a thermal flow meter integrated value (mass flow rate) Q1 and a composition-independent flow meter integrated value (volume flow rate) Q2 are obtained as final integrated values.
  • the thermal flow meter integrated value (mass flow rate) Q1 is converted into a normal flow rate (a volume flow rate in a standard state).
  • the composition-independent flow meter integrated value (volume flow rate) Q2 is subjected to normal conversion.
  • the post-conversion composition-independent flow meter integrated value Q2 ′ is calculated by the following equation.
  • Post-conversion composition-independent flow meter integrated value Q2 ′ Q2 ⁇ (273.15 ⁇ (273.15 + Tf)) ⁇ ((101.33 + Pf) ⁇ 101.33) That is, the composition-independent flow meter integrated value (volume flow rate) Q2 is converted into a flow rate (Q2 ′) in a standard (normal) state using the fuel temperature Tf and the fuel pressure Pf.
  • the fuel temperature Tf and the fuel pressure Pf are detected values of the fuel temperature sensor 5 and the fuel pressure sensor 6.
  • FIG. 4 is a flowchart of the control when the measured flow rate is abnormal (control of the fuel supply amount at the time of abnormality determination).
  • integration of the measured value (thermal flow meter value) of the thermal flow meter 3 is started.
  • integration of the measured value (composition independent flow meter value) of the composition independent flow meter 4 is started.
  • these integrations are executed for a predetermined time, and a thermal flow meter integrated value (mass flow rate) Q1 and a composition-independent flow meter integrated value (volume flow rate) Q2 are obtained as final integrated values.
  • the thermal flow meter integrated value (mass flow rate) Q1 is converted into a normal flow rate (volume flow rate in a standard state).
  • composition independent flow meter integrated value (volume flow rate) Q2 is subjected to normal conversion.
  • the post-conversion composition-independent flow meter integrated value Q2 ′ is calculated by the following equation.
  • Post-conversion composition-independent flow meter integrated value Q2 ′ Q2 ⁇ (273.15 ⁇ (273.15 + Tf)) ⁇ ((101.33 + Pf) ⁇ 101.33) That is, the composition-independent flow meter integrated value (volume flow rate) Q2 is converted into a flow rate (Q2 ′) in a standard (normal) state using the fuel temperature Tf and the fuel pressure Pf.
  • the fuel temperature Tf and the fuel pressure Pf are detected values of the fuel temperature sensor 5 and the fuel pressure sensor 6.
  • N2 molar fraction 0
  • N2 mole fraction 1-CH4 mole fraction
  • the actual mole fractions (estimated values) of methane CH4 and propane C3H8 may be regarded as deviations from the mole fractions (design values) of methane CH4 and propane C3H8 in the designed gas composition.
  • the target fuel supply amount (target fuel supply amount in the normal control) based on the target supply condition is corrected by the correction coefficient K obtained in S22, thereby obtaining the final fuel supply amount (see the following equation).
  • Fuel supply amount target fuel supply amount ⁇ correction coefficient K
  • the fuel supply amount calculated in this way is set to a control target value, and the fuel supply amount is controlled via the fuel supply device 2.
  • a measured flow rate abnormality determination unit A that determines whether or not an abnormal state is based on the degree of deviation between the measured value of the thermal flow meter 5 and the measured value of the composition-independent flow meter 6;
  • a conversion coefficient setting unit B that sets a conversion coefficient CF for the measurement value of the thermal flow meter 5 when it is determined that the abnormal state is present, and based on the conversion coefficient CF, the amount of gas fuel by the fuel supply device 2
  • the supply amount adjusting unit C that adjusts the supply amount, an appropriate amount of fuel can be supplied even if the composition of the gas fuel changes.
  • the gas fuel supply channel is provided in series with the thermal flow meter 3 and includes a composition-independent flow meter 4 capable of measuring the flow rate without depending on the composition of the gas fuel.
  • a composition-independent flow meter 4 capable of measuring the flow rate without depending on the composition of the gas fuel.
  • the conversion coefficient setting unit B sets the conversion coefficient CF based on the ratio between the measured value of the composition-independent flow meter 4 and the measured value of the thermal flow meter 3. The flow rate correction using this conversion factor CF becomes possible.
  • the supply amount adjusting unit C is configured to estimate the fuel property of the gas fuel based on the conversion factor CF set by the conversion factor setting unit B; Since it is configured to include a target supply amount correction unit C2 that corrects the target supply amount of gas fuel based on the estimated fuel property, appropriate control based on estimation of the fuel property of gas fuel becomes possible. .
  • the fuel property estimation unit C1 includes the conversion factor CF set by the conversion factor setting unit B and the conversion factor CF (CH4 determined in advance for the main component (CH4) of the gas fuel. )
  • subcomponents are identified from predetermined subcomponent candidates (C3H8, N2), the conversion factor CF set in the conversion factor setting unit B, the main component and the Based on the conversion factor CF (C3H8) or CF (N2) ⁇ ⁇ determined in advance for the specified subcomponent, the molar fraction of the main component and the specified subcomponent is obtained to obtain a practically sufficient estimation accuracy. be able to.
  • the sub-component candidates are preferably a combustible component (propane C3H8 or butane C4H10) having a different calorific value from the main component (methane CH4) of gas fuel and a non-combustible component (nitrogen N2).
  • a combustible component propane C3H8 or butane C4H10 having a different calorific value from the main component (methane CH4) of gas fuel and a non-combustible component (nitrogen N2).
  • this embodiment has the following advantages over the techniques described in Patent Documents 1 to 3.
  • (1) With respect to Patent Document 1 It is possible to discriminate the gas species in the entire region where flow occurs. In addition, since the gas type is estimated, it is possible to cope with a dynamic change in the gas composition.
  • Patent Document 3 By using a flow meter installed in the fuel gas supply path, the fuel properties can be specified in advance. Thereby, a use spreads and the necessity for adjustment operation etc. is also lost.
  • the molar fraction of the gas component is calculated as the fuel property based on the conversion factor CF, and the correction value (correction coefficient) for the fuel supply amount is calculated using this as a parameter.
  • Other parameters may be used, or a correction value for the fuel supply amount may be calculated using the conversion coefficient CF itself as a parameter.
  • the description of the supply target (gas equipment) of the fuel supply system is omitted, but the supply target is not particularly limited, and can be used as a general-purpose fuel supply system. If it dares to mention an application, it can be mentioned a combustion application that requires air-fuel ratio management and a chemical reaction application that requires grasping the raw material composition. Specific examples of combustion applications include boilers and gas engines. Gas engines are household cogeneration systems (systems that use city gas or LPG as a fuel to generate electricity, and use the heat generated at that time for hot water supply; commonly known as “Eco-Wil”), GHP systems (gas engines) The air-conditioning system that drives the compressor and heats and cools by heat pump operation) and the industrial private power generation system.
  • synthesis gas production apparatus produces natural gas, LPG or the like as a raw material, and produces synthesis gas containing H2 and CO as main components using various reforming methods.
  • the produced synthesis gas is used as a raw material gas for ammonia synthesis, methanol synthesis and the like.
  • new energy production such as GTL, DME, or SNG has attracted attention.
  • FIG. 5 is a schematic configuration diagram of a fuel cell system shown as a second embodiment of the present invention.
  • the fuel cell system of the present embodiment includes a fuel reformer 11 that produces a hydrogen-rich reformed fuel by steam reforming a hydrocarbon-based gas fuel, and a reformed fuel (hydrogen) from the fuel reformer 11 ) And air (oxygen) and a fuel cell stack (an assembly of fuel cells) 12 that generates power by an electrochemical reaction.
  • city gas derived from natural gas is used in the present embodiment, and is supplied by the fuel supplier 13.
  • the fuel supply device 13 includes a flow control valve connected to a gas fuel supply source, and the supply amount is controlled based on a signal from the control device 21.
  • a gas fuel supply path from the fuel supply device 13 to the fuel reformer 11 includes a desulfurizer 14, a thermal flow meter (thermal mass flow meter) 15, a composition-independent flow meter 16, and a fuel temperature sensor. 17 and a fuel pressure sensor 18 are provided.
  • the desulfurizer 4 desulfurizes and removes sulfur compounds contained in the gas fuel.
  • the composition-independent flow meter 16 the fuel temperature sensor 17, and the fuel pressure sensor 18, the thermal flow meter 3, the composition-independent flow meter 4, the fuel temperature sensor of the first embodiment (FIG. 1). 5 and the fuel pressure sensor 6 are omitted. Detection signals of the thermal flow meter 15, the composition-independent flow meter 16, the fuel temperature sensor 17, and the fuel pressure sensor 18 are sent to the control device 21.
  • Reformed water for steam reforming in the fuel reformer 11 is supplied by a reformed water supply device 19.
  • the reforming water supply device 19 includes a pump and / or a flow rate control valve connected to a water supply source, and the supply amount is controlled based on a signal from the control device 21.
  • the fuel cell stack 12 is supplied with the reformed fuel from the fuel reformer 11 to the anode electrode (A) and air is supplied to the cathode electrode (C).
  • the cathode air is supplied by the cathode air supply device 20. Is done.
  • the cathode air supply device 20 includes a pump (blower) and / or a flow rate control valve connected to an air supply source, and the supply amount is controlled based on a signal from the control device 21.
  • the control device 21 includes a microcomputer, performs arithmetic processing according to a control program, and various sensor signals including the thermal flow meter 15, the composition-independent flow meter 16, the fuel temperature sensor 17, and the fuel pressure sensor 18. The operation of various devices including the fuel supply device 13, the reforming water supply device 19 and the cathode air supply device 20 is controlled.
  • the steam reforming reaction of the following formula (1) is performed in the case of methane CH4, and the steam reforming reaction of the following formula (2) is performed in the case of propane C3H8.
  • an electrode reaction of the following formula (3) occurs at the cathode electrode of each cell, and an electrode reaction of the following formula (4) occurs at the anode electrode to generate power.
  • the fuel supply amount (target value) is mainly set in accordance with the target power generation conditions, and the gas fuel supply amount is controlled via the fuel supply device 13, but the measured flow rate of the thermal flow meter 15 is referred to. While performing feedback control. Further, the reforming water supply amount (target value) is set by referring to the measured flow rate of the thermal flow meter 15, and the reforming water supply amount is controlled via the reforming water supply device 19. Further, the cathode air supply amount (target value) is set according to the target power generation conditions or by referring to the measured flow rate of the thermal flow meter 15, and the cathode air supply amount is controlled via the cathode air supply device 20.
  • the measured value of the thermal flow meter 15 and the composition-independent flow meter 16 are included in the control device 21 as shown in the functional block diagram of FIG. 6.
  • a measurement flow rate abnormality determining unit A that determines whether or not an abnormal state is present based on the degree of deviation from the measured value, and a conversion coefficient for the measured value of the thermal flow meter 15 when the abnormal state is determined.
  • Conversion factor setting unit B for setting (conversion factor), and supply amount for adjusting the supply amount of gas fuel and the supply amount of reforming water by the fuel supply device 13 and the reforming water supply device 19 based on the conversion factor
  • an adjustment unit C ′ is an adjustment unit.
  • the measurement flow rate abnormality determination unit A is in an abnormal state because the measured value of the thermal flow meter 5 and the measured value of the composition-independent flow meter 6 are more than a certain distance (the measured value of the thermal flow meter 5 is actually Is different from the flow rate of
  • the conversion coefficient setting unit B sets the conversion coefficient based on the ratio between the measured value of the composition-independent flow meter 6 and the measured value of the thermal flow meter 5.
  • the supply amount adjustment unit C ′ is configured to estimate the fuel property of the gas fuel, the fuel property estimation unit C1, and the estimated fuel property and the target power generation condition.
  • a target supply amount calculation unit C2 ′ that calculates a target supply amount of gas fuel and a target supply amount of reforming water.
  • the flowchart for realizing the function of the measured flow rate abnormality determination unit A is basically the same as FIG.
  • the functions of the conversion coefficient setting unit B and the supply amount adjustment unit C ′ are realized by the flowchart of FIG.
  • FIG. 7 is a flowchart of the control when the measured flow rate is abnormal (control of the supply amounts of fuel, reforming water, and cathode air at the time of abnormality determination).
  • S11 to S21 in FIG. 7 are basically the same as S11 to S21 in FIG.
  • integration of the measured value (thermal flow meter value) of the thermal flow meter 15 is started.
  • integration of the measured value (composition independent flow meter value) of the composition independent flow meter 16 is started.
  • S13 these integrations are executed for a predetermined time, and a thermal flow meter integrated value (mass flow rate) Q1 and a composition-independent flow meter integrated value (volume flow rate) Q2 are obtained as final integrated values.
  • N2 molar fraction 0
  • N2 mole fraction 1-CH4 mole fraction
  • the process proceeds to S31.
  • the fuel supply amount (target value) is calculated by the following equation from the target power generation condition (swept DC current amount) and the composition of the gas fuel (molar fraction of methane CH4 and molar fraction of propane C3H8).
  • Fuel supply amount [number of cells in series ⁇ current amount ⁇ 60] / [Uf ⁇ Fd ⁇ (CH4 mole fraction ⁇ 8 + C3H8 mole fraction ⁇ 20)] ⁇ 22.414
  • Uf is a predetermined fuel utilization rate (target value, for example, 0.85)
  • Fd is a Faraday constant (96485.3399)
  • 22.414 is a molar volume (L / mol).
  • “8” is the number of hydrogen atoms generated by the steam reforming reaction of methane CH 4
  • “20” is the number of hydrogen atoms generated by the steam reforming reaction of propane C 3 H 8 (see the above-mentioned steam reforming reaction equation).
  • the reforming water supply amount (target value) is calculated from the fuel supply amount and the fuel gas composition (molar fraction of methane CH4 and molar fraction of propane C3H8) by the following equation.
  • Water supply amount fuel supply amount ⁇ (CH4 mole fraction ⁇ 1 + C3H8 mole fraction ⁇ 3) /22.414 ⁇ S/C ⁇ 18.02
  • “1” is the number of carbons in methane CH4
  • “3” is the number of carbons in propane C3H8
  • 22.414 is the molar volume (L / mol)
  • S / C is the steam carbon ratio (target value, for example, 2 .5)
  • 18.02 is the molecular weight of water vapor.
  • the cathode air supply amount (target value) is calculated by the following equation.
  • Air supply amount [number of cells in series ⁇ current amount ⁇ 60] / [Ua ⁇ Fd ⁇ (molar fraction of O 2 in air ⁇ 4)] ⁇ 22.414
  • Ua is a predetermined air utilization rate (target value, for example, 0.30)
  • Fd is a Faraday constant (96485.3399)
  • 22.414 is a molar volume (L / mol).
  • “4” is the number of electrons generated from O 2 by the electrode reaction (see the above electrode reaction equation).
  • the fuel supply amount, the reforming water supply amount, and the cathode air supply amount calculated in this way are set to control target values, respectively, and the fuel supply device 13, the reforming water supply device 19, and the cathode air supply device 20 are set. These controls are performed via
  • the measured flow rate abnormality is determined based on the degree of deviation between the measured value of the thermal flow meter 15 and the measured value of the composition-independent flow meter 16.
  • the conversion coefficient setting unit B that sets the conversion coefficient CF for the measurement value of the thermal flow meter 15 when it is determined that the abnormal state is present, and the fuel supply device based on the conversion coefficient CF 13 and the supply amount adjusting unit C ′ for adjusting the supply amount of the gas fuel and the supply amount of the reforming water by the reforming water supply device 19, even if the composition of the gas fuel changes, an appropriate amount Fuel and reforming water can be supplied.
  • the supply amount adjustment unit C ′ includes a fuel property estimation unit C1 that estimates the fuel property of the gas fuel based on the conversion factor CF set by the conversion factor setting unit B. And a target supply amount calculation unit C2 ′ that calculates a target supply amount of gas fuel and a target supply amount of reforming water based on the estimated fuel properties and target power generation conditions. Appropriate control of gas fuel and reformed water becomes possible based on estimation of the fuel properties of the fuel.
  • Japanese Published Patent Publication Japanese Patent Application Laid-Open No. 2006-049056
  • This technology measures the properties (composition and heat quantity) and flow rate of fuel in a fuel cell system supplied with fuel whose properties (composition and heat quantity) change.
  • the optimum control parameter is calculated from the measurement and determination results to maintain the thermal self-sustained operation of the fuel cell.
  • the thermal mass flow meter based on the measurement values of the thermal mass flow meter and the differential pressure measuring means (differential pressure type flow meter), the generated current of the fuel cell stack And the flow rate of the mixed gas (mixed gas of methane and carbon dioxide) supplied through the fuel supply channel.
  • the measured value of the thermal mass flow meter is a true value, if a gas with a composition that shows a flow rate different from that of methane is mixed, the thermal mass flow meter will not show the correct value, and the assumption will be lost. Normal control cannot be expected.
  • the mass flow rate measured by the thermal flow meter can be corrected by the conversion coefficient setting unit, so that it can be applied to the majority of components whose conversion coefficients do not match those of methane. is there.
  • the fuel gas density is measured based on the ratio between the volume flow rate measured by the volume flow meter and the mass flow rate measured by the mass flow meter. Then, the composition of the fuel gas (average number of carbon atoms and average number of hydrogen atoms) is obtained from the fuel gas density, and an appropriate amount of water is supplied for steam reforming.
  • the composition cannot be estimated when an inert gas (N 2 or the like) is mixed or when other elements are included.
  • an inert gas N 2 or the like
  • the mass flow meter if the fuel gas composition fluctuates, a correct value is not shown, and appropriate control cannot be performed.
  • the gas composition can also be estimated.
  • the mass flow rate measured by the thermal flow meter can be corrected by the conversion coefficient setting unit, appropriate fuel supply can be performed even when the gas composition fluctuates.
  • the gas fuel is city gas
  • the main component of the gas fuel is CH4
  • the subcomponent candidates are propane C3H8 (or butane C4H10) and nitrogen N2.
  • the present invention is not limited to these.
  • the gas fuel may be city gas, LPG, or the like
  • the main component of the gas fuel may be methane C4, ethane C2H6, propane C3H8, or the like.
  • the change of the gas fuel is automatically detected and notified to the control device, and the control device changes the gas fuel.
  • the control program may be changed.
  • gas containing hydrocarbon gas derived from biogas or shale gas, or off-gas (hydrocarbon gas not derived from natural gas) by-produced in a petrochemical factory is mixed.
  • the present invention can be applied even with a gas.
  • the thermal flow meters 3 and 15 are used as the main flow meters, and the composition-independent flow meters 4 and 16 are used as the auxiliary flow meters. 16 may be used as the main flow meter, and the thermal flow meters 3 and 15 may be used as auxiliary flow meters.
  • the supply of the reforming air is performed in the supply amount adjusting unit C ′.
  • the amount may be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Fuel Cell (AREA)
  • Measuring Volume Flow (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

 ガス燃料の組成が変化しても、適切な量のガス燃料の供給を可能とする。 ガス燃料の供給路に熱式流量計3と直列に、ガス燃料の組成に依存せずに流量を計測可能な組成非依存流量計4を配置する。熱式流量計3の計測値と組成非依存流量計4の計測値とが一定以上乖離した場合、異常状態であると判断し、熱式流量計3の計測値に対する換算係数を設定する。設定された換算係数に基づいて、ガス燃料の組成を推定し、推定された組成に基づいて、ガス燃料の目標供給量を補正して制御する。

Description

燃料供給システム、燃料電池システム、及びそれらの運転方法
 本発明は、炭化水素系のガス燃料(都市ガス、LPGなど)を供給する燃料供給装置を含んで構成される燃料供給システム又は燃料電池システムに関し、特にガス燃料の供給量を制御する技術に関する。
 燃料供給システムでは、ガス燃料の供給路にガス燃料の流量を計測する流量計を配置し、計測流量に基づいて、燃料の供給量をフィードバック制御したり、他の制御のパラメータとして用いたりしている。前記流量計としては、一般に、質量流量計である熱式流量計が使用される。熱式流量計は、小型化が容易であり、また小型ゆえ応答性が良い特徴を有しているためである。
 しかし、ガス燃料の性状(組成や熱量)が変化することにより、満足な制御が行えなくなる。特に天然ガス由来の都市ガスを用いる場合は、ガス会社により、またガス会社が同じであっても地域により、組成や熱量が異なり、更には供給元からの経路や距離により、途中での空気の混入などに起因して組成が異なることが多々有る。このように燃料の性状、特に組成が異なると、熱式流量計は、正しい値を示さなくなって、好適な制御が困難となる。
 従来技術としては、特許文献1~3に記載されているものがある。
(1)特許文献1
 熱式流れセンサを用いたカルマン渦流量計において、流路内を流通するガス種を自動判別する。このため、被測定ガスの質量流量と発熱抵抗体に流れる電流値との相関関係情報をガス種毎に記憶しておき、ストローハル数がガス種によらず一定となる流領域における質量流量とそのときの電流値とから、前記相関関係情報に基づき、被測定ガスの種類を判別する。判別後は、ガス種に特有の補正係数に基づいて質量流量を補正することで、質量流量を高精度に検出可能とする。
(2)特許文献2
 複数の容器の気体を混合して供給する場合に、混合する気体の流量をそれぞれの容器の重量減少量から測定し、混合気体の組成を予め計算することで、熱式流量計に対する換算係数を取得し、混合気体の質量流量の精密な測定を可能にする。
(3)特許文献3
 組成が未知の燃料の性状を表現した特性図を作成し、該特性図で示される組成が未知の燃料の特性曲線と組成が既知の燃料の特性曲線とを比較して、未知の燃料の組成を特定する。燃料の性状としては、空気比と排気ガス酸素濃度との特性、すなわち吸気A/Fに対する排気A/Fの関係を用いる。
日本国公開特許公報:特開2011-203075号 日本国公開特許公報:特開2007-024511号 日本国公開特許公報:特開2004-011487号
 しかしながら、従来技術は次のような問題点がある。
(1)特許文献1
 ストローハル数が一定となる流領域でしかガス種を判別できない。また予め情報が記憶されたガス種しか判別できないため、ガス組成の動的な変化に対応できない。
(2)特許文献2
 予め混合気体の組成を取得する必要があり、組成を取得できない場合には、対応できない。
(3)特許文献3
 燃料組成の特定には一旦燃料を反応(燃焼)させる必要があり、燃焼等の用途にしか使えないだけでなく、運転開始前に燃料組成を把握することができない。また、燃料組成特定用のデータの取得のためにA/Fを振ることが必要であり、調整が不適切な状態から運転を開始せざるを得ない状況となる可能性がある。
 本発明は、このような実状に鑑みてなされたもので、熱式流量計は、小型化が容易であり、また小型ゆえ応答性が良い特徴を有しているが、燃料の性状、特に組成が異なると、正しい値を示さなくなって、好適な制御が困難となることから、燃料の性状が変化した場合であっても、好適な制御を行うことのできる燃料供給システムを提供することを課題とする。
 本発明はまた、汎用の燃料供給システムのみならず、ガス燃料を改質して用いる燃料電池システムを提供することも課題とする。
 本発明に係る燃料供給システムは、供給対象に炭化水素系のガス燃料を供給する燃料供給装置と、前記燃料供給装置により供給される前記ガス燃料の流量を計測する流量計と、前記流量計の信号が入力されていて前記燃料供給装置の供給量を制御する制御装置と、を含んで構成される。
 ここにおいて、前記流量計としては、熱式流量計と、前記ガス燃料の組成に依存せずに流量を計測可能な組成非依存流量計とを備える。
 前記制御装置は、前記熱式流量計の計測値と前記組成非依存流量計の計測値との乖離度合に基づいて異常状態であるか否かを判断する計測流量異常判定部と、前記異常状態であると判断された場合に、前記熱式流量計の計測値に対する換算係数(コンバージョンファクタ)を設定する換算係数設定部と、前記換算係数に基づいて、前記燃料供給装置による前記ガス燃料の供給量を調整する供給量調整部と、を含んで構成される。
 前記換算係数設定部は、前記組成非依存流量計の計測値と前記熱式流量計の計測値との比に基づいて、換算係数を設定する構成とするとよい。
 前記供給量調整部は、前記換算係数設定部にて設定された換算係数に基づいて、前記ガス燃料の燃料性状を推定する燃料性状推定部と、推定された燃料性状に基づいて、前記ガス燃料の目標供給量を補正する目標供給量補正部と、を含んで構成されるとよい。
 前記燃料性状推定部は、前記換算係数設定部にて設定された換算係数と、前記ガス燃料の主成分について予め定めた換算係数との比較結果に応じて、予め定めた副成分候補の中から副成分を特定し、前記換算係数設定部にて設定された換算係数と、前記主成分及び前記特定した副成分について予め定めた換算係数とに基づいて、前記主成分及び前記特定した副成分のモル分率を求める構成とするとよい。
 前記副成分候補は、前記ガス燃料の主成分とは熱量の異なる可燃性成分と、不燃性成分とするとよい。
 尚、燃料供給システムの供給対象については特に限定されず、汎用の燃料供給システムとして利用できるが、本発明は次のような燃料電池システムにも適用可能である。
 すなわち、本発明は、炭化水素系のガス燃料を水蒸気改質して水素リッチな改質燃料を生成する燃料改質装置と、生成された改質燃料と空気との電気化学反応により発電する燃料電池スタックと、前記改質装置に前記ガス燃料を供給する燃料供給装置と、前記改質装置に前記水蒸気改質用の水を供給する改質水供給装置と、前記燃料供給装置から前記改質装置へ供給される前記ガス燃料の流量を計測する流量計と、前記流量計の信号が入力されていて前記燃料供給装置及び前記改質水供給装置の各供給量を制御する制御装置と、を含んで構成される燃料電池システムにも適用可能である。
 この場合の前記供給量調整部は、前記換算係数に基づいて、前記燃料供給装置及び前記改質水供給装置による前記ガス燃料の供給量及び前記水の供給量を調整する。
 従って、この場合の前記供給量調整部は、前記換算係数設定部にて設定された換算係数に基づいて、前記ガス燃料の燃料性状を推定する燃料性状推定部と、推定された燃料性状と目標発電条件とに基づいて、前記ガス燃料の目標供給量及び前記水の目標供給量を算出する目標供給量算出部と、を含んで構成されるとよい。
 本発明によれば、ガス燃料の性状が変化した場合であっても、好適な燃料供給を行うことが可能になるという効果を奏する。
 また、多様な組成の燃料が供給される燃料電池システムにおいて、複雑かつ高価な構成の機器を設置することなく、適正な量の燃料と改質水の供給が可能となるという効果を奏する。
本発明の第1実施形態として示す燃料供給システムの概略構成図 第1実施形態での制御装置内の機能ブロック図 第1実施形態での計測流量異常判定のフローチャート 第1実施形態での計測流量異常時制御のフローチャート 本発明の第2実施形態として示す燃料電池システムの概略構成図 第2実施形態での制御装置内の機能ブロック図 第2実施形態での計測流量異常時制御のフローチャート
 以下、本発明の実施の形態について、詳細に説明する。
 先ず本発明の第1実施形態として本発明を汎用の燃料供給システムに適用した実施形態について図1~図4により説明する。
 図1は本発明の第1実施形態として示す燃料供給システムの概略構成図である。
 本実施形態の燃料供給システムは、供給対象(各種ガス機器)1に炭化水素系のガス燃料を供給する燃料供給装置2を含んで構成される。本実施形態では特にガス燃料として天然ガス由来の都市ガスを供給するものとする。
 燃料供給装置2は、ガス燃料供給源に接続された流量制御弁などにより構成され、制御装置7からの信号に基づいて供給量が制御される。
 燃料供給装置2から供給対象1へのガス燃料の供給路には、熱式流量計(熱式質量流量計)3と、組成非依存流量計4と、燃料温度センサ5と、燃料圧力センサ6とが設けられる。
 熱式流量計3は、ガスが持つ熱拡散作用を用いて流量測定するもので、ガスの圧縮度合により伝播する熱量が変化するため、質量流量を測定できる。熱式流量計3は小型化が容易であり、また小型ゆえ応答性が良い特徴を有しているため、主たる流量計として使用する。但し、測定対象のガスの組成によって出力が変化するため、測定対象のガスの組成を特定した上で調整して使用するのが一般的である。
 組成非依存流量計4は、測定対象のガスの組成に依存することなく流量を測定できる流量計で、例えば、容積流量計、超音波流量計、コリオリ流量計、渦流量計などを用いることができる。組成非依存流量計4は補助的な流量計として使用する。尚、体積流量計、質量流量計のいずれであってもよいが、本実施形態では体積流量計であるとして説明する。
 燃料温度センサ5は燃料温度Tfを検出する。燃料圧力センサ6は燃料圧力Pfを検出する。
 これら熱式流量計3、組成非依存流量計4、燃料温度センサ5及び燃料圧力センサ6の検出信号は、制御装置7へ送られる。
 制御装置7は、マイクロコンピュータを含んで構成され、制御プログラムに従って演算処理を行い、熱式流量計3、組成非依存流量計4、燃料温度センサ5及び燃料圧力センサ6を始めとする各種センサ信号を読込みつつ、燃料供給装置2の作動を制御する。尚、制御装置7は、燃料供給装置2の制御と同時に、他の各種機器の制御を行うものであってもよい。
 次に制御装置7による燃料供給量の制御について説明する。
 通常制御では、主に、目標供給条件に従って目標燃料供給量を設定し、燃料供給装置2を介してガス燃料の供給量を制御するが、熱式流量計3の計測流量を参照しつつフィードバック制御を行う。また、熱式流量計3の計測流量は必要により他の制御のパラメータとして使用される。
 一方、熱式流量計3の計測流量異常に対処するため、制御装置7内には、図2の機能ブロック図に示すように、熱式流量計3の計測値と組成非依存流量計4の計測値との乖離度合に基づいて異常状態であるか否かを判断する計測流量異常判定部Aと、前記異常状態であると判断された場合に、熱式流量計3の計測値に対する換算係数(コンバージョンファクタ)を設定する換算係数設定部Bと、前記換算係数に基づいて、燃料供給装置2によるガス燃料の供給量を調整する供給量調整部Cとが備えられる。
 計測流量異常判定部Aは、熱式流量計3の計測値と組成非依存流量計4の計測値とが一定以上乖離することで、異常状態である(熱式流量計3の計測値が実際の流量と異なっている)と判断する。
 換算係数設定部Bは、組成非依存流量計4の計測値と熱式流量計3の計測値との比に基づいて、換算係数を設定する。
 供給量調整部Cは、換算係数設定部Bにて設定された換算係数に基づいて、ガス燃料の燃料性状を推定する燃料性状推定部C1と、推定された燃料性状に基づいて、ガス燃料の目標供給量を補正する目標供給量補正部C2と、を含んで構成される。
 ここで、計測流量異常判定部Aの機能は図3のフローチャートにより実現され、換算係数設定部B及び供給量調整部Cの機能は図4のフローチャートにより実現される。
 図3は計測流量異常判定のフローチャートである。
 S1では、熱式流量計3の計測値(熱式流量計値)の積算を開始する。
 S2では、組成非依存流量計4の計測値(組成非依存流量計値)の積算を開始する。
 S3では、これらの積算を所定時間実行し、最終的な積算値として、熱式流量計積算値(質量流量)Q1、及び、組成非依存流量計積算値(体積流量)Q2を得る。
 S4では、熱式流量計積算値(質量流量)Q1をノルマル流量(標準状態の体積流量)に変換する。具体的には、次式により、変換後熱式流量計積算値Q1’を算出する。
 変換後熱式流量計積算値Q1’=Q1÷γ
 すなわち、熱式流量計積算値Q1を比重γ(設計上のガス組成での標準状態のときの比重)で割り、標準状態での体積流量(Q1’)に変換する。
 S5では、組成非依存流量計積算値(体積流量)Q2をノルマル変換する。具体的には、次式により、変換後組成非依存流量計積算値Q2’を算出する。
 変換後組成非依存流量計積算値Q2’=
 Q2×(273.15÷(273.15+Tf))×((101.33+Pf)÷101.33)
 すなわち、組成非依存流量計積算値(体積流量)Q2を燃料温度Tf及び燃料圧力Pfを用いて標準(ノルマル)状態での流量(Q2’)に変換する。尚、燃料温度Tf及び燃料圧力Pfは燃料温度センサ5及び燃料圧力センサ6の各検出値である。
 S6では、変換後熱式流量計積算値Q1’と変換後組成非依存流量計積算値Q2’とが一定以上乖離しているか否かを判定する。
 具体的には、「|Q1’-Q2’|/Q2’>所定値」又は「|Q2’-Q1’|/Q1’>所定値」か否かを判定する。尚、単純に「|Q1’-Q2’|>所定値」か否かを判定してもよい。
 尚、後述する図4のフローチャートのS14と同様に換算係数CFを算出し、「換算係数CFが所定の上限値以上又は所定の下限値以下」か否かを判定するようにしてもよい。
 この判定の結果、NOの場合(乖離していない場合)は、S7へ進んで、通常制御を実施するようにする。これに対し、YESの場合(乖離している場合)は、熱式流量計5の計測値が実際の流量と異なっていると判断して、S8へ進み、計測流量異常時制御(図4のフロー)へ移行する。
 図4は計測流量異常時制御(異常判定時の燃料供給量の制御)のフローチャートである。
 S11では、熱式流量計3の計測値(熱式流量計値)の積算を開始する。
 S12では、組成非依存流量計4の計測値(組成非依存流量計値)の積算を開始する。
 S13では、これらの積算を所定時間実行し、最終的な積算値として、熱式流量計積算値(質量流量)Q1、及び、組成非依存流量計積算値(体積流量)Q2を得る。
 S14では、次式により、換算係数CFを算出する。
 換算係数CF=〔Q2×(273.15÷(273.15+Tf))×((101.33+Pf)÷101.33)〕/〔Q1÷γ〕
 言い換えれば、図3のフローチャートのS4、S5と同様に、変換後熱式流量計積算値Q1’、変換後組成非依存流量計積算値Q2’を算出し、これらの比をとって、換算係数CF=Q2’/Q1’を算出する。
 すなわち、熱式流量計積算値(質量流量)Q1をノルマル流量(標準状態の体積流量)に変換する。具体的には、次式により、変換後熱式流量計積算値Q1’を算出する。
 変換後熱式流量計積算値Q1’=Q1÷γ
 すなわち、熱式流量計積算値Q1を比重γ(設計上のガス組成での標準状態のときの比重)で割り、標準状態での体積流量(Q1’)に変換する。
 また、組成非依存流量計積算値(体積流量)Q2をノルマル変換する。具体的には、次式により、変換後組成非依存流量計積算値Q2’を算出する。
 変換後組成非依存流量計積算値Q2’=
 Q2×(273.15÷(273.15+Tf))×((101.33+Pf)÷101.33)
 すなわち、組成非依存流量計積算値(体積流量)Q2を燃料温度Tf及び燃料圧力Pfを用いて標準(ノルマル)状態での流量(Q2’)に変換する。尚、燃料温度Tf及び燃料圧力Pfは燃料温度センサ5及び燃料圧力センサ6の各検出値である。
 そして、これらの変換後、変換後熱式流量計積算値Q1’と変換後組成非依存流量計積算値Q2’との比をとり、換算係数CFを算出する(次式参照)。
 換算係数CF=Q2’/Q1’
 S15では、換算係数CFがメタンCH4の換算係数CF(CH4) =0.74より小さいか否かを判定する。判定結果によって、組成を近似するためである。
 換算係数CFがメタンCH4の換算係数CF(CH4) より小さい場合(CF<CF(CH4) の場合)は、S16~S18へ進む。この場合は、メタンCH4とプロパンC3H8との2成分からなると推定し、これらのモル分率を計算する。
 S16では、S14で求めた換算係数CFと、メタンCH4の換算係数CF(CH4) =0.74と、プロパンC3H8の換算係数CF(C3H8)=0.34とから、次式により、メタンCH4のモル分率を算出する。
 CH4のモル分率=〔CF(CH4)×CF(C3H8)/CF-CF(CH4)〕/〔CF(C3H8)-CF(CH4)〕
 尚、この式は、次のようにして求められる。
 換算係数=1/Σ(成分iの体積分率/成分iの換算係数)
であり、
CH4とC3H8との2成分とし、圧縮係数は無視して体積分率=モル分率とし、CH4のモル分率をXと置くと、C3H8のモル分率は1-Xとなるので、
 CF=1/〔X/CF(CH4)+(1-X)/CF(C3H8)〕
となり、これをXについて解くことで、上記の式が得られる。
 S17では、S16で求めたメタンCH4のモル分率から、プロパンC3H8のモル分率を次式により算出する。
 C3H8のモル分率=1-CH4のモル分率
 S18では、前記推定の下、窒素N2のモル分率を次式の通り0とする。
 N2のモル分率=0
 換算係数CFがメタンCH4の換算係数CF(CH4) より大きい場合(CF>CF(CH4) の場合)は、S19~S21へ進む。この場合は、メタンCH4と窒素N2との2成分からなると推定し、これらのモル分率を計算する。
 S19では、S14で求めた換算係数CFと、メタンCH4の換算係数CF(CH4) =0.74と、窒素N2の換算係数CF(N2)=1.00とから、次式により、メタンCH4のモル分率を算出する。
 CH4のモル分率=〔CF(CH4)×CF(N2)/CF-CF(CH4)〕/〔CF(N2)-CF(CH4)〕
 尚、この式も、前述と同様に求められる。
 S20では、S19で求めたメタンCH4のモル分率から、窒素N2のモル分率を次式により算出する。
 N2のモル分率=1-CH4のモル分率
 S21では、前記推定の下、プロパンC3H8のモル分率を次式の通り0とする。
 C3H8のモル分率=0
 S16~S18、又はS19~S21でのモル分率の計算後は、S22へ進む。
 S22では、上記のように推定されたガス燃料の組成(メタンCH4のモル分率とプロパンC3H8のモル分率)に基づき、予め定めた関数fを用いて、燃料供給量に対する補正係数Kを算出する(次式参照)。
 補正係数K=f(CH4のモル分率,C3H8のモル分率)
 尚、実際のメタンCH4及びプロパンC3H8の各モル分率(推定値)は、設計上のガス組成でのメタンCH4及びプロパンC3H8の各モル分率(設計値)に対する偏差として捉えてもよい。
 S23では、目標供給条件に基づく目標燃料供給量(通常制御での目標燃料供給量)をS22で求めた補正係数Kにより補正し、これによって最終的な燃料供給量を得る(次式参照)。
 燃料供給量=目標燃料供給量×補正係数K
 このようにして算出された燃料供給量は、制御上の目標値に設定され、燃料供給装置2を介して、燃料供給量の制御がなされる。
 本実施形態によれば、熱式流量計5の計測値と組成非依存流量計6の計測値との乖離度合に基づいて異常状態であるか否かを判断する計測流量異常判定部Aと、前記異常状態であると判断された場合に、熱式流量計5の計測値に対する換算係数CFを設定する換算係数設定部Bと、前記換算係数CFに基づいて、燃料供給装置2によるガス燃料の供給量を調整する供給量調整部Cと、を備えることにより、ガス燃料の組成が変化しても、適正な量の燃料の供給が可能となる。
 特に、ガス燃料の供給路に熱式流量計3と直列に配置され、ガス燃料の組成に依存せずに流量を計測可能な組成非依存流量計4を備え、前記計測流量異常判定部Aは、熱式流量計3の計測値と組成非依存流量計4の計測値とが一定以上乖離することで、異常状態であると判断することにより、異常判定を的確に行うことができる。
 また、本実施形態によれば、前記換算係数設定部Bは、組成非依存流量計4の計測値と熱式流量計3の計測値との比に基づいて、換算係数CFを設定することにより、この換算係数CFを用いての流量補正が可能となる。
 また、本実施形態によれば、前記供給量調整部Cは、前記換算係数設定部Bにて設定された換算係数CFに基づいて、ガス燃料の燃料性状を推定する燃料性状推定部C1と、推定された燃料性状に基づいて、ガス燃料の目標供給量を補正する目標供給量補正部C2と、を含んで構成されるため、ガス燃料の燃料性状の推定に基づく適正な制御が可能となる。
 また、本実施形態によれば、前記燃料性状推定部C1は、前記換算係数設定部Bにて設定された換算係数CFと、ガス燃料の主成分(CH4)について予め定めた換算係数CF(CH4) との比較結果に応じて、予め定めた副成分候補(C3H8、N2)の中から副成分を特定し、前記換算係数設定部Bにて設定された換算係数CFと、前記主成分及び前記特定した副成分について予め定めた換算係数CF(C3H8)又はCF(N2) とに基づいて、前記主成分及び前記特定した副成分のモル分率を求めることにより、実用上十分な推定精度を得ることができる。
 前記副成分候補は、ガス燃料の主成分(メタンCH4)とは熱量の異なる可燃性成分(プロパンC3H8あるいはブタンC4H10)と、不燃性成分(窒素N2)とするのが望ましい。
 更に、本実施形態は、特許文献1~3に記載の技術に対し、次のような利点を有する。
(1)特許文献1に対し
 流れが生じる全領域においてガス種を判別できる。また、ガス種の推定も行うため、ガス組成の動的な変化に対応できる。
(2)特許文献2に対し
 換算係数設定部を備えることで、混合ガスの組成を予め取得できない場合においても、換算係数を取得できる。また、換算係数からガス組成を推定できる。
(3)特許文献3に対し
 燃料ガスの供給路に設置された流量計を使用することで、事前に燃料性状の特定を行うことができる。これにより、用途が広がり、調整運転等の必要もなくなる。
 尚、本実施形態では、換算係数CFに基づき燃料性状としてガス成分のモル分率を算出し、これをパラメータとして燃料供給量に対する補正値(補正係数)を算出するようにしたが、燃料性状を表す他のパラメータを用いてもよいし、換算係数CF自体をパラメータとして燃料供給量に対する補正値を算出するようにしてもよい。
 また、本実施形態では、燃料供給システムの供給対象(ガス機器)についての説明は省略したが、供給対象については特に限定されず、汎用の燃料供給システムとして利用できる。あえて用途について言及すれば、空燃比管理が必要な燃焼用途と、原料組成把握が必要な化学反応用途とを挙げることができる。燃焼用途の個別例としては、ボイラーやガスエンジンを挙げることができる。ガスエンジンは、家庭用コージェネレーションシステム(都市ガスやLPGを燃料とするガスエンジンで発電を行い、その際に発生する熱を給湯などに利用するシステム;通称「エコウィル」)、GHPシステム(ガスエンジンで圧縮機を駆動し、ヒートポンプ運転によって冷暖房を行う空調システム)、及び、産業用自家発電システムなどに用いられる。化学反応用途の個別例としては、合成ガス製造装置を挙げることができる。合成ガス製造装置は、天然ガス、LPGなどを原料とし、各種改質法を用いて、H2及びCOを主成分とする合成ガスを製造する。製造された合成ガスは、アンモニア合成、メタノール合成などに原料ガスとして用いられる。最近では、更にGTL、DME、或いはSNG等の新規エネルギー製造関連での合成ガスの需要が注目されている。
 次に本発明の第2実施形態として本発明を燃料電池システムに適用した実施形態について図5~図7により説明する。
 図5は本発明の第2実施形態として示す燃料電池システムの概略構成図である。
 本実施形態の燃料電池システムは、炭化水素系のガス燃料を水蒸気改質して水素リッチな改質燃料を生成する燃料改質装置11と、この燃料改質装置11からの改質燃料(水素)と空気(酸素)との電気化学反応により発電する燃料電池スタック(燃料電池セルの組立体)12とを含んで構成される。
 燃料改質装置11に供給するガス燃料としては、本実施形態では、天然ガス由来の都市ガスが用いられ、燃料供給装置13により供給される。
 燃料供給装置13は、ガス燃料供給源に接続された流量制御弁などにより構成され、制御装置21からの信号に基づいて供給量が制御される。
 燃料供給装置13から燃料改質装置11へのガス燃料の供給路には、脱硫器14と、熱式流量計(熱式質量流量計)15と、組成非依存流量計16と、燃料温度センサ17と、燃料圧力センサ18とが設けられる。
 脱硫器4は、ガス燃料に含まれる硫黄化合物を脱硫除去する。
 熱式流量計15、組成非依存流量計16、燃料温度センサ17及び燃料圧力センサ18については、第1実施形態(図1)の熱式流量計3、組成非依存流量計4、燃料温度センサ5及び燃料圧力センサ6と同じであり、説明を省略する。
 これら熱式流量計15、組成非依存流量計16、燃料温度センサ17及び燃料圧力センサ18の検出信号は、制御装置21へ送られる。
 燃料改質装置11での水蒸気改質のための改質水は、改質水供給装置19により供給される。改質水供給装置19は、水供給源に接続されたポンプ及び/又は流量制御弁などにより構成され、制御装置21からの信号に基づいて供給量が制御される。
 燃料電池スタック12にはアノード極(A)に燃料改質装置11からの改質燃料が供給され、カソード極(C)に空気が供給されるが、カソード空気は、カソード空気供給装置20により供給される。カソード空気供給装置20は、空気供給源に接続されたポンプ(ブロワ)及び/又は流量制御弁などにより構成され、制御装置21からの信号に基づいて供給量が制御される。
 制御装置21は、マイクロコンピュータを含んで構成され、制御プログラムに従って演算処理を行い、熱式流量計15、組成非依存流量計16、燃料温度センサ17及び燃料圧力センサ18を始めとする各種センサ信号を読込みつつ、燃料供給装置13、改質水供給装置19及びカソード空気供給装置20を始めとする各種機器の作動を制御する。
 尚、燃料改質装置11では、メタンCH4の場合は、下記(1)式の水蒸気改質反応がなされ、プロパンC3H8の場合は、下記(2)式の水蒸気改質反応がなされる。
 CH+2HO→CO+4H  ・・・(1)
 C+6HO→3CO+10H  ・・・(2)
 また、燃料電池スタック12では、各セルのカソード極にて、下記(3)式の電極反応が生起され、アノード極にて、下記(4)式の電極反応が生起されて、発電がなされる。
 カソード極: 1/2O+2e→O2-(固体電解質)  ・・・(3)
 アノード極: O2-(固体電解質)+H→HO+2e  ・・・(4)
 次に制御装置21による燃料、改質水及びカソード空気の制御について説明する。
 通常制御では、主に、目標発電条件に従って燃料供給量(目標値)を設定し、燃料供給装置13を介してガス燃料の供給量を制御するが、熱式流量計15の計測流量を参照しつつフィードバック制御を行う。また、熱式流量計15の計測流量を参照するなどして改質水供給量(目標値)を設定し、改質水供給装置19を介して改質水の供給量を制御する。また、目標発電条件に従って又は熱式流量計15の計測流量を参照するなどしてカソード空気供給量(目標値)を設定し、カソード空気供給装置20を介してカソード空気の供給量を制御する。
 一方、熱式流量計15の計測流量異常に対処するため、制御装置21内には、図6の機能ブロック図に示すように、熱式流量計15の計測値と組成非依存流量計16の計測値との乖離度合に基づいて異常状態であるか否かを判断する計測流量異常判定部Aと、前記異常状態であると判断された場合に、熱式流量計15の計測値に対する換算係数(コンバージョンファクタ)を設定する換算係数設定部Bと、前記換算係数に基づいて、燃料供給装置13及び改質水供給装置19によるガス燃料の供給量及び改質水の供給量を調整する供給量調整部C’とが備えられる。
 計測流量異常判定部Aは、熱式流量計5の計測値と組成非依存流量計6の計測値とが一定以上乖離することで、異常状態である(熱式流量計5の計測値が実際の流量と異なっている)と判断する。
 換算係数設定部Bは、組成非依存流量計6の計測値と熱式流量計5の計測値との比に基づいて、換算係数を設定する。
 供給量調整部C’は、換算係数設定部Bにて設定された換算係数に基づいて、ガス燃料の燃料性状を推定する燃料性状推定部C1と、推定された燃料性状と目標発電条件とに基づいて、ガス燃料の目標供給量及び改質水の目標供給量を算出する目標供給量算出部C2’と、を含んで構成される。
 ここで、計測流量異常判定部Aの機能を実現するフローチャートは、図3と基本的に同じであり、説明を省略する。換算係数設定部B及び供給量調整部C’の機能は図7のフローチャートにより実現される。
 図7は計測流量異常時制御(異常判定時の燃料、改質水及びカソード空気の供給量の制御)のフローチャートである。尚、図7のS11~S21は図4のS11~S21と基本的に同じであり、同一のステップ符号を付している。
 S11では、熱式流量計15の計測値(熱式流量計値)の積算を開始する。
 S12では、組成非依存流量計16の計測値(組成非依存流量計値)の積算を開始する。
 S13では、これらの積算を所定時間実行し、最終的な積算値として、熱式流量計積算値(質量流量)Q1、及び、組成非依存流量計積算値(体積流量)Q2を得る。
 S14では、次式により、換算係数CFを算出する。
 換算係数CF=〔Q2×(273.15÷(273.15+Tf))×((101.33+Pf)÷101.33)〕/〔Q1÷γ〕
 S15では、換算係数CFがメタンCH4の換算係数CF(CH4) =0.74より小さいか否かを判定する。判定結果によって、組成を近似するためである。
 換算係数CFがメタンCH4の換算係数CF(CH4) より小さい場合(CF<CF(CH4) の場合)は、S16~S18へ進む。この場合は、メタンCH4とプロパンC3H8との2成分からなると推定し、これらのモル分率を計算する。
 S16では、S14で求めた換算係数CFと、メタンCH4の換算係数CF(CH4) =0.74と、プロパンC3H8の換算係数CF(C3H8)=0.34とから、次式により、メタンCH4のモル分率を算出する。
 CH4のモル分率=〔CF(CH4)×CF(C3H8)/CF-CF(CH4)〕/〔CF(C3H8)-CF(CH4)〕
 S17では、S16で求めたメタンCH4のモル分率から、プロパンC3H8のモル分率を次式により算出する。
 C3H8のモル分率=1-CH4のモル分率
 S18では、前記推定の下、窒素N2のモル分率を次式の通り0とする。
 N2のモル分率=0
 換算係数CFがメタンCH4の換算係数CF(CH4) より大きい場合(CF>CF(CH4) の場合)は、S19~S21へ進む。この場合は、メタンCH4と窒素N2との2成分からなると推定し、これらのモル分率を計算する。
 S19では、S14で求めた換算係数CFと、メタンCH4の換算係数CF(CH4) =0.74と、窒素N2の換算係数CF(N2)=1.00とから、次式により、メタンCH4のモル分率を算出する。
 CH4のモル分率=〔CF(CH4)×CF(N2)/CF-CF(CH4)〕/〔CF(N2)-CF(CH4)〕
 S20では、S19で求めたメタンCH4のモル分率から、窒素N2のモル分率を次式により算出する。
 N2のモル分率=1-CH4のモル分率
 S21では、前記推定の下、プロパンC3H8のモル分率を次式の通り0とする。
 C3H8のモル分率=0
 S16~S18、又はS19~S21でのモル分率の計算後は、S31へ進む。
 S31では、燃料供給量(目標値)を、目標発電条件(掃引直流電流量)と、ガス燃料の組成(メタンCH4のモル分率とプロパンC3H8のモル分率)とから、次式により算出する。
 燃料供給量=〔セル直列枚数×電流量×60〕/〔Uf×Fd×(CH4のモル分率×8+C3H8のモル分率×20)〕×22.414
 ここで、Ufは予め定めた燃料利用率(目標値で、例えば0.85)、Fdはファラデー定数(96485.3399)、22.414はモル容積(L/mol)である。また、「8」はメタンCH4の水蒸気改質反応による水素原子の生成数、「20」はプロパンC3H8の水蒸気改質反応による水素原子の生成数である(前述の水蒸気改質反応式参照)。
 S32では、改質水供給量(目標値)を、燃料供給量と、燃料ガスの組成(メタンCH4のモル分率とプロパンC3H8のモル分率)とから、次式により算出する。
 水供給量=燃料供給量×(CH4のモル分率×1+C3H8のモル分率×3)/22.414×S/C×18.02
 式中の「1」はメタンCH4の炭素の数、「3」はプロパンC3H8の炭素の数、22.414はモル容積(L/mol)、S/Cはスチーム・カーボン比(目標値で、例えば2.5)、18.02 は水蒸気の分子量である。
 S33では、カソード空気供給量(目標値)を、次式により算出する。
 空気供給量=〔セル直列枚数×電流量×60〕/〔Ua×Fd×(空気中のO2のモル分率×4)〕×22.414
 ここで、Uaは予め定めた空気利用率(目標値で、例えば0.30)、Fdはファラデー定数(96485.3399)、22.414はモル容積(L/mol)である。また、「4」は電極反応によるO2からの電子の生成数である(前述の電極反応式参照)。
 尚、ここではカソード空気供給量を目標発電条件から算出したが、燃料供給量と空燃比とに基づいて算出するようにしてもよい。
 このようにして算出された燃料供給量、改質水供給量及びカソード空気供給量は、それぞれ制御上の目標値に設定され、燃料供給装置13、改質水供給装置19及びカソード空気供給装置20を介して、これらの制御がなされる。
 本実施形態によれば、燃料電池システムにおいて、熱式流量計15の計測値と組成非依存流量計16の計測値との乖離度合に基づいて異常状態であるか否かを判断する計測流量異常判定部Aと、前記異常状態であると判断された場合に、熱式流量計15の計測値に対する換算係数CFを設定する換算係数設定部Bと、前記換算係数CFに基づいて、燃料供給装置13及び改質水供給装置19によるガス燃料の供給量及び改質水の供給量を調整する供給量調整部C’と、を備えることにより、ガス燃料の組成が変化しても、適正な量の燃料と改質水の供給が可能となる。
 また、本実施形態によれば、前記供給量調整部C’は、前記換算係数設定部Bにて設定された換算係数CFに基づいて、ガス燃料の燃料性状を推定する燃料性状推定部C1と、推定された燃料性状と目標発電条件とに基づいて、ガス燃料の目標供給量及び改質水の目標供給量を算出する目標供給量算出部C2’と、を含んで構成されるため、ガス燃料の燃料性状の推定に基づく、ガス燃料及び改質水の適正な制御が可能となる。
 更に、本実施形態は、下記の文献に記載の技術に対しても、次のような利点を有する。
(1)日本国公開特許公報:特開2006-049056号
 本技術では、性状(組成や熱量)が変化する燃料が供給される燃料電池システムにおいて、燃料の性状(組成や熱量)及び流量を計測する手段と、燃料電池の状態を判定する手段と、燃料電池の出力を制御する手段とを備え、計測及び判定結果から最適な制御パラメータを演算して、燃料電池の熱自立運転を維持する。
 しかし、燃料の性状(組成や熱量)及び流量を計測する手段を構成するために、例えば熱量についてはカロリーメーター、組成についてはガスクロマトグラフィーの機構を組み合わせる必要があり、装置構成が複雑かつ高価なものになる。
 これに対し、本実施形態では、前記供給量調整部を備えることで、カロリーメーターやガスクロマトグラフィーといった高価な機器を用いることなく、燃料と改質水を適切に供給することができる。
(2)日本国公開特許公報:特開2010-272213号
 本技術では、熱式質量流量計及び差圧計測手段(差圧式の流量計)の計測値に基づいて、燃料電池セルスタックの発電電流及び燃料供給流路を通じて供給される混合ガス(メタンと炭酸ガスとの混合ガス)の流量を制御する。
 しかし、熱式質量流量計の計測値を真値としているため、メタンとは異なる流量を示す組成のガスが混合された場合は、熱式質量流量計が正しい値を示さなくなるので、前提が崩れ、正常な制御が期待できない。
 これに対し、本実施形態では、前記熱式流量計により計測された質量流量を、前記換算係数設定部により補正できるため、メタンと換算係数が一致しない大多数の成分に対して適用が可能である。
(3)日本国公開特許公報:特開2004-059337号
 本技術では、体積流量計によって計測される体積流量と質量流量計によって計測される質量流量との比に基づいて燃料ガス密度を測定し、燃料ガス密度から燃料ガスの組成(燃料ガス分子の平均炭素原子数及び平均水素原子数)を求め、水蒸気改質に適切な量の水を供給する。
 しかし、燃料ガスが炭素原子及び水素原子のみを含む想定であるため、不活性ガス(N2など)が混入している場合や他の元素が含まれる場合には組成の推定ができなくなる。また、質量流量計として熱式流量計を用いる場合は、燃料ガス組成が変動すると正しい値を示さないため、適切な制御ができなくなる。
 これに対し、本実施形態では、前記供給量調整部にて使用する換算係数に適切なガス成分の値を用いることで、不活性ガスが混入している場合や他の元素が含まれる場合においてもガス組成の推定が可能である。また、前記熱式流量計により計測された質量流量を、前記換算係数設定部により補正できるため、ガス組成が変動した場合でも適切な燃料供給を行うことができる。
 尚、上記の実施形態では、ガス燃料を都市ガスとして、ガス燃料の主成分をCH4、副成分候補をプロパンC3H8(あるいはブタンC4H10)と窒素N2としたが、これらに限定されるものではない。例えば、ガス燃料は都市ガスの他、LPGなどであってもよく、ガス燃料の主成分はメタンCH4の他、エタンC2H6、プロパンC3H8などであってもよい。
 また、ガス燃料が例えば都市ガスからLPG、あるいはLPGから都市ガスへ変更されるような場合も、ガス燃料の変更を自動検出して、制御装置に通知し、制御装置にてガス燃料の変更に対応して制御プログラムを変更するようにしてもよい。
 また、都市ガスについては、バイオガス由来もしくはシェールガス由来の炭化水素ガスが混入されているガス、又は、石油化学工場で副生するオフガス(天然ガス由来ではない炭化水素ガス)が混入されているガスであっても、本発明を適用可能である。
 しかし、いずれにしても、燃料ガスの主成分と、これとは熱量の異なる可燃成分と、不燃成分の3成分についての換算係数を用いるのが望ましい。
 また、上記実施形態では、熱式流量計3、15を主たる流量計として使用し、組成非依存流量計4、16を補助的な流量計として使用すると説明したが、組成非依存流量計4、16を主たる流量計として使用し、熱式流量計3、15を補助的な流量計として使用するようにしてもよい。
 また、燃料電池システムの実施形態において、改質反応として部分酸化反応を併用するために、改質用空気の供給装置を備える場合は、供給量調整部C’にて、改質用空気の供給量を調整するようにしてもよい。
 この場合、改質用空気供給量は、例えば、次式により算出する。
 改質用空気供給量=燃料供給量×(CH4のモル分率×1+C3H8のモル分率×3)/(空気中酸素濃度)×O/C
 式中のO/Cは酸素・カーボン比である。
 尚、図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。
 1 供給対象
 2 燃料供給装置
 3 熱式流量計
 4 組成非依存流量計
 5 燃料温度センサ
 6 燃料圧力センサ
 7 制御装置
11 燃料改質装置
12 燃料電池スタック
13 燃料供給装置
14 脱硫器
15 熱式流量計
16 組成非依存流量計
17 燃料温度センサ
18 燃料圧力センサ
19 改質水供給装置
20 カソード空気供給装置
21 制御装置

Claims (12)

  1.  供給対象に炭化水素系のガス燃料を供給する燃料供給装置と、前記燃料供給装置により供給される前記ガス燃料の流量を計測する流量計と、前記流量計の信号が入力されていて前記燃料供給装置の供給量を制御する制御装置と、を含んで構成される、燃料供給システムであって、
     前記流量計としては、熱式流量計と、前記ガス燃料の組成に依存せずに流量を計測可能な組成非依存流量計とを備え、
     前記制御装置は、
     前記熱式流量計の計測値と前記組成非依存流量計の計測値との乖離度合に基づいて異常状態であるか否かを判断する計測流量異常判定部と、
     前記異常状態であると判断された場合に、前記熱式流量計の計測値に対する換算係数を設定する換算係数設定部と、
     前記換算係数に基づいて、前記燃料供給装置による前記ガス燃料の供給量を調整する供給量調整部と、
     を含んで構成される、燃料供給システム。
  2.  前記換算係数設定部は、前記組成非依存流量計の計測値と前記熱式流量計の計測値との比に基づいて、換算係数を設定することを特徴とする、請求項1記載の燃料供給システム。
  3.  前記供給量調整部は、
     前記換算係数設定部にて設定された換算係数に基づいて、前記ガス燃料の燃料性状を推定する燃料性状推定部と、
     推定された燃料性状に基づいて、前記ガス燃料の目標供給量を補正する目標供給量補正部と、
     を含んで構成されることを特徴とする、請求項2記載の燃料供給システム。
  4.  前記燃料性状推定部は、前記換算係数設定部にて設定された換算係数と、前記ガス燃料の主成分について予め定めた換算係数との比較結果に応じて、予め定めた副成分候補の中から副成分を特定し、前記換算係数設定部にて設定された換算係数と、前記主成分及び前記特定した副成分について予め定めた換算係数とに基づいて、前記主成分及び前記特定した副成分のモル分率を求めることを特徴とする、請求項3記載の燃料供給システム。
  5.  前記副成分候補は、前記ガス燃料の主成分とは熱量の異なる可燃性成分と、不燃性成分とであることを特徴とする、請求項4記載の燃料供給システム。
  6.  炭化水素系のガス燃料を水蒸気改質して水素リッチな改質燃料を生成する燃料改質装置と、生成された改質燃料と空気との電気化学反応により発電する燃料電池スタックと、前記改質装置に前記ガス燃料を供給する燃料供給装置と、前記改質装置に前記水蒸気改質用の水を供給する改質水供給装置と、前記燃料供給装置から前記改質装置へ供給される前記ガス燃料の流量を計測する流量計と、前記流量計の信号が入力されていて前記燃料供給装置及び前記改質水供給装置の各供給量を制御する制御装置と、を含んで構成される、燃料電池システムであって、
     前記流量計としては、熱式流量計と、前記ガス燃料の組成に依存せずに流量を計測可能な組成非依存流量計とを備え、
     前記制御装置は、
     前記熱式流量計の計測値と前記組成非依存流量計の計測値との乖離度合に基づいて異常状態であるか否かを判断する計測流量異常判定部と、
     前記異常状態であると判断された場合に、前記熱式流量計の計測値に対する換算係数を設定する換算係数設定部と、
     前記換算係数に基づいて、前記燃料供給装置及び前記改質水供給装置による前記ガス燃料の供給量及び前記水の供給量を調整する供給量調整部と、
     を含んで構成される、燃料電池システム。
  7.  前記換算係数設定部は、前記組成非依存流量計の計測値と前記熱式流量計の計測値との比に基づいて、換算係数を設定することを特徴とする、請求項6記載の燃料電池システム。
  8.  前記供給量調整部は、
     前記換算係数設定部にて設定された換算係数に基づいて、前記ガス燃料の燃料性状を推定する燃料性状推定部と、
     推定された燃料性状と目標発電条件とに基づいて、前記ガス燃料の目標供給量及び前記水の目標供給量を算出する目標供給量算出部と、
     を含んで構成されることを特徴とする、請求項7記載の燃料電池システム。
  9.  前記燃料性状推定部は、前記換算係数設定部にて設定された換算係数と、前記ガス燃料の主成分について予め定めた換算係数との比較結果に応じて、予め定めた副成分候補の中から副成分を特定し、前記換算係数設定部にて設定された換算係数と、前記主成分及び前記特定した副成分について予め定めた換算係数とに基づいて、前記主成分及び前記特定した副成分のモル分率を求めることを特徴とする、請求項8記載の燃料電池システム。
  10.  前記副成分候補は、前記ガス燃料の主成分とは熱量の異なる可燃性成分と、不燃性成分とであることを特徴とする、請求項9記載の燃料電池システム。
  11.  供給対象に炭化水素系のガス燃料を供給する燃料供給装置と、前記燃料供給装置により供給される前記ガス燃料の流量を計測する流量計と、を含んで構成される、燃料供給システムの運転方法であって、
     前記流量計としては、熱式流量計と、前記ガス燃料の組成に依存せずに流量を計測可能な組成非依存流量計とを併用し、
     前記燃料供給装置の供給量を制御するために、
     前記熱式流量計の計測値と前記組成非依存流量計の計測値との乖離度合に基づいて異常状態であるか否かを判断する計測流量異常判定ステップと、
     前記異常状態であると判断された場合に、前記熱式流量計の計測値に対する換算係数を設定する換算係数設定ステップと、
     前記換算係数に基づいて、前記燃料供給装置による前記ガス燃料の供給量を調整する供給量調整ステップと、
     を有する、燃料供給システムの運転方法。
  12.  炭化水素系のガス燃料を水蒸気改質して水素リッチな改質燃料を生成する燃料改質装置と、生成された改質燃料と空気との電気化学反応により発電する燃料電池スタックと、前記改質装置に前記ガス燃料を供給する燃料供給装置と、前記改質装置に前記水蒸気改質用の水を供給する改質水供給装置と、前記燃料供給装置から前記改質装置へ供給される前記ガス燃料の流量を計測する流量計と、を含んで構成される、燃料電池システムの運転方法であって、
     前記流量計としては、熱式流量計と、前記ガス燃料の組成に依存せずに流量を計測可能な組成非依存流量計とを併用し、
     前記燃料供給装置及び前記改質水供給装置の各供給量を制御するために、
     前記熱式流量計の計測値と前記組成非依存流量計の計測値との乖離度合に基づいて異常状態であるか否かを判断する計測流量異常判定ステップと、
     前記異常状態であると判断された場合に、前記熱式流量計の計測値に対する換算係数を設定する換算係数設定ステップと、
     前記換算係数に基づいて、前記燃料供給装置及び前記改質水供給装置による前記ガス燃料の供給量及び前記水の供給量を調整する供給量調整ステップと、
     を有する、燃料電池システムの運転方法。
PCT/JP2013/051302 2012-01-23 2013-01-23 燃料供給システム、燃料電池システム、及びそれらの運転方法 WO2013111776A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380006298.0A CN104067052A (zh) 2012-01-23 2013-01-23 燃料供应系统、燃料电池系统以及它们的运转方法
US14/372,113 US20140377678A1 (en) 2012-01-23 2013-01-23 Fuel supply system, fuel cell system, and method for running each
EP13740938.9A EP2808609A1 (en) 2012-01-23 2013-01-23 Fuel supply system, fuel cell system, and method for running each

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012011219 2012-01-23
JP2012-011193 2012-01-23
JP2012011193 2012-01-23
JP2012-011219 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013111776A1 true WO2013111776A1 (ja) 2013-08-01

Family

ID=48873491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051302 WO2013111776A1 (ja) 2012-01-23 2013-01-23 燃料供給システム、燃料電池システム、及びそれらの運転方法

Country Status (5)

Country Link
US (1) US20140377678A1 (ja)
EP (1) EP2808609A1 (ja)
JP (1) JPWO2013111776A1 (ja)
CN (1) CN104067052A (ja)
WO (1) WO2013111776A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197323A (ja) * 2014-03-31 2015-11-09 アズビル株式会社 補正値決定装置および補正値決定方法
JP2015197325A (ja) * 2014-03-31 2015-11-09 アズビル株式会社 熱式流量計および流量補正方法
JP2019114342A (ja) * 2017-12-21 2019-07-11 アイシン精機株式会社 燃料電池システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421947B1 (en) 2017-06-30 2019-08-07 Sensirion AG Operation method for flow sensor device
JP6602829B2 (ja) * 2017-11-22 2019-11-06 本田技研工業株式会社 ガス充填方法
CN110412236A (zh) * 2019-08-23 2019-11-05 重庆科技学院 等速式天然气组份含量检测系统
CN110412237A (zh) * 2019-08-23 2019-11-05 重庆科技学院 等速式气体组份检测仪
WO2023012742A1 (en) * 2021-08-06 2023-02-09 Cavagna Group Spa Method for calibrating a gas meter and gas meter calibrated according to the method
CN114590440B (zh) * 2021-11-01 2023-11-24 浙江恒逸石化研究院有限公司 一种在线检测并控制混合气体比例的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339623A (ja) * 1989-07-05 1991-02-20 Tokyo Gas Co Ltd 熱量計
JP2787785B2 (ja) * 1990-07-02 1998-08-20 山武ハネウエル株式会社 流量計および流量測定方法
JP2004011487A (ja) 2002-06-05 2004-01-15 Tokyo Gas Co Ltd 気体燃料の特定方法及び装置
JP2007024511A (ja) * 2005-07-12 2007-02-01 National Institute Of Advanced Industrial & Technology 混合気体の精密流量及び発熱量測定方法及び装置
JP2007245111A (ja) 2006-03-20 2007-09-27 Taiyo Nippon Sanso Corp 空気液化分離における前処理方法及び装置
JP2009087126A (ja) * 2007-10-01 2009-04-23 Hitachi Metals Ltd 質量流量制御装置及び実ガスの質量流量制御方法
JP2010008165A (ja) * 2008-06-25 2010-01-14 Tokyo Gas Co Ltd 混合ガスの成分測定装置及び成分測定方法
US20100080262A1 (en) * 2008-09-26 2010-04-01 Advanced Energy Industries, Inc. Method and system for operating a mass flow controller
JP2011203075A (ja) 2010-03-25 2011-10-13 Yamatake Corp 渦流量計及びガス種自動判別方法
JP2011209152A (ja) * 2010-03-30 2011-10-20 Yamatake Corp 流量計

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162128A (ja) * 2008-01-08 2009-07-23 Yamatake Corp 燃料供給装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339623A (ja) * 1989-07-05 1991-02-20 Tokyo Gas Co Ltd 熱量計
JP2787785B2 (ja) * 1990-07-02 1998-08-20 山武ハネウエル株式会社 流量計および流量測定方法
JP2004011487A (ja) 2002-06-05 2004-01-15 Tokyo Gas Co Ltd 気体燃料の特定方法及び装置
JP2007024511A (ja) * 2005-07-12 2007-02-01 National Institute Of Advanced Industrial & Technology 混合気体の精密流量及び発熱量測定方法及び装置
JP2007245111A (ja) 2006-03-20 2007-09-27 Taiyo Nippon Sanso Corp 空気液化分離における前処理方法及び装置
JP2009087126A (ja) * 2007-10-01 2009-04-23 Hitachi Metals Ltd 質量流量制御装置及び実ガスの質量流量制御方法
JP2010008165A (ja) * 2008-06-25 2010-01-14 Tokyo Gas Co Ltd 混合ガスの成分測定装置及び成分測定方法
US20100080262A1 (en) * 2008-09-26 2010-04-01 Advanced Energy Industries, Inc. Method and system for operating a mass flow controller
JP2011203075A (ja) 2010-03-25 2011-10-13 Yamatake Corp 渦流量計及びガス種自動判別方法
JP2011209152A (ja) * 2010-03-30 2011-10-20 Yamatake Corp 流量計

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197323A (ja) * 2014-03-31 2015-11-09 アズビル株式会社 補正値決定装置および補正値決定方法
JP2015197325A (ja) * 2014-03-31 2015-11-09 アズビル株式会社 熱式流量計および流量補正方法
JP2019114342A (ja) * 2017-12-21 2019-07-11 アイシン精機株式会社 燃料電池システム
JP7024380B2 (ja) 2017-12-21 2022-02-24 株式会社アイシン 燃料電池システム

Also Published As

Publication number Publication date
EP2808609A1 (en) 2014-12-03
CN104067052A (zh) 2014-09-24
JPWO2013111776A1 (ja) 2015-05-11
US20140377678A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
WO2013111776A1 (ja) 燃料供給システム、燃料電池システム、及びそれらの運転方法
WO2013111777A1 (ja) 燃料供給システム、燃料電池システム、及びそれらの運転方法
WO2013141083A1 (ja) ガス燃料の組成判別方法、ガス燃料の組成判別装置、燃料供給システム、及び、燃料電池システム
JP4911487B2 (ja) 混合気体の精密流量及び発熱量測定方法及び装置
KR102321201B1 (ko) 유량비 제어 시스템 및 방법
JP6215564B2 (ja) 燃料電池セル又は燃料電池セル・スタックを調節するための方法及び調節装置
EP2922130A2 (en) Fuel cell system
US20030224230A1 (en) Utilization based power plant control system
EP2870651B1 (en) Method and arrangement for determination of leakage levels in fuel cell system
JPWO2005018035A1 (ja) 燃料電池発電システムおよびその改質器の劣化度検出方法、燃料電池発電方法
WO2013150722A1 (ja) 水素生成装置およびその運転方法、ならびに燃料電池システム
JPH0789493B2 (ja) 燃料電池発電プラントの燃料システム制御装置
WO2013132847A1 (ja) 水素生成装置およびその運転方法、ならびに燃料電池システム
JP6535885B2 (ja) 水素生成装置およびその運転方法ならびに燃料電池システム
JP6459063B2 (ja) 固体酸化物形燃料電池システムの運転方法
JP5705577B2 (ja) 燃料電池システム
JP2006027965A (ja) 水素生成装置および燃料電池発電システム
JP7018733B2 (ja) 固体酸化物形燃料電池
JP2004059354A (ja) 水素製造プラント制御装置および水素製造装置ならびに水素製造方法
JP5770622B2 (ja) 燃料電池システム
WO2021106489A1 (ja) 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
JP7119690B2 (ja) 燃料電池システム、原燃料ガスの流量測定方法および原燃料ガスのガス種特定方法
JP2002184441A (ja) 燃料電池装置
Tanaka et al. Development of reformate-model-gas generator for SOFC testing
JP2004059337A (ja) 水素製造プラント制御装置および水素製造装置ならびに水素製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013740938

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14372113

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013555284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE