WO2013111692A1 - 発泡成形品の製造方法および発泡成形品 - Google Patents

発泡成形品の製造方法および発泡成形品 Download PDF

Info

Publication number
WO2013111692A1
WO2013111692A1 PCT/JP2013/051049 JP2013051049W WO2013111692A1 WO 2013111692 A1 WO2013111692 A1 WO 2013111692A1 JP 2013051049 W JP2013051049 W JP 2013051049W WO 2013111692 A1 WO2013111692 A1 WO 2013111692A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin material
virgin
foam
sample
Prior art date
Application number
PCT/JP2013/051049
Other languages
English (en)
French (fr)
Inventor
尊 佐野
優 五十嵐
裕基 有田
卓志 埜村
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Priority to JP2013555246A priority Critical patent/JP6011550B2/ja
Priority to EP13741256.5A priority patent/EP2783830B1/en
Priority to KR1020167025648A priority patent/KR101761083B1/ko
Priority to US14/374,595 priority patent/US9527228B2/en
Priority to KR1020147021849A priority patent/KR20140111012A/ko
Priority to CN201380004464.3A priority patent/CN104023940B/zh
Priority to MX2014008877A priority patent/MX361391B/es
Publication of WO2013111692A1 publication Critical patent/WO2013111692A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/16EPM, i.e. ethylene-propylene copolymers; EPDM, i.e. ethylene-propylene-diene copolymers; EPT, i.e. ethylene-propylene terpolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2223/00Use of polyalkenes or derivatives thereof as reinforcement
    • B29K2223/04Polymers of ethylene
    • B29K2223/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2223/00Use of polyalkenes or derivatives thereof as reinforcement
    • B29K2223/10Polymers of propylene
    • B29K2223/12PP, i.e. polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Definitions

  • the present invention relates to a method for producing a foam molded product produced by mixing a virgin resin and a recovered resin material, and a foam molded product.
  • a molding method in which a molten thermoplastic resin is sandwiched between split molds and molded is widely used.
  • the mold is opened and released, and burrs around the molded product are cut off with a cutter or the like to obtain a finished product.
  • melt tension In many cases, physical properties such as (MT), melt flow rate (MFR), and Izod impact strength are deteriorated.
  • the resin other than the finished product generated during molding is pulverized into a recovered resin material.
  • This recovered resin material is used as a virgin resin.
  • a cycle of mixing the base resin and molding the next resin molded product in a molten state is repeated.
  • the resin material used in the manufacturing cycle for mass production of resin molded products has physical properties indicated by numerical values such as MT, MFR, Izod impact strength, etc., compared to the case of only virgin resin to which no thermal history is applied. Often it has deteriorated.
  • a resin having a high physical property is selected so that it is a mixed resin with the recovered resin material and has sufficient properties even in a state where the physical properties are deteriorated as compared with the state of virgin resin. Is common.
  • a mixed resin containing a foaming polypropylene-based resin and a hydrogenated styrene-based thermoplastic elastomer is used.
  • Some hydrogenated styrene thermoplastic elastomers have a styrene content of 15 to 25 wt% (see, for example, Patent Document 1).
  • resins having high physical properties are generally expensive. For this reason, if a resin having high physical properties is selected as a material so that a molded product molded using a mixed resin of a virgin resin and a recovered resin material has sufficient physical properties, a foam molded product is manufactured. There was a problem that the material cost was high.
  • Patent Document 1 does not take into account measures for deterioration of physical properties caused by using such a recovered resin material.
  • the present invention has been made in view of such a situation, and even when a mixed resin of a virgin resin and a recovered resin material is used as a resin material in molding, it has excellent impact strength and has a stable high quality.
  • An object of the present invention is to provide a method for producing a foam molded product and a foam molded product capable of producing the foam molded product at low cost.
  • a method for producing a foam molded product according to the present invention is a method for producing a foam molded product in which a molten resin material is clamped and molded with a split mold,
  • the resin material is A recovered resin material obtained by crushing a resin material solidified after being melted; It is composed by adding a foaming agent to a mixed resin obtained by mixing virgin resin to which heat history due to melting has not been added, It is characterized in that a polypropylene-based resin is mixed with a polyethylene-based elastomer.
  • the foam molded product according to the present invention is a foam molded product molded by clamping a molten resin material with a split mold
  • the resin material is A recovered resin material obtained by crushing a resin material solidified after being melted; It is composed by adding a foaming agent to a mixed resin obtained by mixing virgin resin to which heat history due to melting has not been added, It is characterized in that a polypropylene-based resin is mixed with a polyethylene-based elastomer.
  • FIG. 10 It is a perspective view showing an example of duct 10 as an embodiment of the present invention. It is sectional drawing which shows the aspect at the time of blow-molding the duct 10 of FIG.
  • the present invention is not limited to a vehicle air-conditioning duct.
  • automotive interior parts such as door panels, instrument panels, and vehicle deck boards, residential interior wall materials, housings for electronic devices, gases other than those for vehicles
  • the present invention can also be applied to other foamed molded products such as a duct for supplying a liquid.
  • a duct 10 according to an embodiment of the present invention shown in FIG. 1 is configured so that air-conditioned air supplied from an air-conditioner unit (not shown) is circulated through a flow path inside the duct and is ventilated to a desired part.
  • the shape of the duct 10 of this embodiment is not limited to what is shown in FIG. 1, The arbitrary shapes according to the use of the duct 10, an arrangement place, etc. may be sufficient.
  • the duct 10 of the present embodiment is obtained by blow molding by sandwiching a foamed parison formed by extruding a foamable resin from an annular die of an extruder.
  • the duct immediately after blow molding is in a state where both ends are closed, and both ends of the duct are cut into an open shape by trimming after blow molding. The blow molding will be described later.
  • the duct 10 of the present embodiment is formed of a hollow foam molded product having a foam layer on the tube wall.
  • the closed cell structure is a structure having a plurality of bubble cells, and means at least a closed cell ratio of 70% or more.
  • the duct 10 of the present embodiment is obtained by using a mixed resin obtained by mixing a recovered resin material and a virgin resin as a base resin, adding a foaming agent to the base resin, and performing foam blow molding.
  • the molten resin material is shaped into the shape of the mold surface, and then released from the mold in a cooled and solidified state.
  • the finished product is obtained by cutting out the opening with a cutter or the like.
  • parts other than the finished product in the resin material solidified after being once melted in this way are crushed and collected.
  • Resin material is mixed with a virgin resin that has not been subjected to thermal history to form a mixed resin, and a blowing agent is added to perform blow molding again.
  • the proportion of the recovered resin material in the resin material used for molding is about 70 to 90% depending on the case.
  • about 10-30% of the total resin material is added to the recovered resin material obtained by blow molding, and about 10 to 30% of the total resin material is added to form a mixed resin. Then, blow molding is performed again.
  • blow molding is performed, and a virgin resin is added to the recovered resin material by the blow molding to form a mixed resin, and the production cycle in which the blow molding is performed again is repeated.
  • These properties are often deteriorated as compared to the properties of foamed molded products formed by molding using only virgin resin.
  • test piece having only one thermal history and a thermal history of three times which was prepared by extruding only the virgin resin from the extruder in a molten state.
  • the properties of the test pieces were compared.
  • the test piece having three heat histories is prepared by melting the virgin resin, pulverizing and remelting the solidified resin material, pulverizing and remelting the solidified resin material, and solidifying it. .
  • the extrusion conditions in the extruder when applying the heat history in the present application are as follows.
  • the rotational speed of the screw in the extruder is 60 rpm, and the shape of the extrusion port is a slit shape of 25 mm ⁇ 1 mm.
  • the temperature in the extrusion apparatus is adjusted so that the extrusion rate is within the range of 15 to 25 kg / h, and the resin is extruded from the extrusion port.
  • the extruded sheet-like resin is cooled and solidified by being sandwiched between metal plates. This takes one heat history.
  • the test result of the verification test of such property deterioration is (MT ⁇ MFR in a test piece with three thermal histories) / (MT ⁇ MFR in a test piece with one thermal history) ⁇ 0.
  • the resin to be used is selected so as to be .4. If it is less than 0.4, there is no point in giving a high physical property by using an expensive material, so it is considered unsuitable for producing a low-cost and stable high-quality foam molded product.
  • the melt tension (MT) is a strand from an orifice having a diameter of 2.095 mm and a length of 8 mm using a melt tension tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) with a preheating temperature of 230 ° C. and an extrusion speed of 5.7 mm / min.
  • the tension when the strand is wound around a roller having a diameter of 50 mm at a winding speed of 100 rpm is shown.
  • the melt flow rate (MFR) is a value measured according to JIS K-7210.
  • the material composition in which the modifier is mixed with the polypropylene resin does not deteriorate the Izod impact strength in the case of the material composition in which the modifier is not mixed,
  • the resin to be used is selected so that the decrease in MT ⁇ MFR can also be suppressed.
  • the above Izod impact strength was obtained by cutting out the wall of the sample, storing it at ⁇ 30 ° C. for 24 hours or more, cutting it out as a test piece of 80 ⁇ 10 (length mm ⁇ width mm), and cutting out to a thickness of 4 mm. Measured in accordance with JIS K-7110 (with notch) using a plurality of test pieces stacked.
  • a mixed resin obtained by mixing a modifier with a polypropylene resin is used as the virgin resin.
  • a polyethylene elastomer is used as the modifying material.
  • the polyethylene-based elastomer as the modifier is preferably blended so that the blending ratio is 3 to 15% of the mixed resin by weight.
  • polypropylene resin As the polypropylene resin, another polypropylene resin for dilution is added to the polypropylene resin for foaming.
  • the polypropylene resin contains a propylene homopolymer having a long-chain branched structure.
  • the propylene homopolymer having a long chain branched structure is preferably a propylene homopolymer having a weight average branching index of 0.9 or less.
  • the weight average branching index g is represented by V1 / V2, where V1 is the intrinsic viscosity of the branched polyolefin, and V2 is the intrinsic viscosity of a linear polyolefin having the same weight average molecular weight as that of the branched polyolefin.
  • polypropylene resins for dilution include, for example, propylene homopolymers, copolymers of propylene and one or two ⁇ -olefins having 2 to 20 carbon atoms, and propylene homopolymers and other thermoplastics.
  • the resin component include those containing 85 mol% or more of propylene in the resin component.
  • the polyethylene elastomer is an elastomer containing 50% by weight or more of ethylene.
  • a polyethylene elastomer preferably has a melt flow rate (MFR) at 190 ° C. of 3 or more.
  • MFR melt flow rate
  • the Izod impact strength of the test piece with three thermal histories is higher than the Izod impact strength of the test piece with one thermal history.
  • the Izod impact strength of the test piece with a heat history of 3 times is 4.0 kJ / m 2 or more.
  • MT ⁇ MFR in a test piece having a heat history of 3 times is 160 mN ⁇ g / 10 minutes or more.
  • a density is less than 0.87 g / cm ⁇ 3 >.
  • a polyethylene-based elastomer having an MFR within the above range and a density of less than 0.87 g / cm 3 the following conditions can be further satisfied in addition to the above three conditions.
  • the Izod impact strength of the test piece with a thermal history of 3 times is 4.5 kJ / m 2 or more.
  • such a base resin is foamed using a foaming agent before being blow-molded.
  • the foaming agent include inorganic foaming agents such as air, carbon dioxide gas, nitrogen gas, and water, or organic foaming agents such as butane, pentane, hexane, dichloromethane, and dichloroethane.
  • inorganic foaming agents such as air, carbon dioxide gas, nitrogen gas, and water
  • organic foaming agents such as butane, pentane, hexane, dichloromethane, and dichloroethane.
  • a supercritical fluid as the foaming method. That is, it is preferable that carbon dioxide gas or nitrogen gas is in a supercritical state to foam the mixed resin. In this case, air bubbles can be uniformly and reliably formed.
  • the supercritical fluid is nitrogen gas
  • the conditions may be a critical temperature of 149.1 ° C. and a critical pressure of 3.4 MPa or more.
  • the supercritical fluid is carbon dioxide gas
  • the conditions are a critical temperature of 31 ° C.
  • the critical pressure may be 7.4 MPa or more.
  • FIG. 2 is a cross-sectional view showing an aspect when the duct 10 according to this embodiment is blow-molded.
  • the resin material used for molding is kneaded in an extruder to produce a base resin. If this resin material is molded using only a virgin resin, the above-described polypropylene resin virgin resin and a polyethylene elastomer-modified virgin resin are kneaded at a predetermined ratio to form a base material. A resin is prepared.
  • a mixed resin of virgin resin and recovered resin material is used as the resin material, a predetermined ratio of virgin resin is added to the pulverized recovered resin material and kneaded to prepare a base resin.
  • parts other than the finished product in the cooled and solidified resin material are pulverized to obtain a recovered resin material.
  • a mixed resin obtained by adding a predetermined amount of virgin resin to the recovered resin material blow molding is again performed as described above. Do. By repeating such a manufacturing cycle, the duct 10 can be mass-produced.
  • the present invention is not limited to the case where the foamed molded product is molded by blow molding, and vacuum molding in which a molded product having a predetermined shape is molded by sucking the extruded parison into a mold may be used. Moreover, you may shape
  • the duct 10 uses the mixed resin obtained by mixing the recovered resin material and the virgin resin as the base resin, and adds the foaming agent to the base resin and performs foam blow molding. Manufactured by.
  • the resin material used for the duct 10 a material composition in which a modifier is not mixed by using a mixed resin obtained by mixing a modifier based on a polyethylene elastomer with a polypropylene resin as described above.
  • the Izod impact strength does not deteriorate, and the decrease in MT ⁇ MFR can also be suppressed.
  • the Izod impact strength of the test piece with three thermal histories is increased. It can be set as the duct 10 which does not fall rather than the Izod impact strength in one test piece.
  • the blending ratio of the polyethylene elastomer to the mixed resin is less than 3%, the cross-linking structure is small and the above-described effects are not obtained so much.
  • the blending ratio is more than 15%, the cross-linking with the comonomer becomes larger, and the gel is hardened and hardened every time the thermal history is applied, so that the effect of improving the impact resistance is lost.
  • the duct 10 that satisfies the following three conditions can be obtained.
  • the Izod impact strength of the test piece with three thermal histories is higher than the Izod impact strength of the test piece with one thermal history.
  • the Izod impact strength of the test piece with a heat history of 3 times is 4.0 kJ / m 2 or more.
  • (3) MT ⁇ MFR in a test piece having a heat history of 3 times is 160 mN ⁇ g / 10 minutes or more.
  • the Izod impact strength of the test piece with three thermal histories is higher than the Izod impact strength of the test piece with one thermal history. Therefore, the recovered resin material is included in the base resin. Even if it uses, the duct which has sufficient impact resistance can be manufactured.
  • the following conditions are satisfied in addition to the above conditions (1) to (3) by using a polyethylene elastomer having a density of less than 0.87 g / cm 3 as the modifying material.
  • the duct 10 can be used.
  • the Izod impact strength of the test piece with a thermal history of 3 times is 4.5 kJ / m 2 or more.
  • the recovered resin material is included in the base resin and used, the physical properties do not deteriorate excessively, so when selecting a virgin resin, not only an expensive material having excellent physical properties, but also more Inexpensive materials can also be selected. For this reason, cost can be further reduced.
  • a polypropylene resin for foaming another polypropylene resin for dilution, a polyethylene elastomer as a modifier, and a polypropylene elastomer as another modifier used as a comparative example.
  • Polyethylene resin and hydrogenated styrene thermoplastic elastomer are as follows.
  • PP1 Propylene homopolymer (manufactured by Borealis AG, trade name “Daploy WB140”)
  • PP2 Block polypropylene A (made by Nippon Polypro Co., Ltd., trade name “NOVATEC BC8”)
  • PP3 Block polypropylene B (trade name “FTS3000” manufactured by Nippon Polypro Co., Ltd.)
  • PP4 Block polypropylene C (made by Nippon Polypro Co., Ltd., trade name “New Former FB3312”)
  • PP5 Block polypropylene D (manufactured by Sumitomo Chemical Co., Ltd., trade name “Noblen AH561”)
  • PP6 Block polypropylene E (Nippon Polypro Co., Ltd., trade name “NOVATEC EC9”)
  • PP7 Block Polypropylene F (made by Nippon Polypro Co., Ltd., trade name “NOVATEC EA9FT”)
  • PP8 Block polypropylene G (manufactured by Hunan Petrochemical Co., Ltd., trade name “J320”)
  • TPE1 Ethylene ⁇ -olefin copolymer (Mitsui Chemicals, trade name “Toughmer A0550S”)
  • TPE2 Ethylene ⁇ -olefin copolymer (Mitsui Chemicals, trade name “Tuffmer A-4050S”)
  • TPE3 Ethylene ⁇ -olefin copolymer (Mitsui Chemicals, trade name “Toughmer A-4085S”)
  • TPE4 ethylene ⁇ -olefin copolymer (manufactured by Dow Chemical Co., Ltd., trade name “engage 8180”)
  • TPE5 Polypropylene elastomer (Mitsui Chemicals, trade name “Toughmer XM-7070”)
  • TPE6 linear short-chain branched polyethylene (LLDPE) (manufactured by Sumitomo Chemical Co., Ltd., trade name “Excellen FX201”)
  • TPE7 Styrene-ethylene-butylene-styrene block copolymer (SEBS) (trade name “Tuftec H1053” manufactured by Asahi Kasei Chemicals Corporation)
  • melt tension was a melt tension tester (manufactured by Toyo Seiki Co., Ltd.), a preheating temperature of 230 ° C., an extrusion speed of 5.7 mm / min, a diameter of 2.095 mm, and a length of 8 mm. This shows the tension when a strand is extruded from the orifice of this and the strand is wound around a roller having a diameter of 50 mm at a winding speed of 100 rpm.
  • TPE1 to TPE7 values at a preheating temperature of 210 ° C. are shown.
  • melt flow rate is a value measured at a test temperature of 230 ° C. and a test load of 2.16 kg according to JIS K-7210.
  • MFR is a value measured at a test temperature of 190 ° C. and a test load of 2.16 kg according to JIS K-6922-1.
  • the density is a value measured at normal temperature (23 ° C.).
  • a base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP2 virgin resin, and 5 wt% of TPE1 virgin resin. And the base resin only by this virgin resin was made into a molten state, and it extruded from the predetermined extruder on the conditions shown next, and solidified, and the sample (test piece) with one heat history was obtained. Specifically, the number of rotations of the screw in the extruder is 60 rpm, and the shape of the extrusion port is a slit shape of 25 mm ⁇ 1 mm. Then, the temperature in the extrusion apparatus is adjusted to about 220 to 230 ° C. so that the extrusion rate is in the range of about 20 kg / h, and the resin is extruded from the extrusion port. The extruded sheet-like resin is cooled and solidified by being sandwiched between metal plates.
  • Example 2 A base resin was prepared by mixing 50 wt% of PP1 virgin resin, 45 wt% of PP2 virgin resin, and 5 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 3 A base resin was prepared by mixing 20 wt% of PP1 virgin resin, 75 wt% of PP2 virgin resin, and 5 wt% of virgin resin of TPE1. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 4 The base resin was obtained by mixing 95 wt% of PP2 virgin resin and 5 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 5 A base resin was obtained by mixing 77.4 wt% of PP1 virgin resin, 20.6 wt% of PP2 virgin resin, and 2 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 6 A base resin was prepared by mixing 67.5 wt% of PP1 virgin resin, 22.5 wt% of PP2 virgin resin, and 10 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 7 A base resin was prepared by mixing 60 wt% of PP1 virgin resin, 20 wt% of PP2 virgin resin, and 20 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 8 A base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP3 virgin resin, and 5 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 9 A base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP4 virgin resin, and 5 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 10 A base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP5 virgin resin, and 5 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 11 A base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP6 virgin resin, and 5 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 12 A base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP7 virgin resin, and 5 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 13 A base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP8 virgin resin, and 5 wt% of TPE1 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 14 A base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP2 virgin resin, and 5 wt% of TPE2 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 15 A base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP2 virgin resin, and 5 wt% of TPE3 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 16 A base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP2 virgin resin, and 5 wt% of TPE4 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 1 A base resin was obtained by mixing 80 wt% of PP1 virgin resin and 20 wt% of PP2 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • a base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP2 virgin resin, and 5 wt% of TPE5 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • a base resin was prepared by mixing 75 wt% of virgin resin of PP1, 20 wt% of virgin resin of PP2, and 5 wt% of virgin resin of TPE6. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • a base resin was prepared by mixing 75 wt% of PP1 virgin resin, 20 wt% of PP2 virgin resin, and 5 wt% of TPE7 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • Example 5 A base resin was obtained by mixing 67.5 wt% of PP1 virgin resin, 22.5 wt% of PP2 virgin resin, and 10 wt% of TPE7 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • a base resin was prepared by mixing 60 wt% of PP1 virgin resin, 20 wt% of PP2 virgin resin, and 20 wt% of TPE7 virgin resin. Subsequent steps were carried out in the same manner as in Example 1 to obtain a sample having one thermal history and a sample having three thermal histories.
  • MT uses a melt tension tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), extrudes a strand from an orifice having a diameter of 2.095 mm and a length of 8 mm at a preheating temperature of 230 ° C. and an extrusion speed of 5.7 mm / min. This shows the tension when wound on a 50 mm roller at a winding speed of 100 rpm.
  • melt tension tester manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • MFR is a value measured according to JIS K-7210 at a test temperature of 230 ° C. and a test load of 2.16 kg.
  • Degradation degree is (MT ⁇ MFR in a sample with three thermal histories) / (MT ⁇ MFR in a sample with one thermal history).
  • Izod impact strength was determined by cutting out the wall of the sample, storing it at -30 ° C, cutting it out as a 80 x 10 (length mm x width mm) test piece, and stacking the test pieces cut out to a thickness of 4 mm. Measured according to JIS K-7110 (notched) using this.
  • the Izod displacement is (Izod impact strength in a sample with three thermal histories) / (Izod impact strength in a sample with one thermal history).
  • Example 1 to 16 and Comparative Examples 1 to 6 the blending ratio of PP1 to PP8 and TPE1 to TPE7 in the base resin, the sample having one heat history, and the sample having three heat histories are described above.
  • Table 2 shows MT, MFR, MT ⁇ MFR, deterioration degree, Izod impact strength (IZOD), and Izod displacement (IZOD displacement) evaluated as described above.
  • a mixed resin in which a modifier based on a polyethylene elastomer is mixed with a polypropylene resin is used as the base resin.
  • the sample of the comparative example 1 it is set as the material composition which uses only a polypropylene resin as base resin, and does not use a modifier.
  • the Izod impact strength was higher than 1.4 kJ / m 2 in the sample of Comparative Example 1 by using the base resin as the mixed resin having the material composition described above. As described above, the Izod impact strength was not deteriorated as compared with the case of the material composition in which the modifier was not mixed.
  • the MT ⁇ MFR was also (MT ⁇ MFR in the test piece with three thermal histories) / (MT ⁇ MFR in the test piece with one thermal history) ⁇ 0.4 It became.
  • the test piece with 3 heat histories compared with the test piece with 1 heat
  • the blending ratio of the polyethylene-based elastomer as a modifier is 3 to 15% of the mixed resin by weight ratio. It is said.
  • the Izod impact strength of the test piece with three thermal histories is higher than the Izod impact strength of the test piece with one thermal history.
  • the Izod impact strength of the test piece with a heat history of 3 times is 4.0 kJ / m 2 or more.
  • (3) MT ⁇ MFR in a test piece having a heat history of 3 times is 160 mN ⁇ g / 10 minutes or more.
  • the Izod impact strength of the test piece with three thermal histories is higher than the Izod impact strength of the test piece with one thermal history. Therefore, the recovered resin material is included in the base resin. Even in the case of mass production of foamed molded products, sufficiently high impact resistance can be expected.
  • the sample of Example 14 uses TPE2 having a density of less than 0.87 g / cm 3 as a polyethylene-based elastomer as a modifier.
  • Example 14 satisfies all of the above conditions (1) to (3) and further satisfies the following conditions. (4)
  • the Izod impact strength of the test piece with a thermal history of 3 times is 4.5 kJ / m 2 or more.
  • the present invention is not limited to light-weight air conditioning ducts for vehicles, but can be used for, for example, automobiles, aircrafts, vehicles / ships, building materials, housings for various electrical equipment, sports / leisure structural members, etc. Can do. Also, when used as automotive structural members such as cargo floor boards, deck boards, rear parcel shelves, roof panels, door trims, interior panels, door inner panels, platforms, hard tops, sunroofs, bonnets, bumpers, floor spacers, devia pads, etc. Since the weight reduction of an automobile can be measured, fuel consumption can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

 バージン樹脂と回収樹脂材料との混合樹脂を成形における樹脂材料として用いる場合であっても、耐衝撃強度に優れ、安定した高品質の発泡成形品を低コストに製造する。このため、溶融された後に固化した樹脂材料を砕いてなる回収樹脂材料と、溶融による熱履歴が加えられていないバージン樹脂と、を混合した混合樹脂に発泡剤を添加して構成された樹脂材料を用いる。この樹脂材料は、ポリプロピレン系樹脂に、ポリエチレン系エラストマーを混合させたものであるようにする。

Description

発泡成形品の製造方法および発泡成形品
 本発明は、バージン樹脂と、回収樹脂材料とを混合して製造する発泡成形品の製造方法および発泡成形品に関する。
 一般に、樹脂成形品の成形では、溶融状態の熱可塑性樹脂を分割金型で挟み込んで成形する成形方法が広く用いられている。
 こうした成形方法では、樹脂材料を溶融状態として分割金型で型締めした後、金型を開いて離型させ、成形品の周囲等のバリをカッター等で切除し、完成品を得ることとなる。
 こうした一般的な成形方法では、成形後に冷えて固化した樹脂材料における完成品の周囲等に、いわゆるバリなど、完成品以外の部分の樹脂が発生してしまう。
 この完成品以外の部分の樹脂は、成形時に溶融状態とさせるための熱が加えられた後に冷えて固化した熱履歴を有するため、熱履歴を加えていないバージン樹脂と比較して、例えばメルトテンション(MT)、メルトフローレイト(MFR)、アイゾット衝撃強度等の数値で示されるような物性が劣化してしまうことが多くある。
 樹脂成形品を大量生産する際には、省資源化および低コスト化の観点から、成形時に発生した完成品以外の部分の樹脂を粉砕して回収樹脂材料とし、この回収樹脂材料をバージン樹脂と混合して基材樹脂とし、溶融状態として次の樹脂成形品を成形するといったサイクルを繰り返す。
 このため、樹脂成形品を大量生産する製造サイクルで用いられる樹脂材料は、熱履歴が加えられていないバージン樹脂のみの場合よりも、例えばMT、MFR、アイゾット衝撃強度等の数値で示される物性が劣化してしまっていることが多くある。
 このため、成形に用いる樹脂の選択として、回収樹脂材料との混合樹脂とされ、バージン樹脂の状態よりも物性が劣化した状態でも十分な性質を有するように、高い物性を有する樹脂を選択することが一般的である。
 ここで、MTやMFR等の数値で示される物性が劣化し、あるラインを下回ると、成形時に金型表面の凹凸形状に沿わせるよう、溶融状態の樹脂材料を大きく延ばした場合に、ピンホールが空いてしまう虞がある。
 また、流動性が変化したり炭化現象が現れ、例えば、ブロー成形においてはドローダウンが発生して肉厚が不均一になったり、表面の劣化が現れる虞がある。
 また、発泡樹脂の場合、気泡セルが大きくなる際に破泡してしまう虞がある。こうして気泡セルが破泡してしまうと発泡倍率が下がってしまい、高い発泡倍率を実現することが困難となる。
 本出願人による技術としては、軽量であり、かつ耐衝撃強度に優れる発泡成形体を成形するため、発泡用ポリプロピレン系樹脂と、水素添加スチレン系熱可塑性エラストマーと、を含む混合樹脂を用いて、その水素添加スチレン系熱可塑性エラストマーのスチレン含有量を15~25wt%としたものがある(例えば、特許文献1参照)。
特開2011-51180号公報
 しかしながら、高い物性を有する樹脂は一般に高価である。
 このため、バージン樹脂と回収樹脂材料との混合樹脂を用いて成形した成形品についても十分な物性となるように、材料とする樹脂に高い物性を有するものを選択すると、発泡成形品を製造する上で材料コストが高くなる問題があった。
 また、車載部品等に用いるために、発泡成形品における発泡倍率を高くして軽量化すると、低温時の耐衝撃性が低下する傾向がある。
 また、上述した特許文献1のものは、こうした回収樹脂材料を用いることによる物性の劣化への対策についてまで考慮されたものではなかった。
 本発明はこのような状況に鑑みてなされたものであり、バージン樹脂と回収樹脂材料との混合樹脂を成形における樹脂材料として用いる場合であっても、耐衝撃強度に優れ、安定した高品質の発泡成形品を低コストに製造することができる発泡成形品の製造方法および発泡成形品を提供することを目的とする。
 かかる目的を達成するために、本発明に係る発泡成形品の製造方法は、溶融状態の樹脂材料を分割金型により型締めして成形する発泡成形品の製造方法であって、
 樹脂材料は、
  溶融された後に固化した樹脂材料を砕いてなる回収樹脂材料と、
  溶融による熱履歴が加えられていないバージン樹脂と、を混合した混合樹脂に発泡剤を添加して構成され、
  ポリプロピレン系樹脂に、ポリエチレン系エラストマーを混合させたものであることを特徴とする。
 また、本発明に係る発泡成形品は、溶融状態の樹脂材料を分割金型により型締めして成形する発泡成形品であって、
 樹脂材料は、
  溶融された後に固化した樹脂材料を砕いてなる回収樹脂材料と、
  溶融による熱履歴が加えられていないバージン樹脂と、を混合した混合樹脂に発泡剤を添加して構成され、
  ポリプロピレン系樹脂に、ポリエチレン系エラストマーを混合させたものであることを特徴とする。
 以上のように、本発明によれば、バージン樹脂と回収樹脂材料との混合樹脂を成形における樹脂材料として用いる場合であっても、耐衝撃強度に優れ、安定した高品質の発泡成形品を低コストに製造することができる。
本発明の実施形態としてのダクト10の一例を示す斜視図である。 図1に記載のダクト10をブロー成形する際の態様を示す断面図である。
 次に、本発明に係る発泡成形品の製造方法および発泡成形品を車両用空調ダクトに適用した一実施形態について、図面を用いて詳細に説明する。
 なお、本発明は、車両用空調ダクトに限らず、例えば、ドアパネル、インストルメントパネル、車両用デッキボードなどの自動車用内装部品、住宅用内装壁材、電子機器のハウジング、車両用以外の気体や液体を供給するダクトなど、他の発泡成形品にも適用することができる。
 図1に示す本発明の一実施形態のダクト10は、不図示のエアコンユニットより供給される空調エアをダクト内部の流路により流通させ、所望の部位へ通風させるように構成される。
 なお、本実施形態のダクト10の形状は図1に示すものに限定されず、ダクト10の用途や配置場所等に応じた任意の形状であってよい。
 本実施形態のダクト10は、押出機の環状ダイから発泡性樹脂を押し出すことによって形成した発泡パリソンを金型で挟んでブロー成形することにより得られる。なお、ブロー成形直後のダクトは両端が閉じた状態となっており、ブロー成形後のトリミングによってダクトの両端が切断されて開口形状にされる。ブロー成形については後述する。
 本実施形態のダクト10は、管壁に発泡層を有する中空の発泡成形品からなる。このように、独立気泡構造を有する構成とすることにより、軽量で断熱性に優れたダクトとすることができる。独立気泡構造とは、複数の気泡セルを有する構造であり、少なくとも独立気泡率が70%以上のものを意味する。
 こうした構成により、ダクト内に冷房の空気を流通させた場合であっても、結露が発生する可能性をほとんどなくすことができる。
 また、本実施形態のダクト10は、回収樹脂材料と、バージン樹脂とを混合した混合樹脂を基材樹脂として用い、その基材樹脂に発泡剤を添加して発泡ブロー成形することにより得られる。
 樹脂成形品を一般的なブロー成形により成形する際、溶融状態の樹脂材料を金型表面の形状に賦形し、冷えて固化した状態で金型から離型し、成形品の周囲等のバリや開口部をカッター等で切除することで、完成品を得る。ブロー成形で大量生産する際の製造サイクルでは、省資源化および低コスト化の観点から、このように一度溶融状態とされた後で固化した樹脂材料における完成品以外の部分を、粉砕して回収樹脂材料とする。そして、この回収樹脂材料に、熱履歴を加えていないバージン樹脂を混合して混合樹脂とし、発泡剤を添加して再度ブロー成形を行う。
 こうした大量生産における製造サイクルでは、成形に用いる樹脂材料中に占める回収樹脂材料の割合が、場合によって70~90%程度ともなる。こうしてブロー成形を行った後、そのブロー成形による回収樹脂材料に、完成品である発泡成形品を取り出した分のバージン樹脂を、樹脂材料全体に対して10~30%程度追加して混合樹脂とし、再度ブロー成形を行うこととなる。
 このようにブロー成形を行い、そのブロー成形による回収樹脂材料にバージン樹脂を追加して混合樹脂とし、再度ブロー成形を行う製造サイクルを繰り返していくため、この混合樹脂を用いた成形による発泡成形品の性質は、バージン樹脂のみを用いた成形による発泡成形品の性質と比べて劣化したものとなることが多い。
 こうした樹脂材料の性質劣化を検証する試験として、本件発明者らは、バージン樹脂のみを溶融状態として押出機から押し出して作成した、熱履歴が1回である試験片と、熱履歴が3回の試験片とで性質の比較を行った。熱履歴が3回の試験片は、バージン樹脂を溶融した後、固化した樹脂材料を粉砕して再度溶融し、その固化した樹脂材料を粉砕して再度溶融し、固化させることにより作成している。
 本願における熱履歴をかける際の押出機での押し出し条件は以下のとおりである。
 押出機内のスクリューの回転数を60rpmとし、押出口の形状を、25mm×1mmのスリット形状とする。そして、押出量が15~25kg/hの範囲内になるように、押出装置内の温度を調整して、押出口から樹脂を押し出す。押し出されたシート状の樹脂は、金属の板で挟んで冷却固化する。これにより熱履歴が1回かかる。
 本実施形態のダクト10では、こうした性質劣化の検証試験の試験結果として、(熱履歴が3回の試験片におけるMT×MFR)/(熱履歴が1回の試験片におけるMT×MFR)≧0.4となるように、用いる樹脂を選択している。0.4未満になると、せっかく高価な材料を用いて高い物性を持たせる意味がなくなるため、低コストで安定した高品質の発泡成形品を製造するには不向きと考えられる。
 上記のメルトテンション(MT)とは、メルトテンションテスター(株式会社東洋精機製作所製)を用い、余熱温度230℃、押出速度5.7mm/分で、直径2.095mm、長さ8mmのオリフィスからストランドを押し出し、このストランドを直径50mmのローラに巻き取り速度100rpmで巻き取ったときの張力を示すものである。
 また、上記のメルトフローレイト(MFR)とは、JIS K-7210に準じて測定した値である。
 また、本実施形態のダクト10では、ポリプロピレン系樹脂に改質材を混合させた材料組成とすることにより、改質材を混合させない材料組成の場合に対して、アイゾット衝撃強度が劣化せず、MT×MFRの低下も抑制できるよう、用いる樹脂を選択している。
 上記のアイゾット衝撃強度は、サンプルの壁部を切り出し、-30℃で24時間以上保管後に、80×10(長さmm×幅mm)の試験片として切り出し、厚さが4mmとなるように切り出した試験片を重ねてこれを用いてJIS K-7110(ノッチ付き)に準じて測定したものである。
 このため、バージン樹脂として、ポリプロピレン系樹脂に改質材を混合させた混合樹脂を用いる。改質材としては、ポリエチレン系エラストマーを用いる。改質材としてのポリエチレン系エラストマーは、配合比率が重量比で混合樹脂の3~15%となるよう配合されることが好ましい。
 配合比率が上記範囲外であると、上記範囲内にある場合と比較して、熱履歴が3回の試験片におけるアイゾット衝撃強度が、熱履歴が1回の試験片におけるアイゾット衝撃強度よりも低下する場合がある。
 ポリプロピレン系樹脂としては、発泡用ポリプロピレン系樹脂に、希釈用の他のポリプロピレン系樹脂を加えて用いる。
 発泡用ポリプロピレン系樹脂としては、ポリプロピレン樹脂が長鎖分岐構造を有するプロピレン単独重合体を含むものであることが好ましい。
 長鎖分岐構造を有するプロピレン単独重合体は、0.9以下の重量平均分岐指数を有するプロピレン単独重合体であることが好ましい。また、重量平均分岐指数gは、V1/V2で表され、V1が分岐ポリオレフィンの極限粘度数、V2が分岐ポリオレフィンと同じ重量平均分子量を有する線状ポリオレフィンの極限粘度数を示す。
 希釈用の他のポリプロピレン系樹脂としては、例えばプロピレンのホモポリマー、プロピレンと炭素数2~20のα-オレフィンの1種または2種との共重合体、及びプロピレンのホモポリマーと他の熱可塑性樹脂との混合物などが挙げられ、樹脂成分中にプロピレンを85モル%以上含んでいるものをポリプロピレン系樹脂と称す。
 ポリエチレン系エラストマーとは、エチレンを50重量%以上含むエラストマーのことである。こうしたポリエチレン系エラストマーとしては、190℃におけるメルトフローレイト(MFR)が3以上であることが好ましい。MFRがこの範囲内のポリエチレン系エラストマーを用いることにより、下記の3つの条件を満足させることができる。
(1) 熱履歴が3回の試験片におけるアイゾット衝撃強度が、熱履歴が1回の試験片におけるアイゾット衝撃強度よりも高くなる。
(2) 熱履歴を3回とした試験片におけるアイゾット衝撃強度が4.0kJ/m2以上である。
(3) 熱履歴を3回とした試験片におけるMT×MFRが160mN・g/10分以上である。
 さらに、ポリエチレン系エラストマーとしては、密度が0.87g/cm3未満であることがより好ましい。MFRが上記範囲内であり、かつ、密度が0.87g/cm3未満のポリエチレン系エラストマーを用いることにより、上記の3つの条件に加え、さらに下記の条件を満足させることができる。
(4) 熱履歴を3回とした試験片におけるアイゾット衝撃強度が4.5kJ/m2以上である。
 また、こうした基材樹脂は、ブロー成形される前に、発泡剤を用いて発泡される。
 発泡剤としては、空気、炭酸ガス、窒素ガス、水等の無機系発泡剤、又は、ブタン、ペンタン、ヘキサン、ジクロロメタン、ジクロロエタン等の有機系発泡剤が挙げられる。
 これらの中でも、発泡剤は、空気、炭酸ガス又は窒素ガスを用いることが好ましい。この場合、有体物の混入が防げるので、耐久性等の低下が抑制される。
 また、発泡方法としては、超臨界流体を用いることが好ましい。すなわち、炭酸ガス又は窒素ガスを超臨界状態とし、混合樹脂を発泡させることが好ましい。この場合、均一且つ確実に気泡することができる。
 なお、超臨界流体が窒素ガスの場合、条件は、臨界温度-149.1℃、臨界圧力3.4MPa以上とすればよく、超臨界流体が炭酸ガスの場合、条件は、臨界温度31℃、臨界圧力7.4MPa以上とすればよい。
 こうして、発泡処理された基材樹脂を公知の方法でブロー成形することにより、本実施形態としてのダクト10を成形する。
 図2は、本実施形態としてのダクト10をブロー成形する際の態様を示す断面図である。
 まず、押出機内で、成形に用いる樹脂材料を混練して、基材樹脂を作製する。この樹脂材料は、バージン樹脂のみを用いて成形する場合であれば、上述したポリプロピレン系樹脂のバージン樹脂と、ポリエチレン系エラストマーによる改質材のバージン樹脂とを所定の割合で混練して、基材樹脂を作製する。
 樹脂材料として、バージン樹脂と、回収樹脂材料とによる混合樹脂を用いる場合であれば、粉砕された回収樹脂材料にバージン樹脂を所定割合加え、混練して基材樹脂を作製する。
 こうした基材樹脂に発泡剤を添加し押出機内で混合した後、ダイ内アキュムレーター(図示せず)に貯留し、続いて、所定の樹脂量が貯留された後にリング状ピストン(図示せず)を水平方向に対して垂直に押し下げる。
 そして、図2に示す環状ダイ21のダイスリットより、押出速度700kg/時以上で円筒状のパリソンPとして、型締装置30を構成する分割金型31、32の間に押し出す。
 その後、分割金型31、32を型締めしてパリソンPを挟み込んで、パリソンP内に0.05~0.15MPaの範囲でエアを吹き込み、ダクト10を形成する。
 成形後に、冷えて固化した樹脂材料における完成品以外の部分を粉砕して回収樹脂材料とし、この回収樹脂材料にバージン樹脂を所定割合加えた混合樹脂を用いて、再度上述のようにブロー成形を行う。こうした製造サイクルを繰り返すことにより、ダクト10を大量生産することができる。
 なお、上述のようにブロー成形により発泡成形品を成形する場合に限らず、押し出されたパリソンを金型に吸い付けて所定の形状の成形品を成形するバキューム成形を用いてもよい。また、エアの吹き込みや、吸引を行わず、押し出されたパリソンを金型で挟み込んで成形するコンプレッション成形を用いて、発泡成形品を成形してもよい。
 以上のように、本実施形態としてのダクト10は、回収樹脂材料と、バージン樹脂とを混合した混合樹脂を基材樹脂として用い、その基材樹脂に発泡剤を添加して発泡ブロー成形することで製造される。
 また、本実施形態では、ダクト10に用いる樹脂材料として、上述のようにポリプロピレン系樹脂に、ポリエチレン系エラストマーによる改質材を混合させた混合樹脂を用いることで、改質材を混合させない材料組成の場合に対して、アイゾット衝撃強度が劣化せず、MT×MFRの低下も抑制することができる。
 また、改質材としてのポリエチレン系エラストマーの配合比率を、重量比で混合樹脂の3~15%となるよう配合することで、熱履歴が3回の試験片におけるアイゾット衝撃強度が、熱履歴が1回の試験片におけるアイゾット衝撃強度よりも低下しないダクト10とすることができる。
 改質材としてポリエチレン系エラストマーを配合することによりこうした効果が得られる理由としては、エラストマー中にコモノマーが多数導入されているため、熱履歴が加えられた際にポリプロピレン系樹脂の分子構造間を架橋することが挙げられる。
 なお、混合樹脂に対するポリエチレン系エラストマーの配合比率が3%未満であると、この架橋の構造が少なく、上述の効果があまり得られない。また、配合比率が15%よりも多いと、コモノマーによる架橋の方が大きくなり、さらに熱履歴を加える度にゲル化して硬くなることで、耐衝撃性の改善効果もなくなっていく。
 また、改質材にポリプロピレン系エラストマーを配合すると、発泡主材となるポリプロピレン系樹脂に溶けてしまうため、上述の効果は得られない。
 また、改質材として、ポリエチレン系樹脂や、スチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBS)を用いる場合、上述のような架橋の構造を形成しにくいため、上述の効果は得られない。
 また、本実施形態としての改質材としてのポリエチレン系エラストマーとして、190℃におけるMFRが3以上のものを用いることにより、下記の3つの条件を満足するダクト10とすることができる。
(1) 熱履歴が3回の試験片におけるアイゾット衝撃強度が、熱履歴が1回の試験片におけるアイゾット衝撃強度よりも高くなる。
(2) 熱履歴を3回とした試験片におけるアイゾット衝撃強度が4.0kJ/m2以上である。
(3) 熱履歴を3回とした試験片におけるMT×MFRが160mN・g/10分以上である。
 上記(1)のように、熱履歴が3回の試験片におけるアイゾット衝撃強度が、熱履歴が1回の試験片におけるアイゾット衝撃強度よりも高いため、回収樹脂材料を基材樹脂中に含めて用いても、十分な耐衝撃性を有するダクトを製造することができる。
 また、上記(2)のように、熱履歴を3回とした試験片におけるアイゾット衝撃強度が4.0kJ/m2以上であるため、低温時にも十分な耐衝撃性を有するダクトを製造することができる。また、発泡倍率を高めた場合でも低温時の耐衝撃性が十分に確保されているため、軽量で、かつ低温時の耐衝撃性にも優れたダクトを製造することができる。
 なお、発泡成形品の大量生産で、回収樹脂材料を70%以上使用する場合、熱履歴を3回とした試験片におけるアイゾット衝撃強度が2.5kJ/m2以上であることが推奨される。このため、上記(2)の条件を満足することにより、十分な耐衝撃性を有する発泡成形品の大量生産が可能となる。
 また、上記(3)のように、熱履歴を3回とした試験片におけるMT×MFRが160mN・g/10分以上であるため、回収樹脂材料を基材樹脂中に含めて用いても成形性が劣化し過ぎることがない。このため、溶融状態の樹脂材料を発泡させて押し出す際にも、気泡セルが破泡して発泡倍率が下がりすぎてしまうこともなく、高い発泡倍率の発泡成形品を繰り返し製造し続けることができる。
 このため、金型表面の凹凸が大きい場合であっても、その凹凸形状に賦形しやすくなるため、より複雑な凹凸形状の発泡成形品であっても、ピンホールができてしまうことなく高品質に成形することができる。
 また、溶融状態の樹脂材料を押し出した際にも、ドローダウンの発生を抑制できるため、安定した大量生産を行うことができる。
 さらに、上述した改質材としてのポリエチレン系エラストマーとして、密度が0.87g/cm3未満のものを用いることにより、上記(1)~(3)の条件に加え、さらに下記の条件を満足するダクト10とすることができる。
(4) 熱履歴を3回とした試験片におけるアイゾット衝撃強度が4.5kJ/m2以上である。
 このため、さらに耐衝撃性に優れたダクト10を製造することができる。
 このように、回収樹脂材料を基材樹脂中に含めて用いても物性が劣化し過ぎることがないため、バージン樹脂を選択する際にも、優れた物性を有する高価な材料だけでなく、より安価な材料も選択対象とすることができる。このため、より低コスト化することができる。
 次に、上述した実施形態のダクト10に用いる樹脂材料についての、上述した性質劣化の検証試験としての実施例および比較例について、具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
 まず、実施例として用いた、発泡用ポリプロピレン系樹脂、希釈用の他のポリプロピレン系樹脂、および改質材としてのポリエチレン系エラストマー、さらに、比較例として用いた他の改質材としてのポリプロピレン系エラストマー、ポリエチレン系樹脂、水素添加スチレン系熱可塑性エラストマーは以下の通りである。
<発泡用ポリプロピレン系樹脂>
 PP1:プロピレン単独重合体(ボレアリス社(Borealis AG)製、商品名「Daploy WB140」)
<希釈用の他のポリプロピレン系樹脂>
 PP2:ブロックポリプロピレンA(日本ポリプロ株式会社製、商品名「ノバテックBC8」)
 PP3:ブロックポリプロピレンB(日本ポリプロ株式会社製、商品名「FTS3000」)
 PP4:ブロックポリプロピレンC(日本ポリプロ株式会社製、商品名「ニューフォーマーFB3312」)
 PP5:ブロックポリプロピレンD(住友化学株式会社製、商品名「ノーブレンAH561」)
 PP6:ブロックポリプロピレンE(日本ポリプロ株式会社製、商品名「ノバテックEC9」)
 PP7:ブロックポリプロピレンF(日本ポリプロ株式会社製、商品名「ノバテックEA9FT」)
 PP8:ブロックポリプロピレンG(湖南石油化学株式会社製、商品名「J320」)
<改質材としてのポリエチレン系エラストマー>
 TPE1:エチレンα-オレフィン共重合体(三井化学株式会社製、商品名「タフマーA0550S」)
 TPE2:エチレンα-オレフィン共重合体(三井化学株式会社製、商品名「タフマーA-4050S」)
 TPE3:エチレンα-オレフィン共重合体(三井化学株式会社製、商品名「タフマーA-4085S」)
 TPE4:エチレンα-オレフィン共重合体(ダウケミカル社製、商品名「エンゲージ8180」)
<他の改質材>
 TPE5:ポリプロピレン系エラストマー(三井化学株式会社製、商品名「タフマー XM-7070」)
 TPE6:直鎖状短鎖分岐ポリエチレン(LLDPE)(住友化学工業株式会社製、商品名「エクセレンFX201」)
 TPE7:スチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBS)(旭化成ケミカルズ株式会社製、商品名「タフテックH1053」)
 また、これらの樹脂の、MT(メルトテンション)(mN)、MFR(メルトフローレイト)(g/10分)、MT×MFR(mN・g/10分)、密度(g/cm3)を表1に示す。
 なお、PP1~PP8について、メルトテンション(MT)は、メルトテンションテスター(株式会社東洋精機製作所製)を用い、余熱温度230℃、押出速度5.7mm/分で、直径2.095mm、長さ8mmのオリフィスからストランドを押し出し、このストランドを直径50mmのローラに巻き取り速度100rpmで巻き取ったときの張力を示すものである。
 また、TPE1~TPE7については、余熱温度210℃の場合の値を示す。
 また、PP1~PP8について、メルトフローレイト(MFR)は、JIS K-7210に準じて試験温度230℃、試験荷重2.16kgにて測定を行った値である。
 また、TPE1~TPE7について、MFRは、JIS K-6922-1に準じて試験温度190℃、試験荷重2.16kgにて測定を行った値である。
 また、密度は、常温(23℃)で測定した値である。
<実施例1>
 PP1のバージン樹脂を75wt%、PP2のバージン樹脂を20wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 そして、このバージン樹脂のみによる基材樹脂を溶融状態として所定の押出機から、次に示す条件で押し出し、固化させることで、熱履歴が1回のサンプル(試験片)を得た。具体的には、押出機内のスクリューの回転数を60rpmとし、押出口の形状を、25mm×1mmのスリット形状とする。そして、押出量が約20kg/hの範囲内になるように、押出装置内の温度を約220~230℃に調整して、押出口から樹脂を押し出す。押し出されたシート状の樹脂は、金属の板で挟んで冷却固化する。
 こうして熱履歴が1回のサンプルを得た後、バージン樹脂を追加せず、固化した樹脂材料の全てを粉砕して回収樹脂材料として、この回収樹脂材料のみを溶融状態として25mm押出機から押し出し、固化させることで、熱履歴が2回のサンプルを得る。この熱履歴が2回のサンプルを得た後、バージン樹脂を追加せず、固化した熱履歴2回のサンプルの全てを粉砕して回収樹脂材料として、この回収樹脂材料のみを溶融状態として25mm押出機から押し出し、固化させ、熱履歴が3回のサンプルを得た。
<実施例2>
 PP1のバージン樹脂を50wt%、PP2のバージン樹脂を45wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例3>
 PP1のバージン樹脂を20wt%、PP2のバージン樹脂を75wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例4>
 PP2のバージン樹脂を95wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例5>
 PP1のバージン樹脂を77.4wt%、PP2のバージン樹脂を20.6wt%、TPE1のバージン樹脂を2wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例6>
 PP1のバージン樹脂を67.5wt%、PP2のバージン樹脂を22.5wt%、TPE1のバージン樹脂を10wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例7>
 PP1のバージン樹脂を60wt%、PP2のバージン樹脂を20wt%、TPE1のバージン樹脂を20wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例8>
 PP1のバージン樹脂を75wt%、PP3のバージン樹脂を20wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例9>
 PP1のバージン樹脂を75wt%、PP4のバージン樹脂を20wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例10>
 PP1のバージン樹脂を75wt%、PP5のバージン樹脂を20wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例11>
 PP1のバージン樹脂を75wt%、PP6のバージン樹脂を20wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例12>
 PP1のバージン樹脂を75wt%、PP7のバージン樹脂を20wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例13>
 PP1のバージン樹脂を75wt%、PP8のバージン樹脂を20wt%、TPE1のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例14>
 PP1のバージン樹脂を75wt%、PP2のバージン樹脂を20wt%、TPE2のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例15>
 PP1のバージン樹脂を75wt%、PP2のバージン樹脂を20wt%、TPE3のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<実施例16>
 PP1のバージン樹脂を75wt%、PP2のバージン樹脂を20wt%、TPE4のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<比較例1>
 PP1のバージン樹脂を80wt%、PP2のバージン樹脂を20wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<比較例2>
 PP1のバージン樹脂を75wt%、PP2のバージン樹脂を20wt%、TPE5のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<比較例3>
 PP1のバージン樹脂を75wt%、PP2のバージン樹脂を20wt%、TPE6のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<比較例4>
 PP1のバージン樹脂を75wt%、PP2のバージン樹脂を20wt%、TPE7のバージン樹脂を5wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<比較例5>
 PP1のバージン樹脂を67.5wt%、PP2のバージン樹脂を22.5wt%、TPE7のバージン樹脂を10wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
<比較例6>
 PP1のバージン樹脂を60wt%、PP2のバージン樹脂を20wt%、TPE7のバージン樹脂を20wt%、混合して、基材樹脂とした。
 その後の工程は、実施例1と同様の方法により、熱履歴が1回のサンプル、および熱履歴が3回のサンプルを得た。
 実施例1~16および比較例1~6で得られた熱履歴が1回のサンプル、および熱履歴が3回のサンプルそれぞれの物性を以下のように評価した。
 MTは、メルトテンションテスター(株式会社東洋精機製作所製)を用い、余熱温度230℃、押出速度5.7mm/分で、直径2.095mm、長さ8mmのオリフィスからストランドを押し出し、このストランドを直径50mmのローラに巻き取り速度100rpmで巻き取ったときの張力を示すものである。
 MFRは、JIS K-7210に準じて試験温度230℃、試験荷重2.16kgにて測定を行った値である。
 劣化度は、(熱履歴が3回のサンプルにおけるMT×MFR)/(熱履歴が1回のサンプルにおけるMT×MFR)である。
 アイゾット衝撃強度は、サンプルの壁部を切り出し、-30℃で保管後に、80×10(長さmm×幅mm)の試験片として切り出し、厚さが4mmとなるように切り出した試験片を重ねてこれを用いてJIS K-7110(ノッチ付き)に準じて測定したものである。
 アイゾット変位は、(熱履歴が3回のサンプルにおけるアイゾット衝撃強度)/(熱履歴が1回のサンプルにおけるアイゾット衝撃強度)である。
 実施例1~16および比較例1~6について、PP1~PP8、TPE1~TPE7の基材樹脂中における配合比率と、熱履歴が1回のサンプル、および熱履歴が3回のサンプルそれぞれについて上述のように評価したMT、MFR、MT×MFR、劣化度、アイゾット衝撃強度(IZOD)、およびアイゾット変位(IZOD変位)を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~16のサンプルでは、基材樹脂として、ポリプロピレン系樹脂に、ポリエチレン系エラストマーによる改質材を混合させた混合樹脂を用いている。
 また、比較例1のサンプルでは、基材樹脂として、ポリプロピレン系樹脂のみを用い、改質材を用いない材料組成としている。
 実施例1~16のサンプルでは、基材樹脂を上述の材料組成である混合樹脂とすることにより、アイゾット衝撃強度が比較例1のサンプルにおける1.4kJ/m2よりも大きくなった。このように、改質材を混合させない材料組成の場合と比較して、アイゾット衝撃強度が劣化しない結果となった。
 さらに、実施例1~16のサンプルでは、MT×MFRについても、(熱履歴が3回の試験片におけるMT×MFR)/(熱履歴が1回の試験片におけるMT×MFR)≧0.4となった。このように、熱履歴が3回の試験片についても、熱履歴が1回の試験片と比較して、MT×MFRの低下を抑制できる結果となった。
 このように、実施例1~16のサンプルでは、熱履歴を多く加えた場合であっても、改質材を混合させない材料組成の場合と比較してアイゾット衝撃強度を劣化させず、MT×MFRの低下も抑制できる結果となった。
 発泡成形品をブロー成形により大量生産する場合には、上述のように、一度溶融状態とされた後で固化した樹脂材料における完成品以外の部分を粉砕して回収樹脂材料とし、この回収樹脂材料にバージン樹脂を混合して再度ブロー成形を行う製造プロセスを繰り返すこととなる。このため、実施例1~16のサンプルにおける樹脂材料では、特にこうした大量生産の場合にも、低コストで安定した高品質の発泡成形品を製造できると共に、高い耐衝撃性を期待できる結果となった。
 この実施例1~16のサンプルの内、特に実施例1~4、6、8~16のサンプルでは、改質材としてのポリエチレン系エラストマーの配合比率を、重量比で混合樹脂の3~15%としている。
 このため、この実施例1~4、6、8~16のサンプルでは、熱履歴が3回の試験片におけるアイゾット衝撃強度が、熱履歴が1回の試験片におけるアイゾット衝撃強度よりも低下しない結果となった。
 なお、実施例5、7のサンプルでは、熱履歴が3回の試験片におけるアイゾット衝撃強度が、熱履歴が1回の試験片におけるアイゾット衝撃強度よりも低下した結果となっている。このため、表2中、総合評価を“C”として示す。
 また、上記の実施例1~4、6、8~16のサンプルの内、特に実施例14、15のサンプルでは、改質材としてのポリエチレン系エラストマーとして、190℃におけるMFRが3以上のものを用いている。
 このため、実施例14、15のサンプルでは、下記の3つの条件全てを満足する結果となっている。
(1) 熱履歴が3回の試験片におけるアイゾット衝撃強度が、熱履歴が1回の試験片におけるアイゾット衝撃強度よりも高くなる。
(2) 熱履歴を3回とした試験片におけるアイゾット衝撃強度が4.0kJ/m2以上である。
(3) 熱履歴を3回とした試験片におけるMT×MFRが160mN・g/10分以上である。
 上記(1)のように、熱履歴が3回の試験片におけるアイゾット衝撃強度が、熱履歴が1回の試験片におけるアイゾット衝撃強度よりも高いため、回収樹脂材料を基材樹脂中に含めて用いて発泡成形品を大量生産する場合であっても、十分に高い耐衝撃性を期待できる結果となった。
 また、上記(2)のように、熱履歴を3回とした試験片におけるアイゾット衝撃強度が4.0kJ/m2以上であるため、低温時にも十分な耐衝撃性を有する発泡成形品の大量生産を実現できるものとなった。また、発泡倍率を高めた場合でも低温時の耐衝撃性が十分に確保されているため、軽量で、かつ低温時の耐衝撃性にも優れた発泡成形品の大量生産を実現できるものとなった。
 また、上記(3)のように、熱履歴を3回とした試験片におけるMT×MFRが160mN・g/10分以上であるため、回収樹脂材料を基材樹脂中に含めて用いても成形性が劣化し過ぎることがない結果となった。このため、溶融状態の樹脂材料を発泡させて押し出す際にも、気泡セルが破泡して発泡倍率が下がりすぎてしまうこともなく、高い発泡倍率の発泡成形品を大量生産できるものとなった。
 このため、金型表面の凹凸が大きい場合であっても、その凹凸形状に賦形しやすくなるため、より複雑な凹凸形状の発泡成形品であっても、ピンホールができてしまうことなく高品質な成形が期待できる結果となった。
 また、溶融状態の樹脂材料を押し出した際にも、ドローダウンの発生を抑制できるため、安定した大量生産を実現できるものとなった。
 なお、実施例1~4、6、8~13、16のサンプルでは、上記(1)~(3)の条件全てを同時に満足する結果とはならなかった。このため、表2中、総合評価を“B”として示す。
 また、上記の実施例14、15のサンプルについては、表2中、総合評価を“A”として示す。
 さらに、上記の実施例14、15のサンプルの内、特に実施例14のサンプルでは、改質材としてのポリエチレン系エラストマーとして、密度が0.87g/cm3未満のTPE2を用いている。
 このため、実施例14のサンプルでは、上記(1)~(3)の条件全てを満足すると共に、さらに下記の条件を満足する結果となっている。
(4) 熱履歴を3回とした試験片におけるアイゾット衝撃強度が4.5kJ/m2以上である。
 このため、低温時の耐衝撃性にさらに優れた発泡成形品を大量生産できるものとなった。
 これに対して、比較例2~6のサンプルでは、基材樹脂として、ポリプロピレン系樹脂に、ポリエチレン系エラストマーではない他の改質材を混合させた混合樹脂を用いている。
 基材樹脂にこうした材料組成の混合樹脂を用いることにより、比較例2~4のサンプルでは、改質材を混合させない比較例1のサンプルと比較して、(熱履歴が3回の試験片におけるMT×MFR)/(熱履歴が1回の試験片におけるMT×MFR)の劣化度が、かえって悪化した結果となった。
 また、比較例5、6のサンプルでは、(熱履歴が3回の試験片におけるMT×MFR)/(熱履歴が1回の試験片におけるMT×MFR)が0.4を下回る結果となった。
 以上のように、比較例2~6のサンプルでは、改質材を混合させることで、何れも結果が悪化したものとなった。
 また、比較例1のサンプルのように改質材を混合させない材料組成とした場合、アイゾット衝撃強度は、改質材を用いた実施例1~16および比較例2~6のサンプルの何れよりも低い結果となっている。
 このため、比較例1~6については、表2中、総合評価を“D”として示す。
 なお、本発明は、車両用軽量空調ダクトに限らず、例えば、自動車用、航空機用、車両・船舶用、建材用、各種電気機器のハウジング用、スポーツ・レジャー用の構造部材等にも用いることができる。また、カーゴフロアボード、デッキボード、リアパーセルシェルフ、ルーフパネル、ドアトリム等の内装パネル、ドアインナーパネル、プラットフォーム、ハードトップ、サンルーフ、ボンネット、バンパー、フロアスペーサー、ディビアパッド等の自動車の構造部材として用いると、自動車の軽量化が測れるので、燃費を向上させることができる。
 10  ダクト
 21  環状ダイ
 30  型締装置
 31、32  分割金型
 P  発泡パリソン

Claims (5)

  1.  溶融状態の樹脂材料を分割金型により型締めして成形する発泡成形品の製造方法であって、
     前記樹脂材料は、
      溶融された後に固化した樹脂材料を砕いてなる回収樹脂材料と、
      溶融による熱履歴が加えられていないバージン樹脂と、を混合した混合樹脂に発泡剤を添加して構成され、
      ポリプロピレン系樹脂に、ポリエチレン系エラストマーを混合させたものであることを特徴とする発泡成形品の製造方法。
  2.  前記ポリエチレン系エラストマーは、配合比率が重量比で前記混合樹脂の3~15%であることを特徴とする請求項1記載の発泡成形品の製造方法。
  3.  前記ポリエチレン系エラストマーは、190℃におけるメルトフローレイト(MFR)が3g/10分以上であることを特徴とする請求項1または2記載の発泡成形品の製造方法。
  4.  前記ポリエチレン系エラストマーは、密度が0.87g/cm3未満であることを特徴とする請求項1から3の何れか1項に記載の発泡成形品の製造方法。
  5.  溶融状態の樹脂材料を分割金型により型締めして成形する発泡成形品であって、
     前記樹脂材料は、
      溶融された後に固化した樹脂材料を砕いてなる回収樹脂材料と、
      溶融による熱履歴が加えられていないバージン樹脂と、を混合した混合樹脂に発泡剤を添加して構成され、
      ポリプロピレン系樹脂に、ポリエチレン系エラストマーを混合させたものであることを特徴とする発泡成形品。
PCT/JP2013/051049 2012-01-26 2013-01-21 発泡成形品の製造方法および発泡成形品 WO2013111692A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013555246A JP6011550B2 (ja) 2012-01-26 2013-01-21 発泡成形品の製造方法
EP13741256.5A EP2783830B1 (en) 2012-01-26 2013-01-21 Method for producing foam-molded article, and foam-molded article
KR1020167025648A KR101761083B1 (ko) 2012-01-26 2013-01-21 발포 성형품의 제조 방법 및 발포 성형품
US14/374,595 US9527228B2 (en) 2012-01-26 2013-01-21 Method for producing foam-molded article, and foam-molded article
KR1020147021849A KR20140111012A (ko) 2012-01-26 2013-01-21 발포 성형품의 제조 방법 및 발포 성형품
CN201380004464.3A CN104023940B (zh) 2012-01-26 2013-01-21 发泡成形品的制造方法及发泡成形品
MX2014008877A MX361391B (es) 2012-01-26 2013-01-21 Método para producir un artículo de espuma moldeada y artículo de espuma moldeada.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-014400 2012-01-26
JP2012014400 2012-01-26
JP2012040422 2012-02-27
JP2012-040422 2012-02-27

Publications (1)

Publication Number Publication Date
WO2013111692A1 true WO2013111692A1 (ja) 2013-08-01

Family

ID=48873412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051049 WO2013111692A1 (ja) 2012-01-26 2013-01-21 発泡成形品の製造方法および発泡成形品

Country Status (7)

Country Link
US (1) US9527228B2 (ja)
EP (1) EP2783830B1 (ja)
JP (1) JP6011550B2 (ja)
KR (2) KR101761083B1 (ja)
CN (1) CN104023940B (ja)
MX (1) MX361391B (ja)
WO (1) WO2013111692A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3042748A4 (en) * 2013-10-10 2017-06-14 Kyoraku Co., Ltd. Foamed blow-molded article and foamed blow-molding method
WO2018079699A1 (ja) * 2016-10-31 2018-05-03 キョーラク株式会社 発泡成形用樹脂、発泡成形体及びその製造方法
JP2018070795A (ja) * 2016-10-31 2018-05-10 キョーラク株式会社 発泡成形体、及びその製造方法
JP2018141031A (ja) * 2017-02-27 2018-09-13 キョーラク株式会社 発泡成形用樹脂、発泡成形体及びその製造方法
WO2018194121A1 (ja) 2017-04-19 2018-10-25 キョーラク株式会社 成形機
WO2020022466A1 (ja) 2018-07-26 2020-01-30 キョーラク株式会社 管状成形体及び貯留構造
JP2020055942A (ja) * 2018-10-01 2020-04-09 キョーラク株式会社 発泡ダクト

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101662538B1 (ko) * 2015-03-10 2016-10-06 현대자동차주식회사 크래시패드의 제조 장치
US20190338099A1 (en) * 2018-05-07 2019-11-07 Trexel, Inc. Three-dimensional suction molding method for polymeric foams

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237924A (ja) * 1987-03-27 1988-10-04 Toyo Seikan Kaisha Ltd 多層容器の製法
JP2007532363A (ja) * 2004-04-16 2007-11-15 アドバンスド プラスティックス テクノロジーズ ルクセンブルク エスアー 単層物および多層物、ならびに、それらの物を製造する押出し成型方法
JP2010070624A (ja) * 2008-09-18 2010-04-02 Miraijushi Co Ltd 押出成形発泡体及びその製造方法
JP2011051180A (ja) 2009-08-31 2011-03-17 Kyoraku Co Ltd 発泡成形品
JP2011213966A (ja) * 2010-04-02 2011-10-27 Kankyo Keiei Sogo Kenkyusho:Kk 発泡体及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1008568A (en) * 1963-10-01 1965-10-27 Haveg Industries Inc Improvements in and relating to foamed polymers
DE69320135T2 (de) * 1992-10-15 1998-12-10 Mitsubishi Chem Corp Polypropylen Zusammensetzungen
US20060065992A1 (en) 2004-04-16 2006-03-30 Hutchinson Gerald A Mono and multi-layer articles and compression methods of making the same
JP2006116818A (ja) * 2004-10-21 2006-05-11 Kaneka Corp 廃発泡ポリオレフィン系樹脂成形体を利用した発泡ポリオレフィン系樹脂成形体の製造方法及びその成形体
JP5025549B2 (ja) 2008-03-31 2012-09-12 キョーラク株式会社 発泡ブロー成形品およびその製造方法
JP5025622B2 (ja) * 2008-11-20 2012-09-12 日本ポリプロ株式会社 ポリプロピレン系樹脂組成物およびその発泡ブロー成形体
JP5602468B2 (ja) * 2010-03-24 2014-10-08 株式会社ジェイエスピー ポリプロピレン系樹脂発泡ブロー成形体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237924A (ja) * 1987-03-27 1988-10-04 Toyo Seikan Kaisha Ltd 多層容器の製法
JP2007532363A (ja) * 2004-04-16 2007-11-15 アドバンスド プラスティックス テクノロジーズ ルクセンブルク エスアー 単層物および多層物、ならびに、それらの物を製造する押出し成型方法
JP2010070624A (ja) * 2008-09-18 2010-04-02 Miraijushi Co Ltd 押出成形発泡体及びその製造方法
JP2011051180A (ja) 2009-08-31 2011-03-17 Kyoraku Co Ltd 発泡成形品
JP2011213966A (ja) * 2010-04-02 2011-10-27 Kankyo Keiei Sogo Kenkyusho:Kk 発泡体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2783830A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035893B2 (en) 2013-10-10 2018-07-31 Kyoraku Co., Ltd. Blow-molded foam and method of forming the same
EP3042748A4 (en) * 2013-10-10 2017-06-14 Kyoraku Co., Ltd. Foamed blow-molded article and foamed blow-molding method
US10941264B2 (en) 2013-10-10 2021-03-09 Kyoraku Co., Ltd. Blow-molded foam and method of forming the same
US10988584B2 (en) 2016-10-31 2021-04-27 Kyoraku Co., Ltd. Resin for foam molding, foam molded article, and method for producing same
WO2018079699A1 (ja) * 2016-10-31 2018-05-03 キョーラク株式会社 発泡成形用樹脂、発泡成形体及びその製造方法
JP2018070795A (ja) * 2016-10-31 2018-05-10 キョーラク株式会社 発泡成形体、及びその製造方法
KR20190067841A (ko) 2016-10-31 2019-06-17 교라꾸 가부시끼가이샤 발포 성형용 수지, 발포 성형체 및 그 제조 방법
KR102220282B1 (ko) * 2016-10-31 2021-02-25 교라꾸 가부시끼가이샤 발포 성형용 수지, 발포 성형체 및 그 제조 방법
JP2018141031A (ja) * 2017-02-27 2018-09-13 キョーラク株式会社 発泡成形用樹脂、発泡成形体及びその製造方法
WO2018194121A1 (ja) 2017-04-19 2018-10-25 キョーラク株式会社 成形機
KR20190139889A (ko) 2017-04-19 2019-12-18 교라꾸 가부시끼가이샤 성형기
US11241810B2 (en) 2017-04-19 2022-02-08 Kyoraku Co., Ltd. Molding machine
WO2020022466A1 (ja) 2018-07-26 2020-01-30 キョーラク株式会社 管状成形体及び貯留構造
KR20210036963A (ko) 2018-07-26 2021-04-05 교라꾸 가부시끼가이샤 관상 성형체 및 저류 구조
JP2020055942A (ja) * 2018-10-01 2020-04-09 キョーラク株式会社 発泡ダクト
JP7277866B2 (ja) 2018-10-01 2023-05-19 キョーラク株式会社 発泡ダクト

Also Published As

Publication number Publication date
US20150045467A1 (en) 2015-02-12
CN104023940A (zh) 2014-09-03
US9527228B2 (en) 2016-12-27
EP2783830B1 (en) 2020-03-04
KR101761083B1 (ko) 2017-07-24
KR20140111012A (ko) 2014-09-17
KR20160113317A (ko) 2016-09-28
MX2014008877A (es) 2014-08-27
CN104023940B (zh) 2016-05-18
EP2783830A1 (en) 2014-10-01
JPWO2013111692A1 (ja) 2015-05-11
EP2783830A4 (en) 2015-08-26
JP6011550B2 (ja) 2016-10-19
MX361391B (es) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6011550B2 (ja) 発泡成形品の製造方法
EP2261004B1 (en) A climate control duct and method of making it
US8448671B2 (en) Light-weight air conditioning duct for vehicle
JP5636669B2 (ja) 発泡成形品の製造方法
WO2013073461A1 (ja) 発泡成形品およびその製造方法
JP5709390B2 (ja) 自動車用ダクト
WO2013114996A1 (ja) 発泡成形品の製造方法および発泡成形品
EP3533823B1 (en) Resin for foam molding, foam-molded article, and production method therefor
JP5428061B2 (ja) 発泡ブロー成形品
WO2007004524A1 (ja) 断熱建材用発泡ボードおよびその製造方法
CN112672868B (zh) 聚丙烯系树脂发泡成型体的制造方法
JP6845426B2 (ja) 発泡成形用樹脂、発泡成形体及びその製造方法
JP2010037367A (ja) ポリオレフィン樹脂発泡体及びその製造方法
JP5601493B2 (ja) 発泡成形体の製造方法
JP6174462B2 (ja) 発泡ブロー成形品
WO2016104373A1 (ja) ブロー成形方法
JP2020055942A (ja) 発泡ダクト
JP5464888B2 (ja) 車両用軽量空調ダクト
JP6414435B2 (ja) 発泡ブロー成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555246

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013741256

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/008877

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: IDP00201404503

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14374595

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147021849

Country of ref document: KR

Kind code of ref document: A