WO2013108350A1 - 遅延回路 - Google Patents

遅延回路 Download PDF

Info

Publication number
WO2013108350A1
WO2013108350A1 PCT/JP2012/008382 JP2012008382W WO2013108350A1 WO 2013108350 A1 WO2013108350 A1 WO 2013108350A1 JP 2012008382 W JP2012008382 W JP 2012008382W WO 2013108350 A1 WO2013108350 A1 WO 2013108350A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
clock signal
delay
flip
Prior art date
Application number
PCT/JP2012/008382
Other languages
English (en)
French (fr)
Inventor
享 和田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013108350A1 publication Critical patent/WO2013108350A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0814Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0037Delay of clock signal

Definitions

  • the present disclosure relates to a delay circuit, and more particularly to a delay circuit that delays a clock signal.
  • a semiconductor integrated circuit that performs delay adjustment with high accuracy for this problem is known (see, for example, FIG. 1 of Patent Document 1).
  • This semiconductor integrated circuit has a circuit in which a load capacitor is connected to the output terminal of the clock buffer on the receiving side via a path switch, and the delay amount is digitally changed by this circuit.
  • the semiconductor integrated circuit can finely adjust the delay time of the input signal.
  • the semiconductor integrated circuit includes a circuit capable of adjusting the number of gate stages by a digital signal. With this circuit, the semiconductor integrated circuit can perform rough adjustment of the delay time of the input signal.
  • Patent Document 1 has a problem that a circuit for adjusting the delay becomes large when the transfer rate is in a wide range from several hundred KHz to several GHz.
  • an object of the present disclosure is to provide a delay circuit capable of performing delay adjustment on a clock signal whose frequency changes in a wide range and suppressing an increase in circuit area.
  • a delay circuit includes a first delay unit that generates a delayed clock signal by delaying an input clock signal, and an adjusted state that uses the delayed clock signal as a clock signal.
  • a first control circuit that outputs a first control signal that controls a delay amount of the first delay unit; and a second control that outputs a second control signal that controls the delay amount of the first delay unit.
  • the delay circuit can change the current drive capability of the buffer circuit in accordance with the frequency of the input clock signal, for example.
  • the delay circuit can perform delay adjustment for a clock signal whose frequency changes in a wide range and can suppress an increase in circuit area.
  • each of the plurality of first buffer circuits may include a plurality of tri-state inverters controlled by the first control signal in parallel.
  • the delay circuit according to one aspect of the present disclosure can easily change the current drive capability of the buffer circuit.
  • Each of the plurality of first load capacitors may include a plurality of capacitive elements and a plurality of switches connected in series to the plurality of capacitive elements and controlled by the second control signal. .
  • the delay circuit according to one aspect of the present disclosure can easily change the capacitance value of the load capacitance.
  • the circuit to be adjusted may include a first flip-flop circuit that holds an input data signal using the delayed clock signal.
  • the circuit to be adjusted further includes a first comparison circuit, and the second control circuit may set the capacitance values of the plurality of first load capacitors using the output of the first comparison circuit. Good.
  • the delay circuit according to one aspect of the present disclosure can adjust the delay amount using the capacitance value of the load capacitance.
  • the first delay unit outputs an output signal of a second buffer circuit, which is one of the plurality of first buffer circuits, as the delayed clock signal, and a third buffer preceding the second buffer circuit.
  • An output signal of the circuit is output as a first adjustment clock signal
  • an output signal of a fourth buffer circuit subsequent to the second buffer circuit is output as a second adjustment clock signal
  • the circuit to be adjusted further includes: A second flip-flop circuit that holds the input data signal using the first adjustment clock signal as a clock signal
  • a third flip-flop circuit that holds the input data signal using the second adjustment clock signal as a clock signal.
  • the flip-flop circuit, the data held in the first flip-flop circuit, and the data held in the second flip-flop circuit A second comparison circuit, a third comparison circuit to which the data held in the first flip-flop circuit and the data held in the third flip-flop circuit are inputted, and the second control The circuit may receive output data of the second comparison circuit and the third comparison circuit, and the second control circuit may output a signal for controlling a capacitance value of the plurality of first load capacitors.
  • the delay circuit according to one aspect of the present disclosure can dynamically readjust the delay amount even when the delay amount changes during operation.
  • the present disclosure can be realized not only as such a delay circuit but also as a delay method using characteristic means included in the delay circuit as a step.
  • the present disclosure may be realized as a reception circuit including such a delay circuit, or may be realized as a transmission / reception circuit including such a reception circuit and a transmission circuit.
  • the present disclosure can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a delay circuit.
  • LSI semiconductor integrated circuit
  • the present disclosure can provide a delay circuit capable of performing delay adjustment on a clock signal whose frequency changes in a wide range and suppressing an increase in circuit area.
  • FIG. 1 is a diagram illustrating a configuration of a delay circuit according to the first embodiment.
  • FIG. 2 is a circuit diagram of the buffer circuit and the load capacitance according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the circuit to be adjusted according to the first embodiment.
  • FIG. 4 is a flowchart of the delay adjustment operation by the delay circuit according to the first embodiment.
  • FIG. 5 is a diagram showing signal waveforms in the delay adjustment operation according to the first embodiment.
  • FIG. 6 is a diagram illustrating signal waveforms in the delay adjustment operation according to the first embodiment.
  • FIG. 7 is a diagram showing a capacitance value adjustment pattern according to the first embodiment.
  • FIG. 8 is a circuit diagram of a modification of the buffer circuit according to the first embodiment.
  • FIG. 9 is a circuit diagram of a modification of the buffer circuit according to the first embodiment.
  • FIG. 10 is a circuit diagram of a modification of the buffer circuit according to the first embodiment.
  • FIG. 11 is a diagram illustrating a configuration of a modified example of the delay circuit according to the first embodiment.
  • FIG. 12 is a diagram illustrating a configuration of a modified example of the delay circuit according to the first embodiment.
  • FIG. 13 is a diagram illustrating a configuration of a delay circuit according to the second embodiment.
  • FIG. 14 is a diagram illustrating signal waveforms of the delayed clock signal and the input data signal according to the second embodiment.
  • FIG. 15 is a diagram illustrating signal waveforms of the delayed clock signal and the input data signal according to the second embodiment.
  • FIG. 16 is a diagram illustrating signal waveforms of the delayed clock signal and the input data signal according to the second embodiment.
  • FIG. 17 is a diagram illustrating a configuration of a transmission / reception circuit according to the third embodiment.
  • the delay circuit according to the first embodiment adjusts the delay amount coarsely by changing the current drive capability of the buffer circuit, and finely adjusts the delay amount by changing the capacitance value of the load capacitance. Thereby, the delay circuit according to the first embodiment can adjust the delay with respect to the clock signal whose frequency changes in a wide range and can suppress an increase in circuit area.
  • FIG. 1 is a diagram illustrating a configuration of the delay circuit 100 according to the first embodiment. 1 includes a clock input terminal to which an input clock signal CKI is input, an operation mode input terminal to which an operation mode signal MODE is input, a data input terminal to which an input data signal DIN is input, a mode And a mode input terminal to which the signal MODEA is input.
  • the input clock signal CKI is a clock signal having the first frequency f1 or the second frequency f2. Specifically, in the high speed mode, the frequency of the input clock signal CKI is the first frequency f1, and in the low speed mode, the frequency of the input clock signal CKI is the second frequency f2.
  • the clock signal in this embodiment includes not only a clock signal continuously input at a constant period but also a clock signal input intermittently. Further, the duty ratio of the clock signal is not limited to 50:50, and may be an arbitrary ratio.
  • the operation mode signal MODE indicates whether the current operation mode is the high speed mode or the low speed mode.
  • the mode signal MODEA indicates whether or not the current operation mode is an initial sequence.
  • the delay circuit 100 also includes a circuit to be adjusted 120, a first control circuit 130, a second control circuit 140, and a delay unit 150.
  • the delay unit 150 generates the delayed clock signal CKO by delaying the input clock signal CKI.
  • the delay unit 150 includes buffer circuits 101, 102, 103, 104, and 105, and load capacitors 111, 112, 113, 114, and 115.
  • the number of buffer circuits and load capacitors may be arbitrary.
  • Buffer circuits 101 to 105 are connected in series with each other. Specifically, the input clock signal CKI is input to the buffer circuit 101.
  • the buffer circuit 101 propagates a signal to the buffer circuit 102, and this signal sequentially propagates to the buffer circuits 103, 104, and 105.
  • the buffer circuit 105 propagates the delayed clock signal CKO to the adjusted circuit 120.
  • each of the buffer circuits 101 to 105 can change the current driving capability.
  • Each of the load capacitors 111, 112, 113, 114, and 115 is connected to an output terminal of each of the buffer circuits 101, 102, 103, 104, and 105.
  • Each of the load capacitors 111 to 115 can change a capacitance value.
  • the adjusted circuit 120 processes the input signal using the delayed clock signal CKO as a clock signal. Specifically, the adjusted circuit 120 holds the input data signal DIN at the change timing (rising edge or falling edge) of the delayed clock signal CKO.
  • the first control circuit 130 and the second control circuit 140 control the delay amount of the delay unit 150.
  • the first control circuit 130 controls the delay amount of the delay unit 150 by controlling the current drive capability of the buffer circuits 101 to 105. Specifically, when the operation mode signal MODE indicates the high-speed mode, that is, when the input clock signal CKI is the first frequency f1, the first control circuit 130 sets the current drive capability of the buffer circuits 101 to 105 to the first Set to value. Further, the first control circuit 130 sets the current drive capability of the buffer circuits 101 to 105 from the first value when the operation mode signal MODE indicates the low speed mode, that is, when the input clock signal CKI is the second frequency f2. Set to a small second value.
  • the first control circuit 130 outputs control signals E101, E102, E103, E104, and E105 for controlling the current drive capability of the corresponding buffer circuit to each of the buffer circuits 101, 102, 103, 104, and 105. To do.
  • the second control circuit 140 is a normal operation in which the adjusted circuit 120 is determined by the timing of the delayed clock signal CKO and the data signal DIN in a state where the current drive capability of the buffer circuits 101 to 105 is set by the first control circuit
  • the capacitance values of the load capacitors 111 to 115 are set so that Further, the second control circuit 140 outputs control signals E111, E112, E113, E114, and E115 for controlling the capacitance values of the corresponding load capacitors to the load capacitors 111, 112, 113, 114, and 115, respectively.
  • the circuit configuration of the buffer circuits 101 to 105 and the load capacitors 111 to 115 will be described. Since the buffer circuits 101 to 105 have the same configuration and the load capacitors 111 to 115 have the same configuration, the configuration of the buffer circuit 101 and the load capacitor 111 will be described as an example.
  • FIG. 2 is a circuit diagram showing an example of the buffer circuit 101 and the load capacitor 111.
  • the buffer circuit 101 includes three tri-state inverters 160a, 160b and 160c connected in parallel to each other.
  • the buffer circuit 101 changes the current drive capability of the buffer circuit 101 by switching the number of tristate inverters to be operated among the three tristate inverters 160a to 160c.
  • the buffer circuit 101 includes an input terminal IN, an output terminal OUT, P-channel transistors P101a, P102a, P101b, P102b, P101c, and P102c, and N-channel transistors N101a, N102a, N101b, N102b, N101c, and N102c. And inverter circuits INV101a, INV101b, and INV101c.
  • the buffer circuit 101 is supplied with a control signal E101 (E101a, E101b, E101c), a power supply voltage VDD, and a ground potential VSS.
  • the input terminal IN is connected to the gates of P-channel transistors P102a, P102b and P102c and the gates of N-channel transistors N102a, N102b and N102c.
  • the control signals E101a, E101b, and E101c are supplied to the input terminals of the inverter circuits INV101a, INV101b, and INV101c and the gates of the N-channel transistors N101a, N101b, and N101c, respectively.
  • the sources of the P-channel transistors P102a, P102b, and P102c are connected to the drains of the P-channel transistors P101a, P101b, and P101c.
  • the sources of the N channel transistors N102a, N102b, and N102c are connected to the drains of the N channel transistors N101a, N101b, and N101c.
  • the power supply voltage VDD is supplied to the sources of the P-channel transistors P101a, P101b, and P101c.
  • the ground potential VSS is supplied to the sources of the N-channel transistors N101a, N101b, and N101c.
  • the output terminals of the inverter circuits INV101a, INV101b, and INV101c are connected to the gates of the P-channel transistors P101a, P101b, and P101c.
  • the output terminal OUT is connected to the drains of the P-channel transistors P102a, P102b and P102c and the drains of the N-channel transistors N102a, N102b and N102c.
  • the structure which can change a current drive capability in three steps is shown here, the structure which can change a current drive capability in two steps or more is sufficient. That is, the number of tri-state inverters connected in parallel may be any number as long as it is plural. One of the plurality of tri-state inverters may be replaced with a normal inverter.
  • the load capacitor 111 includes an output terminal OUT, analog switches 161a, 161b, and 161c, and capacitive elements C111a, C111b, and C111c. Further, the control signal E111 (E111a, E111b, E111c) and the ground potential VSS are supplied to the load capacitor 111.
  • the analog switches 161a to 161c are connected in series to the capacitive elements C111a to C111c.
  • the load capacity 111 changes the capacity value of the load capacity 111 by switching the number of analog switches to be turned on among the plurality of analog switches.
  • the analog switch 161a includes an inverter circuit INV111a, a P-channel transistor P111a, and an N-channel transistor N111a.
  • the analog switch 161b includes an inverter circuit INV111b, a P-channel transistor P111b, and an N-channel transistor N111b.
  • the analog switch 161c includes an inverter circuit INV111c, a P-channel transistor P111c, and an N-channel transistor N111c.
  • the output terminal OUT is connected to the sources of the P-channel transistors P111a, P111b, and P111c and the drains of the N-channel transistors N111a, N111b, and N111c.
  • the ground potential VSS is supplied to one terminal of the capacitive elements C111a, C111b, and C111c.
  • the other terminal of the capacitive element C111a is connected to the drain of the P-channel transistor P111a and the source of the N-channel transistor N111a.
  • the other terminal of the capacitive element C111b is connected to the drain of the P-channel transistor P111b and the source of the N-channel transistor N111b.
  • the other terminal of the capacitive element C111c is connected to the drain of the P-channel transistor P111c and the source of the N-channel transistor N111c.
  • the control signals E111a, E111b, and E111c are supplied to the input terminals of the inverter circuits INV111a, INV111b, and INV111c and the gates of the N-channel transistors N111a, N111b, and N111c, respectively.
  • the output terminals of the inverter circuits INV111a, INV111b, and INV111c are connected to the gates of the P-channel transistors P111a, P111b, and P111c.
  • the capacitance value can be changed in four steps (all analog switches are OFF, one on, two on, three on), but the capacitance value can be changed in two or more steps. Any configuration may be used. In other words, the number of sets of analog switches and capacitive elements may be one or more.
  • control signals E101 and E111 are each a 3-bit signal, but the number of bits changes according to the number of stages for switching the current drive capability and the capacitance value. For example, when switching in two stages, the control signals E101 and E111 may each be 1 bit.
  • control signals E101 to E105 are supplied to the plurality of buffer circuits 101 to 105, respectively, but the same control signal may be supplied. Similarly, the same control signal may be supplied to the plurality of load capacitors 111 to 115.
  • FIG. 3 is a diagram illustrating an example of the adjusted circuit 120.
  • the adjusted circuit 120 includes a flip-flop circuit 121 and a comparison circuit 122.
  • the flip-flop circuit 121 holds the input data signal DIN using the delayed clock signal CKO. Specifically, the input data signal DIN is supplied to the data input terminal of the flip-flop circuit 121, and the delayed clock signal CKO is supplied to the clock input terminal. In this embodiment mode, the flip-flop circuit 121 updates data at the rising edge of the clock signal.
  • the comparison circuit 122 determines whether the data held in the flip-flop circuit 121 matches the expected value. Specifically, the comparison circuit 122 determines whether or not the expected value signal DREF indicating the expected value matches the data held in the flip-flop circuit 121, and generates a comparison result signal CMP indicating the determination result. Output.
  • circuit 120 to be adjusted includes one flip-flop circuit 121 is shown, but the circuit 120 to be adjusted may include a plurality of flip-flop circuits 121.
  • the input data signal DIN may be serial data
  • the adjusted circuit 120 may include a shift register for holding the serial data.
  • the input data signal DIN may be a plurality of bits of parallel data
  • the adjusted circuit 120 may include a plurality of flip-flop circuits for holding the parallel data.
  • the expected value signal DREF indicates a plurality of bits of data held in the plurality of flip-flop circuits.
  • the comparison circuit 122 compares a plurality of bits of data included in the plurality of flip-flop circuits with a plurality of bits of data indicated by the expected value signal DREF.
  • the adjusted circuit 120 is not limited to a circuit that latches data, and may be any circuit as long as it includes a flip-flop circuit.
  • the delay circuit 100 performs an initialization sequence (delay adjustment operation) before the start of normal operation.
  • the delay circuit 100 adjusts the delay amount of the delay unit 150.
  • FIG. 4 is a flowchart of the delay adjustment operation by the delay circuit 100.
  • a fixed data string is input as the expected value signal DREF, and the same fixed data string as the expected value signal DREF is input as the input data signal DIN.
  • the first frequency f1 and the second frequency f2 there are two types of operating frequencies, the first frequency f1 and the second frequency f2. Note that three or more types of operating frequencies (operation modes) are assumed.
  • the input clock signal CKI having the first frequency f1 and the operation mode signal MODE indicating the high speed mode are input to the delay circuit 100.
  • the first control circuit 130 determines the operation mode with reference to the operation mode signal MODE (S101). In this case, since the high speed mode is indicated by the operation mode signal MODE (high speed mode in S101), the first control circuit 130 sets the current drive capability of the buffer circuits 101 to 105 to the first value (high current drive capability). (S102).
  • the first control circuit 130 uses the control signals E101 to E105 to adjust the current drive capability of the buffer circuits 101 to 105 so that the input clock signal CKI is normally transmitted.
  • the mode signal MODEA indicates that the mode is the high-speed mode (the operating frequency is the first frequency f1) and the initialization sequence state.
  • the second control circuit 140 senses that the mode signal MODEA has transitioned to the above mode, and starts adjusting the capacitance values of the load capacitors 111 to 115 after a certain clock cycle (S103).
  • the second control circuit 140 changes the phase of the input clock signal CKI using the control signals E111 to E115.
  • the comparison result signal indicating that the expected value signal DREF and the data held in the flip-flop circuit 121 are the same by the comparison circuit 122.
  • CMP is output.
  • the comparison circuit 122 If the flip-flop circuit 121 does not correctly receive the input data signal DIN, the comparison circuit 122 generates a comparison result signal CMP indicating that the expected value signal DREF and the data held in the flip-flop circuit 121 do not match. Is output. Therefore, the second control circuit 140 can detect the range of the control signals E111 to E115 that operate normally by using the comparison result signal CMP. Then, the second control circuit 140 holds the detected pattern of the control signals E111 to E115 in the normal operation range as a delay adjustment result in the high speed mode.
  • an input clock signal CKI having the second frequency f2 and an operation mode signal MODE indicating the low speed mode are input to the delay circuit 100.
  • the first control circuit 130 sets the current drive capability of the buffer circuits 101 to 105 to the second value (low current drive capability). (S104).
  • the mode signal MODEA indicates that the mode is the low speed mode (the operating frequency is the second frequency f2) and the initialization sequence state.
  • the second control circuit 140 senses that the mode signal MODEA has transitioned to the above mode, and adjusts the capacitance values of the load capacitors 111 to 115 after a certain clock cycle, thereby adjusting the delay in the low speed mode. The result is held (S103).
  • the first control circuit 130 sets the current drive capability of the buffer circuits 101 to 105 to the first value (high value) when the high-speed mode is indicated by the operation mode signal. Current drive capacity). Further, when the low-speed mode is indicated by the operation mode signal, the first control circuit 130 sets the current drive capability of the buffer circuits 101 to 105 to the second value (low current drive capability).
  • the second control circuit 140 sets the capacitance values of the load capacitors 111 to 115 according to the held high-speed mode delay adjustment result.
  • the mode signal indicates the low speed mode and the normal operation
  • the second control circuit 140 sets the capacitance values of the load capacitors 111 to 115 according to the delay adjustment result of the low speed mode to be held.
  • the timing for performing the delay adjustment may be other than this timing.
  • the delay adjustment in the high speed mode may be performed at an arbitrary timing as long as it is a timing before the normal operation in the high speed mode is performed.
  • the delay adjustment in the low speed mode may be performed at an arbitrary timing as long as it is a timing before the normal operation in the low speed mode is performed.
  • FIG. 5 is a diagram showing a signal waveform at the time of delay adjustment of the delayed clock signal CKO when the operating frequency is the first frequency f1.
  • the first frequency f1 is 2 GHz to 10 GHz or 1 GHz to 20 GHz.
  • FIG. 5 shows the eye pattern of the input data signal DIN, and shows the delayed clock signal CKO when the control signals E111 to 115 are in six states.
  • Case 1 all of the control signals E111 to E115 indicate OFF. That is, Case 1 is a state in which all of the five load capacitors 111 to 115 are separated from the output terminal.
  • Case 2 is a state in which one load capacitor 111 is connected to the output terminals of the buffer circuits 101 to 105.
  • Case 3 is a state in which two load capacitors 111 and 112 are connected to the output terminals of the buffer circuits 101 to 105.
  • Case 4 is a state in which three load capacitors 111 to 113 are connected to the output terminals of the buffer circuits 101 to 105.
  • Case 5 the control signals E111, E112, E113, and E114 indicate ON, and the control signal E115 indicates OFF. That is, Case 5 is a state in which four load capacitors 111 to 114 are connected to the output terminals of the buffer circuits 101 to 105.
  • Case 6 all of the control signals E111, E112, E113, E114, and E115 indicate ON. That is, Case 6 is a state in which all of the five load capacitors 111 to 115 are connected to the output terminals of the buffer circuits 101 to 105.
  • the second control circuit 140 sets the capacitance value to be any one of Case2, Case3, and Case4 using the control signals E111, E112, E113, E114, and E115.
  • FIG. 6 is a diagram showing signal waveforms at the time of delay adjustment of the delayed clock signal CKO in the high speed mode and the low speed mode.
  • the second frequency f2 is a frequency lower than the first frequency f1.
  • the second frequency f2 is a frequency equal to or less than half of the first frequency f1.
  • the second frequency f2 is a frequency up to several KHz (for example, 1 kHz).
  • the first frequency f1 is about three times faster than the second frequency f2.
  • FIG. 6 shows the eye pattern of the input data signal DIN when the operating frequency is the first frequency f1, and the delayed clock signal CKO when the control signal E111 is in two states. Further, FIG. 6 shows the eye pattern of the input data signal DIN at the second frequency f2 and the delayed clock signal CKO when the control signal E111 in that case is in four states.
  • the required transfer rate is switched.
  • the input clock signal CKI has the first frequency f1 in a certain mode and the second frequency f2 in a different mode.
  • the second frequency f2 when phase adjustment is performed with the same current drive capability of the buffer circuit as that of the first frequency f1, it is necessary to mount a large number of buffer circuits and load capacitors.
  • the current drive capability of the buffer circuits 101 to 105 is switched according to the operating frequency.
  • the delay circuit 100 controls the delay amount as in Case 1a, Case 2a, Case 3a, and Case 4a.
  • Case 1 and Case 2 are the same as Case 1 and Case 2 shown in FIG. Case 1a
  • Case 2a, Case 3a and Case 4a are the same as Case 1, Case 2, Case 3 and Case 4 shown in FIG.
  • control signals E111, E112, E113, E114, and E115 all indicate OFF. That is, all the load capacitors 111 to 115 are separated from the output terminals of the buffer circuits 101 to 105.
  • Case 2a only the control signal E111 indicates ON, and the control signals E112, E113, E114, and E115 indicate OFF. That is, Case 2a is a state in which one load capacitor 111 is connected to the output terminals of the buffer circuits 101 to 105.
  • Case 3a the control signals E111 and E112 indicate ON, and the control signals E113, E114, and E115 indicate OFF. That is, Case 3a is a state in which two load capacitors 111 and 112 are connected to the output terminals of the buffer circuits 101 to 105.
  • Case 4a the control signals E111, E112, and E113 indicate ON, and the control signals E114 and E115 indicate OFF. That is, Case 4a is a state in which three load capacitors 111 to 113 are connected to the output terminals of the buffer circuits 101 to 105.
  • the current driving capabilities of the buffer circuits 101 to 105 are different between Case 1 and Case 1a, and Case 2 and Case 2a.
  • the first control circuit 130 operates all the tristate inverters 160a to 160c included in the buffer circuit 101 in order to increase the current driving capability.
  • the first control circuit 130 operates all the tristate inverters 160a to 160c included in the buffer circuits 102 to 105.
  • the first control circuit 130 operates only the tristate inverter 160a and does not operate the tristate inverters 160b and 160c.
  • the control signal E101 is multi-bit, only the tri-state inverter 160a can be operated.
  • the PMOS transistors shown in FIG. 2 have the same gate width
  • the NMOS transistors have the same gate width
  • the current drive capability of the transistors is the same except for manufacturing variations.
  • the control signal E101a is turned on here
  • the control signal E101b or E101c may be turned on. Even in this case, the current drive capability of the buffer circuit can be reduced to 1/3.
  • the delay circuit 100 controls the delay adjustment width (change amount) and the phase of the delay value by using two types of digital control signals. As a result, the delay circuit 100 can realize a high-speed interface receiving circuit that operates normally in a small area.
  • the capacitance values of the load capacitors 111 to 115 are all the same, but may be different capacitance values.
  • the load capacity 111 is C [F]
  • the load capacity 112 is 2 ⁇ C [F]
  • the load capacity 113 is 4 ⁇ C [F]
  • the load capacity 114 is 8 ⁇ C [F]
  • the load capacity 115 is 16 ⁇ .
  • the control signals E111, E112, E113, E114, and E115 may be controlled. In this way, the adjustable delay amount pattern can be increased using a small capacitance value.
  • the flip-flop circuit updates data at the rising edge of the clock signal, but may update data at the falling edge of the clock signal.
  • a differential input flip-flop circuit may also be used.
  • the load capacitance is realized using a capacitive element
  • a parasitic capacitance such as a gate capacitance or a capacitance between wirings may be used as the load capacitance.
  • the adjustment range of the current driving capability is determined by adjusting the number of tri-state inverters or the gate width according to the assumed operating frequency. That is, the gate widths of the plurality of tri-state inverters may be different.
  • the following configuration may be used as the configuration of the buffer circuit 101.
  • FIG. 8 is a circuit diagram showing a configuration of a modified example of the buffer circuit 101.
  • an inverter circuit that can control the power supply voltage VDDL may be used as the buffer circuit 101.
  • the first control circuit 130 adjusts the current drive capability of the buffer circuit 101 by adjusting the voltage value of the power supply voltage VDDL.
  • FIG. 9 is a circuit diagram showing a configuration of another modification of the buffer circuit 101.
  • an inverter circuit that can control the ground-side power supply voltage VSSH may be used as the buffer circuit 101.
  • the first control circuit 130 adjusts the current drive capability of the buffer circuit 101 by adjusting the voltage value of the power supply voltage VSSH.
  • FIG. 10 is a circuit diagram showing a configuration of another modified example of the buffer circuit 101.
  • an inverter circuit that can control the substrate voltages VDP and VDN may be used as the buffer circuit 101.
  • the first control circuit 130 adjusts the current drive capability of the buffer circuit 101 by adjusting the voltage values of the substrate voltages VDP and VDN.
  • the power supply voltage and the substrate voltage may be supplied from an external power supply, or may be supplied from a power supply adjustment circuit such as an internal regulator circuit or a resistance division adjustment circuit.
  • the first control circuit 130 determines the frequency of the input clock signal CKI using the operation mode signal MODE, but the following method may be used.
  • FIG. 11 is a diagram showing a configuration of a delay circuit 100A according to a modification of the first embodiment.
  • the first control circuit 130A illustrated in FIG. 11 has a function of detecting the frequency of the input clock signal CKI. Thereby, the first control circuit 130A can determine the frequency and the operation mode of the input clock signal CKI using the input clock signal CKI.
  • FIG. 12 is a diagram showing a configuration of a delay circuit 100B according to another modification of the first embodiment.
  • the first control circuit 130B shown in FIG. 11 holds a table indicating the relationship between the clock frequency or operation mode and the power supply voltage in advance. Then, the first control circuit 130B detects the voltage value of the power supply voltage VDD, and determines the clock frequency and the operation mode using the table and the detected voltage value of the power supply voltage VDD.
  • the delay circuit 200 according to the second embodiment monitors the phase difference between the data signal and the clock signal during normal operation in addition to the function of the delay circuit 100 according to the first embodiment described above, and the phase difference changes. In this case, the delay amount is readjusted.
  • FIG. 13 is a diagram illustrating a configuration of the delay circuit 200 according to the second embodiment. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and redundant description may be omitted.
  • the delay circuit 200 shown in FIG. 13 is different from the delay circuit 100 shown in FIG. 1 in that the adjusted circuit 220, the second control circuit 240, and the delay unit 250 have the same configuration. Different from the configuration of the unit 150.
  • the delay unit 250 includes buffer circuits 201 to 205 and load capacitors 211 to 215. Note that the connection relationship and the configuration of the buffer circuits 201 to 205 and the load capacitors 211 to 215 are the same as the connection relationship and the configuration of the buffer circuits 101 to 105 and the load capacitors 111 to 115 described in the first embodiment. It is.
  • the delay unit 250 is different from the delay unit 150 in that the output signal of the third-stage buffer circuit 203 is output as the adjustment clock signal CKO1, and the output signal of the fourth-stage buffer circuit 204 is output as the delayed clock signal CKO2.
  • the output signal of the fifth-stage buffer circuit 205 is output as the adjustment clock signal CKO3.
  • the buffer circuit 204 is an example of a second buffer circuit
  • the buffer circuit 203 is an example of a third buffer circuit
  • the buffer circuit 205 is an example of a fourth buffer circuit.
  • the delayed clock signal CKO2 corresponds to the delayed clock signal CKO in the first embodiment.
  • the adjustment clock signals CKO1 and CKO2 are examples of the first adjustment clock signal and the second adjustment clock signal.
  • the adjusted circuit 220 includes flip-flop circuits 221 and 223 and comparison circuits 226 and 227 in addition to the configuration of the adjusted circuit 120.
  • the flip-flop circuit 221 holds the input data signal DIN using the adjustment clock signal CKO1 as a clock signal. Further, the flip-flop circuit 221 outputs the held data as a signal D221.
  • the flip-flop circuit 121 holds the input data signal DIN using the delayed clock signal CKO2 as a clock signal. Further, the flip-flop circuit 121 outputs the held data as a signal D121.
  • the flip-flop circuit 223 holds the input data signal DIN using the adjustment clock signal CKO3 as a clock signal. Further, the flip-flop circuit 223 outputs the held data as a signal D223.
  • the comparison circuits 122, 226 and 227 are exclusive OR circuits.
  • the comparison circuit 122 compares the signal D121 output from the flip-flop circuit 121 with the expected value signal DREF, and outputs the comparison result as the signal D122.
  • the signal D122 corresponds to the comparison result signal CMP in the first embodiment.
  • the comparison circuit 226 determines whether or not the signal D121 output from the flip-flop circuit 121 matches the signal D221 output from the flip-flop circuit 221, and generates a signal D226 indicating the determination result.
  • the comparison circuit 227 determines whether or not the signal D121 output from the flip-flop circuit 121 matches the signal D223 output from the flip-flop circuit 223, and generates a signal D227 indicating the determination result.
  • the flip-flop circuit 121 is an example of a first flip-flop circuit
  • the flip-flop circuit 221 is an example of a second flip-flop circuit
  • the flip-flop circuit 223 is an example of a third flip-flop circuit.
  • the comparison circuit 122 is an example of a first comparison circuit
  • the comparison circuit 226 is an example of a second comparison circuit
  • the comparison circuit 227 is an example of a third comparison circuit.
  • the operation flow of the initial sequence is the same as that in the first embodiment, but the following points are different from those in the first embodiment.
  • the second control circuit 240 matches the data held in the flip-flop circuit 121 with the expected value signal DREF and holds it in the flip-flop circuits 121, 221 and 223.
  • the capacity values of the load capacities 211 to 215 are set so that all of the data that have been made coincide with each other.
  • the second control circuit 240 sets the capacitance values of the load capacitors 211 to 215 so that the data held in the flip-flop circuits 121, 221 and 223 matches the expected value signal DREF.
  • the adjustment clock signals CKO1 and COK3 are adjusted as shown in FIG.
  • the delay circuit 200 uses the comparison circuits 226 and 227 to dynamically adjust the delay amount so that the input data signal DIN can be received normally.
  • the flip-flop circuits 221 and 223 are configured to receive data at a clock phase of a certain difference from the flip-flop circuit 121 that receives the original input data signal DIN. That is, if the data held in the flip-flop circuits 221 and 223 is the same as the data held in the flip-flop circuit 121, the data is in a sufficient margin.
  • the comparison circuit 226 transmits to the second control circuit 240 a signal D226 indicating that the data held in the flip-flop circuit 121 and the flip-flop circuit 221 do not match. Then, the second control circuit 240 delays the phases of the delayed clock signal CKO2 and the adjustment clock signals CKO1 and CKO3. That is, the second control circuit 240 increases the delay amount of the delay unit 250 by increasing the capacitance values of the load capacitors 211 to 215. Accordingly, the delay circuit 200 can adjust the delay amount following the change in the phase difference between the input data signal DIN and the input clock signal CKI.
  • the flip-flop circuit 223 receives data shifted by one clock cycle as shown in FIG.
  • the comparison circuit 227 transmits a signal D227 indicating that the data held in the flip-flop circuit 121 and the flip-flop circuit 223 do not match to the second control circuit 240.
  • the second control circuit 240 advances the phases of the delayed clock signal CKO2 and the adjustment clock signals CKO1 and CKO3. That is, the second control circuit 240 reduces the delay amount of the delay unit 250 by reducing the capacitance values of the load capacitors 211 to 215.
  • the phase difference between the delayed clock signal CKO2 and the adjustment clock signals CKO1 and CKO3 is controlled by the buffer circuits 204 and 205 and the load capacitors 214 and 215.
  • the first control circuit 130 also controls this phase difference according to the operating frequency of the input clock signal CKI. Specifically, when the operating frequency is the first frequency f1 (high speed mode), the first control circuit 130 increases the current drive capability of the buffer circuits 201 to 205. That is, the phase difference is small. Further, when the operating frequency is the second frequency f2 (low speed mode), the first control circuit 130 reduces the current drive capability of the buffer circuits 201 to 205. That is, the phase difference is increased.
  • the flip-flop circuit 121 that receives the original input data signal DIN may also malfunction.
  • the frequency is low and control is performed in a narrow range, feedback control occurs with a little jitter.
  • the toggle rate between the comparison circuits 226 and 227 and the second control circuit 240 increases, resulting in an increase in power consumption.
  • the buffer circuits 204 and 205 and the load capacitors 214 and 215, which are mechanisms for dynamically adjusting the phase, are replaced with the buffer circuits 201 to 203 and the load capacitors 211 to 213, which are mechanisms for adjusting the overall delay amount. You may control independently.
  • the comparison circuits 122, 226, and 227 are exclusive OR circuits, but other circuits may be used for the comparison circuits 122, 226, and 227.
  • the comparison circuits 122, 226, and 227 may be analog comparator circuits such as operational amplifiers.
  • the delay circuit 200 uses the comparison circuits 122, 226 and 227 to compare the data held in the flip-flop circuits 121, 221 and 223 with the expected value signal DREF.
  • the following method may be used.
  • the delay circuit 200 detects the phase relationship between the data change of the input data signal DIN and the rising edge of the input clock signal CKI (delayed clock signal CKO2). Then, the delay circuit 200 may be controlled based on the detected phase relationship so that the rising edge of the delayed clock signal CKO2 is positioned at the center of the eye pattern of the input data signal DIN.
  • a method for detecting the phase relationship between the data change of the input data signal DIN and the rising edge of the delayed clock signal CKO2 for example, a method using a metastable period of a flip-flop circuit can be considered.
  • the data change of the input data signal DIN changes with respect to the rising edge of the delayed clock signal CKO2 in a state that causes a setup error which is a constraint of the flip-flop, the data is correctly held, but the flip-flop circuit There is a phenomenon that the output slew of becomes large. By detecting this phenomenon with the slew detection circuit, it is possible to detect the phase relationship between the data change of the input data signal DIN and the rising edge of the delayed clock signal CKO2.
  • FIG. 17 is a diagram illustrating a configuration of the transmission / reception circuit 300 according to the third embodiment.
  • a transmission / reception circuit 300 illustrated in FIG. 17 includes a reception circuit 400 and a transmission circuit 500.
  • the receiving circuit 400 includes the delay circuit 100 described above. Note that FIG. 17 shows a case where there are two buffer circuits 101 and 102 and load capacitors 111 and 112 included in the delay unit 150, but the number of buffer circuits and load capacitors is arbitrary. In FIG. 17, the operation mode signal MODER is input as the operation mode signal MODE shown in FIG.
  • the transmission circuit 500 transmits the input data signal DIN and the input clock signal CKI to the reception circuit 400.
  • the transmission circuit 500 includes a flip-flop circuit 520, a first control circuit 530, a second control circuit 540, and a delay unit 550.
  • the flip-flop circuit 520 holds the transmission data signal DI using the transmission clock signal CK.
  • the flip-flop circuit 520 outputs the held data as the output signal D520.
  • the transmission data signal DI is input to the flip-flop circuit 520 as the data input signal
  • the transmission clock signal CK is input as the clock input signal.
  • Delay unit 550 generates delayed data signal D550 by delaying output signal D520 output from flip-flop circuit 520.
  • the delay unit 550 includes buffer circuits 501 and 502 and load capacitors 511 and 512.
  • the number of buffer circuits and load capacitors may be arbitrary.
  • the configuration of the delay unit 550 is the same as that of the delay unit 150.
  • the output buffer circuit 551 transmits the delayed data signal D550 to the receiving circuit 400 as the input data signal DIN.
  • the output buffer circuit 552 transmits the transmission clock signal CK to the reception circuit 400 as the input clock signal CKI.
  • the delay unit 150 is an example of a first delay unit
  • the delay unit 550 is an example of a second delay unit.
  • the buffer circuits 101 and 102 are an example of a first buffer circuit
  • the buffer circuits 501 and 502 are an example of a second buffer circuit.
  • the load capacities 111 and 112 are examples of first load capacities
  • the load capacities 511 and 512 are examples of second load capacities.
  • the first control circuit 530 is an example of a third control circuit.
  • the first control circuit 530 generates control signals E501 and E502 for adjusting the current drive capability of the buffer circuits 501 and 502 based on the operation mode signal MODET.
  • the second control circuit 540 generates control signals E511 and E512 for adjusting the capacitance values of the load capacitors 511 and 512.
  • the operation mode signal MODET is a signal indicating the operation mode (high speed mode and low speed mode) of the transmission circuit 500. In other words, the operation mode signal MODET is a signal indicating whether the frequency of the transmission clock signal CK (input clock signal CKI) is the first frequency or the second frequency.
  • the functions of the first control circuit 530 and the second control circuit 540 are the same as those of the first control circuit 130 and the second control circuit 540. That is, like the first control circuit 130, the first control circuit 530 is configured to output currents of the buffer circuits 501 and 502 when the operation mode signal MODET indicates the high speed mode, that is, when the input clock signal CKI has the first frequency f1. The driving ability is set to the first value. The first control circuit 530 also sets the current drive capability of the buffer circuits 501 and 502 from the first value when the operation mode signal MODET indicates the low speed mode, that is, when the input clock signal CKI is the second frequency f2. Set to a small second value.
  • the reason why the delay unit 550 is provided at the subsequent stage of the flip-flop circuit 520 is as follows.
  • the transmission clock signal CK is transferred by making the delay time of the data signal and the clock signal the same and transferring them in the same cycle. It is possible to cancel the influence of random variations. Therefore, it is desirable to provide a delay unit 550 in the subsequent stage of the flip-flop circuit 520 in order to align the delay time.
  • the second control circuit 540 basically sets the capacitance values of the load capacitors 511 and 512 to certain values. The reason is that when the phase is adjusted by the second control circuit 540 independently when the phase is adjusted by the second control circuit 140 included in the reception circuit 400, the phase adjustment by the reception circuit 400 is difficult. Because.
  • the transmission circuit 500 and the reception circuit 400 may be individual LSIs or may be included in one LSI.
  • the transmission / reception circuit 300 may use the delay circuit 200 described in the second embodiment.
  • the delay circuit and the transmission / reception circuit according to the embodiment of the present disclosure have been described above, but the present disclosure is not limited to this embodiment.
  • the present disclosure may be realized as a reception circuit including the delay circuit.
  • each processing unit included in the delay circuit and the transmission / reception circuit according to the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be.
  • functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
  • MOS transistor an example using a MOS transistor is shown, but another transistor such as a bipolar transistor may be used.
  • the circuit configuration shown in the circuit diagram is an example, and the present disclosure is not limited to the circuit configuration. That is, similar to the circuit configuration described above, a circuit that can realize the characteristic function of the present disclosure is also included in the present disclosure.
  • the present disclosure also includes a device in which an element such as a switching element (transistor), a resistor element, or a capacitor element is connected in series or in parallel to a certain element within a range in which a function similar to the circuit configuration described above can be realized. It is.
  • the term “connected” in the above embodiment is not limited to the case where two terminals (nodes) are directly connected, and the two terminals ( Node) is connected through an element.
  • This disclosure can be applied to delay circuits and transmission / reception circuits.
  • the present disclosure is useful for an input / output interface circuit for transmitting data between chips.
  • 100, 100A, 100B, 200 Delay circuit 101, 102, 103, 104, 105, 201, 202, 203, 204, 205, 501, 502 Buffer circuit 111, 112, 113, 114, 115, 211, 212, 213, 214, 215, 511, 512 Load capacity 120, 220 Adjusted circuit 121, 221, 223, 520 Flip-flop circuit 122, 226, 227 Comparison circuit 130, 130A, 130B, 530 First control circuit 140, 240, 540 Second Control circuit 150, 250, 550 Delay unit 160a, 160b, 160c Tri-state inverter 161a, 161b, 161c Analog switch 300 Transmitter / receiver circuit 400 Receiver circuit 500 Transmitter circuit 551, 552 Output buffer circuit C111a, C 11b, C111c Capacitance element CK Transmission clock signal CKI Input clock signal CKO, CKO2 Delayed clock signal CKO1, CKO3 Adjustment clock signal CMP Comparison result signal DI

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Pulse Circuits (AREA)

Abstract

 遅延回路(100)は、第1の制御信号(E101~E105)を出力する第1制御回路(130)と、第2の制御信号(E111~E115)を出力する第2制御回路(140)と、互いに直列に接続されており、各々の電流駆動能力を第1の制御信号(E101~E105)によって変更可能な複数のバッファ回路(101~105)と、バッファ回路(101~105)の出力端子の各々に接続されており、各々の容量値を第2の制御信号(E111~E115)によって変更可能な複数の負荷容量(111~115)とを備える。

Description

遅延回路
 本開示は、遅延回路に関し、特に、クロック信号を遅延させる遅延回路に関する。
 従来、送信LSI側のコア(回路)から受信LSI側のコア(回路)へデータ信号を伝送する場合、送信側コア及び受信側コアの両方に、同一のソースポイントからクロック信号を分配する。これにより、送信側コア及び受信側コアのフリップフロップ(以下、FF)を同期させて動作させている。このような動作方式で、数GHz以上の高速なクロック周波数にて動作させる場合、高精度に遅延調整を行わなければ、正確にデータ信号を伝送することができないという課題がある。具体的には、受信側コアのFFに入力されるクロック信号を、受信側コアのFFに入力されるデータ信号のアイパターンの中心付近にて変化するように遅延調整を行う必要がある。
 この課題に対し、高精度に遅延調整をおこなう半導体集積回路が知られている(例えば、特許文献1の図1を参照)。この半導体集積回路は、受信側のクロックバッファの出力端子にパススイッチを介して負荷容量が接続された回路を有し、この回路により、デジタル的に遅延量を変更する。これにより、当該半導体集積回路は、入力信号の遅延時間の微調整を行うことができる。さらに、当該半導体集積回路は、デジタル信号にてゲート段数を調整可能な回路を備える。この回路により、当該半導体集積回路は、入力信号の遅延時間の粗調整を行うことができる。
特開2004-32759号公報
 しかし、上記特許文献1に開示された従来の技術では、転送レートが数百KHzから数GHzといった広範囲に及ぶ場合、遅延を調整するための回路が大きくなってしまうという課題が存在する。
 例えば、送信LSI側から受信LSI側への転送要求がなく、処理要求をチェックするときなどは、低消費電力化するため、数百KHzの転送レートで転送を行うことが想定される。この場合には、数μsecの範囲の位相調整を行う必要がある。よって、上記特許文献1ではゲート遅延で遅延を生成している粗調整回路のゲート段数が増加し、その結果、LSIの面積が増大してしまう。
 そこで、本開示は、広い範囲で周波数が変化するクロック信号に対して遅延調整を行えるとともに、回路面積の増加を抑制できる遅延回路を提供することを目的とする。
 上記目的を達成するために、本開示の一態様に係る遅延回路は、入力クロック信号を遅延させることにより遅延クロック信号を生成する第1遅延部と、前記遅延クロック信号をクロック信号として用いる被調整回路と、前記第1遅延部の遅延量を制御する第1の制御信号を出力する第1制御回路と、前記第1遅延部の遅延量を制御する第2の制御信号を出力する第2制御回路とを備え、前記第1遅延部は、互いに直列に接続されており、各々の電流駆動能力を前記第1の制御信号によって変更可能な複数の第1バッファ回路と、前記第1バッファ回路の出力端子の各々に接続されており、各々の容量値を前記第2の制御信号によって変更可能な複数の第1負荷容量とを備える。
 この構成によれば、本開示の一態様に係る遅延回路は、例えば、入力クロック信号の周波数に応じて、バッファ回路の電流駆動能力を変更できる。これにより、当該遅延回路は、広い範囲で周波数が変化するクロック信号に対して遅延調整を行えるとともに、回路面積の増加を抑制できる。
 また、前記複数の第1バッファ回路の各々は、前記第1の制御信号によって制御されるトライステートインバータを複数個並列に備えてもよい。
 この構成によれば、本開示の一態様に係る遅延回路は、バッファ回路の電流駆動能力を容易に変更できる。
 また、前記複数の第1負荷容量の各々は、複数の容量素子と、前記複数の容量素子の各々に直列に接続され前記第2の制御信号によって制御される複数のスイッチとを備えてもよい。
 この構成によれば、本開示の一態様に係る遅延回路は、負荷容量の容量値を容易に変更できる。
 また、前記被調整回路は、前記遅延クロック信号を用いて入力データ信号を保持する第1フリップフロップ回路を備えてもよい。
 また、前記被調整回路は、さらに、第1比較回路を備え、前記第2制御回路は、前記第1比較回路の出力を用いて、前記複数の第1負荷容量の容量値を設定してもよい。
 この構成によれば、本開示の一態様に係る遅延回路は、負荷容量の容量値を用いて、遅延量を調整できる。
 また、前記第1遅延部は、前記複数の第1バッファ回路のうちの一つである第2バッファ回路の出力信号を前記遅延クロック信号として出力し、前記第2バッファ回路より前段の第3バッファ回路の出力信号を第1調整用クロック信号として出力し、前記第2バッファ回路より後段の第4バッファ回路の出力信号を第2調整用クロック信号として出力し、前記被調整回路は、さらに、前記第1調整用クロック信号をクロック信号として用いて、前記入力データ信号を保持する第2フリップフロップ回路と、前記第2調整用クロック信号をクロック信号として用いて、前記入力データ信号を保持する第3フリップフロップ回路と、前記第1フリップフロップ回路に保持されたデータと、前記第2フリップフロップ回路に保持されたデータとが入力される第2比較回路と、前記第1フリップフロップ回路に保持されたデータと、前記第3フリップフロップ回路に保持されたデータとが入力される第3比較回路とを備え、前記第2制御回路には、前記第2比較回路及び前記第3比較回路の出力データが入力され、前記第2制御回路は、前記複数の第1負荷容量の容量値を制御する信号を出力してもよい。
 この構成によれば、本開示の一態様に係る遅延回路は、動作中に遅延量が変化した場合でも、動的に遅延量を再調整できる。
 なお、本開示は、このような遅延回路として実現できるだけでなく、遅延回路に含まれる特徴的な手段をステップとする遅延方法として実現できる。また、本開示は、このような遅延回路を備える受信回路として実現してもよいし、このような受信回路と送信回路とを備える送受信回路として実現してもよい。
 さらに、本開示は、このような遅延回路の機能の一部又は全てを実現する半導体集積回路(LSI)として実現できる。
 本開示は、広い範囲で周波数が変化するクロック信号に対して遅延調整を行えるとともに、回路面積の増加を抑制できる遅延回路を提供できる。
図1は、実施の形態1に係る遅延回路の構成を示す図である。 図2は、実施の形態1に係るバッファ回路及び負荷容量の回路図である。 図3は、実施の形態1に係る被調整回路の構成を示す図である。 図4は、実施の形態1に係る遅延回路による遅延調整動作のフローチャートである。 図5は、実施の形態1に係る遅延調整動作における信号波形を示す図である。 図6は、実施の形態1に係る遅延調整動作における信号波形を示す図である。 図7は、実施の形態1に係る容量値の調整パターンを示す図である。 図8は、実施の形態1に係るバッファ回路の変形例の回路図である。 図9は、実施の形態1に係るバッファ回路の変形例の回路図である。 図10は、実施の形態1に係るバッファ回路の変形例の回路図である。 図11は、実施の形態1に係る遅延回路の変形例の構成を示す図である。 図12は、実施の形態1に係る遅延回路の変形例の構成を示す図である。 図13は、実施の形態2に係る遅延回路の構成を示す図である。 図14は、実施の形態2に係る遅延クロック信号及び入力データ信号の信号波形を示す図である。 図15は、実施の形態2に係る遅延クロック信号及び入力データ信号の信号波形を示す図である。 図16は、実施の形態2に係る遅延クロック信号及び入力データ信号の信号波形を示す図である。 図17は、実施の形態3に係る送受信回路の構成を示す図である。
 以下、本開示に係る遅延回路の実施の形態を図面に基づいて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 実施の形態1に係る遅延回路は、バッファ回路の電流駆動能力を変更することで、遅延量を粗く調整し、負荷容量の容量値を変更することで遅延量を細かく調整する。これにより、実施の形態1に係る遅延回路は、広い範囲で周波数が変化するクロック信号に対して遅延調整を行えるとともに、回路面積の増加を抑制できる。
 図1は、実施の形態1に係る遅延回路100の構成を示す図である。図1に示す遅延回路100は、入力クロック信号CKIが入力されるクロック入力端子と、動作モード信号MODEが入力される動作モード入力端子と、入力データ信号DINが入力されるデータ入力端子と、モード信号MODEAが入力されるモード入力端子とを備えている。
 入力クロック信号CKIは、第1周波数f1、又は、第2周波数f2のクロック信号である。具体的には、高速モード時には、入力クロック信号CKIの周波数は、第1周波数f1であり、低速モード時には、入力クロック信号CKIの周波数は第2周波数f2である。
 なお、本実施の形態におけるクロック信号とは、一定の周期で連続的に入力されるクロック信号に限らず、間欠的に入力されるクロック信号も含む。また、クロック信号のデューティ比は、50対50に限らず、任意の比率でよい。
 動作モード信号MODEは、現在の動作モードが高速モードであるか、低速モードであるかを示す。
 モード信号MODEAは、現在の動作モードが初期シーケンスであるか否かを示す。
 また、遅延回路100は、被調整回路120と、第1制御回路130と、第2制御回路140と、遅延部150とを備えている。
 遅延部150は、入力クロック信号CKIを遅延させることにより遅延クロック信号CKOを生成する。この遅延部150は、バッファ回路101、102、103、104及び105と、負荷容量111、112、113、114及び115とを備える。なお、バッファ回路及び負荷容量の個数は任意でよい。
 バッファ回路101~105は、互いに直列に接続されている。具体的には、入力クロック信号CKIがバッファ回路101に入力される。バッファ回路101は、バッファ回路102に信号を伝播し、この信号は、順次バッファ回路103、104及び105と伝播する。バッファ回路105は、被調整回路120に遅延クロック信号CKOを伝播する。また、バッファ回路101~105の各々は、電流駆動能力を変更可能である。
 負荷容量111、112、113、114及び115の各々は、バッファ回路101、102、103、104及び105の各々の出力端子に接続されている。負荷容量111~115の各々は、容量値を変更可能である。
 被調整回路120は、遅延クロック信号CKOをクロック信号として用いて入力信号を処理する。具体的には、被調整回路120は、入力データ信号DINを、遅延クロック信号CKOの変化のタイミング(立ち上がり又は立下りエッジ)で保持する。
 第1制御回路130及び第2制御回路140は、遅延部150の遅延量を制御する。
 第1制御回路130は、バッファ回路101~105の電流駆動能力を制御することで、遅延部150の遅延量を制御する。具体的には、第1制御回路130は、動作モード信号MODEが高速モードを示す場合、つまり、入力クロック信号CKIが第1周波数f1の場合、バッファ回路101~105の電流駆動能力を第1の値に設定する。また、第1制御回路130は、動作モード信号MODEが低速モードを示す場合、つまり、入力クロック信号CKIが第2周波数f2の場合、バッファ回路101~105の電流駆動能力を上記第1の値より小さい第2の値に設定する。また、第1制御回路130は、バッファ回路101、102、103、104及び105の各々に、対応するバッファ回路の電流駆動能力を制御するための制御信号E101、E102、E103、E104及びE105を出力する。
 第2制御回路140は、第1制御回路130によりバッファ回路101~105の電流駆動能力が設定された状態で、被調整回路120が遅延クロック信号CKOとデータ信号DINとのタイミングで定められる正常動作をするように、負荷容量111~115の容量値を設定する。また、第2制御回路140は、負荷容量111、112、113、114及び115の各々に、対応する負荷容量の容量値を制御するための制御信号E111、E112、E113、E114及びE115を出力する。
 以下、バッファ回路101~105及び負荷容量111~115の回路構成を説明する。なお、バッファ回路101~105の構成は同一であり、負荷容量111~115の構成は同一なので、バッファ回路101及び負荷容量111の構成を例に説明する。
 図2は、バッファ回路101及び負荷容量111の一例を示す回路図である。
 図2に示すように、バッファ回路101は、互いに並列に接続された3個のトライステートインバータ160a、160b及び160cを含む。そして、バッファ回路101は、3個のトライステートインバータ160a~160cのうち動作させるトライステートインバータの数を切り替えることで、当該バッファ回路101の電流駆動能力を変更する。
 具体的には、バッファ回路101は、入力端子INと、出力端子OUTと、PチャネルトランジスタP101a、P102a、P101b、P102b、P101c及びP102cと、NチャネルトランジスタN101a、N102a、N101b、N102b、N101c及びN102cと、インバータ回路INV101a、INV101b及びINV101cとを備えている。また、バッファ回路101には、制御信号E101(E101a、E101b、E101c)と、電源電圧VDDと、接地電位VSSとが供給される。
 入力端子INは、PチャネルトランジスタP102a、P102b及びP102cのゲートと、NチャネルトランジスタN102a、N102b及びN102cのゲートとに接続されている。制御信号E101a、E101b及びE101cの各々は、インバータ回路INV101a、INV101b及びINV101cの各々の入力端子と、NチャネルトランジスタN101a、N101b及びN101cの各々のゲートに供給される。
 PチャネルトランジスタP102a、P102b及びP102cの各々のソースは、PチャネルトランジスタP101a、P101b及びP101cの各々のドレインに接続されている。NチャネルトランジスタN102a、N102b及びN102cの各々のソースは、NチャネルトランジスタN101a、N101b、N101cの各々のドレインに接続されている。
 PチャネルトランジスタP101a、P101b及びP101cのソースには、電源電圧VDDが供給される。NチャネルトランジスタN101a、N101b及びN101cのソースには、接地電位VSSが供給される。
 インバータ回路INV101a、INV101b及びINV101cの各々の出力端子は、PチャネルトランジスタP101a、P101b及びP101cの各々のゲートに接続されている。出力端子OUTは、PチャネルトランジスタP102a、P102b及びP102cのドレインと、NチャネルトランジスタN102a、N102b及びN102cのドレインとに接続されている。
 なお、ここでは、3段階に電流駆動能力を変更可能な構成を示しているが、2段階以上に電流駆動能力を変更可能な構成であればよい。つまり、並列に接続されるトライステートインバータの数は、複数であればよく任意の数でよい。また、複数のトライステートインバータのうち一つを通常のインバータに置き換えてもよい。
 負荷容量111は、出力端子OUTと、アナログスイッチ161a、161b及び161cと、容量素子C111a、C111b、C111cとを備えている。また、負荷容量111には、制御信号E111(E111a、E111b、E111c)と接地電位VSSとが供給される。
 アナログスイッチ161a~161cは、容量素子C111a~C111cの各々に直列に接続されている。
 負荷容量111は、複数のアナログスイッチのうちオン状態にするアナログスイッチの数を切り替えることで、当該負荷容量111の容量値を変更する。
 アナログスイッチ161aは、インバータ回路INV111aと、PチャネルトランジスタP111aと、NチャネルトランジスタN111aとを備えている。アナログスイッチ161bは、インバータ回路INV111bと、PチャネルトランジスタP111bと、NチャネルトランジスタN111bとを備えている。アナログスイッチ161cは、インバータ回路INV111cと、PチャネルトランジスタP111cと、NチャネルトランジスタN111cとを備えている。
 具体的には、出力端子OUTは、PチャネルトランジスタP111a、P111b及びP111cのソースと、NチャネルトランジスタN111a、N111b及びN111cのドレインとに接続されている。
 容量素子C111a、C111b及びC111cの一方の端子には、接地電位VSSが供給される。容量素子C111aの他方の端子は、PチャネルトランジスタP111aのドレイン及びNチャネルトランジスタN111aのソースに接続されている。容量素子C111bの他方の端子は、PチャネルトランジスタP111bのドレイン及びNチャネルトランジスタN111bのソースに接続されている。容量素子C111cの他方の端子は、PチャネルトランジスタP111cのドレイン及びNチャネルトランジスタN111cのソースに接続されている。
 制御信号E111a、E111b及びE111cの各々は、インバータ回路INV111a、INV111b及びINV111cの各々の入力端子と、NチャネルトランジスタN111a、N111b及びN111cの各々のゲートとにそれぞれ供給される。インバータ回路INV111a、INV111b及びINV111cの各々の出力端子は、PチャネルトランジスタP111a、P111b及びP111cの各々のゲートに接続されている。
 なお、ここでは、4段階(アナログスイッチを全てOFF、1つオン、2つオン、3つオン)に容量値を変更可能な構成を示しているが、2段階以上に容量値を変更可能な構成であればよい。つまり、アナログスイッチと容量素子との組は、1組以上であればよい。
 また、ここでは、制御信号E101及びE111を各々3ビットの信号としているが、電流駆動能力及び容量値を切り替える段数に応じて、そのビット数は変化する。例えば、2段階で切り替える場合には、制御信号E101及びE111は各々1ビットであってもよい。
 また、ここでは、複数のバッファ回路101~105にそれぞれ異なる制御信号E101~E105が供給されているが同一の制御信号が供給されてもよい。同様に、複数の負荷容量111~115に同一の制御信号が供給されてもよい。
 以下、被調整回路120の構成を説明する。図3は、被調整回路120の一例を示す図である。
 被調整回路120は、フリップフロップ回路121と、比較回路122とを備えている。
 フリップフロップ回路121は、遅延クロック信号CKOを用いて入力データ信号DINを保持する。具体的には、フリップフロップ回路121のデータ入力端子には入力データ信号DINが供給され、クロック入力端子には遅延クロック信号CKOが供給される。本実施の形態では、フリップフロップ回路121はクロック信号の立ち上がりエッジでデータを更新するものとする。
 比較回路122は、フリップフロップ回路121に保持されたデータが期待値と一致するか否かを判定する。具体的には、比較回路122は、上記期待値を示す期待値信号DREFと、フリップフロップ回路121に保持されるデータとが一致するか否かを判定し、判定結果を示す比較結果信号CMPを出力する。
 なお、ここでは、被調整回路120が一つのフリップフロップ回路121を備えている例を示すが、被調整回路120は複数のフリップフロップ回路121を備えてもよい。
 例えば、入力データ信号DINがシリアルデータであり、被調整回路120は、当該シリアルデータを保持するためのシフトレジスタを備えてもよい。また、入力データ信号DINが複数ビットのパラレルデータであり、被調整回路120は、当該パラレルデータを保持するための複数のフリップフロップ回路を備えてもよい。このような場合、期待値信号DREFは、当該複数のフリップフロップ回路に保持される複数ビットのデータを示す。そして、比較回路122は、複数のフリップフロップ回路に含まれる複数ビットのデータと、期待値信号DREFで示される複数ビットのデータとの比較を行う。
 さらに、被調整回路120は、データをラッチする回路に限定されず、フリップフロップ回路を含む回路であれば任意の回路でよい。
 次に、本実施の形態に係る遅延回路100の動作を説明する。
 まず、通常動作の開始前に遅延回路100は初期化シーケンス(遅延調整動作)を行う。この初期化シーケンスにおいて、遅延回路100は、遅延部150の遅延量を調整する。
 図4は、遅延回路100による遅延調整動作のフローチャートである。
 この初期化シーケンスにおいて、期待値信号DREFとして固定のデータ列が入力され、入力データ信号DINとして期待値信号DREFと同じ固定のデータ列が入力される。また、ここでは、想定される動作周波数を第1周波数f1と第2周波数f2との2種類とする。なお、想定される動作周波数(動作モード)は、3種類以上であってもよい。
 この場合、まず、遅延回路100に、第1周波数f1の入力クロック信号CKIと、高速モードを示す動作モード信号MODEとが入力される。
 第1制御回路130は、動作モード信号MODEを参照して、動作モードを判定する(S101)。この場合、動作モード信号MODEにより高速モードが示されているので(S101で高速モード)、第1制御回路130は、バッファ回路101~105の電流駆動能力を第1の値(高電流駆動能力)に設定する(S102)。
 具体的に波、第1制御回路130は、制御信号E101~E105を用いて、入力クロック信号CKIが正常に伝達するようバッファ回路101~105の電流駆動能力を調整する。
 また、このとき、モード信号MODEAは、高速モード(動作周波数が第1周波数f1)であることと、初期化シーケンス状態であることとを示している。
 第2制御回路140は、モード信号MODEAが上記モードに遷移した旨を示したことを感知し、その一定のクロックサイクル後に、負荷容量111~115の容量値の調整を開始する(S103)。
 具体的には、第2制御回路140は、制御信号E111~E115を用いて入力クロック信号CKIの位相を変化させる。このとき、フリップフロップ回路121で入力データ信号DINを正しく受信できていれば、比較回路122により、期待値信号DREFとフリップフロップ回路121に保持されているデータとが同じである旨の比較結果信号CMPが出力される。また、フリップフロップ回路121で入力データ信号DINを正しく受信できていなければ、比較回路122により、期待値信号DREFとフリップフロップ回路121に保持されているデータとが一致しない旨の比較結果信号CMPが出力される。よって、第2制御回路140は、比較結果信号CMPを用いて、正常動作する制御信号E111~E115の範囲を検知できる。そして、第2制御回路140は、検知した正常動作する範囲の制御信号E111~E115のパターンを、高速モードの遅延調整結果として保持する。
 動作周波数f1での初期化シーケンスが終了した後、動作周波数f2でも同様の処理が繰り返される。具体的には、遅延回路100に、第2周波数f2の入力クロック信号CKIと、低速モードを示す動作モード信号MODEとが入力される。
 この場合、動作モード信号MODEにより低速モードが示されているので(S101で低速モード)、第1制御回路130は、バッファ回路101~105の電流駆動能力を第2の値(低電流駆動能力)に設定する(S104)。
 また、このとき、モード信号MODEAは、低速モード(動作周波数が第2周波数f2)であることと、初期化シーケンス状態であることとを示している。
 第2制御回路140は、モード信号MODEAが上記モードに遷移した旨を示したことを感知し、その一定のクロックサイクル後に、負荷容量111~115の容量値の調整を行い、低速モードの遅延調整結果を保持する(S103)。
 また、動作周波数が変化するモードが3種類以上の場合には、このモードの個数だけ、上記初期化シーケンスが繰り返される。
 そして、通常動作時には、第1制御回路130は、初期化シーケンス時と同様に、動作モード信号により高速モードが示される場合には、バッファ回路101~105の電流駆動能力を第1の値(高電流駆動能力)に設定する。また、第1制御回路130は、動作モード信号により低速モードが示される場合には、バッファ回路101~105の電流駆動能力を第2の値(低電流駆動能力)に設定する。
 第2制御回路140は、モード信号により高速モードかつ通常動作が示される場合には、保持する高速モードの遅延調整結果に従い、負荷容量111~115の容量値を設定する。また、第2制御回路140は、モード信号により低速モードかつ通常動作が示される場合には、保持する低速モードの遅延調整結果に従い、負荷容量111~115の容量値を設定する。
 なお、ここでは、初期化シーケンスにおいて、高速モード及び低速モードの遅延調整を行う例を示したが、遅延調整を行うタイミングはこのタイミング以外であってもよい。例えば、高速モードの遅延調整は、高速モードの通常動作が行われる前のタイミングであれば任意のタイミングに行なってよい。また、低速モードの遅延調整は、低速モードの通常動作が行われる前のタイミングであれば任意のタイミングに行なってよい。
 以下、遅延調整動作について詳細に説明する。
 図5は、動作周波数が第1周波数f1の場合の遅延クロック信号CKOの遅延調整時の信号波形を示す図である。なお、第1周波数f1は、2GHz~10GHz又は1GHz~20GHzである。また、図5には、入力データ信号DINのアイパターンを示し、制御信号E111~115が6つの状態での遅延クロック信号CKOを示している。
 なお、以下では、負荷容量111~115の各々を対応するバッファ回路の出力端子に接続するか、接続しないかを切り替えることで負荷容量111~115の容量値を切り替える例を説明する。
 Case1では、制御信号E111~E115の全てがOFFを示している。すなわち、Case1は、5個の負荷容量111~115の全てが出力端子から分離されている状態である。
 Case2では、制御信号E111のみがONを示し、制御信号E112、E113、E114及びE115がOFFを示す。すなわち、Case2は、1個の負荷容量111がバッファ回路101~105の出力端子に接続されている状態である。
 Case3では、制御信号E111及びE112がONを示し、制御信号E113、E114及びE115がOFFを示す。すなわち、Case3は、2個の負荷容量111及び112がバッファ回路101~105の出力端子に接続されている状態である。
 Case4では、制御信号E111、E112及びE113がONを示し、制御信号E114及びE115がOFFを示す。すなわち、Case4は、3個の負荷容量111~113がバッファ回路101~105の出力端子に接続されている状態である。
 Case5では、制御信号E111、E112、E113及びE114がONを示し、制御信号E115がOFFを示す。すなわち、Case5は、4個の負荷容量111~114がバッファ回路101~105の出力端子に接続されている状態である。
 Case6では、制御信号E111、E112、E113、E114及びE115の全てがONを示す。すなわち、Case6は、5個の負荷容量111~115の全てがバッファ回路101~105の出力端子に接続されている状態である。
 図5に示すように、Case1及びCase5及びCase6では、アイパターンの不確定な部分に遅延クロック信号CKOの立ち上がりエッジが位置しているため、正常に動作しない場合が発生する。そのため、第2制御回路140は、制御信号E111、E112、E113、E114及びE115を用いて、Case2、Case3及びCase4のいずれかになるように容量値を設定する。
 図6は、高速モード及び低速モードにおける遅延クロック信号CKOの遅延調整時の信号波形を示す図である。なお、第2周波数f2は、第1周波数f1より低い周波数である。好ましくは、第2周波数f2は第1周波数f1の半分以下の周波数である。例えば、第2周波数f2は、数KHz(例えば1kHz)までの周波数である。なお、ここでは第1周波数f1は、第2周波数f2に比べ約3倍早い周波数とする。
 図6は、動作周波数が第1周波数f1の場合の入力データ信号DINのアイパターンと、その場合の制御信号E111が2つの状態での遅延クロック信号CKOとを示す。さらに、図6は、動作周波数が第2周波数f2での入力データ信号DINのアイパターンと、その場合の制御信号E111が4つの状態での遅延クロック信号CKOを示す。
 ここで、高速インターフェースでは、要求される転送レートが切り替わる場合が存在する。例えば、あるモード時において入力クロック信号CKIが第1周波数f1となり、異なるモード時に第2周波数f2となるような場合が考えられる。そして、第2周波数f2の場合にも、第1周波数f1と同じバッファ回路の電流駆動能力で位相調整を行う場合には、バッファ回路及び負荷容量を多数搭載する必要がある。これに対して、本実施の形態に係る遅延回路100では、動作周波数に応じてバッファ回路101~105の電流駆動能力を切り替える。
 例えば、図6に示す例では、遅延回路100は、Case1a、Case2a、Case3a、Case4aのように遅延量を制御する。なお、Case1及びCase2は図5に示すCase1及びCase2の場合と同様である。また、Case1a、Case2a、Case3a及びCase4aも図5に示すCase1、Case2、Case3及びCase4と同様である。
 具体的にはCase1aでは、制御信号E111、E112、E113、E114及びE115が全てOFFを示す。すなわち、全ての負荷容量111~115をバッファ回路101~105の出力端子に対して分離している状態である。
 Case2aでは、制御信号E111のみがONを示し、制御信号E112、E113、E114及びE115がOFFを示す。すなわち、Case2aは、1個の負荷容量111がバッファ回路101~105の出力端子に接続されている状態である。
 Case3aでは、制御信号E111及びE112がONを示し、制御信号E113、E114及びE115がOFFを示す。すなわち、Case3aは、2個の負荷容量111及び112がバッファ回路101~105の出力端子に接続されている状態である。
 Case4aでは、制御信号E111、E112及びE113がONを示し、制御信号E114及びE115がOFFを示す。すなわち、Case4aは、3個の負荷容量111~113がバッファ回路101~105の出力端子に接続されている状態である。
 この場合、Case1とCase1a、Case2とCase2aでは、バッファ回路101~105の電流駆動能力が違なる。具体的には、第1制御回路130は、Case1及びCase2では、電流駆動能力を大きくするためにバッファ回路101に含まれるトライステートインバータ160a~160cを全て動作させる。同様に、第1制御回路130は、バッファ回路102~105に含まれるトライステートインバータ160a~160cを全て動作させる。
 ここで、Case1a、Case2aでは、Case1、Case2に比べ周波数が1/3であるため、電流駆動能力も1/3にすればよい。そのため、第1制御回路130は、トライステートインバータ160aのみを動作させ、トライステートインバータ160b及び160cを動作させない。ここで、制御信号E101は多ビットであるため、トライステートインバータ160aのみを動作させることができる。
 なお、図2に示すPMOSトランジスタはそれぞれ同一のゲート幅であり、NMOSトランジスタはそれぞれ同一のゲート幅であり、トランジスタの電流駆動能力は製造ばらつきを除くとそれぞれ同一であるとする。また、ここでは制御信号E101aのみをONとしたが、制御信号E101b又はE101cのみをONにしてもよい。この場合でも、バッファ回路の電流駆動能力を1/3にできる。
 このようにバッファ回路の電流駆動能力を変更することで、Case1とCase2との位相差と、Case1aとCase2aとの位相差とが異なる。つまり、Case1a、Case2a、Case3a及びCase4aではより広帯域の位相調整が可能となる。
 以上のように、実施の形態1に係る遅延回路100は、2種類のデジタル制御信号にて遅延調整幅(変化量)及び遅延値の位相を制御する。これにより、遅延回路100は、小面積で正常に動作する高速インターフェースの受信回路を実現することが可能となる。
 なお、上記説明では、負荷容量111~115の容量値が全て同じ容量値であるが、異なる容量値であってもよい。例えば、負荷容量111をC[F]、負荷容量112を2×C[F]、負荷容量113を4×C[F]、負荷容量114を8×C[F]、負荷容量115を16×C[F]のように設定する。そして、図7に示すように、制御信号E111、E112、E113、E114及びE115を制御してもよい。このようにすることで、少ない容量値を用いて、調整可能な遅延量のパターンを増加させることができる。
 また、上記説明では、フリップフロップ回路は、クロック信号の立ち上がりエッジでデータを更新しているが、クロック信号の立下りエッジでデータを更新してもよい。また、差動入力のフリップフロップ回路を用いてもよい。
 また、上記説明では、バッファ回路及び負荷容量が5つの例を示したが、これらの個数は何個であってもよい。
 また、負荷容量を、容量素子を用いて実現する例を説明したが、負荷容量にゲート容量又は配線間容量等の寄生容量を用いてもよい。
 また、電流駆動能力の調整幅は、想定される動作周波数に応じてトライステートインバータの個数、又はゲート幅を調整することにより決定する。つまり、複数のトライステートインバータのゲート幅は異なってもよい。
 また、バッファ回路101の構成として以下に示す構成を用いてもよい。
 図8は、バッファ回路101の変形例の構成を示す回路図である。図8に示すように、電源電圧VDDLを制御可能なインバータ回路をバッファ回路101として用いてもよい。この場合、第1制御回路130は、電源電圧VDDLの電圧値を調整することにより、バッファ回路101の電流駆動能力を調整する。
 図9は、バッファ回路101の別の変形例の構成を示す回路図である。
 図9に示すように、接地側の電源電圧VSSHを制御可能なインバータ回路をバッファ回路101として用いてもよい。この場合、第1制御回路130は、電源電圧VSSHの電圧値を調整することにより、バッファ回路101の電流駆動能力を調整する。
 図10は、バッファ回路101の別の変形例の構成を示す回路図である。
 図10に示すように、基板電圧VDP及びVDNを制御可能なインバータ回路をバッファ回路101として用いてもよい。この場合、第1制御回路130は、基板電圧VDP及びVDNの電圧値を調整することにより、バッファ回路101の電流駆動能力を調整する。
 また、上記電源電圧及び基板電圧は、外部電源から供給されてもよし、内部のレギュレータ回路などの電源調整回路、又は抵抗分割の調整回路から供給されてもよい。
 また、上記説明では、第1制御回路130は、動作モード信号MODEを用いて、入力クロック信号CKIの周波数を判別しているが、以下の方法を用いてもよい。
 図11は、実施の形態1の変形例に係る遅延回路100Aの構成を示す図である。図11に示す第1制御回路130Aは、入力クロック信号CKIの周波数を検出する機能を有する。これにより、第1制御回路130Aは、入力クロック信号CKIを用いて当該入力クロック信号CKIの周波数及び動作モードを判別できる。
 また、図12は、実施の形態1の別の変形例に係る遅延回路100Bの構成を示す図である。図11に示す第1制御回路130Bは、予めクロック周波数又は動作モードと電源電圧との関係を示すテーブルを保持している。そして、第1制御回路130Bは、電源電圧VDDの電圧値を検出し、上記テーブルと、検出した電源電圧VDDの電圧値とを用いて、クロック周波数及び動作モードを判別する。
 (実施の形態2)
 実施の形態2では、上述した実施の形態1に係る遅延回路100の変形例について説明する。実施の形態2に係る遅延回路200は、上述した実施の形態1に係る遅延回路100の機能に加え、さらに、通常動作中にデータ信号とクロック信号との位相差を監視し、位相差が変化した場合に遅延量を再調整する機能を有する。
 図13は、実施の形態2に係る遅延回路200の構成を示す図である。なお、図1と同様の要素には同一の符号を付しており、重複する説明を省略する場合がある。
 図13に示す遅延回路200は、図1に示す遅延回路100に対して、被調整回路220、第2制御回路240及び遅延部250の構成が、被調整回路120、第2制御回路140及び遅延部150の構成と異なる。
 遅延部250は、バッファ回路201~205と、負荷容量211~215とを備える。なお、バッファ回路201~205及び負荷容量211~215の接続関係及び各々の構成は、実施の形態1で説明した、バッファ回路101~105及び負荷容量111~115の接続関係及び各々の構成と同様である。
 遅延部250の遅延部150と異なる点は、3段目のバッファ回路203の出力信号が調整用クロック信号CKO1として出力され、4段目のバッファ回路204の出力信号が遅延クロック信号CKO2として出力され、5段目のバッファ回路205の出力信号が調整用クロック信号CKO3として出力される点である。
 ここで、バッファ回路204は第2バッファ回路の一例であり、バッファ回路203は第3バッファ回路の一例であり、バッファ回路205は第4バッファ回路の一例である。
 なお、遅延クロック信号CKO2は、実施の形態1における遅延クロック信号CKOに対応する。また、調整用クロック信号CKO1及びCKO2は、第1調整用クロック信号及び第2調整用クロック信号の一例である。
 被調整回路220は、被調整回路120の構成に加え、フリップフロップ回路221及び223と、比較回路226及び227とを備える。
 フリップフロップ回路221は、調整用クロック信号CKO1をクロック信号として用いて、入力データ信号DINを保持する。また、フリップフロップ回路221は、保持するデータを信号D221として出力する。
 フリップフロップ回路121は、遅延クロック信号CKO2をクロック信号として用いて、入力データ信号DINを保持する。また、フリップフロップ回路121は、保持するデータを信号D121として出力する。
 フリップフロップ回路223は、調整用クロック信号CKO3をクロック信号として用いて、入力データ信号DINを保持する。また、フリップフロップ回路223は、保持するデータを信号D223として出力する。
 比較回路122、226及び227は、排他的論理和回路である。
 比較回路122は、フリップフロップ回路121から出力される信号D121と、期待値信号DREFとを比較し、比較結果を信号D122として出力する。ここで、信号D122は、実施の形態1における比較結果信号CMPに対応する。
 比較回路226は、フリップフロップ回路121から出力される信号D121と、フリップフロップ回路221から出力される信号D221とが一致するか否かを判定し、判定結果を示す信号D226を生成する。
 比較回路227は、フリップフロップ回路121から出力される信号D121と、フリップフロップ回路223から出力される信号D223とが一致するか否かを判定し、判定結果を示す信号D227を生成する。
 ここで、フリップフロップ回路121は第1フリップフロップ回路の一例であり、フリップフロップ回路221は第2フリップフロップ回路の一例であり、フリップフロップ回路223は第3フリップフロップ回路の一例である。比較回路122は第1比較回路の一例であり、比較回路226は第2比較回路の一例であり、比較回路227は第3比較回路の一例である。
 次に、実施の形態2に係る遅延回路200の動作を説明する。
 なお、初期シーケンスの動作の流れは実施の形態1と同様であるが、以下の点が実施の形態1と異なる。第2制御回路240は、負荷容量211~215の容量値の調整時において、フリップフロップ回路121に保持されたデータが期待値信号DREFと一致し、かつ、フリップフロップ回路121、221及び223に保持された全てのデータが互いに一致するように負荷容量211~215の容量値を設定する。言い換えると、第2制御回路240は、フリップフロップ回路121、221及び223に保持されたデータが期待値信号DREFと一致するように負荷容量211~215の容量値を設定する。
 例えば、この容量値の調整により、遅延クロック信号CKO2、調整用クロック信号CKO1及びCOK3は、図14に示すタイミングのように調整される。
 次に、通常動作時の遅延回路200の動作を説明する。
 ここで、高速インターフェースにおける入力データ信号DINと入力クロック信号CKIと位相の関係は、クロストークなどによるシグナルインテグリティ、電源変動によるパワーインテグリティ、及びトランジスタの劣化の影響などにより常に一定であることを保証することは困難である。そのため、遅延回路200は、比較回路226及び227を用いて、入力データ信号DINが正常に受信できるように動的に遅延量を調整する。
 具体的には、フリップフロップ回路221及び223は、本来の入力データ信号DINを受信するフリップフロップ回路121と一定差のクロック位相にてデータを受信するように構成されている。つまり、フリップフロップ回路221及び223に保持されるデータはフリップフロップ回路121に保持されるデータと同じであれば十分にマージンにある状態である。
 しかし、入力データ信号DINと入力クロック信号CKIとの位相差が変化し、入力データ信号DINが入力クロック信号CKIに対して位相が遅くなった場合、図15に示すように、フリップフロップ回路221では1クロックサイクルずれたデータを受信してしまう。この場合、比較回路226は、フリップフロップ回路121とフリップフロップ回路221とに保持されるデータが一致しないことを示す信号D226を第2制御回路240に伝達する。そして、第2制御回路240は、遅延クロック信号CKO2、調整用クロック信号CKO1及びCKO3の位相を遅らす。つまり、第2制御回路240は、負荷容量211~215の容量値を増加させることで、遅延部250の遅延量を増加させる。これにより、遅延回路200は、入力データ信号DINと入力クロック信号CKIの位相差の変化に対して追従して遅延量を調整できる。
 また、入力データ信号DINが入力クロック信号CKIに対して位相が早くなった場合、図16に示すように、フリップフロップ回路223では1クロックサイクルずれたデータを受信してしまう。この場合、比較回路227は、フリップフロップ回路121とフリップフロップ回路223とに保持されるデータが一致しないことを示す信号D227を第2制御回路240に伝達する。そして、第2制御回路240は、遅延クロック信号CKO2、調整用クロック信号CKO1及びCKO3の位相を早める。つまり、第2制御回路240は、負荷容量211~215の容量値を減少させることで、遅延部250の遅延量を減少させる。
 また、遅延クロック信号CKO2と、調整用クロック信号CKO1及びCKO3との位相差はバッファ回路204及び205と負荷容量214及び215により制御されている。そして、本実施の形態では、第1制御回路130により、この位相差も入力クロック信号CKIの動作周波数に応じて制御される。具体的には、動作周波数が第1周波数f1(高速モード)の場合、第1制御回路130は、バッファ回路201~205の電流駆動能力を大きくする。つまり、上記位相差は小さくなる。また、動作周波数が第2周波数f2(低速モード)の場合、第1制御回路130は、バッファ回路201~205の電流駆動能力を小さくする。つまり、上記位相差は大きくなる。
 ここで、周波数が高い場合に幅広い位相差をとってしまうと、本来の入力データ信号DINを受信するフリップフロップ回路121も誤動作してしまう可能性がある。一方、周波数が低い場合に、狭い範囲にて制御すると、少しのジッタにてフィードバック制御が発生してしまう。これにより、比較回路226及び227と第2制御回路240とのトグル率が増加することで、消費電力が増大してしまう。
 なお、動的に位相調整するための機構である、バッファ回路204及び205並びに負荷容量214及び215を、全体の遅延量を調整するための機構であるバッファ回路201~203及び負荷容量211~213と独立して制御してもよい。
 また、上記では、比較回路122、226及び227が排他的論理和回路である例を説明したが、当該比較回路122、226及び227に他の回路を用いてもよい。例えば、比較回路122、226及び227は、オペアンプなどのアナログのコンパレータ回路であってもよい。
 また、上記説明では、遅延回路200は、比較回路122、226及び227を用いて、各フリップフロップ回路121、221及び223に保持されたデータと期待値信号DREFとの比較を行っているが、以下の方法を用いてもよい。遅延回路200は、入力データ信号DINのデータ変化と入力クロック信号CKI(遅延クロック信号CKO2)の立ち上がりエッジとの位相関係を検出する。そして、遅延回路200は、検出した位相関係に基づき、入力データ信号DINのアイパターンの中心に遅延クロック信号CKO2の立ち上がりエッジが位置するように制御してもよい。
 入力データ信号DINのデータ変化と遅延クロック信号CKO2の立ち上がりエッジとの位相関係の検出方法は、例えば、フリップフロップ回路のメタステーブル期間を利用する方法などが考えられる。ここで、入力データ信号DINのデータ変化が遅延クロック信号CKO2の立ち上がりエッジに対して、フリップフロップの制約であるセットアップエラーを起こす状態にて変化する場合、データが正しく保持されるが、フリップフロップ回路の出力スリューが大きくなるという現象がある。この現象をスリュー検出回路にて検出することにより、入力データ信号DINのデータ変化と遅延クロック信号CKO2の立ち上がりエッジとの位相関係を検出することが可能である。
 (実施の形態3)
 実施の形態3では、上述した遅延回路100を用いた送受信回路300について説明する。
 図17は、実施の形態3に係る送受信回路300の構成を示す図である。図17に示す送受信回路300は、受信回路400と、送信回路500とを含む。
 受信回路400は、上述した遅延回路100を含む。なお、図17では、遅延部150に含まれるバッファ回路101及び102と負荷容量111及び112とがそれぞれ2個の場合を示しているが、バッファ回路及び負荷容量の個数は任意である。また、図17では、図1に示す動作モード信号MODEとして動作モード信号MODERが入力される。
 送信回路500は、入力データ信号DIN及び入力クロック信号CKIを受信回路400へ送信する。この送信回路500は、フリップフロップ回路520と、第1制御回路530と、第2制御回路540と、遅延部550とを備えている。
 フリップフロップ回路520は、送信クロック信号CKを用いて送信データ信号DIを保持する。また、フリップフロップ回路520は、保持するデータを出力信号D520として出力する。具体的には、フリップフロップ回路520には、データ入力信号として送信データ信号DIが入力され、クロック入力信号として送信クロック信号CKが入力される。
 遅延部550は、フリップフロップ回路520から出力される出力信号D520を遅延させることにより遅延データ信号D550を生成する。この遅延部550は、バッファ回路501及び502と、負荷容量511及び512とを備える。なお、バッファ回路及び負荷容量の個数は任意でよい。また、遅延部550の構成は、遅延部150と同様である。
 出力バッファ回路551は、遅延データ信号D550を入力データ信号DINとして受信回路400へ送信する。出力バッファ回路552は、送信クロック信号CKを入力クロック信号CKIとして受信回路400へ送信する。
 なお、遅延部150は第1遅延部の一例であり、遅延部550は第2遅延部の一例である。バッファ回路101及び102は第1バッファ回路の一例であり、バッファ回路501及び502は第2バッファ回路の一例である。負荷容量111及び112は第1負荷容量の一例であり、負荷容量511及び512は第2負荷容量の一例である。
 第1制御回路530は第3制御回路の一例である。この第1制御回路530は、動作モード信号MODETに基づき、バッファ回路501及び502の電流駆動能力を調整するための制御信号E501及びE502を生成する。第2制御回路540は、負荷容量511及び512の容量値を調整するための制御信号E511及びE512を生成する。また、動作モード信号MODETは、送信回路500の動作モード(高速モード及び低速モード)を示す信号である。言い換えると、動作モード信号MODETは、送信クロック信号CK(入力クロック信号CKI)の周波数が第1周波数であるか第2周波数であるかを示す信号である。
 なお、第1制御回路530及び第2制御回路540の機能は、第1制御回路130及び第2制御回路540と同様である。つまり、第1制御回路530は、第1制御回路130と同様に、動作モード信号MODETが高速モードを示す場合、つまり、入力クロック信号CKIが第1周波数f1の場合、バッファ回路501及び502の電流駆動能力を第1の値に設定する。また、第1制御回路530は、動作モード信号MODETが低速モードを示す場合、つまり、入力クロック信号CKIが第2周波数f2の場合、バッファ回路501及び502の電流駆動能力を上記第1の値より小さい第2の値に設定する。
 フリップフロップ回路520の後段に遅延部550が設けられている理由は、以下のとおりである。フリップフロップ回路520にてラッチしたデータ信号及びクロック信号をソースシンクロナス方式にて伝送する場合、データ信号とクロック信号との遅延時間を同一とし、同一周期にて転送することで、送信クロック信号CKのランダムばらつきの影響をキャンセルすることが可能である。そのため、遅延時間をそろえるため、フリップフロップ回路520の後段に遅延部550を設けることが望ましい。
 なお、第2制御回路540は、基本的には、負荷容量511及び512の容量値をある一定の値に設定する。その理由は、受信回路400に含まれる第2制御回路140にて位相調整している際に、独立に第2制御回路540にて位相を変更すると、受信回路400での位相調整が困難であるためである。
 なお、送信回路500と受信回路400とは、個別のLSIであってもよいし、一つのLSIに含まれてもよい。
 また、ここで、送受信回路300が、実施の形態1で説明した遅延回路100を用いる例を説明したが、送受信回路300は、実施の形態2で説明した遅延回路200を用いてもよい。
 以上、本開示の実施の形態に係る遅延回路及び送受信回路について説明したが、本開示は、この実施の形態に限定されるものではない。
 例えば、本開示は、上記遅延回路を備える受信回路として実現してもよい。
 また、上記実施の形態に係る遅延回路及び送受信回路に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 また、上記実施の形態に係る、遅延回路及び送受信回路、並びにそれらの変形例の機能のうち少なくとも一部を組み合わせてもよい。
 また、上記で用いた数字は、全て本開示を具体的に説明するために例示するものであり、本開示は例示された数字に制限されない。さらに、ハイ/ローにより表される論理レベル又はオン/オフにより表されるスイッチング状態は、本開示を具体的に説明するために例示するものであり、例示された論理レベル又はスイッチング状態の異なる組み合わせにより、同等な結果を得ることも可能である。さらに、上で示した論理回路の構成は本開示を具体的に説明するために例示するものであり、異なる構成の論理回路により同等の入出力関係を実現することも可能である。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、上記説明では、MOSトランジスタを用いた例を示したが、バイポーラトランジスタ等の他のトランジスタを用いてもよい。
 また、上記のステップが実行される順序は、本開示を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 また、上記回路図に示す回路構成は、一例であり、本開示は上記回路構成に限定されない。つまり、上記回路構成と同様に、本開示の特徴的な機能を実現できる回路も本開示に含まれる。例えば、上記回路構成と同様の機能を実現できる範囲で、ある素子に対して、直列又は並列に、スイッチング素子(トランジスタ)、抵抗素子、又は容量素子等の素子を接続したものも本開示に含まれる。言い換えると、上記実施の形態における「接続される」とは、2つの端子(ノード)が直接接続される場合に限定されるものではなく、同様の機能が実現できる範囲において、当該2つの端子(ノード)が、素子を介して接続される場合も含む。
 以上、例示的な各実施の形態について説明したが、本願の請求の範囲は、これらの実施の形態に限定されるものではない。添付の請求の範囲に記載された主題の新規な教示および利点から逸脱することなく、上記各実施の形態においてさまざまな変形を施してもよく、上記各実施の形態の構成要素を任意に組み合わせて他の実施の形態を得てもよいことを、当業者であれば容易に理解するであろう。したがって、そのような変形例や他の実施の形態も本開示に含まれる。
 本開示は、遅延回路及び送受信回路に適用できる。特に、本開示は、チップ間でデータを伝送するための入出力インターフェース回路に有用である。
 100、100A、100B、200 遅延回路
 101、102、103、104、105、201、202、203、204、205、501、502 バッファ回路
 111、112、113、114、115、211、212、213、214、215、511、512 負荷容量
 120、220 被調整回路
 121、221、223、520 フリップフロップ回路
 122、226、227 比較回路
 130、130A、130B、530 第1制御回路
 140、240、540 第2制御回路
 150、250、550 遅延部
 160a、160b、160c トライステートインバータ
 161a、161b、161c アナログスイッチ
 300 送受信回路
 400 受信回路
 500 送信回路
 551、552 出力バッファ回路
 C111a、C111b、C111c 容量素子
 CK 送信クロック信号
 CKI 入力クロック信号
 CKO、CKO2 遅延クロック信号
 CKO1、CKO3 調整用クロック信号
 CMP 比較結果信号
 DI 送信データ信号
 DIN 入力データ信号
 D121、D122、D221、D223、D226、D227 信号
 D520 出力信号
 D550 遅延データ信号
 DREF 期待値信号
 E101、E101a、E101b、E101c、E102、E103、E104、E105、E111、E111a、E111b、E111c、E112、E113、E114、E115、E501、E502、E511、E512 制御信号
 INV101a、INV101b、INV101c、INV111a、INV111b、INV111c インバータ回路
 MODE、MODER、MODET 動作モード信号
 MODEA モード信号
 N101a、N101b、N101c、N102a、N102b、N102c、N111a、N111b、N111c Nチャネルトランジスタ
 P101a、P101b、P101c、P102a、P102b、P102c、P111a、P111b、P111c Pチャネルトランジスタ

Claims (6)

  1.  入力クロック信号を遅延させることにより遅延クロック信号を生成する第1遅延部と、
     前記遅延クロック信号をクロック信号として用いる被調整回路と、
     前記第1遅延部の遅延量を制御する第1の制御信号を出力する第1制御回路と、
     前記第1遅延部の遅延量を制御する第2の制御信号を出力する第2制御回路とを備え、
     前記第1遅延部は、
     互いに直列に接続されており、各々の電流駆動能力を前記第1の制御信号によって変更可能な複数の第1バッファ回路と、
     前記第1バッファ回路の出力端子の各々に接続されており、各々の容量値を前記第2の制御信号によって変更可能な複数の第1負荷容量とを備える
     遅延回路。
  2.  前記複数の第1バッファ回路の各々は、前記第1の制御信号によって制御されるトライステートインバータを複数個並列に備える
     請求項1記載の遅延回路。
  3.  前記複数の第1負荷容量の各々は、
     複数の容量素子と、
     前記複数の容量素子の各々に直列に接続され前記第2の制御信号によって制御される複数のスイッチとを備える
     請求項1記載の遅延回路。
  4.  前記被調整回路は、前記遅延クロック信号を用いて入力データ信号を保持する第1フリップフロップ回路を備える
     請求項1記載の遅延回路。
  5.  前記被調整回路は、さらに、
     第1比較回路を備え、
     前記第2制御回路は、前記第1比較回路の出力を用いて、前記複数の第1負荷容量の容量値を設定する
     請求項4記載の遅延回路。
  6.  前記第1遅延部は、前記複数の第1バッファ回路のうちの一つである第2バッファ回路の出力信号を前記遅延クロック信号として出力し、前記第2バッファ回路より前段の第3バッファ回路の出力信号を第1調整用クロック信号として出力し、前記第2バッファ回路より後段の第4バッファ回路の出力信号を第2調整用クロック信号として出力し、
     前記被調整回路は、さらに、
     前記第1調整用クロック信号をクロック信号として用いて、前記入力データ信号を保持する第2フリップフロップ回路と、
     前記第2調整用クロック信号をクロック信号として用いて、前記入力データ信号を保持する第3フリップフロップ回路と、
     前記第1フリップフロップ回路に保持されたデータと、前記第2フリップフロップ回路に保持されたデータとが入力される第2比較回路と、
     前記第1フリップフロップ回路に保持されたデータと、前記第3フリップフロップ回路に保持されたデータとが入力される第3比較回路とを備え、
     前記第2制御回路には、前記第2比較回路及び前記第3比較回路の出力データが入力され、
     前記第2制御回路は、前記複数の第1負荷容量の容量値を制御する信号を出力する
     請求項5記載の遅延回路。
PCT/JP2012/008382 2012-01-20 2012-12-27 遅延回路 WO2013108350A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-010206 2012-01-20
JP2012010206 2012-01-20

Publications (1)

Publication Number Publication Date
WO2013108350A1 true WO2013108350A1 (ja) 2013-07-25

Family

ID=48798801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008382 WO2013108350A1 (ja) 2012-01-20 2012-12-27 遅延回路

Country Status (1)

Country Link
WO (1) WO2013108350A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191255A (ja) * 2014-03-27 2015-11-02 日本電気株式会社 クロック分配回路およびクロック分配方法
CN114003088A (zh) * 2021-11-10 2022-02-01 龙芯中科技术股份有限公司 时钟分布网络、芯片及电子设备
WO2022118440A1 (ja) * 2020-12-03 2022-06-09 株式会社ソシオネクスト 位相補間回路、受信回路及び半導体集積回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312591A (ja) * 1994-05-18 1995-11-28 Nec Corp クロック位相制御回路
JPH0946195A (ja) * 1995-07-26 1997-02-14 Advantest Corp 可変遅延回路
JP2001196904A (ja) * 2000-01-13 2001-07-19 Mitsubishi Electric Corp 半導体集積回路
JP2006172641A (ja) * 2004-12-17 2006-06-29 Toshiba Corp 半導体回路およびその動作方法および遅延量制御回路システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312591A (ja) * 1994-05-18 1995-11-28 Nec Corp クロック位相制御回路
JPH0946195A (ja) * 1995-07-26 1997-02-14 Advantest Corp 可変遅延回路
JP2001196904A (ja) * 2000-01-13 2001-07-19 Mitsubishi Electric Corp 半導体集積回路
JP2006172641A (ja) * 2004-12-17 2006-06-29 Toshiba Corp 半導体回路およびその動作方法および遅延量制御回路システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191255A (ja) * 2014-03-27 2015-11-02 日本電気株式会社 クロック分配回路およびクロック分配方法
WO2022118440A1 (ja) * 2020-12-03 2022-06-09 株式会社ソシオネクスト 位相補間回路、受信回路及び半導体集積回路
CN114003088A (zh) * 2021-11-10 2022-02-01 龙芯中科技术股份有限公司 时钟分布网络、芯片及电子设备
CN114003088B (zh) * 2021-11-10 2023-01-24 龙芯中科技术股份有限公司 时钟分布网络、芯片及电子设备

Similar Documents

Publication Publication Date Title
US7839191B2 (en) DLL circuit
EP2514097B1 (en) Techniques for providing reduced duty cycle distortion
US7541848B1 (en) PLL circuit
EP1634375B1 (en) Delayed locked loop phase blender circuit
US8947141B2 (en) Differential amplifiers, clock generator circuits, delay lines and methods
US7411434B2 (en) Digitally programmable delay circuit with process point tracking
US9998103B2 (en) Delay line circuit
JPWO2005008777A1 (ja) 多電源半導体装置
JP4129010B2 (ja) 遅延回路
EP3195317B1 (en) Delay circuit with parallel delay lines and internal switches between the delay lines
US9018990B2 (en) Duty cycle tuning circuit and method thereof
US10848297B1 (en) Quadrature clock skew calibration circuit
WO2013108350A1 (ja) 遅延回路
US7893739B1 (en) Techniques for providing multiple delay paths in a delay circuit
KR20110134197A (ko) 전압제어지연라인, 상기 전압제어지연라인을 구비하는 지연고정루프회로 및 다중위상클럭생성기
US20070046354A1 (en) Delay adjustment circuit and synchronous semiconductor device having the delay adjustment circuit
US9742413B2 (en) Electronic device and information processing apparatus
JP3945894B2 (ja) 半導体装置及び信号入力状態検出回路
US20130200937A1 (en) Delay line with cell by cell power down capability
KR20070071142A (ko) 지연 고정 루프 기반의 주파수 체배기
US20030080783A1 (en) Pulse processing circuit and frequency multiplier circuit
JP5609287B2 (ja) 遅延回路
US20160094230A1 (en) Glitch less delay circuit for real-time delay adjustments
JPH0629835A (ja) ループ形位相調整回路
JP2004032759A (ja) 遅延調整回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866241

Country of ref document: EP

Kind code of ref document: A1