WO2013111300A1 - 有機elパネル及びその製造方法 - Google Patents

有機elパネル及びその製造方法 Download PDF

Info

Publication number
WO2013111300A1
WO2013111300A1 PCT/JP2012/051666 JP2012051666W WO2013111300A1 WO 2013111300 A1 WO2013111300 A1 WO 2013111300A1 JP 2012051666 W JP2012051666 W JP 2012051666W WO 2013111300 A1 WO2013111300 A1 WO 2013111300A1
Authority
WO
WIPO (PCT)
Prior art keywords
bank
organic
banks
panel
longitudinal direction
Prior art date
Application number
PCT/JP2012/051666
Other languages
English (en)
French (fr)
Inventor
田中 洋平
Original Assignee
パイオニア株式会社
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 三菱化学株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/051666 priority Critical patent/WO2013111300A1/ja
Publication of WO2013111300A1 publication Critical patent/WO2013111300A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to an organic EL panel in which organic EL (Electro luminescence) elements are arranged and a method for manufacturing the same.
  • the organic EL element has a structure in which a plurality of anodes, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are stacked on a substrate.
  • An ink jet method is known as one method for manufacturing an organic EL panel in which such organic EL elements are arranged.
  • a liquid containing an organic material is ejected through a nozzle in the form of a micro flow (jet flow or dripping flow), droplets are deposited on the anode, and then dried. Then, a functional layer including a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer is formed.
  • a plurality of banks are formed in stripes on a substrate in order to prevent the ejected droplets from flowing into the adjacent element side.
  • the surface of the bank is preliminarily made liquid-repellent by applying a plasma treatment using fluorine gas to prevent the liquid droplets deposited on the upper surface of the bank from flowing into the adjacent element side.
  • the thing is proposed (for example, refer patent document 1). As a result, the droplets ejected toward the substrate surface are deposited only in the region between the banks adjacent to each other, and the above-described functional layer is formed only in the region.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an organic EL panel in which luminance unevenness in the light emitting surface of the panel is suppressed and a method for manufacturing the same.
  • the organic EL panel according to claim 1 includes a plurality of banks formed in a stripe shape on a substrate, and an organic light emitting layer formed by injecting droplets of an organic material into a region between adjacent banks.
  • a surface of an end portion in the longitudinal direction of each bank is liquid repellent to the organic material as compared with a surface of a central portion in the longitudinal direction of each bank. The nature is low.
  • a method for manufacturing an organic EL panel according to claim 5 is a method for manufacturing an organic EL panel in which a functional layer including an organic light emitting layer is formed on a substrate, and a plurality of banks are striped on the substrate.
  • a bank forming step for forming a bank a bank surface treatment step for making the surface of each bank lyophobic or lyophilic, and a droplet ejection head for ejecting a droplet containing an organic material toward the surface of the substrate.
  • the surface of the end portion in the longitudinal direction of each bank is made lyophilic, or the surface of the central portion in the longitudinal direction of each bank is made lyophobic.
  • Rukoto the lower liquid repellency with respect to the organic material of the surface of said end portion relative to the surface of the central portion.
  • FIG. 3 is a diagram illustrating an example of a state of a liquid repellency treatment applied to the surface of a bank 3.
  • FIG. It is a flowchart which shows the manufacturing method of an organic electroluminescent panel. It is a figure which shows the form for every step in the manufacture process of an organic electroluminescent panel. It is a perspective view which shows schematic structure of the droplet injection apparatus used when forming a functional layer by the inkjet method. It is a figure which shows an example of the movement form of the droplet ejection head 102 which moves on the surface of the board
  • FIG. 6 is a diagram illustrating another example of the state of the liquid repellency treatment applied to the surface of the bank 3.
  • FIG. It is a flowchart which shows another example of the manufacturing method of an organic electroluminescent panel. It is a top perspective view which shows another example of the structure of the organic electroluminescent panel which concerns on this invention.
  • the present invention relates to an organic EL panel in which a functional layer including an organic light emitting layer formed by injecting a droplet of an organic material in a region between a plurality of banks formed in a stripe shape on a substrate is formed.
  • the surface of the end portion in the longitudinal direction of each bank has a lower liquid repellency with respect to the organic material than the surface of the central portion in the longitudinal direction of each bank.
  • the thickness of the functional layer can be made uniform in the light emitting surface of the panel, it is possible to provide an organic EL panel in which luminance unevenness in the panel light emitting surface is suppressed.
  • FIG. 1A is a perspective view of the organic EL panel according to the present invention as viewed from the upper surface side
  • FIG. 1B shows a cross section of the organic EL panel taken along the line WW in FIG. It is sectional drawing.
  • a plurality of strip-like anodes 2 each extending in the Y direction on the panel plane are provided on a flat plate or film substrate 1 made of glass, resin, or the like at predetermined intervals. Is formed.
  • the anode 2 has a high work function, for example, an oxide metal such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), a metal such as Cr, Mo, Ni, Pt, or Au, or a compound thereof, or an alloy containing them. Etc.
  • a plurality of banks 3 are formed on the substrate 1 in a stripe shape. That is, a plurality of banks 3 each extending in the Y direction on the panel plane are arranged at predetermined intervals (for example, 162 ⁇ m) between the anodes 2 adjacent to each other on the substrate 1 so as to straddle each of the anodes 2. It is formed with a gap.
  • the bank 3 is made of an insulating material, and as shown in FIG. 2, the end portion EA has an organic material (described later) relative to the central portion CA in the longitudinal direction (Y direction) of the bank 3 as shown in FIG. A lyophobic treatment and a lyophilic treatment are performed to reduce the lyophobic property.
  • a bus line 4 for supplying a power supply voltage to the anode 2 is formed at a portion covered with the bank 3 on each anode 2.
  • Each of the bus lines 4 is formed on each anode 2 so as to extend in the direction along the anode 2, that is, in the Y direction.
  • a hole injection layer 5, a hole transport layer 6 and an organic light emitting layer 7 are laminated.
  • Materials for the hole injection layer 5 and the hole transport layer 6 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones Derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • the organic light emitting layer 7 is formed by using a light emitting organometallic compound or the like.
  • the organic light emitting layer 7 is actually composed of an organic light emitting layer 7 R that emits red light, an organic light emitting layer 7 G that emits green light, and an organic light emitting layer 7 B that emits blue light. Therefore, in the organic EL panel, a region where the organic light emitting layer 7R is formed between the banks 3 adjacent to each other is a red light emitting region, and a region where the organic light emitting layer 7G is formed is a green light emitting region.
  • the region where the layer 7B is formed is a blue light emitting region.
  • an electron transport layer 8 is formed so as to cover the surfaces of the organic light emitting layers 7 R , 7 G and 7 B and the surface of the bank 3, and the surface of the electron transport layer 8 is a panel plane.
  • a plurality of strip-like or solid-film cathodes 9 extending in the X direction are formed.
  • the cathode 9 is made of a metal having a low work function, such as Al or a compound thereof, or an alloy containing them.
  • a light-transmitting conductive thin film such as ITO (Indium Tin Oxide) is formed on the surface of the substrate 1 by, for example, sputtering. Then, for example, a mask having the shape of each of the anodes 2 as shown in FIGS. 1A and 1B is formed by photolithography, and the conductive thin film described above is etched through this mask. As shown in FIG. 4A, a plurality of anodes 2 are formed on the surface of the substrate 1. Further, a metal film made of AlNd (aluminum-neodymium alloy) is formed on each anode 2 by sputtering, for example. Then, for example, a mask having the shape of each of the bus lines 4 as shown in FIGS.
  • ITO Indium Tin Oxide
  • step S1 a bus line 4 extending in the Y direction along the anode 2 is formed on the surface of each anode 2 (step S1).
  • an insulating film made of an organic material or an insulating film made of a highly lyophilic inorganic material such as silicon oxide is formed so as to cover the substrate 1, the anode 2, and the bus line 4 by, for example, a spin coating method.
  • the highly lyophilic banks 3 extending in the Y direction along the anode 2 are formed in stripes on the substrate 1 and the anode 2, respectively.
  • step S3 a lyophobic treatment for lyophobic the surface of the bank 3 as shown in FIG. 2 excluding the end EA (indicated by diagonal lines) in the longitudinal direction, that is, the surface of the center CA is performed.
  • step S3 first, a mask is applied to the surface of the end EA of each bank 3 as shown in FIG.
  • the surface of the substrate 1 in the stage of FIG. 4B is subjected to plasma processing using a fluorine-based gas as a processing gas using a plasma processing apparatus (not shown).
  • fluorine is added to the surface of the central portion CA of each bank 3, and liquid repellency with a contact angle of 35 to 60 degrees is imparted to the surface.
  • the mask formed on the surface of the end portion EA of each bank 3 is removed.
  • the surface of the end EA of the bank 3 has a lower fluorine concentration than the surface of the center CA.
  • step S3 the surface of the end portion EA of each bank 3 as shown in FIG. 2 is less lyophobic with respect to the organic material than the surface of the central portion CA.
  • step S3 a mask is applied to the surface of the central portion CA, and an appropriate liquid repellency treatment is performed only on the end portion EA, thereby adjusting the liquid repellency ratio between the central portion CA and the end portion EA. May be.
  • liquid repellency is imparted to the entire bank surface, and then a lyophilic treatment is applied only to the end portion EA by masking the central portion CA, so that the liquid repellency ratio between the central portion CA and the end portion EA can be increased. You may make it adjust.
  • a plasma process may be performed in which the concentration of fluorine gas decreases as the distance from the center position in the bank longitudinal direction approaches the end EA without performing the mask process as described above. good.
  • step S4 After the lyophobic treatment in step S3 as described above, as shown in FIG. 4C, the hole injection layer 5 and the hole are formed in regions on the anode 2 partitioned by the banks 3 adjacent to each other by an ink jet method.
  • the transport layer 6 and the organic light emitting layer 7 are sequentially laminated (step S4).
  • FIG. 5 is a diagram showing a schematic configuration of a droplet ejection device used when these hole injection layer 5, hole transport layer 6 and organic light emitting layer 7 are formed by an ink jet method.
  • the droplet ejection apparatus includes a stage 100 that fixes the substrate 1, a stage moving mechanism 101 that moves the stage 100 in the Y direction, a droplet ejection head 102, and a droplet ejection head 102 in the Y direction.
  • a head moving mechanism 103 that moves in the orthogonal X direction and a control unit 200 are provided.
  • a plurality of nozzles for ejecting a droplet including an organic material as a raw material of the hole injection layer 5, the hole transport layer 6, or the organic light emitting layer 7 toward the surface of the substrate 1 ( (Not shown) is provided.
  • the control unit 200 moves the droplet ejection head 102 in the space above the substrate 1 fixed to the stage 100 by performing movement control on each of the stage moving mechanism 101 and the head moving mechanism 103. Further, the control unit 200 performs droplet ejection control on the droplet ejection head 102.
  • the viscosity of the droplet containing the organic material ejected by the droplet ejection head 102 is 2 to 5 cp, and the surface tension thereof is 30 to 40 mN / m.
  • the boiling point of this organic material is larger than 200 degreeC.
  • the droplet ejection speed of the droplet ejection head 102 is, for example, about 4 m / sec, the ejection amount is about 15 ml, and the ejection frequency is 5 to 10 kHz.
  • the moving speed of the droplet ejection head 102 is about 100 mm / sec.
  • step S4 in the droplet ejection apparatus shown in FIG. 5 will be described.
  • the controller 200 moves the droplet ejection head 102 to the outside of the end E1 of the substrate 1 as shown in FIG. 6A, and from that position the droplet ejection head 102 is moved to the end E2 of the substrate 1.
  • the droplet is ejected by the droplet ejection head 102 while being moved in the Y direction.
  • the droplet ejection head 102 ejects a droplet of an organic material as a raw material of the hole injection layer 5, the hole transport layer 6 or the organic light emitting layer 7 toward the substrate 1, while FIG.
  • the substrate 1 moves from the end E1 to the position outside the end E2.
  • a droplet of the organic material ejected from the droplet ejection head 102 adheres to a region (indicated by a hatched portion) traced by the droplet ejection head 102.
  • a liquid repellency treatment since the surface of each bank 3 is subjected to a liquid repellency treatment, droplets of the organic material are deposited only in the region on the anode 2 between the banks 3 adjacent to each other.
  • the control unit 200 directs the droplet ejection head 102 toward the end portion E1 of the substrate 1 Y While moving in the direction, droplet ejection by the droplet ejection head 102 is executed. That is, the liquid droplet ejection head 102 is reciprocated between the end portion E1 and the end portion E2 of the substrate 1 along the longitudinal direction of the bank 3, thereby ejecting the liquid droplets in the shaded area as shown in FIG. Then, organic material droplets are deposited in a region between adjacent banks 3.
  • the control unit 200 performs the series of operations shown in FIGS. 6A and 6B N times (N is a natural number of 1 or more), and then the droplet ejection head 102 is shown in FIG. 6C.
  • the substrate 1 is moved in the X direction from a position outside the end E1 of the substrate 1 to reach a position as shown in FIG. Then, the control unit 200 causes the droplet ejection head 102 to eject droplets while moving the droplet ejection head 102 from the position again toward the end E2 of the substrate 1 in the Y direction.
  • the droplet ejection head 102 ejects a droplet of an organic material as a raw material of the hole injection layer 5, the hole transport layer 6 or the organic light emitting layer 7 toward the substrate 1, while FIG.
  • the substrate 1 moves from the end E1 to the position outside the end E2. Therefore, a droplet of the organic material ejected from the droplet ejection head 102 adheres to a region (indicated by a hatched portion) traced by the droplet ejection head 102.
  • a region indicated by a hatched portion
  • the control unit 200 directs the droplet ejection head 102 toward the end portion E1 of the substrate 1 as Y While moving in the direction, droplet ejection by the droplet ejection head 102 is executed. That is, the liquid droplet ejection head 102 is reciprocated between the end portion E1 and the end portion E2 of the substrate 1 along the longitudinal direction of the bank 3, thereby ejecting the liquid droplets in the shaded area as shown in FIG. Then, organic material droplets are deposited in a region between adjacent banks 3.
  • the control unit 200 performs a series of operations shown in FIGS. 6D and 6E N times (N is a natural number of 1 or more).
  • the hole injection layer 5 After forming the hole injection layer 5, the hole transport layer 6 and the organic light emitting layer 7, for example, a metal complex such as an aluminum complex of 8-hydroxyquinoline is deposited on the surface of the bank 3 and the organic light emitting layer 7. As shown in FIG. 4D, the electron transport layer 8 is formed (step S5).
  • a plurality of cathodes 9 as shown in FIG. 4E are formed by evaporating each of a plurality of electrodes made of a metal material such as Al and extending in the X direction on the flat panel on the electron transport layer 8. (Step S6).
  • a functional layer (a hole injection layer 5, a hole transport layer 6, and an organic light emitting layer 7) is to be formed in a region between each bank whose surface is subjected to a liquid repellent treatment.
  • each of the droplets sequentially attached as the droplet ejection head 102 moves is deposited by absorbing and coalescing in the form of being attracted toward the droplet attached immediately before. go. Therefore, for example, as shown in FIG. 6A, when the droplet ejection head 102 moves from the end E1 to the end E2 of the substrate 1, the last droplet that adheres in the region on the end E2 side is immediately before that.
  • step S3 the liquid repellent process is performed on the surface of the bank 3 so that the liquid repellency is lower at the end EA than at the center CA as shown in FIG. Yes.
  • droplets are more likely to adhere to the surface of the end portion EA of each bank 3 than to the surface of the central portion CA. Therefore, since it is easy to deposit droplets in the region sandwiched between the end portions EA, the amount of droplets deposited in the region sandwiched between the central portions CA of the bank 3 and the region deposited between the end portions EA. It is possible to suppress variations in the amount of droplets to be generated.
  • the thickness of the functional layer can be made uniform within the light emitting surface of the panel, it is possible to provide an organic EL panel in which luminance unevenness within the panel light emitting surface is suppressed. .
  • the droplet ejection head 102 in order to form a functional layer between each of the banks 3 based on the ink jet method, the droplet ejection head 102 is shown in FIGS. 6A to 6F while ejecting droplets.
  • the reciprocation is made along the longitudinal direction of the bank 3, but the liquid droplets may be ejected only in one of the forward path and the return path during the reciprocating operation.
  • the portion where the repelling of the droplet as described above occurs is a terminal portion when the droplet ejection head 102 moves.
  • the end portion of the bank 3 by plasma treatment using a fluorine-based gas (EA, EA S) the concentration of fluorine to be added to the surface of, added to the surface of the central portion (CA, QA)
  • EA, EA S the concentration of fluorine to be added to the surface of, added to the surface of the central portion
  • the surface of the substrate 1 in the stage of FIG. 4B is first subjected to plasma treatment using fluorine gas as a processing gas, thereby adding fluorine to the surface of each bank 3 to make the surface liquid repellent.
  • a low pressure mercury lamp shown only with respect to the surface of the end of each bank 3 as shown in FIG. 2 or FIG. 7 (EA, EA S) Irradiate ultraviolet rays for 1 to 5 minutes (UV ozone treatment).
  • a low pressure mercury lamp shown only with respect to the surface of the end of each bank 3 as shown in FIG. 2 or FIG. 7 (EA, EA S) Irradiate ultraviolet rays for 1 to 5 minutes (UV ozone treatment).
  • the bank 3 each end (EA, EA S) liquid repellency of the surface is lower than the liquid repellent property of the central portion (CA, QA) surface.
  • plasma treatment using O 2 gas as a treatment gas may be performed instead of the UV ozone treatment.
  • a parallel plate type plasma processing apparatus (not shown) performs plasma processing using O 2 gas as a processing gas at a pressure of 100 Pa on the surface of each bank 3 for 0.5 to 1.0 minutes. It is.
  • the end portion in the bank longitudinal direction (EA, EA S) repellency central portion of the surface (CA, QA) becomes a low state than the liquid repellent surface
  • the bank is first formed of a highly lyophilic material (S2), and the liquid-repellent treatment is performed only on the central surface (S3).
  • S2 highly lyophilic material
  • the present invention is not limited to this. .
  • FIG. 8 is a flowchart showing another example of a method for manufacturing an organic EL panel made in view of the above points.
  • steps S20 and S30 are adopted instead of steps S2 and S3 shown in FIG. Therefore, only steps S20 and S30 shown in FIG. 8 will be described below.
  • a mask having the shape of each of the banks 3 as shown in FIG. 2 is formed by photolithography, and the insulating film is etched through the mask, whereby as shown in FIG.
  • banks 3 having high liquid repellency extending in the Y direction along the anode 2 are formed in stripes (step S 20).
  • step S30 the bank 3 each end (EA, EA S) lyophilic treatment for imparting a lyophilic property only to the surface of the applied (step S30).
  • step S30 first, a mask is applied to the surface region of the central portion (CA, QA) of each bank 3.
  • the surface of the substrate 1 in the stage of FIG. 4B is subjected to oxygen plasma treatment or UV ozone treatment.
  • the mask formed on the surface of the central portion (CA, QA) of each bank 3 is removed.
  • the bank 3 each end (EA, EA S) surface of the lyophilic increases to organic materials than the surface of the central portion (CA, QA). That is, the surface of the end portion of each bank 3 has a lower liquid repellency with respect to the organic material than the surface of the central portion.
  • the bank 3 each end (EA, EA S)
  • the bank surface treatment is performed (S3, S30) such that only the surface of the bank 3 is made lyophilic, or only the surface of the central part (CA, QA) of each bank 3 is made liquid repellent.
  • a plurality of strip-like cathodes 9 each extending in the X direction on the plane of the panel are formed on the surface of the electron transport layer 8.
  • a single plate-like cathode 9 a as shown in FIG. 9 may be formed on the surface of the electron transport layer 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【目的】パネルの発光面内での輝度ムラを抑制させた有機ELパネル及びその製造方法を提供することを目的とする。 【構成】基板上にストライプ状に形成されている複数のバンク各々の間の領域に有機発光層を含む機能層が形成されている有機ELパネルにおいて、バンク各々の長手方向における端部の表面は、バンク各々の長手方向における中央部の表面に比して有機材料に対する撥液性が低い。

Description

有機ELパネル及びその製造方法
 本発明は、有機EL(Electro luminescence)素子が配列された有機ELパネル及びその製造方法に関する。
 有機EL素子は、基板上に複数の陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極が積層された構造を有する。
 このような有機EL素子が配列された有機ELパネルを製造する手法のひとつとして、インクジェット法が知られている。インクジェット法では、有機材料を含む液体をノズルを介して微小フロー(噴流又は滴下流)の形態で射出して液滴を陽極上に堆積させ、その後、乾燥させることにより、上記した正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層からなる機能層を成膜する。
 尚、インクジェット法で有機ELパネルを製造するにあたり、射出された液滴が隣接する素子側に流れ込むのを防止する為に、基板上に複数のバンク(土手)をストライプ状に形成しておくものが知られている。更に、バンクの上面に堆積した液滴が隣接素子側に流れ込まないように、予めこのバンクの表面に対してフッ素ガスを用いたプラズマ処理を施すことによりその表面を撥液化しておくようにしたものが提案されている(例えば、特許文献1参照)。これにより、基板表面に向けて射出された液滴は互いに隣接するバンク間の領域のみに堆積し、かかる領域内にのみ上記した機能層が形成されるようになる。
 しかしながら、その撥液処理の影響により、バンクの長手方向における中央部のバンク間の領域に堆積する液滴の量と、端部のバンク間の領域に堆積する液滴の量とに差異が生じる場合があった。この際、最終的に形成された機能層の膜厚にばらつきが生じる虞があり、それに伴い、有機ELパネルの中央部と端部との間で輝度ムラが生じてしまうという問題が生じた。
特開2009-110945号公報
 本発明は上記した点に鑑みて為されたものであり、パネルの発光面内での輝度ムラを抑制させた有機ELパネル及びその製造方法を提供することを目的とする。
 請求項1記載に係る有機ELパネルは、基板上にストライプ状に形成されている複数のバンクと、互いに隣接するバンクの間の領域に有機材料の液滴を射出して形成された有機発光層を含む機能層と、を含む有機ELパネルであって、前記バンク各々の長手方向における端部の表面は、前記バンク各々の前記長手方向における中央部の表面に比して前記有機材料に対する撥液性が低い。
 又、請求項5記載に係る有機ELパネルの製造方法は、基板上に有機発光層を含む機能層が形成されている有機ELパネルの製造方法であって、前記基板上に複数のバンクをストライプ状に形成するバンク形成ステップと、前記バンク各々の表面を撥液化又は親液化するバンク表面処理ステップと、有機材料を含む液滴を前記基板の表面に向けて射出する液滴射出ヘッドを前記バンクの長手方向に沿って前記バンクの一端から他端に向けて徐々に移動させることにより、互いに隣接する前記バンク各々の間の領域に前記機能層を形成する機能層形成ステップと、を有し、前記バンク表面処理ステップでは、前記バンク各々の前記長手方向における端部の表面を親液化する、又は前記バンク各々の前記長手方向における中央部の表面を撥液化することにより、前記中央部の表面に比して前記端部の表面の前記有機材料に対する撥液性を低くする。
本発明に係る有機ELパネルの構造を示す上面透視図及び断面図である。 バンク3の表面に施された撥液化処理の状態の一例を表す図である。 有機ELパネルの製造方法を示すフローチャートである。 有機ELパネルの製造過程における各段階毎の形態を示す図である。 インクジェット法によって機能層を形成する際に用いられる液滴射出装置の概略構成を示す斜視図である。 バンク3が形成されている基板1の表面上を移動する液滴射出ヘッド102の移動形態の一例を示す図である バンク3の表面に施された撥液化処理の状態の他の一例を表す図である。 有機ELパネルの製造方法の他の一例を示すフローチャートである。 本発明に係る有機ELパネルの構造の他の一例を示す上面透視図である。
 本発明は、基板上にストライプ状に形成されている複数のバンク各々の間の領域に有機材料の液滴を射出して形成された有機発光層を含む機能層が形成されている有機ELパネルにおいて、バンク各々の長手方向における端部の表面は、バンク各々の長手方向における中央部の表面に比して有機材料に対する撥液性が低くなっている。これにより、有機ELパネルの製造時、特にインクジェット法によってバンク間の領域に機能層を形成する際に、本来、バンクの長手方向における中央部の領域に比して液滴が堆積しにくい端部の領域に液滴の堆積がし易くなる。よって、バンクの長手方向における中央部の領域に堆積する液滴量と、バンクの端部の領域に堆積する液滴量とのばらつきを抑制させることが可能となる。従って、パネルの発光面内において機能層の厚さを均一にすることができるので、このパネル発光面内での輝度ムラを抑えた有機ELパネルを提供することが可能となる。
 図1(a)は、本発明に係る有機ELパネルを上面側から眺めた透視図であり、図1(b)は、図1(a)のW-W線における有機ELパネルの断面を示す断面図である。
 図1(a)及び図1(b)において、ガラスや樹脂等からなる平板又はフィルム状の基板1上には、パネル平面におけるY方向に夫々伸張する帯状の陽極2が所定間隔おきに複数個形成されている。陽極2は、仕事関数の高い、例えばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)等の酸化金属、或いはCr、Mo、Ni、Pt、Au等の金属、又はその化合物、それらを含む合金等からなる。
 また、かかる基板1上には、複数のバンク3がストライプ状に形成されている。すなわち、基板1上において互いに隣接する陽極2各々の間に、これら陽極2各々を跨ぐ形態にて、夫々がパネル平面におけるY方向に伸張する複数のバンク3の各々が所定間隔(例えば、162μm)を隔てて形成されているのである。バンク3は絶縁材料からなり、夫々の表面には、図2に示す如く、バンク3の長手方向(Y方向)における中央部CAに比して端部EAの方が有機材料(後述する)に対する撥液性が低くなるような撥液化処理、及び親液化処理が施されている。
 各陽極2上においてバンク3に覆われた部分には、陽極2に電源電圧を供給する為のバスライン4が形成されている。バスライン4の各々は、各陽極2上において、その陽極2に沿った方向、つまりY方向に伸張して形成されている。互いに隣接するバンク3各々の間における陽極2の表面上には、正孔注入層5、正孔輸送層6及び有機発光層7が積層されている。正孔注入層5及び正孔輸送層6の材料としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。
 又、有機発光層7は、発光性有機金属化合物等で成膜されたものである。尚、有機発光層7は、実際には、赤色発光を行う有機発光層7、緑色発光を行う有機発光層7、青色発光を行う有機発光層7からなる。よって、有機ELパネルにおいて、互いに隣接するバンク3間に有機発光層7が形成されている領域は赤色発光領域となり、有機発光層7が形成されている領域は緑色発光領域となり、有機発光層7が形成されている領域は青色発光領域となる。
 更に、これら有機発光層7、7及び7の表面、並びにバンク3の表面を覆うように、電子輸送層8が形成されており、この電子輸送層8の表面上に夫々がパネル平面におけるX方向に伸張する複数の帯状、又はベタ膜状の陰極9が形成されている。尚、陰極9は、仕事関数の低い、例えば、Alなどの金属またはその化合物、あるいはそれらを含む合金等からなる。
 以下に、かかる有機ELパネルの製造方法について図3に示す製造フローに沿って説明する。
 まず、基板1の表面上に、例えばスパッタ法等によってITO(Indium Tin Oxide)等の透光性を有する導電性薄膜を形成する。そして、例えばフォトリソグラフィー法によって図1(a)及び図1(b)に示す如き陽極2各々の形状を有するマスクを形成し、このマスクを介して上記した導電性薄膜をエッチングすることにより、図4(a)に示す如く、基板1の表面上に複数の陽極2を形成する。更に、各陽極2上に、例えばスパッタ法等によってAlNd(アルミニウム-ネオジウム合金)からなる金属膜を形成する。そして、例えばフォトリソグラフィー法によって図1(a)及び図1(b)に示す如きバスライン4各々の形状を有するマスクを形成し、このマスクを介して上記した金属膜をエッチングすることにより、図4(a)に示す如く、各陽極2の表面上において陽極2に沿ってY方向に伸長するバスライン4を形成する(ステップS1)。
 次に、例えばスピンコート法等によって基板1、陽極2及びバスライン4を覆うように、有機材料からなる絶縁膜若しくは、酸化シリコン等の親液性が高い無機材料からなる絶縁膜を形成する。そして、例えばフォトリソグラフィー法によって、図4(b)に示す如く、基板1及び陽極2上において、陽極2に沿ってY方向に伸長する、親液性の高いバンク3を夫々ストライプ状に形成する(ステップS2)。
 次に、図2に示す如きバンク3の各々の長手方向における端部EA(斜線にて示す)を除く部分、つまり中央部CAの表面を撥液化する撥液化処理を施す(ステップS3)。
 例えば、ステップS3において、先ず、図2に示す如きバンク3各々の端部EAの表面にマスクを施す。そして、かかる状態で図4(b)の段階にある基板1の表面に対して、プラズマ処理装置(図示せぬ)を用いてフッ素系ガスを処理ガスとしたプラズマ処理を施す。これにより、バンク3各々の中央部CAの表面にフッ素を付加し、その表面に対して接触角35~60度の撥液性を付与する。尚、かかるプラズマ処理の終了後、バンク3各々の端部EAの表面に形成されているマスクを除去する。これにより、バンク3の端部EAの表面は、その中央部CAの表面よりもフッ素濃度が低くなる。
 よって、ステップS3の実行により、図2に示す如きバンク3各々の端部EAの表面は、中央部CAの表面に比して有機材料に対する撥液性が低くなるのである。
 また、ステップS3の実行後、中央部CA表面にマスクを施し端部EAのみに適度な撥液処理を施すことで、中央部CAと端部EAとの撥液性の比を調整するようにしても良い。
 また、バンク全面に撥液性を付与し、その後に中央部CAにマスクを施すことにより端部EAのみに親液処理を施すことで中央部CAと端部EAとの撥液性の比を調整するようにしても良い。
 尚、ステップS3の撥液化処理において、上記した如きマスク処理を行わずに、バンク長手方向における中心位置から端部EAに近づくにつれてフッ素ガスの濃度が低くなるようなプラズマ処理を施すようにしても良い。
 これにより、バンク長手方向においてこの端部EAに近いほどバンク3各々の表面の撥液性を低くするのである。
 上記した如きステップS3による撥液化処理後、インクジェット法により、互いに隣接するバンク3の各々で区画された陽極2上の領域に、図4(c)に示す如く、正孔注入層5、正孔輸送層6及び有機発光層7を順次、積層形成する(ステップS4)。
 図5は、インクジェット法によってこれら正孔注入層5、正孔輸送層6及び有機発光層7を形成させる際に用いる液滴射出装置の概略構成を示す図である。
 図5に示すように、かかる液滴射出装置は、基板1を固定するステージ100、ステージ100をY方向に移動させるステージ移動機構101、液滴射出ヘッド102、液滴射出ヘッド102をY方向に直交するX方向に移動させるヘッド移動機構103、及び制御部200を備える。液滴射出ヘッド102には、正孔注入層5、正孔輸送層6又は有機発光層7の原料となる有機材料を含む液滴を基板1の表面に向けて射出する為の複数のノズル(図示せぬ)が設けられている。制御部200は、ステージ移動機構101及びヘッド移動機構103各々に対する移動制御を行うことにより、液滴射出ヘッド102を、ステージ100に固定されている基板1の上方の空間で移動させる。更に、制御部200は、液滴射出ヘッド102に対して液滴の射出制御を行う。尚、液滴射出ヘッド102によって射出される有機材料を含む液滴の粘度は2~5cpであり、その表面張力は30~40mN/mである。また、この有機材料の沸点は200℃より大である。更に、液滴射出ヘッド102による液滴の射出速度は例えば約4m/secであり、その射出量は約15mlであり、射出周波数は5~10kHzである。また、液滴射出ヘッド102の移動速度は約100mm/secである。
 以下に、図5に示す液滴射出装置において上記ステップS4で実施される動作の一例について説明する。
 制御部200は、先ず、液滴射出ヘッド102を、図6(a)に示す如き基板1の端部E1の外側に移動させ、その位置から液滴射出ヘッド102を基板1の端部E2に向けてY方向に移動させつつ、液滴射出ヘッド102による液滴の射出を実行させる。これにより、液滴射出ヘッド102は、正孔注入層5、正孔輸送層6又は有機発光層7の原料となる有機材料の液滴を基板1に向けて射出しつつ、図6(b)に示す如き基板1の端部E1から端部E2の外側の位置に移動する。よって、液滴射出ヘッド102がトレースした領域(斜線部にて示す)には、液滴射出ヘッド102から射出された有機材料の液滴が付着する。この際、バンク3各々の表面には撥液化処理が施されているので、互いに隣接するバンク3間の陽極2上の領域のみに有機材料の液滴が堆積する。
 液滴射出ヘッド102が図6(b)に示す如き基板1の端部E2の外側の位置に到達すると、制御部200は、かかる液滴射出ヘッド102を基板1の端部E1に向けてY方向に移動させつつ、液滴射出ヘッド102による液滴の射出を実行させる。すなわち、バンク3の長手方向に沿って液滴射出ヘッド102を基板1の端部E1及び端部E2間で往復させることにより、図6(b)に示す如き斜線部の領域に液滴を射出し、互いに隣接するバンク3間の領域に有機材料の液滴を堆積させて行くのである。
 制御部200は、図6(a)及び図6(b)に示す一連の動作をN回(Nは1以上の自然数)実施した後、液滴射出ヘッド102を、図6(c)に示す基板1の端部E1の外側の位置からX方向に移動させ、図6(c)に示す如き位置に到らせる。そして、制御部200は、その位置から再び液滴射出ヘッド102を基板1の端部E2に向けてY方向に移動させつつ、液滴射出ヘッド102による液滴の射出を実行させる。これにより、液滴射出ヘッド102は、正孔注入層5、正孔輸送層6又は有機発光層7の原料となる有機材料の液滴を基板1に向けて射出しつつ、図6(d)に示す如き基板1の端部E1から端部E2の外側の位置に移動する。よって、液滴射出ヘッド102がトレースした領域(斜線部にて示す)には、液滴射出ヘッド102から射出された有機材料の液滴が付着する。この際、バンク3各々の表面には撥液化処理が施されているので、互いに隣接するバンク3間の陽極2上の領域のみに有機材料の液滴が堆積する。
 液滴射出ヘッド102が図6(e)に示す如き基板1の端部E2の外側の位置に到達すると、制御部200は、かかる液滴射出ヘッド102を基板1の端部E1に向けてY方向に移動させつつ、液滴射出ヘッド102による液滴の射出を実行させる。すなわち、バンク3の長手方向に沿って液滴射出ヘッド102を基板1の端部E1及び端部E2間で往復させることにより、図6(f)に示す如き斜線部の領域に液滴を射出し、互いに隣接するバンク3間の領域に有機材料の液滴を堆積させて行くのである。
 制御部200は、図6(d)及び図6(e)に示す一連の動作をN回(Nは1以上の自然数)実施する。
 このように、液滴射出ヘッド102によって液滴を射出させつつ、この液滴射出ヘッド102を図6(a)~図6(f)の如くバンク3の長手方向に沿って往復させる動作を繰り返し実行することにより、互いに隣接するバンク3間の領域に有機材料の液滴を徐々に堆積させて行く。この際、図6(a)~図6(f)なる動作と、堆積した液滴を乾燥させる動作とを繰り返し実行することにより、図4(c)に示す如き正孔注入層5、正孔輸送層6及び有機発光層7を順次、積層形成するのである。
 これら正孔注入層5、正孔輸送層6及び有機発光層7の形成後、例えば8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体をバンク3及び有機発光層7の表面に蒸着することにより、図4(d)に示す如く電子輸送層8を形成する(ステップS5)。
 そして、Alなどの金属材料からなり夫々が平面パネルにおけるX方向に伸長する複数の電極の各々を電子輸送層8に蒸着することにより、図4(e)に示す如き複数の陰極9を形成する(ステップS6)。
 ここで、上記ステップS4において、その表面に撥液処理の施されているバンク各々の間の領域に機能層(正孔注入層5、正孔輸送層6及び有機発光層7)を形成させるべく、図6(a)~図6(f)に示すように液滴射出ヘッド102をバンク3の長手方向に沿って往復させつつ液滴の射出を行うと、以下の如き現象が生じる。
 すなわち、互いに隣接するバンク3各々の間の領域中における、図2に示す如き端部EAに挟まれた領域では、その端部EAよりも外の領域には液滴が射出されないことから、液滴の堆積が生じにくくなっている。つまり、かかる領域の表面上において、液滴射出ヘッド102の移動に伴って順次付着した液滴の各々は、その直前に付着した液滴の方に引き寄せられる形態で吸収合体することにより堆積して行く。よって、例えば図6(a)に示す如く液滴射出ヘッド102が基板1の端部E1から端部E2に移動した際に、端部E2側の領域において最後に付着する液滴は、その直前に付着した液滴によって端部E1側に引き戻される。従って、図2に示す如きバンク3各々の端部EAに挟まれた領域では、液滴のハジキが生じることになり、中央部CAに挟まれた領域に比して液滴の堆積が生じにくくなっている。これにより、バンク3の中央部CAに挟まれた領域に形成される機能層の膜厚と、端部EAに挟まれた領域に形成される機能層の膜厚とにばらつきが生じ、有機ELパネルの発光面内で輝度ムラが生じる虞が生じる。
 そこで、ステップS3による撥液化処理では、バンク3の表面に対して、図2に示す如き中央部CAよりも端部EAの方が撥液性が低くなるような撥液処理を施すようにしている。これにより、バンク3各々の端部EAの表面には、中央部CAの表面よりも液滴が付着し易くなる。よって、この端部EAに挟まれた領域に液滴が堆積し易くなるので、バンク3の中央部CAに挟まれた領域に堆積する液滴量と、端部EAに挟まれた領域に堆積する液滴量とのばらつきを抑制させることが可能となる。
 従って、本発明によれば、パネルの発光面内において機能層の厚さを均一にすることができるので、パネル発光面内での輝度ムラを抑えた有機ELパネルを提供することが可能となる。
 尚、上記実施例においては、インクジェット法に基づきバンク3各々の間に機能層を形成させる為に、液滴を射出させつつ液滴射出ヘッド102を図6(a)~図6(f)に示す如くバンク3の長手方向に沿って往復させるようにしているが、この往復動作中において往路及び復路の内の一方のみで液滴の射出を行うようにしても良い。この際、前述した如き液滴のハジキが生じる箇所は、液滴射出ヘッド102が移動した際の終端部である。   
 よって、上記した如き往路及び復路の内の一方のみで液滴を射出させて機能層を形成させる場合には、バンク3の長手方向における両端部の内で、上記終端部に相当する方、例えば図7の斜線部に示す如きバンク3の端部EAにだけ、その撥液性を他の部分QAよりも低くするような撥液化処理をバンク3各々の表面に施すのである。
 また、上記実施例においては、フッ素系ガスを用いたプラズマ処理によってバンク3の端部(EA、EA)の表面に付加するフッ素の濃度を、中央部(CA、QA)の表面に付加するフッ素の濃度よりも低くすることにより、この端部の表面の撥液性を中央部よりも低くしているが、これをUVオゾン処理によって実現するようにしても良い。
 例えば、図4(b)の段階にある基板1の表面に対して、先ず、フッ素ガスを処理ガスとしてプラズマ処理を施すことによりバンク3各々の表面にフッ素を付加し、その表面を撥液化する。かかるプラズマ処理の終了後、基板1の表面に酸素ガスを流し込みつつ、図2又は図7に示す如きバンク3各々の端部(EA、EA)の表面に対してのみ低圧水銀ランプ(図示せぬ)によって1~5分間に亘り紫外線を照射する(UVオゾン処理)。これにより、バンク3各々の端部の表面に付加されていたフッ素が除去され、この端部の表面に付加しているフッ素の濃度が、中央部(CA、QA)の表面に比して低くなる。よって、かかるUVオゾン処理によれば、バンク3各々の端部(EA、EA)表面の撥液性が中央部(CA、QA)表面の撥液性よりも低くなる。また、かかるUVオゾン処理に代えて、Oガスを処理ガスとしたプラズマ処理を施すようにしても良い。例えば、平行平板型プラズマ処理装置(図示せぬ)により、圧力100Paの状態にてOガスを処理ガスとして用いたプラズマ処理を0.5~1.0分間に亘りバンク3各々の表面に施すのである。
 また、図3に示される実施例では、バンク長手方向における端部(EA、EA)表面の撥液性が中央部(CA、QA)表面の撥液性に比して低い状態となっているバンク3を形成させるべく、先ず、親液性の高い材料でバンクを形成し(S2)、その中央部の表面のみに撥液化処理を施す(S3)ようにしているが、これに限定されない。
 図8は、かかる点に鑑みて為された、有機ELパネルの製造方法の他の一例を示すフローチャートである。
 尚、図8に示されるフローチャートでは、図3に示されるステップS2及びS3に代えてステップS20及びS30を採用した点を除く他のステップは図3に示されるものと同一である。よって、以下に、図8に示すステップS20及びS30についてのみ説明する。
 すなわち、上記ステップS1の実行後、例えばスピンコート法等によって基板1、陽極2及びバスライン4を覆うように、有機材料に対して撥液性が高い例えばフッ素系樹脂材料等からなる絶縁膜を形成する。そして、例えばフォトリソグラフィー法によって図2に示す如きバンク3各々の形状を有するマスクを形成し、このマスクを介して上記絶縁膜をエッチングすることにより、図4(b)に示す如く、基板1及び陽極2上において、陽極2に沿ってY方向に伸長する撥液性の高いバンク3を夫々ストライプ状に形成する(ステップS20)。
 次に、バンク3各々の端部(EA、EA)の表面に対してのみ親液性を付与する親液化処理を施す(ステップS30)。例えば、ステップS30において、先ず、バンク3各々の中央部(CA、QA)の表面領域にマスクを施す。そして、かかる状態で図4(b)の段階にある基板1の表面に対して酸素プラズマ処理又はUVオゾン処理を施す。かかるプラズマ処理の終了後、バンク3各々の中央部(CA、QA)の表面に形成されているマスクを除去する。これにより、バンク3各々の端部(EA、EA)の表面は、中央部(CA、QA)の表面に比して有機材料に対する親液性が高くなる。すなわち、バンク3各々の端部の表面は、中央部の表面に比して有機材料に対する撥液性が低くなるのである。
 要するに、バンク長手方向における端部表面の撥液性が中央部表面の撥液性に比して低い状態となっているバンク3を形成させるべく、バンク3各々の端部(EA、EA)の表面だけを親液化する、或いはバンク3各々の中央部(CA、QA)の表面だけを撥液化するが如きバンク表面処理を(S3、S30)施すのである。
 また、図1に示す有機ELパネルでは、電子輸送層8の表面上に夫々がパネル平面におけるX方向に伸張する複数の帯状の陰極9を形成するようにしているが、これら帯状の陰極9に代えて、図9に示す如き単一の板状の陰極9aを電子輸送層8の表面上に形成するようにしても良い。
 1 基板
 2 陽極
 3 バンク

Claims (9)

  1.  基板上にストライプ状に形成されている複数のバンクと、互いに隣接するバンクの間の領域に有機材料の液滴を射出して形成された有機発光層を含む機能層と、を含む有機ELパネルであって、
     前記バンク各々の長手方向における端部の表面は、前記バンク各々の前記長手方向における中央部の表面に比して前記有機材料に対する撥液性が低いことを特徴とする有機ELパネル。
  2.  前記バンク各々の長手方向における両端部の内の一方の端部のみ表面の撥液性が前記中央部の表面の撥液性よりも低いことを特徴とする請求項1記載の有機ELパネル。
  3.  前記バンクの長手方向において前記端部に近いほど前記バンクの表面の撥液性が低いことを特徴とする請求項1又は2記載の有機ELパネル。
  4.  前記複数のバンクは、前記複数のバンクの表面にフッ素を付加することによって撥液化されており、
     前記複数のバンクの前記端部の表面のフッ素濃度は前記中央部のフッ素濃度よりも低いことを特徴とする請求項1~3のいずれか1に記載の有機ELパネル。
  5.  基板上に有機発光層を含む機能層が形成されている有機ELパネルの製造方法であって、
     前記基板上に複数のバンクをストライプ状に形成するバンク形成ステップと、
     前記バンク各々の表面を撥液化又は親液化するバンク表面処理ステップと、
     有機材料を含む液滴を前記基板の表面に向けて射出する液滴射出ヘッドを前記バンクの長手方向に沿って前記バンクの一端から他端に向けて徐々に移動させることにより、互いに隣接する前記バンク各々の間の領域に前記機能層を形成する機能層形成ステップと、を有し、
     前記バンク表面処理ステップでは、前記バンク各々の前記長手方向における端部の表面を親液化する、又は前記バンク各々の前記長手方向における中央部の表面を撥液化することにより、前記中央部の表面に比して前記端部の表面の前記有機材料に対する撥液性を低くすることを特徴とする有機ELパネルの製造方法。
  6.  前記バンク表面処理ステップでは、前記バンクの表面にフッ素を付加することにより前記バンクの表面を撥液化し、
     前記端部の表面に付加するフッ素の濃度を前記中央部の表面に付加するフッ素の濃度よりも低くすることを特徴とする請求項5に記載の有機ELパネルの製造方法。
  7.  前記バンク表面処理ステップでは、前記バンクの表面に対してフッ素ガスを処理ガスとして用いたプラズマ処理を施すことにより前記バンクの表面を撥液化することを特徴とする請求項6に記載の有機ELパネルの製造方法。
  8.  前記バンク表面処理ステップでは、前記バンクの表面に酸素ガスを流し込みつつ前記端部に紫外線を照射するUVオゾン処理を施すことにより前記端部の表面のフッ素濃度を前記中央部の表面のフッ素濃度よりも低くすることを特徴とする請求項7に記載の有機ELパネルの製造方法。
  9.  前記バンク表面処理ステップでは、前記バンクの表面に酸素ガスを処理ガスとして用いたプラズマ処理を施すことにより前記端部の表面のフッ素濃度を前記中央部の表面のフッ素濃度よりも低くすることを特徴とする請求項6に記載の有機ELパネルの製造方法。
PCT/JP2012/051666 2012-01-26 2012-01-26 有機elパネル及びその製造方法 WO2013111300A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051666 WO2013111300A1 (ja) 2012-01-26 2012-01-26 有機elパネル及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051666 WO2013111300A1 (ja) 2012-01-26 2012-01-26 有機elパネル及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013111300A1 true WO2013111300A1 (ja) 2013-08-01

Family

ID=48873068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051666 WO2013111300A1 (ja) 2012-01-26 2012-01-26 有機elパネル及びその製造方法

Country Status (1)

Country Link
WO (1) WO2013111300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019200939A1 (zh) * 2018-04-16 2019-10-24 京东方科技集团股份有限公司 有机电致发光基板的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204757A (ja) * 2007-02-20 2008-09-04 Casio Comput Co Ltd 表示装置及びその製造方法
WO2008149498A1 (ja) * 2007-05-31 2008-12-11 Panasonic Corporation 有機el素子、およびその製造方法
JP2009176590A (ja) * 2008-01-25 2009-08-06 Seiko Epson Corp 有機el装置、有機el装置の製造方法、電子機器
JP2011034814A (ja) * 2009-07-31 2011-02-17 Casio Computer Co Ltd 発光装置、表示装置、及び、発光装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204757A (ja) * 2007-02-20 2008-09-04 Casio Comput Co Ltd 表示装置及びその製造方法
WO2008149498A1 (ja) * 2007-05-31 2008-12-11 Panasonic Corporation 有機el素子、およびその製造方法
JP2009176590A (ja) * 2008-01-25 2009-08-06 Seiko Epson Corp 有機el装置、有機el装置の製造方法、電子機器
JP2011034814A (ja) * 2009-07-31 2011-02-17 Casio Computer Co Ltd 発光装置、表示装置、及び、発光装置の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019200939A1 (zh) * 2018-04-16 2019-10-24 京东方科技集团股份有限公司 有机电致发光基板的制作方法
JP2021518970A (ja) * 2018-04-16 2021-08-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 有機エレクトロルミネッセンス基板の製造方法
US11296293B2 (en) 2018-04-16 2022-04-05 Boe Technology Group Co., Ltd. Manufacturing method of organic electroluminescent substrate
JP7263265B2 (ja) 2018-04-16 2023-04-24 京東方科技集團股▲ふん▼有限公司 有機エレクトロルミネッセンス基板の製造方法

Similar Documents

Publication Publication Date Title
US10163993B2 (en) Display panel and method for manufacturing same
KR100856624B1 (ko) 표시장치의 제조장치 및 표시장치의 제조방법
JP4604131B2 (ja) 有機elディスプレイおよびその製造方法
JP4612741B2 (ja) 有機elディスプレイパネルおよびその製造方法
WO2009113239A1 (ja) 有機elディスプレイパネル及びその製造方法
JP2010277944A (ja) 有機elディスプレイパネルおよびその製造方法
US11108029B2 (en) Organic EL display panel manufacturing method and functional layer forming device
JP4755314B2 (ja) 有機elディスプレイパネルおよびその製造方法
JP2010282903A (ja) 有機elディスプレイパネル
JP4864041B2 (ja) 有機デバイスの製造装置
WO2013111300A1 (ja) 有機elパネル及びその製造方法
JP6779729B2 (ja) 薄膜製造方法及び有機elデバイスの製造方法
JP2015207527A (ja) 有機発光デバイスの機能層の形成方法及び有機発光デバイスの製造方法
JP4506788B2 (ja) Elパネルの製造方法
JP2009163931A (ja) 表示パネル製造装置及び表示パネルの製造方法
JP2005183184A (ja) 有機el表示装置の製造方法
JP5096641B1 (ja) 有機elパネル及びその製造方法
JP4922244B2 (ja) 有機elディスプレイパネルおよびその製造方法
JP6148554B2 (ja) 薄膜形成方法、及び、有機電子デバイスの製造方法
JP2009302016A (ja) 有機elディスプレイパネルおよびその製造方法
JP2011129337A (ja) 機能膜の製造方法
JP2009163938A (ja) 表示パネル製造装置及び表示パネルの製造方法
JP2013055032A (ja) 有機elパネル及びその製造方法
JP4918470B2 (ja) 有機デバイスおよびその製造方法
JP2011119078A (ja) 機能膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP