WO2013107425A1 - 尼龙66等以双组分单体为原料的尼龙连续聚合方法及设备 - Google Patents

尼龙66等以双组分单体为原料的尼龙连续聚合方法及设备 Download PDF

Info

Publication number
WO2013107425A1
WO2013107425A1 PCT/CN2013/070797 CN2013070797W WO2013107425A1 WO 2013107425 A1 WO2013107425 A1 WO 2013107425A1 CN 2013070797 W CN2013070797 W CN 2013070797W WO 2013107425 A1 WO2013107425 A1 WO 2013107425A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
nylon
polycondensation
prepolymer
tube
Prior art date
Application number
PCT/CN2013/070797
Other languages
English (en)
French (fr)
Inventor
刘兆彦
刘宇翔
涂慧琳
赵玲
张书兴
Original Assignee
北京伊克希德化工技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210019924.7A external-priority patent/CN102585216B/zh
Priority claimed from CN201210254788XA external-priority patent/CN102746509A/zh
Application filed by 北京伊克希德化工技术有限公司 filed Critical 北京伊克希德化工技术有限公司
Publication of WO2013107425A1 publication Critical patent/WO2013107425A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes

Definitions

  • the present invention relates to the field of polymer production, and more particularly to a method for short-stage continuous polymerization of nylon 66, using a two-component monomer A continuous nylon polymerization process for raw materials, and corresponding equipment.
  • BACKGROUND OF THE INVENTION Nylon is a class of important engineering plastics and synthetic fiber materials. Nylon production materials are diverse and have many varieties. The main nylon types and their polymerization materials are shown in the following table 1: Table 1
  • Nylon can be divided into two categories according to different polymerization raw materials.
  • One type of raw material is a one-component monomer containing both an amine group and a carboxyl group in the molecule, such as a cyclic lactam or a chain amino acid.
  • the largest variety is caprolactam.
  • the raw material of nylon 6; the other type of raw material is diamine and dibasic acid two-component monomer, the largest variety is nylon 66 with adipic acid and hexamethylene diamine as raw materials.
  • the nylon polymerization process must strictly guarantee the equimolarity of the carboxyl group and the amine group. Otherwise, after the components are depleted, the functional groups of more components occupy the two ends of the polymer molecule, and the molecular chain cannot continue to grow.
  • Single-component monomer nylon polymerization process The carboxyl group and the amine group are always equimolar, usually by bulk melt polymerization; the two-component monomer nylon cannot be bulk melt polymerization, because some diamine will be distilled off with the condensation water at the reaction temperature. Destroy the carboxyl and amine groups.
  • Such nylons usually combine an equimolar amount of a diamine and a dibasic acid into an aqueous solution of a neutral salt (hereinafter referred to as a nylon salt aqueous solution), which is pre-condensed under high pressure, and the steam is reduced by the difference in volatility between water and diamine.
  • a nylon salt aqueous solution a neutral salt
  • the molar fraction of the diamine in the medium reduces the amount of diamine vapor that is emitted with the water vapor.
  • the reaction between the amine group and the carboxyl group to form an amide group and water is reversible.
  • Nylon polymerization has two methods: batch and continuous. The former is convenient for switching varieties, but the production efficiency is low, which is suitable for small batch production.
  • the latter has higher production efficiency, and the product quality is better than the former, which is suitable for large-scale production.
  • the method of continuous polymerization of two-component monomer nylon is represented by nylon 66.
  • the polymerization of nylon 66 is carried out by using equimolar adipic acid and hexamethylene diamine to form neutral nylon 66 salt.
  • the melting temperature of nylon 66 salt is 192.5 °C
  • the activation temperature of polycondensation reaction is about 210 °C
  • the boiling point of hexamethylene diamine is only 196 °C.
  • nylon 66 If it is directly melted and polycondensed with solid nylon 66 salt, some hexamethylenediamine is evaporated and evaporated together with the condensation water, destroying The diacid and hexamethylene diamine are in equilibrium and a high degree of polymerization cannot be obtained.
  • the main links include concentration-high pressure pre-condensation-flashing one. Normally compressed poly;
  • the 76th page of the book introduces the process of the continuous expansion of nylon 66 introduced by China Shenma Group from Asahi Kasei, Japan.
  • the main links include concentration-high pressure pre-condensation-flash-constant compression-one-vacuum polycondensation;
  • US patent US3, 402,152 discloses a nylon 66 continuous polymerization apparatus process invented by Monsanto, and the main steps include concentration-high pressure pre-condensation-flash-constant compression-one-vacuum polycondensation;
  • USP 3,900,450 discloses a process of nylon 66 continuous polymerization device invented by DuPont.
  • the main links include high-pressure concentration pre-condensation-flash-constant compression.
  • the above four processes basically cover the mainstream of the current nylon 66 continuous polymerization equipment in the world. They have the common shortcomings: 1.
  • High-pressure pre-condensation process uses tubular reactor, the melt temperature in the boundary layer of the pipe wall is several tens of degrees higher than the main area, and the residence time is several times longer than the main body area. Dozens of times, the difference in residence time and temperature history leads to a wide molecular weight distribution of the prepolymer; the tubular reactor diameter is restricted by heat transfer, and the single-line production capacity is small; 3.
  • the normal pressure or reduced compression after flashing The viscosity of the feed liquid is high, the condensation water is not easy to be distilled out, and the molecular chain growth is restricted. It is necessary to adopt a higher reaction temperature and a longer reaction time to reach the polymerization degree index specified by the process, resulting in more gel and affecting polymer quality. 4.
  • the condensation water is distilled from the liquid phase, the entrained polymer melt mist splashes to the reactor wall and the reactor liquid level fluctuations are likely to cause reactor wall crusting. It is more troublesome to switch the online preparation station in turn; 5.
  • Each ton of polymer produced 2.5 ⁇ 3kg of hexamethylenediamine, which increases the consumption of raw materials and affects the environment.
  • An object of the present invention is to provide a nylon continuous polymerization method using a two-component monomer such as nylon 66 and a device for carrying out the same, which eliminates the drawbacks of the conventional device and improves the two-component nylon such as nylon 66 and nylon 56.
  • the technical and economic level of the polymerization industry For convenience of description, the liquid materials referred to in the present specification such as reflux water, salt solution, prepolymer, polymer, etc. are generally referred to as liquid materials.
  • a continuous polycondensation method of nylon 66 which comprises a nylon 66 aqueous solution as a raw material, A. a process comprising two main steps of precondensation and polycondensation, and B. a precondensation step operating at normal pressure or low pressure. (For example, less than 0.3 MPa), preferably, the pre-polycondensation step is carried out at a pressure lower than 1.2 MPa, which is higher than the pressure of solid salt precipitation in the reaction system, and the reactive distillation method is adopted.
  • the main measures include: i.
  • the aqueous solution is fed into the upper part of the pre-polycondensation tower, flows to the bottom of the tower by gravity, and gradually heats up during the process, and successively performs concentration and pre-polycondensation to form a prepolymer; in step i, the aqueous solution of nylon 66 is heated by the heating tube in the tower. gradually warming, concentrated liquid material was started after the activation temperature of the precondensation, bottoms liquid temperature of 230 ⁇ 280 ° C, preferably 240 ⁇ 260 ° C;.
  • step iii the condensation water is separated from the liquid material by evaporation in the liquid material, and the reverse reaction is inhibited, the molecular chain growth is accelerated, and the reaction equilibrium is shifted to the right; The diamine component is gradually condensed back to the falling liquid; iv.
  • the reflux water is added above the nylon 66 salt aqueous solution, and a reflux water layer is formed above the inlet of the nylon 66 salt aqueous solution to reduce the reflux water and the nylon 66 salt.
  • the bubbles rising in the aqueous solution push the flow in the opposite direction, mutual heat transfer and mass transfer, and the hexamethylenediamine component remaining in the bubbles gradually condenses into the descending reflux water.
  • the steam discharged from the top of the column is substantially free of hexamethylenediamine.
  • the terminal carboxyl group and the terminal amine group of the prepolymer are equimolar; the prepolymer formed in the precondensation step is replenished by the heater in time to evaporate the free water and the heat required for the temperature of the prepolymer to enter the polycondensation step.
  • the prepolymer of the terminal amine group and the terminal carboxyl group formed by the precondensation step continue to polycondense to form a nylon 66 polymer having a polymerization degree according to the process index.
  • a continuous polymerization method of nylon using a two-component monomer as a raw material wherein a nylon salt aqueous solution containing an equimolar diamine and a dibasic acid is used as a raw material, and A.
  • Pre-polycondensation nylon salt aqueous solution is rectified in a pre-polycondensation column to form a prepolymer; pre-condensation tower operating pressure is greater than or equal to 0.3 MPa, less than or equal to 1.2 MPa, and the liquid phase is The continuous phase and the gas phase are dispersed phases, and the descending liquid and the rising bubbles each maintain a flat flow, including the following measures: i.
  • a multi-layer heating tube is arranged below the nylon salt aqueous solution distributor in the tower, and the heat medium is heated in the tube.
  • the descending nylon salt solution is gradually heated, concentrated, and polycondensed to form a prepolymer at the bottom of the column; concentrated distilled solvent water, polycondensed distilled water, and steamed Part of the diamine rises in the form of bubbles; iv.
  • the reflux water layer above the nylon salt solution distributor is filled with the filler to suppress the axial back mixing caused by the bubbling, so that the descending reflux water and the rising bubbles each maintain a flat flow.
  • the axial back mixing caused by the bubbling is suppressed by means of the arrangement of the heating tube layers in the tower, so that the descending liquid and the rising bubbles are maintained in a flat flow, and a stable top to bottom is established in the tower.
  • the prepolymer is replenished by the heater in time to evaporate the free water and the heat required for the temperature of the prepolymer to be sent to the polycondensation step to form a polymer.
  • the precondensation step is carried out at a minimum pressure which ensures that the solid salt is not precipitated during the concentration process.
  • the prepolymerization step produces a prepolymer having a polymerization degree of 5 to 50, more preferably 20 to 40.
  • the precondensation step does not have to worry about the loss of hexamethylenediamine, Considering that the solid salt is not precipitated during the concentration process, the operating pressure and the free water content in the prepolymer can be greatly reduced compared with the existing device, and the evaporation device of the existing device can be used, and the free water can be replenished by the first or a plurality of heaters.
  • the heat required for the temperature rise of the polymer is sent to the polycondensation step.
  • the heat exchanger is connected in multiple stages, the heat exchanger pressure is gradually reduced.
  • double-effect evaporation can be used to reduce energy consumption, that is, the nylon salt aqueous solution is first concentrated outside the pre-polycondensation tower, and the concentrated liquid is fed into the pre-polycondensation tower to continue the second concentration.
  • the pressure of one concentration is lower than the pressure of the pre-polycondensation tower, and the steam discharged from the top of the pre-polycondensation tower is used as the first concentrated heating heat source, and a part of the condensed water is returned to the pre-polycondensation tower.
  • This solution reduces energy consumption by nearly half of the pre-condensation process.
  • the polycondensation step can adopt the conventional method, but it is preferable to adopt the falling film or the stripping devolatilization method, including the following three methods: Method 1: The prepolymer is distributed from the upper portion into the polycondensation kettle along the wall of the kettle. The film is reduced.
  • Method 2 A plurality of falling film tubes are arranged in the kettle, and a part of the prepolymers are uniformly distributed in a film shape along the circumference of the kettle wall, and the remaining prepolymers are film-like falling along the inner and outer walls of the falling film tube.
  • Method 3 The prepolymer distributor is arranged in the upper part of the kettle, and some of the prepolymers are uniformly distributed in the form of a film along the circumference of the kettle wall, and the remaining prepolymers flow out from the bottom of the distributor in a strip shape, that is, the strip type detachment.
  • the above method can accelerate the evaporation of the condensation water, shorten the reaction time, lower the reaction temperature, reduce the amount of gel, and improve the quality of the polymer; cover with a falling liquid film, close the wall of the kettle and connect with the liquid level at the bottom of the kettle to avoid the steam of the conventional device.
  • the mist entrained in the middle is splashed to the wall of the kettle or the wall of the kettle is clogged due to fluctuations in the liquid level, prolonging the continuous operation cycle of the device.
  • the polycondensation step can be operated under normal pressure or vacuum.
  • the product with lower polymerization degree is preferably operated at normal pressure, and the product with higher polymerization degree is preferably operated under vacuum, or operated at normal pressure but with inert gas in the lower part of the reactor. (such as nitrogen) and the inert gas in the cross-section of the hook flow from bottom to top to reduce the partial pressure of water vapor; inert gas amount is 0 to 2 times the mole of nylon 66 salt, preferably 0.02 to 0.2 times.
  • the flow of the two-component nylon continuous polymerization method of nylon 66 and the like provided by the present invention is shown in FIG. 1 to FIG.
  • the present invention provides a key device for continuous polymerization, mainly including a precondensation tower and polycondensation. kettle.
  • the pre-polycondensation tower comprises a tower top, a tower body, a tower bottom, an outer jacket and an inner member of the tower, a reflux water inlet is arranged above the tower body, a nylon 66 salt solution inlet is arranged below the reflux water inlet, and a prepolymer outlet is arranged at the bottom of the tower.
  • the steam outlet is provided, and the tower body is provided with a plurality of pairs of heating heat medium inlets and outlets; the internal components of the tower include: a reflux water distributor connected to the return water inlet, a nylon 66 salt water solution distributor connected with the nylon 66 brine solution inlet, a reflux water distributor and A packing layer in the column between the nylon 66 brine solution distributor, a nylon 66 salt aqueous solution distributor, and a multi-layer heating tube layer disposed in the column section between the bottoms of the tower.
  • the pre-polycondensation tower section can be round or square.
  • the circular tower is preferably thin and thin at the upper part, and is connected by a round table in the middle.
  • each heating tube layer has a spiral coil structure, The central side nozzles of the two-layer spiral coil are connected, and the outer edge side nozzles respectively pass through the tower wall to become the heat medium inlet and the outlet, and the projections of the two layers of spiral tubes in the horizontal plane are alternately arranged and partially overlapped; 2) each heating tube The layers are respectively arranged in parallel by a plurality of straight pipe sections of unequal length, and the ends of the straight pipes are kept at the same distance from the tower wall, and the straight pipe sections are sequentially connected in series to form a pipe string, and the pipe ends of the pipe strings are respectively worn.
  • the wall of the tower becomes the inlet and outlet of the heat medium, and the projections of the straight pipe sections of the adjacent heating pipe layers are alternately arranged and partially overlapped.
  • the square tower is preferably narrow at the upper part and narrow at the bottom, and is connected by an inverted quadrangular table in the middle.
  • the heating tube layer is respectively placed on the upper part and the lower part of the tower, and the heating tube layer is composed of straight pipe sections arranged in parallel, and the nozzles at both ends of the straight pipe sections respectively pass through two
  • the side tower wall becomes the heat medium inlet and the outlet, and the projections of the tubes adjacent to the two heating tube layers are alternately arranged and partially overlapped in the horizontal plane; in each heating tube layer, or the distance between the axis of the most edged tube and the tower wall It is set to be equal to half of the axial distance between two adjacent tubes in the middle of the tube layer, or the half of the heating tube is attached to the tower wall at the most edge, and the adjacent heating tube layers are alternated in the two manners; the heating tube is a round tube Or a diamond tube.
  • One or more coaxial rounding tables can be nested in the round table of the circular tower, and the inverted quadrangular table of the square tower
  • One or more coaxial can be nested inside Four-sided platform.
  • a large-capacity square tower may be provided with a partition perpendicular to the axis of the heating tube, and the heating tube is supported through the tube hole in the partition to increase rigidity.
  • the tubes in the heating tube layer are connected in parallel, and several heating tube layers are connected in series. The professional engineer can optimize according to the heat transfer and flow resistance analysis calculation.
  • the polycondensation kettle comprises an upper head, a kettle body and a conical lower head, which are connected by flanges in turn, and the upper head, the kettle body and the conical lower head outer insulation jacket.
  • a ribbon stirrer is provided in the conical lower head.
  • the upper part of the kettle body is provided with a prepolymer inlet
  • the bottom of the conical lower head is provided with a polymer outlet
  • the top of the upper head is provided with a steam outlet
  • one or more pairs of heat insulating heat medium inlets and outlets are provided, and the prepolymer inlet is provided.
  • the prepolymer is uniformly distributed circumferentially through its bottom hole or slit along the wall of the cylinder.
  • the prepolymer circumferential distributor of the polycondensation tank configuration may be changed into a double layer distributor, and the double layer distributor is structured as follows: a steam pipe passing through the neck of the upper head is added, and the lower section is extended into the polycondensation kettle, the steam pipe A circumferential upper annulus is left between the outer wall of the outer wall and the inner wall of the neck of the upper head, and the two are fixedly connected by a radial piece.
  • the upper part of the steam pipe is provided with an outer jacket, the lower part of the outer jacket is a round table, and the bottom of the round table is sealed with the upper end of the neck of the upper head; the space enclosed by the upper part of the outer jacket and the steam pipe is the upper layer of the distributor An umbrella panel is arranged below the upper head, and the upper port of the umbrella plate is fixedly connected with the lower port of the steam pipe, and the lower lower wall of the umbrella plate and the upper wall of the upper head are left with a circumferential lower annulus, the upper head
  • the space enclosed by the outer wall of the lower section of the umbrella plate and the steam pipe is the lower layer of the distributor, and the inlet e of the prepolymer and the upper section of the steam pipe are connected by the outer jacket.
  • the kettle body of the polycondensation kettle can be reduced in diameter from one to several times from top to bottom to form a first or a plurality of steps of reducing the diameter, and the step of reducing the diameter helps to repair the pre-polymer liquid film falling along the wall of the kettle body to complete the film. Both are hooked.
  • the polycondensation kettle for producing a high degree of polymerization product can add the following column internal components in the above polycondensation kettle: 1) The tube sheet is located below the prepolymer circumferential distributor, and the edge of the tube sheet and the wall of the polycondensation kettle are left with an annulus.
  • the falling tube hole and the rising pipe hole are uniformly distributed on the tube plate, and the falling film tube hole is arranged in an equilateral triangle or a square, and the rising gas tube hole is located in an equilateral triangle or a square centroid of the falling film tube hole; 2) a falling film tube, an outer diameter Less than the falling film tube hole, passing through the falling film tube hole and detachably fixed to the tube sheet, the top of the falling film tube is lower than the highest level of the prepolymer on the tube sheet, and the lower end is higher than the polymer at the bottom of the tapered lower head The highest liquid level; 3)
  • the gas riser pipe is directly fixed on the tube plate, and the top end is higher than the polymer level on the tube plate.
  • the precondensation step can also be carried out by using a sieve tray column or a bubble column for reactive distillation, and the polycondensation vessel can also be a conventional stirred tank.
  • the precondensation tower and the polycondensation kettle of the present invention can also be used in a conventional nylon 66 polymerization apparatus, but at the same time, better results can be obtained by the method of the present invention.
  • the polymerization apparatus of the present invention is not limited to the use of the method described in the present specification, and the method of the present invention is implemented by other apparatuses or the apparatus of the present invention is used in the scope covered and defined by the claims of the present invention.
  • the nylon 66 polymerization unit is still within the scope of the invention.
  • the invention has the following outstanding advantages - the pre-condensation step adopts the reactive distillation method, and only needs to take into account that the nylon salt aqueous solution concentration process does not precipitate solid salt and cause clogging.
  • the equimolar prepolymer is supplemented by one or more heat exchangers to replenish the free water and the heat required for the temperature of the prepolymer to be sent to the polycondensation step to form a polymer with a polymerization degree up to the process index.
  • the process is simple and the reactor volume is small. Construction investment and operating costs are low.
  • Pre-polycondensation nylon salt aqueous solution The reaction time of any micro-unit is equal, the temperature history is the same, the molecular weight distribution of the prepolymer is narrow, and the mass is uniform; iii The gas-liquid interface of the polycondensation step is large, the condensation water is promoted, the reverse reaction is suppressed, and the reaction time is short. The temperature is low, the gel is small, and the polymer quality is good; iv The polycondensation step coats the polymer wall with a falling liquid film and is connected with the lower liquid level to prevent the polymer melt mist caused by the steam from splashing to the wall or the liquid Surface fluctuations lead to crusting of the kettle wall, ensuring long-term continuous and stable operation of the device;
  • FIG. 1 is a schematic diagram showing the process flow of a continuous process for continuously producing nylon 66 at a normal or low pressure according to the present invention.
  • R1 is a precondensation tower
  • R2 is a polycondensation kettle
  • P1 is a precondensation discharge pump.
  • P2 is a polycondensation product discharge pump
  • HI is a precondensed vapor condenser
  • H2 is a prepolymer heater
  • T1 is a condensate tank
  • F1 is a prepolymer filter.
  • Ml is a static mixer
  • a is a reflux water inlet
  • b is a nylon 66 brine solution inlet
  • c is a prepolymer outlet
  • d is a steam outlet
  • e is a prepolymer inlet
  • f is a polymer outlet
  • g is a polycondensation vapor outlet
  • h is an inert gas inlet and m is an additive inlet.
  • 2 is a schematic flow chart of the continuous polymerization method of the nylon of the present invention.
  • R1 is a precondensation tower
  • R2 is a polycondensation kettle
  • P1 is a precondensation discharge pump
  • P2 is a polycondensation product discharge pump
  • HI is a precondensed steam.
  • Condenser H2 and H3 are prepolymer heaters
  • T1 is a condensate tank
  • F1 is a prepolymer filter
  • Ml is a static mixer
  • a is a reflux water inlet
  • b is a nylon 66 brine solution inlet
  • c is a prepolymerization
  • d is the steam outlet
  • e is the prepolymer inlet
  • f is the polymer outlet
  • g is the polycondensation vapor outlet
  • h is the inert gas inlet
  • m is the additive inlet.
  • FIG. 3 is a schematic flow chart of a two-component nylon continuous polymerization method of the present invention, which adopts double-effect evaporation, in which R1 is a pre-polycondensation tower, R2 is a polycondensation kettle, VI is a concentration tank, and P1 is a pre-condensation discharge.
  • Pump P2 is the polycondensation product discharge pump, P3 is the concentrate pump, HI is the precondensed steam condenser, ⁇ is the concentration tank heater, ⁇ 2 is the prepolymer heater, T1 is the condensate tank, and F1 is the prepolymer filter.
  • Ml is a static mixer; a is a reflux water inlet, b is a nylon 66 brine solution inlet, c is a prepolymer outlet, d is a steam outlet; e is a prepolymer inlet, f is a polymer outlet, and g is a polycondensation
  • the steam outlet, h is the inert gas inlet, m is the additive inlet, b' is the liquid inlet, and c' is the concentrate outlet.
  • 4a, 4b are a front and side cross-sectional view of a structural type of the precondensation tower of the present invention.
  • the structure has a square cross section, a circular heating tube is used in the upper part of the tower, and a diamond heating tube is used in the lower part of the tower.
  • the axes of the adjacent two heating tubes are perpendicular to each other.
  • R1-1 is the upper tower body
  • R1-2 is the lower tower body
  • R1-3 is the inverted quadrangular joint connecting the upper and lower tower bodies
  • R1-4 is the jacket
  • R1-5 is the reflux water distributor
  • R1- 6 is a nylon 66 brine aqueous solution distributor
  • R1-7 is a filler
  • Rl-8a is a circular heating tube at the top of the tower
  • Rl-8b is a rhombic heating tube at the lower part of the tower
  • R1-9 is a coaxial inverted four of four widths.
  • a is a reflux water inlet
  • b is a nylon 66 brine solution inlet
  • c is a prepolymer outlet
  • d is a steam outlet.
  • FIG 5 is a partial enlarged view of the edge region J of the upper heating tube layer of Figure 4a.
  • Figure 6 is a partial enlarged view of the edge region k of the heating tube layer of the lower portion of the tower of Figure 4a.
  • Figure 7 is a perspective view of a two-layer spiral coil combined heating tube layer in a circular pre-polycondensation tower.
  • Figure 8 is a perspective view of a heating tube layer in which straight length sections of different lengths in a circular pre-polycondensation tower are sequentially connected in series to a string.
  • Figure 9 is a front cross-sectional view of the polycondensation vessel without a falling film tube, in which R2-1 is the upper head, R2-2 is the kettle body, R2-3 is the lower cone head, R2-4 is the jacket, R2-12 It is a prepolymer circumferential distributor, R2-14 is a ribbon agitator; e is a prepolymer inlet, f is a polymer outlet, and g is a steam outlet.
  • Figure 10a is a front cross-sectional view of a polycondensation kettle in which a prepolymer double layer distributor is used in place of a prepolymer circumferential distributor and the cylinder is reduced in diameter twice, wherein R2-1 is the upper head and R2-1-1 is the upper side.
  • Head neck R2-1-2 is the upper head straight section, R2-2 is the kettle body, R2-3 is the lower cone head, R2-4 is the insulation jacket, R2-14 is the ribbon mixer R2-15 is the steam pipe, R2-16 is the outer jacket of the steam pipe, R2-17 is the umbrella plate, R2-18 is the steam pipe casing; e is the prepolymer inlet, f is the polymer outlet, g is Steam outlet. In the figure, the cylinder is reduced in diameter twice to form two steps.
  • Figure 10b is an enlarged view of a top view of the neck of the head of Figure 10a, in which R2-1-1 is the upper head and neck, R2-18 is the steam tube inner casing, and R2-19 is the connecting steam pipe and the upper seal. Radial piece of the head.
  • Figure 11 is a front cross-sectional view of a polycondensation vessel having a falling film tube, in which R2-5 is a tube sheet, R2-8 is a riser tube, R2-9 is a falling film tube, R2-12 is a prepolymer distributor, R2-13 It is an inert gas distributor and h is an inert gas inlet.
  • Figure 12 and Figure 13 are top views of the tube sheet R2-5, where R2-6 is the falling film tube hole and R2-7 is the rising tube hole.
  • FIG. 14 and FIG. 15 are schematic views of a detachable structure of a falling film tube, wherein FIG. 14 is a partial enlarged view of L of FIG. 11, FIG. 15 is a cross-sectional plan view of 1-1 of FIG. 14, and R2-10 is a radial fin. R2-11 is the support ring plate.
  • Embodiment 1 Using the process shown in Figure 1 and using the equipment shown in Figures 4-9 and 11-15, the concentration of 30 ⁇ 70% (preferably 40-60%) should ensure that no solid precipitated nylon 66
  • the brine solution is fed into the nylon 66 brine aqueous solution inlet b of the square-section pre-polycondensation tower R1 under normal pressure operation, and flows through the nylon 66 brine aqueous solution distributor R1-6 in a cross-sectional hook distribution, and the liquid liquid descending process is first heated by the upper portion of the tower.
  • the tube layer Rl-8a is heated and heated, the solvent water gradually evaporates and rises in the form of bubbles, and the temperature of the liquid flowing to the upper mouth of the inverted quadrangular R1-3 is about 200 ° C, the solvent water is substantially distilled out, and the liquid passes through the inverted four edges.
  • the lower part of the column R1-3 continues to descend, and is heated and heated by the heating tube layer Rl-8b at the lower part of the tower.
  • the adipic acid and hexamethylene diamine are polycondensed, and once the condensation water is formed, it immediately evaporates to increase the bubble form.
  • the temperature rises and the degree of polymerization increases.
  • the temperature reaches 230 ⁇ 280 °C when flowing to the bottom of the tower (prefer 240 ⁇ 260°C), due to the atmospheric pressure operation of the tower, the solution liquid dissolves less water, the condensation water is steamed out and separated in time, the chemical equilibrium shifts to the right, the molecular chain grows fast, and the polymerization degree can reach 5 ⁇ in a short time. 50 (preferably 20 ⁇ 40). Since the horizontal projections of the adjacent two heating tubes are alternately arranged and partially overlap, the axial back mixing of the liquid due to bubbling is limited between the two heating tube layers, and the multi-layer heating tube is equivalent to a plurality of full mixing units connected in series.
  • the liquid keeps the flow in the flat flow; the particles in the falling process change and heat the wall distance in the same way, so the residence time in the tower is equal, the temperature history is the same, the molecular weight distribution of the prepolymer is narrow, and the quality is hooked.
  • the multi-layer heating tube controls the axial back mixing between the adjacent two heating tube layers to improve the mass transfer efficiency, and the residual hexamethylene diamine content is small when the bubble rises to the inlet b height;
  • the reflux water inlet a of the pre-polycondensation tower is added with reflux water, the reflux ratio is 0.01 ⁇ 0.8, and the uniform distribution of the reflux water distributor R1-5 is decreased along the tower section, and the filler R1-7 in the tower section between a and b inhibits the axial back-mixing.
  • the rising bubble and the falling return water push the flow differential contact in the opposite direction to improve the mass transfer efficiency.
  • the mole fraction of hexamethylenediamine in the vapor which escapes from the reflux liquid level can be neglected, and the terminal carboxyl group and the terminal amine group in the bottom prepolymer are equimolar.
  • the width of the tower is narrow and narrow, which is suitable for the difference in steam flow between the upper and lower parts.
  • the inverted quadrangular R1-3 has a plurality of top and bottom surfaces which are tapered and sequentially nested in four coaxial inverted quadrangles R1-9 to ensure that the liquid flows from the upper part of the tower to the upper part. In the lower part, the air bubbles rise from the lower part of the tower to the upper part.
  • the cross section of the heating pipe in the lower part of the tower is rhombic, so as to avoid the residence time of the liquid having a higher viscosity at the top of the heating pipe is too long.
  • the water vapor discharged from the top of the precondensation tower is condensed into the condensation water tank T1 through the condenser HI, partially returned to the reflux water inlet a of the precondensation tower R1, and the remaining condensed water is discharged.
  • the prepolymer is sent out by the prepolymer discharge pump P1, the additive is added from the additive inlet m, and the mixture is mixed by the static mixer M1, and the free water is replenished by the prepolymer heater H2 and the heat required for the prepolymer is heated.
  • the liquid level on the tube plate R2-5 is higher than the top of the falling film tube R2-9, and some of the prepolymers are lowered.
  • the overflow of the membrane tube falls along the inner wall of the falling film tube, which greatly increases the vapor-liquid interface and accelerates the evaporation of the condensation water.
  • the polycondensation tower operates at normal pressure, and the high-purity nitrogen fed from the inert gas inlet h at the lower part of the tower passes through the distributor R2.
  • the connection avoids the splashing of the mist entrained by the condensation water in the conventional device to the wall of the kettle or the crusting of the kettle wall due to fluctuations in the liquid level at the bottom of the kettle, ensuring long-term continuous stability of the device.
  • the bottom polymer melt is sent to the pelletizing system by pump P2 to be sliced or sent to a spinning machine for direct spinning.
  • the gas discharged from the steam outlet g of the top of the kettle condenses water vapor and is purified, and the nitrogen gas can be recycled.
  • Example 1 A 50% strength aqueous solution of nylon 66 salt was fed to a precondensation column at a flow rate of 14,500 kg/hr, at atmospheric pressure.
  • the upper part of the pre-polycondensation tower is 3,200mm wide and the lower part is 900mm wide.
  • the temperature of the heating pipe layer in the upper part of the tower is gradually increased from 90°C to 200°C from top to bottom, and the temperature of the heating pipe layer in the lower part of the tower is gradually increased from 200 to 258° from the top to the bottom.
  • C the total time of the material staying in the heating tube layer at the lower part of the tower is 12 min, and the polymerization degree of the prepolymer is 24.
  • the flow rate of reflux water in the packing was 750 kg/hr, and the hexamethylene diamine content in the overhead steam was less than 20 ppm.
  • the prepolymer was heated to 278 °C and fed into a polycondensation kettle.
  • the diameter of the polycondensation vessel was 1,500 mm, and the pressure was normal pressure.
  • the prepolymers were respectively deposited along the inner and outer walls of the wall and the falling film tube, and the vapor-liquid interface was 92 m 2 .
  • High purity N 2 flow rate 0.5 NM 3 /min; polycondensation reaction time 10.5 min, polymer outlet temperature 272 ° C, polymerization degree 98.
  • Example 2 The pre-polycondensation process parameters and equipment are the same as those in Example 1, but there is no falling film tube in the polycondensation kettle, all the prepolymers fall along the wall of the kettle, and the operation is carried out under normal pressure without adding N 2 , the polycondensation reaction time is 25 min, the polymer The outlet temperature was 273 ° C and the degree of polymerization was 76.
  • Embodiment 2 Using the apparatus shown in FIG. 2 and using the apparatus shown in FIGS. 4-9 and 11-15, a nylon 66 salt aqueous solution having a temperature of 95 ° C and a concentration of 30-70% (preferably 40-60%) is used.
  • the adipic acid and hexamethylene diamine are polycondensed. Due to the lower operating pressure in the column, the free water in the liquid phase is less, the condensation water is distilled off in time, the molecular chain grows faster, the equilibrium polymerization degree is higher, and the temperature of the bottom prepolymer is 230 ⁇ 280 °C (preferably 240 ⁇ 260). °C), the degree of polymerization is 5 ⁇ 50 (preferably 20 ⁇ 40).
  • the axial back mixing due to bubbling is limited between the two heating tubes, and the multilayer heating tube is equivalent to a plurality of full mixing units connected in series, macroscopically Maintaining the flat push flow; the nylon 66 brine solution descending process is repeated at the farthest distance from the outer wall of the heat transfer tube (also at the lowest temperature) and the closest distance (also the highest temperature) to eliminate the cross-section temperature difference, nylon 66 Any microscopic unit of the brine solution has the same residence time in the tower, temperature history In the same way, the resulting prepolymer has a narrow molecular weight distribution and a high quality.
  • the width of the tower is narrow and narrow, which is suitable for the difference in steam flow between the upper and lower parts.
  • the coaxial inverted inverted quadrangular R1-9 nested in the inverted quadrangular R1-3 ensures that the liquid flows from the upper part to the lower part of the tower, and the air bubbles rise from the lower part to the upper part of the tower.
  • the heating pipe in the lower part of the tower has a rhombic shape, so that the prepolymer with higher viscosity is prevented from staying at the top of the heating pipe.
  • the prepolymer is pumped out from port f by pre-condensation discharge pump P1, additive is added from additive inlet m, mixed by static mixer M1, heated by prepolymer heater H2, H3 force B, and free water is distilled off. And increase the temperature, the prepolymer heater H2 pressure is higher, to prevent the water from evaporating too fast, the instantaneous temperature drop is too large, the prepolymer heater H3 pressure is the same as the polycondensation kettle.
  • the preheated prepolymer is removed from the prepolymer of the polycondensation reactor R2 through the prepolymer filter F1 which can be switched on line, and is fed into the e to the wall of the R2-2 via the prepolymer distributor R2-12.
  • the polymer passes over the falling film tube top overflow along the inner wall of the falling film tube, the vapor-liquid boundary area is large, and the condensation water is evaporated quickly; the polycondensation tower is operated at normal pressure, and the high-purity nitrogen gas fed from the inert gas inlet h at the lower part of the tower
  • the distributor R2-13 is uniformly distributed into the polycondensation tank and flows upwards. Part of the nitrogen gas rises through the falling film tube and the water vapor escaping from the liquid film in the inner wall of the falling film tube, and the remaining nitrogen gas passes through the channels between the falling film tubes and descends.
  • the water vapor escaping from the liquid film on the outer wall of the membrane tube rises together through the tube plate R2-5 rising gas tube R2-8.
  • the rising nitrogen gas and the falling liquid film each maintain a flat flow, because the number of nitrogen molecules is constant, the lower the number of water vapor molecules in the lower gas phase, the lower the partial pressure of water vapor, the more favorable the condensation water is distilled off, thereby improving the equilibrium polymerization.
  • the liquid level connection avoids the splashing of the melt mist entrained by the condensation water in the conventional device to the wall of the kettle or the crusting of the kettle wall due to the fluctuation of the liquid level at the bottom of the kettle, thereby ensuring long-term continuous and stable operation of the device.
  • the bottom polymer melt is sent to the pelletizing system by pump P2 to be sliced or sent to a spinning machine for direct spinning.
  • the gas discharged from the steam outlet g of the top of the kettle condenses out the water vapor and purifies it, and can be recycled.
  • Example 3 A nylon 66 salt aqueous solution having a temperature of 95 ° C and a concentration of 50% was fed into a precondensation tower operating at a pressure of 0.6 MPa, and the temperature was gradually raised to 200 ° C in the upper portion of the column, and the solvent water was distilled off, and then gradually formed in the lower portion of the tower.
  • the temperature is raised to 258 °C for pre-polycondensation, and the pre-polycondensation reaction time of the lower part of the column is 18 min to form a prepolymer having a polymerization degree of 23.
  • the reflux ratio of the condensed water at the top of the column is 0.15, and the content of hexamethylenediamine in the condensed water is less than 20 ppm.
  • the prepolymer is preheated. Feeding into the polycondensation kettle at 278 °C, atmospheric pressure operation, the prepolymers fall along the inner and outer walls of the wall and the falling film tube respectively, and the polycondensation is carried out under adiabatic conditions.
  • Example 4 Raw material and process parameters of the pre-polycondensation step were the same as those in Example 1. The prepolymer was preheated to 277 ° C to enter the polycondensation kettle, and the falling polymerization tube was not provided with a falling film tube, and all the prepolymers fell along the wall of the kettle.
  • Example 5 A nylon 56 salt aqueous solution having a temperature of 95 V and a concentration of 50% was fed into a precondensation tower operating at a pressure of 0.45 MPa, and the temperature was gradually raised to 185 ° C in the upper portion of the column, and the solvent water was distilled off, and then in the lower portion of the column.
  • the temperature was gradually increased to 240 ° C for pre-polycondensation, and the pre-polycondensation reaction time of the lower portion of the column was 22 min to obtain a prepolymer having a polymerization degree of 23.
  • the reflux ratio of the condensed water at the top of the column was 0.15, and the content of pentanediamine in the condensed water was less than 20 ppm.
  • the prepolymer was preheated to 270 ° C and fed to the polycondensation kettle. At normal pressure, some of the prepolymers fell along the wall of the kettle. The remaining prepolymers were strip-shaped free-falling bodies.
  • the bottom temperature was 265 ° C.
  • the operating pressure is 0.6 MPa
  • the port b of the pre-polycondensation column R1 and the concentration is continued to be concentrated and pre-condensed according to the same embodiment as in the second embodiment, and the P2 pump supplies the prepolymer to the inlet e of the polycondensation vessel shown in FIG.
  • the steam discharged from the top of the pre-polycondensation tower R1 flows into the heater HI' of the concentration tank VI to transfer heat to the nylon 66 salt aqueous solution in the concentration tank, and the condensed water generated by the steam condensation flows into the condensing water tank Tl, and some of the condensed water is returned to the pre-flow.
  • Polycondensation column R1 reflux water inlet a, the remaining condensed water can be used to preheat 50% nylon 66 brine solution.
  • the prepolymer enters the upper layer of the prepolymer distributor of the polycondensation tower R2 from the inlet e, enters the lower layer of the distributor through the upper annulus, and then falls down along the wall of the cylinder through the circumferential annulus of the lower annulus, and the cylinder is reduced in diameter twice.
  • the ladder repairs the liquid film to ensure that the film surface is hooked and intact; the polymer conforming to the process index is discharged from the f port.
  • the energy consumption of the pre-condensation process of this process is 42% lower than that of the first and second implementations without the two-effect evaporation.

Abstract

一种双组分单体尼龙连续聚合的方法及设备:尼龙盐水溶液在液相为连续相、气相为分散相的预缩聚塔内采用反应精馏升温、浓缩、缩聚,在浓缩过程不析出尼龙盐固体的前提下降低预缩聚塔操作压力,预缩聚塔生成的预聚物端羧基和端胺基等摩尔,该预聚物经换热器及时补充水分闪蒸及预聚物升温所需热量后送到缩聚釜,生成聚合度达工艺指标的聚合物;缩聚釜采用降膜或落条方法增加气液界面,加速缩合水蒸出,降低反应温度,缩短反应时间,减少凝胶;用下降的液膜包覆釜壁,避免釜壁结疤。本发明流程短、单线规模大、投资省、运行成本低、产品质量好、连续运行周期长、环境友好,适用尼龙66、尼龙56和其它以双组分单体为原料的尼龙聚合。

Description

尼龙 66等以双组分单体为原料的尼龙连续聚合方法及设备 技术领域 本发明涉及聚合物生产领域, 更具体地说, 涉及尼龙 66短流程连续聚合的方法, 以双组分单体为原料的尼龙连续聚合方法、 以及相应的设备。 背景技术 尼龙学名聚酰胺, 是一类重要的工程塑料和合成纤维原料。 尼龙生产原料呈多样 性, 品种较多, 主要的尼龙种类及其聚合原料见下表 1 : 表 1
Figure imgf000003_0001
尼龙依其聚合原料不同可分为两大类, 一类原料为分子内同时含有胺基和羧基的 单组分单体, 如环状内酰胺或链状氨基酸, 规模最大的品种是以己内酰胺为原料的尼 龙 6; 另一类原料是二元胺和二元酸双组分单体, 规模最大的品种是以己二酸和己二 胺为原料的尼龙 66。 随着生物法生产戊二胺技术的成熟和进步, 以戊二胺和己二酸为 原料的尼龙 56前景看好。 尼龙聚合过程必须严格保证羧基和胺基等摩尔, 否则, 较少组分耗尽后, 较多组 分的官能团占据聚合物分子两端, 分子链无法继续增长。 单组分单体尼龙聚合过程羧 基和胺基始终等摩尔, 通常采用本体熔融聚合; 双组分单体尼龙不能采用本体熔融聚 合, 因在反应温度下部分二元胺会随缩合水蒸出, 破坏羧基和胺基平衡。 此类尼龙通 常将等摩尔的二元胺和二元酸配成中性盐的水溶液(以下简称尼龙盐水溶液), 先在高 压下进行预缩聚, 利用水和二元胺的挥发性差异降低蒸汽中二元胺的摩尔分数, 减少 随水蒸汽排出的二元胺蒸汽量。 但是, 胺基和羧基生成酰胺基和水的反应可逆, 高压 下反应物系含水分较多, 受化学平衡制约, 只能获得分子量较低的预聚物, 须在后续 环节中减压蒸出水分再在常压或真空下继续缩聚以获得所需聚合度。 为防止减压过程 水份瞬间闪蒸吸热造成预聚物温度骤降影响流动性, 减压过程须及时向预聚物补给热 尼龙聚合有间歇和连续两种方法, 前者切换品种方便, 但生产效率较低, 适合于 小批量生产; 后者生产效率较高, 产品质量优于前者, 适合大规模生产。 双组分单体 尼龙连续聚合的方法以尼龙 66为典型代表, 尼龙 66聚合采用等摩尔的己二酸和己二 胺配成中性尼龙 66盐为原料。尼龙 66盐熔融温度 192.5 °C,缩聚反应活化温度约 210°C, 己二胺沸点仅 196°C, 如直接用固体尼龙 66盐熔融缩聚, 部分己二胺随缩合水一起蒸 发排出, 破坏己二酸和己二胺摩尔平衡, 无法获得高聚合度。 中国纺织工业出版社出 版的《尼龙 66生产基本知识》第 52页介绍了中国辽阳石化从法国罗纳-普朗克引进的 尼龙 66连续聚合流程, 主要环节包括浓缩一高压预缩聚一闪蒸一常压缩聚; 该 书第 76页介绍了中国神马集团从日本旭化成引进的尼龙 66连续聚合装置流程, 主要 环节包括浓缩一高压预缩聚一闪蒸一常压缩聚一真空缩聚; 美国专利 US3,402,152公开了孟山都公司发明的尼龙 66连续聚合装置流程, 主要环节包括浓缩 —高压预缩聚一闪蒸一常压缩聚一真空缩聚;美国专利 USP3,900,450公开了 杜邦公司发明的尼龙 66 连续聚合装置流程, 主要环节包括高压浓缩预缩聚一闪蒸 —常压缩聚。 上述四种流程基本涵盖了目前世界尼龙 66 连续聚合装置的主流, 它们存在共同 缺憾: 1.都以尼龙盐水溶液为原料, 遵循浓缩一高压预缩聚一闪蒸一常 (减) 压缩聚路线, 流程较长, 建设投资和运行成本较高; 2.高压预缩聚环节都用管式反应 器, 管壁边界层内熔体温度较主体区域高数十度, 停留时间较主体区域长数倍至数十 倍, 停留时间和温度历程的差异造成预聚物分子量分布较宽; 管式反应器管径受传热 制约, 单线产能规模较小; 3.闪蒸后的常压或减压缩聚环节料液粘度较高, 缩合水不 易蒸出, 制约分子链增长, 需采用较高的反应温度并经过较长的反应时间才能达到工 艺规定的聚合度指标, 导致凝胶较多, 影响聚合物品质; 4.缩合水从液相中蒸出时夹 带的聚合物熔体雾沫飞溅至反应器壁以及反应器液位波动都易造成反应器壁结疤, 须 配置在线备台轮流切换清疤, 较为麻烦; 5.每生产 1吨聚合物排出己二胺 2.5~3kg, 增 加原料消耗, 影响环境。 其它双组分单体尼龙品种连续聚合方法大多和尼龙 66类似,由化学工业出版社出 版的 《聚酰胺树脂及其应用》 在其第二章"聚酰胺树脂的合成"中有简略介绍。 发明内容 本发明的目的在于提供一种尼龙 66 等以双组分单体为原料的尼龙连续聚合方法 及实施该方法的设备, 消除传统装置的弊端, 提高尼龙 66、 尼龙 56等双组分尼龙聚 合产业的技术经济水平。 为叙述方便, 本说明书中涉及的液体物料如回流水、 盐溶液、 预聚物、 聚合物等 通称为料液。 下降的液体料液和上升的气泡各自保持平推流动称为逆向平推流动。 在本发明的第一个方面提供了一种尼龙 66连续缩聚方法, 以尼龙 66盐水溶液为 原料, A.流程含预缩聚和缩聚两个主要环节, B.预缩聚环节操作在常压或低压 (如小 于 0.3MPa) 下进行, 优选该预缩聚环节在压力低于等于 1.2 MPa, 高于反应体系中固 体盐析出的压力下进行, 采用反应蒸馏方法, 主要措施包括: i .将尼龙 66盐水溶液 喂入预缩聚塔中上部, 凭重力流向塔底, 进程中逐渐加热升温, 相继进行浓缩和预缩 聚反应, 生成预聚物; 在步骤 i中, 尼龙 66盐水溶液被塔内加热管加热, 逐渐升温、 浓缩, 液料达活化温度后开始预缩聚, 塔底料液温度达 230~280°C, 优选 240~260°C ; ii .使浓缩过程蒸出的溶剂水和预缩聚过程蒸出的缩合水以气泡形态上升, 少量己二胺 蒸发进入气泡; iii.使 i项下降的料液和 ii项上升的气泡逆向平推流动, 相互传热、 传 质, 气泡中己二胺组分渐次凝析回液相, 在步骤 iii中, 液料下降过程缩合水及时蒸发 从液料中分离, 抑制逆反应, 加快分子链增长, 推动反应平衡右移; 气泡上升过程中 己二胺组分渐次凝析回下降的料液; iv.在尼龙 66盐水溶液上方加入回流水, 在尼龙 66盐水溶液入口上方形成回流水层, 使凭自重下降的回流水和穿过尼龙 66盐水溶液 上升的气泡逆向平推流动, 相互传热、 传质, 气泡中残存的己二胺组分渐次凝析进入 下降的回流水, 塔顶排出的蒸汽基本不含己二胺, 塔底生成的预聚物端羧基和端胺基 等摩尔; 在预缩聚环节生成的预聚物经加热器及时补充游离水蒸发及预聚物升温所需 热量后进入到缩聚环节。 C.在缩聚环节中, 预缩聚环节生成的端胺基和端羧基等摩尔 比的预聚物继续缩聚, 生成聚合度符合工艺指标的尼龙 66聚合物。 在本发明的第二个方面提供了一种以双组分单体为原料的尼龙连续聚合方法, 以 含等摩尔二元胺和二元酸的尼龙盐水溶液为原料, A.流程主要包括预缩聚和缩聚两个 环节, B.预缩聚环节, 尼龙盐水溶液在预缩聚塔内反应精馏, 生成预聚物; 预缩聚塔 操作压力大于或等于 0.3MPa、 小于或等于 1.2MPa, 液相为连续相、 气相为分散相, 下降的液体和上升的气泡各自保持平推流动, 包括以下措施: i .将尼龙盐水溶液喂入 预缩聚塔中上部, 经尼龙盐水溶液分布器于截面均布; ϋ .塔顶排出的水蒸气冷凝后部 分回流进塔上部, 在尼龙盐水溶液分布器上方形成回流水层; iii.在塔内尼龙盐水溶液 分布器下方设多层加热管, 管内通热媒加热下降的尼龙盐水溶液, 使之渐次升温、 浓 缩、 缩聚, 至塔底生成预聚物; 浓缩蒸出的溶剂水、 缩聚蒸出的缩合水以及蒸出的部 分二元胺以气泡形态上升; iv.尼龙盐水溶液分布器上方的回流水层装纳填料, 抑制鼓 泡产生的轴向返混, 使下降的回流水和上升的气泡各自保持平推流动; 尼龙盐水溶液 分布器下方借助塔内加热管层布置方式抑制鼓泡产生的轴向返混, 使下降的液体和上 升的气泡各自保持平推流动, 并在塔内建立稳定的从上至下渐升的轴向温度梯度和组 成梯度; V .下降的液体和上升的气泡相互传热、 传质, 所述尼龙盐水溶液下降进程温 度渐升, 一旦有缩合水生成立即蒸出, 抑制逆反应, 加快分子链增长, 提高平衡聚合 度; 气泡上升进程温度渐降, 所含二元胺组分渐次凝析随液体下降, 从回流水层液面 蒸出的水蒸气基本不含二元胺, 从塔底流出的预聚体羧基和胺基等摩尔, C.预聚物经 加热器及时补充游离水蒸发及预聚物升温所需热量后送进缩聚环节生成聚合物。 优选地, 在上述两种缩聚方法中, 预缩聚环节在保证浓缩过程不析出固体盐的最 低压力下进行。 优选地, 在上述两种缩聚方法中, 预缩聚环节生成的预聚物聚合度 5~50, 更优选 20-40 本发明上述两种方法中, 预缩聚环节不必担心己二胺损失, 只需顾及浓缩过程不 析出固体盐, 可较现有装置大幅降低操作压力及预聚物中游离水含量, 可不必采用现 有装置的闪蒸设备, 经过一级或数级加热器补给游离水蒸发及聚合物温升所需热量后 送到缩聚环节。 换热器多级串联时, 换热器压力逐级递减。 本发明上述两种方法中, 均可采用双效蒸发以降低能耗, 即尼龙盐水溶液在预缩 聚塔外先进行第一次浓缩, 浓缩液喂入预缩聚塔中继续进行第二次浓缩, 第一次浓缩 的压力低于所述预缩聚塔的压力, 预缩聚塔塔顶排出的的蒸汽作为第一次浓缩的加热 热源, 其冷凝水中的一部分回流预缩聚塔。 此方案可降低预缩聚环节近一半能耗。 由 于预缩聚塔提供的蒸汽是从回流水层蒸出的洁净蒸汽, 完全不含预聚物, 用作第一次 浓缩热源无堵塞之虞。 上述两种聚合方法中, 缩聚环节可采用传统方法, 但优选采用降膜或落条脱挥方 法, 包括以下三种方式: 方式一: 预聚物从上部进入缩聚釜沿釜壁均勾分布呈薄膜状下降。 方式二: 釜内设多根降膜管, 一部分预聚物沿釜壁周向均布呈薄膜状降落, 其余 预聚物沿降膜管的内、 外壁面呈薄膜状降落。 方式三: 釜内上部设置预聚物分布器, 部分预聚物沿釜壁周向均布呈薄膜状降落, 其余预聚物从分布器底部流出呈条状自由下落, 即落条式脱挥。 上述方法可加速缩合水蒸出, 缩短反应时间, 降低反应温度, 减少凝胶量, 提高 聚合物品质; 用下降的液膜覆盖、 封闭釜壁并和釜底部液面相连, 避免传统装置因蒸 汽中夹带的雾沫飞溅至釜壁或因液面波动使釜壁结疤, 延长装置连续运行周期。 根据品种不同, 缩聚环节可在常压或真空下操作, 聚合度较低的产品优选常压操 作,聚合度较高的产品优选真空下操作,或常压操作但在反应器下部通入惰性气体(如 氮气) 并使惰性气体在截面均勾分布从下向上流动, 以降低水蒸汽分压; 惰性气体量 为尼龙 66盐摩尔数的 0~2倍, 优选 0.02~0.2倍。 本发明提供的尼龙 66等双组份尼龙连续聚合方法的流程见附图 1至附图 3。 为妥善实施上述尼龙 66, 尼龙 56等以双组分单体为原料的尼龙连续聚合方法以 及尼龙 66短流程连续聚合的方法,本发明提供了连续聚合的关键设备, 主要包括预缩 聚塔和缩聚釜。 预缩聚塔含塔顶、 塔体、 塔底、 外夹套及塔内构件, 塔体上方设回流水入口, 回 流水入口下方设尼龙 66盐水溶液入口, 塔底设预聚物出口, 塔顶设蒸汽出口, 塔体设 多对加热热媒进口和出口; 塔内构件包括: 接回流水入口的回流水分布器、 接尼龙 66 盐水溶液入口的尼龙 66盐水溶液分布器、 回流水分布器和尼龙 66盐水溶液分布器之 间的塔段内装纳的填料、尼龙 66盐水溶液分布器至塔底之间的塔段内设置的多层加热 管层。 预缩聚塔截面可选圆形或方形。 圆形塔优选上部粗下部细, 中间用倒圆台连接, 加热管层分别布置在塔上部和下 部, 其结构从下述两种设计择一: 1 )各加热管层分别具有螺旋盘管结构, 两层螺旋盘 管的中心侧管口相接, 外缘侧管口分别穿过塔壁成为热媒进口和出口, 两层螺旋管在 水平面的投影交替排布并部分重叠; 2)各加热管层分别由多根不等长的直管段平行等 距排布, 各直管两端和塔壁保持相同的距离, 且各直管段顺序串接形成管串, 管串的 两端管口分别穿过塔壁成为热媒进口和出口, 相邻两加热管层直管段在水平面的投影 交替排布并部分重叠。 方形塔优选上部宽下部窄, 中间用倒四棱台连接, 加热管层分别置于塔上部和下 部, 加热管层由诸平行排列的直管段组成, 诸直管段两端管口分别穿过两侧塔壁成为 热媒进口和出口, 相邻两加热管层的管在水平面的投影交替排列并部分重叠; 在各加 热管层中, 或者使最边缘的管的轴线与塔壁之间的距离设置为等于管层中间相邻两管 轴线距的一半, 或者使最边缘为半根加热管贴合于塔壁, 相邻两加热管层以该两种方 式交替; 所述加热管为圆管或菱形管。 为使料液从塔上部流至下部或气泡从塔下部升向上部时能均勾分布, 圆形塔的倒 圆台内可嵌套一个或多个同轴倒圆台, 方形塔的倒四棱台内可嵌套一个或多个同轴倒 四棱台。 大容量方形塔内可设垂直于加热管轴线的隔板, 加热管穿过隔板上的管孔获 支撑以提高刚性。 加热管层中各管并联, 若干加热管层相互串联, 专业工程师可根据传热及流动阻 力分析计算予以优化。 缩聚釜含上封头、 釜体、 锥形下封头, 依次用法兰连接, 上封头、 釜体和锥形下 封头外设保温夹套。 锥形下封头中设螺带式搅拌器。 釜体的上部设预聚物入口, 锥形 下封头的底部设聚合物出口, 上封头的顶部设蒸汽出口, 夹套设一对或多对保温热媒 入口、 出口, 预聚物入口接环周分布器, 将预聚物周向均布穿过其底部孔或缝沿筒体 壁面降膜。 上述缩聚釜配置的预聚物环周分布器可改为双层分布器,该双层分布器结构如下: 增设穿过上封头颈部的蒸汽管, 其下段伸入缩聚釜内, 蒸汽管的外壁和上封头的颈部 内壁间留有周向的上层环隙, 且两者之间通过径向片固定连接。 蒸汽管的上段设有外 夹套, 外夹套的下部为倒圆台, 倒圆台的底部和上封头的颈部上端密封连接; 外夹套 和蒸汽管的上段围成的空间为分布器上层; 上封头的下方设一伞板, 伞板的上口和蒸 汽管的下端口连接固定, 伞板的下口和上封头的直立段壁面留有周向的下层环隙, 上 封头、 伞板、 蒸汽管的下段外壁围成的空间为分布器下层, 预聚物入口 e和蒸汽管的 上段外夹套连接。 蒸汽管内可设置可抽出的内套管方便清洗。 缩聚釜的釜体从上至下可一次或数次缩径, 形成一级或数级缩径阶梯, 所述缩径 阶梯有助修整沿釜体壁降膜的预聚体液膜, 使其完整均勾。 生产高聚合度产品的缩聚釜可在上述缩聚釜内增设以下塔内构件: 1 )管板, 位于 预聚物环周分布器下方, 管板的边缘和缩聚釜的釜壁留有环隙, 管板上均布降膜管孔 和升气管孔, 降膜管孔按正三角形或正方形排布, 升气管孔位于降膜管孔的正三角形 或正方形形心; 2) 降膜管, 外径小于降膜管孔, 穿过降膜管孔并以可拆卸方式固定于 管板上, 降膜管顶端低于管板上预聚物最高液位, 下端高于锥形下封头底部聚合物最 高液位; 3 ) 升气管, 直接固定在管板上, 顶端高于管板上聚合物液位。 降膜管在管板上的可拆卸的固定方法有多种,如通过径向翅片和支撑环镶嵌管板。 如工艺须向釜内通入惰性气体, 在锥形下封头底部聚合物最高液位之上设置惰性 气体入口及与该入口相接的惰性气体分布器使惰性气体周向均布进釜, 惰性气体入口 在缩聚釜的釜底聚合物最高液位之上。 本发明的方法并不限定只能使用本发明提供的设备, 比如预缩聚环节也可采用筛 板塔或泡罩塔进行反应精馏, 缩聚釜也可采用传统搅拌釜。 但采用本发明的预缩聚塔 和缩聚釜可以获得更好的效果。本发明提供的预缩聚塔和缩聚釜也能用于传统尼龙 66 聚合装置, 但同时采用本发明方法可以获得更好的效果。 另外, 本发明的聚合设备也 不限于只能使用本说明书所描述的方法, 在本发明权利要求书覆盖并限定的范围内, 采用其它设备实施本发明的方法或将本发明的设备用于传统尼龙 66 聚合装置仍属本 发明保护范围。 与现有尼龙 66、 尼龙 56等双组分尼龙连续聚合装置比较, 本发明具有以下突出 优点- i预缩聚环节采用反应精馏方式, 只需顾及尼龙盐水溶液浓缩过程不析出固体盐 造成堵塞, 不必顾忌二元胺挥发造成胺基和羧基失衡, 可在较现有预缩聚反应器更低 的压力和更短的时间内获得聚合度更高、 游离水含量更低、 端胺基和端羧基等摩尔的 预聚物, 经一级或多级换热器补充游离水蒸发和预聚物升温所需热量后送到缩聚环节 生成聚合度达工艺指标的聚合物, 流程简洁、 反应器容积小、 建设投资及运行成本低。 ϋ 预缩聚环节尼龙盐水溶液任意微观单元反应时间相等,温度历程相同,预聚物 分子量分布窄, 质量均一; iii 缩聚环节气液界面大, 促进缩合水蒸出, 抑制逆反应, 反应时间短, 反应温度 低, 凝胶少, 聚合物质量好; iv 缩聚环节用下降的液膜包覆聚合釜壁并和下方液位相连,避免因蒸汽夹带的聚 合物熔体雾沫飞溅至釜壁或因液面波动导致釜壁结疤, 保证装置长期连续稳定运行;
V 基本消除二元胺排放, 原料消耗低, 环境友好; vi 适宜建设大型装置, 如年产 5万吨或产能更高的装置。 附图说明 附图构成本说明书的一部分、 用于进一步理解本发明, 附图示出了本发明的优选 实施例, 并与说明书一起用来说明本发明的原理。 附图中: 图 1是本发明短流程常压或低压连续生产尼龙 66连续聚合方法的工艺流程简图, 图 1中 R1为预缩聚塔、 R2为缩聚釜、 P1为预缩聚出料泵、 P2为缩聚产物出料泵、 HI为预缩聚蒸汽冷凝器、 H2为预聚物加热器、 T1为冷凝水槽、 F1为预聚物过滤器, Ml为静态混合器; a为回流水入口、 b为尼龙 66盐水溶液入口、 c为预聚物出口、 d 为蒸汽出口; e为预聚物入口、 f为聚合物出口、 g为缩聚蒸汽出口、 h为惰性气体入 口, m为添加剂入口。 图 2是本发明尼龙连续聚合方法的工艺流程简图, 图 2中 R1为预缩聚塔、 R2为 缩聚釜、 P1 为预缩聚出料泵、 P2 为缩聚产物出料泵、 HI 为预缩聚蒸汽冷凝器、 H2 和 H3为预聚物加热器、 T1 为冷凝水槽、 F1 为预聚物过滤器, Ml 为静态混合器; a 为回流水入口、 b为尼龙 66盐水溶液入口、 c为预聚物出口、 d为蒸汽出口; e为预聚 物入口、 f为聚合物出口、 g为缩聚蒸汽出口、 h为惰性气体入口, m为添加剂入口。 图 3是本发明双组分尼龙连续聚合方法的工艺流程简图, 该流程采用双效蒸发, 图 3中 R1为预缩聚塔、 R2为缩聚釜、 VI为浓缩槽、 P1为预缩聚出料泵、 P2为缩聚 产物出料泵、 P3为浓缩液泵、 HI 为预缩聚蒸汽冷凝器、 Η 为浓缩槽加热器、 Η2为 预聚物加热器、 T1为冷凝水槽、 F1为预聚物过滤器, Ml为静态混合器; a为回流水 入口、 b为尼龙 66盐水溶液入口、 c为预聚物出口、 d为蒸汽出口; e为预聚物入口、 f为聚合物出口、 g为缩聚蒸汽出口、 h为惰性气体入口, m为添加剂入口, b'为液体 入口、 c'为浓缩液出口。 图 4a、 4b是本发明预缩聚塔一种结构型式的正向及侧向剖视图, 该结构型式截面 为方形, 塔上部采用圆形加热管, 塔下部采用菱形加热管, 该段加热管层分三段, 相 邻两段加热管轴线相互垂直,
R1-1是上部塔体, R1-2是下部塔体, R1-3是连接上、下部塔体的倒四棱台, R1-4 是夹套、 R1-5是回流水分布器、 R1-6是尼龙 66盐水溶液分布器, R1-7是填料、 Rl-8a 是塔上部圆形加热管、 Rl-8b是塔下部菱形加热管、 R1-9是四个宽度渐缩的同轴倒四 棱台。 a为回流水入口、 b为尼龙 66盐水溶液入口、 c为预聚物出口、 d为蒸汽出口。 保温夹套和加热管热媒进出口未标出, 可由专业工程师根据具体要求并经传热和 流动阻力分析计算确定。 图 5是图 4a的塔上部加热管层边缘区域 J局部放大图。 图 6是图 4a的塔下部加热管层边缘区域 k局部放大图。 图 7是圆形预缩聚塔内两层螺旋盘管组合式加热管层透视图。 图 8是圆形预缩聚塔内不同长度直管段顺序串接成管串的加热管层透视图。 图 9是无降膜管的缩聚釜正面剖视图, 图中 R2-1是上封头、 R2-2是釜体, R2-3 是下部锥形封头, R2-4是夹套, R2-12是预聚物环周分布器, R2-14 是螺带搅拌器; e为预聚物入口、 f为聚合物出口、 g为蒸汽出口。 图 10a是采用预聚物双层分布器取代预聚物环周分布器且筒体两次缩径的缩聚釜 的正面剖视图, 图中 R2-1是上封头、 R2-1-1是上封头颈部、 R2-1-2是上封头直立段、 R2-2是釜体, R2-3是下部锥形封头, R2-4是保温夹套, R2-14 是螺带搅拌器, R2-15 为蒸汽管, R2-16为蒸汽管上段外夹套, R2-17为伞板, R2-18为蒸汽管内套管; e为 预聚物入口、 f为聚合物出口、 g为蒸汽出口。 图中筒体两次缩径, 形成两级台阶。 图 10b为图 10a上封头颈部剖面俯视图的放大图, 图中, R2-1-1是上封头颈部, R2-18为蒸汽管内套管, R2-19为连接蒸汽管和上封头的径向片。 图 11是具有降膜管的缩聚釜正面剖视图,图中 R2-5是管板, R2-8是升气管, R2-9 是降膜管, R2-12是预聚物分布器, R2-13是惰性气体分布器, h为惰性气体入口。 图 12、 图 13是管板 R2-5俯视图, 图中 R2-6是降膜管孔, R2-7是升气管孔, 图
12降膜管孔为正三角形排列, 图 13降膜管孔为正四方形排列。 以及 图 14、 图 15是一种降膜管可拆卸结构示意图, 其中图 14为图 11的 L局部放大 图, 图 15是图 14的 1-1剖面俯视图, R2-10是径向翅片, R2-11是支撑环板。 具体实施方式 以下以尼龙 66为例结合附图对本发明的实施例进行详细说明,但以下实施例以及 附图仅是用以理解本发明, 而不能限制本发明, 本发明可以由权利要求限定和覆盖的 多种不同方式实施。 实施方式一: 采用附图 1所示流程并采用附图 4-9以及 11-15所示的设备, 浓度 30~70% (优选 40-60% ) 温度应能保证无固体物析出的尼龙 66盐水溶液送进常压操作的方截面预缩 聚塔 R1的尼龙 66盐水溶液入口 b, 经尼龙 66盐水溶液分布器 R1-6在截面均勾分布 向下流动, 料液下降过程先被塔上部加热管层 Rl-8a加热升温, 溶剂水逐渐蒸发以气 泡形态上升, 料液流至倒四棱台 R1-3上口时温度约 200°C, 溶剂水基本蒸出, 料液穿 过倒四棱台 R1-3进塔下部继续下降,被塔下部加热管层 Rl-8b继续加热升温,温度升 达缩聚活化温度后己二酸和己二胺进行缩聚, 缩合水一旦生成立即蒸发以气泡形态上 升, 料液继续下降过程温度渐升, 聚合度渐增。 流至塔底时温度达 230~280°C (优选 240~260°C), 由于塔常压操作, 料液溶解水较少, 缩合水及时蒸出分离, 化学平衡右 移, 分子链增长快, 在较短的时间内聚合度即可达 5~50 (优选 20~40)。 由于相邻两层 加热管的水平投影交替排布并部分重叠, 因鼓泡造成的料液轴向返混被限制在两加热 管层之间, 多层加热管相当于多个全混单元串联, 料液保持平推流动; 料液下降过程 诸质点以相同的规律改变和加热管壁距离, 因此在塔内停留时间相等,温度历程相同, 预聚物分子量分布窄, 品质均勾。料液下降过程有部分己二胺蒸发随水蒸气进入气泡, 气泡上升过程和下降的料液逆向平推流动, 微分接触, 相互传热、 传质, 气泡温度渐 降, 己二胺组分渐次凝析回下降的料液, 多层加热管将轴向返混控制在相邻两加热管 层之间, 提高传质效率, 气泡升至入口 b高度时残存己二胺含量已很少; 从预缩聚塔 的回流水入口 a加入回流水, 回流比为 0.01〜0.8, 经回流水分布器 R1-5均布沿塔截 面下降, a、 b间塔段内填料 R1-7抑制轴向返混, 上升的气泡和下降的回流水逆向平 推流动微分接触,提高传质效率。逸出回流水液面的蒸汽中己二胺摩尔分数可予忽略, 保证塔底预聚物中端羧基和端胺基等摩尔。 塔上宽下窄, 适应上、 下部蒸汽流量差异 大的特点。倒四棱台 R1-3内设有多个顶部表面和底部表面中宽度都渐缩且依次内嵌套 的 4个同轴倒四棱台 R1-9保证料液均勾地从塔上部流至下部,气泡均勾地从塔下部升 至上部。塔下部加热管截面为菱形,避免粘度已较高的料液在加热管顶滞留时间过长。 预缩聚塔顶排出的水蒸气经冷凝器 HI冷凝进冷凝水槽 Tl, 部分回流进预缩聚塔 R1 的回流水入口 a, 其余冷凝水排出。 用预聚物出料泵 P1将预聚物送出, 从添加剂入口 m补加添加剂, 经静态混合器 Ml混勾, 经预聚物加热器 H2补给游离水蒸发及预聚 物升温所需热量后, 再经可在线切换的预聚物过滤器 F1去除杂质后喂入缩聚釜 R2的 预聚物入口 e,经预聚物分布器 R2-12周向均布沿釜体 R2-2壁面呈膜状落向管板 R2-5, 部分预聚物穿过管板和筒体壁面间环隙继续降膜,其余预聚物在管板 R2-5上从周边向 中央汇聚, 顺序穿过管板上诸降膜管孔 R2-6和降膜管 R2-9间环隙沿降膜管外壁面降 膜, 管板 R2-5上液位高于降膜管 R2-9顶端, 部分预聚物越过降膜管顶溢流沿诸降膜 管内壁降膜, 大幅提高了汽液界面, 加速缩合水蒸出; 缩聚塔常压操作, 从塔下部惰 性气体入口 h喂入的高纯氮气经分布器 R2-13周向均布进入缩聚釜向上流动, 部分氮 气通过降膜管和从降膜管内壁液膜逸出的水蒸气一起上升, 其余氮气穿过诸降膜管管 间的通道和从降膜管外壁液膜逸出的水蒸气一起穿过管板 R2-5上升气管 R2-8上升。 上升的氮气和下降的液膜逆向平推流动, 因氮气分子数恒定, 越往下气相中水蒸气分 子数越少, 水蒸气分压越低, 越有利缩合水蒸出, 从而提高平衡聚合度, 加快缩聚速 度, 在较短的时间内和较低的温度下达到工艺规定的聚合度, 减少凝胶量, 提高聚合 物品质; 由于下降的液膜包覆釜壁并和反应釜底液面连接, 避免了传统装置因缩合水 蒸发夹带的雾沫飞溅至釜壁或因釜底液位波动造成釜壁结疤, 保证装置长期连续稳定 运行。用泵 P2将釜底聚合物熔体送往切粒系统制成切片或送往纺丝机直接纺丝。从釜 顶蒸汽出口 g排出的气体凝析出水蒸气并净化后氮气可循环使用。 采用 ASPEN模拟实施例计算结果见如下实施例 1和实施例 2: 实施例 1 浓度 50%的尼龙 66盐水溶液以 14,500kg/hr的流量喂入预缩聚塔, 常压操作。 预 缩聚塔上部宽 3,200mm, 下部宽 900mm, 塔上部加热管层温度由上至下从 90°C逐渐 升至 200°C,塔下部加热管层温度由上至下从 200逐渐升至 258°C,物料在塔下部加热 管层停留总时间为 12min, 预聚物聚合度 24。 在填料中回流水的流量为 750kg/hr, 塔 顶蒸汽中己二胺含量小于 20ppm。 将预聚物加热至 278 °C喂入缩聚釜, 缩聚釜直径 1,500mm, 常压操作; 预聚物分别沿釜壁和降膜管内、 外壁降膜, 汽液界面 92m2 ; 缩 聚釜底部喂入高纯 N2, 流量为 0.5NM3/min; 缩聚反应时间 10.5min, 聚合物出口处温 度 272°C, 聚合度 98。 实施例 2 预缩聚工艺参数及设备同实施例 1, 但缩聚釜内不设降膜管, 全部预聚物沿釜壁 降膜, 常压操作, 不加入 N2, 缩聚反应时间 25min, 聚合物出口处温度 273 °C, 聚合 度 76。 实施方式二: 采用附图 2所示流程并采用图 4-9以及 11-15所示的设备, 将温度为 95°C, 浓度 30-70% (优选 40~60%) 的尼龙 66盐水溶液送进操作压力 0.6MPa的方截面预缩聚塔 R1的尼龙 66盐水溶液入口 b, 经尼龙 66盐水溶液分布器 R1-6在截面均勾分布向下 流动, 液体下降过程先被塔上部加热管层 Rl-8a加热升温, 溶剂水逐渐蒸发以气泡形 态上升, 液体流至倒四棱台 R1-3上口时温度约 200°C, 溶剂水基本蒸出; 液体穿过倒 四棱台 R1-3进塔下部继续下降,被塔下部加热管层 Rl-8b继续加热升温,温度达缩聚 活化温度后己二酸和己二胺进行缩聚。 由于塔内操作压力较低, 液相中游离水较少, 缩合水及时蒸出分离, 分子链增长快, 平衡聚合度较高, 塔底预聚物温度 230~280°C (优选 240~260°C), 聚合度达 5~50 (优选 20~40)。 由于相邻两层加热管的水平投影 交替排布并部分重叠, 因鼓泡造成的轴向返混被限制在两层加热管之间, 多层加热管 相当于多个全混单元串联,宏观保持平推流动; 尼龙 66盐水溶液下降过程诸质点在离 换热管外壁距离最远处 (亦温度最低处) 和距离最近处 (亦温度最高处) 之间反复穿 梭, 消除截面温差, 尼龙 66盐水溶液的任意微观单元在塔内停留时间相等, 温度历程 相同, 生成的预聚物分子量分布窄, 品质均勾。尼龙 66盐水溶液下降过程有部分己二 胺蒸发随水蒸气进入气泡, 气泡上升过程和下降的液体逆向流动, 微分接触, 相互传 热、 传质, 气泡温度渐降, 所含己二胺组分渐次凝析回下降的尼龙 66盐水溶液, 多层 加热管相当数量众多的塔板, 气泡升至入口 b高度时残存己二胺含量已很少; 预缩聚 塔顶排出的水蒸气经冷凝器 HI冷凝后进冷凝水槽 T1, 部分回流水进预缩聚塔 R1的 回流水入口 a, 在 R1-6上方形成回流水层, 回流比为 0.01〜0.8, a、 b间塔段回流水 层内填料 R1-5抑制轴向返混, 上升的气泡和下降的回流各自保持平推流动,相互微分 接触, 传热传质, 逸出回流水液面的水蒸汽中不含二胺, 保证塔底预聚物中端羧基和 端胺基等摩尔。 塔上宽下窄, 适应上、 下部蒸汽流量差异大的特点。 倒四棱台 R1-3 内嵌套的同轴倒四棱台 R1-9保证液体均勾地从塔上部流至下部,气泡均勾地从塔下部 升至上部。 塔下部加热管截面为菱形, 避免粘度已较高的预聚物在加热管顶滞留。 用 预缩聚出料泵 P1将预聚物从 f 口泵出, 从添加剂入口 m补加添加剂, 经静态混合器 Ml混匀, 经预聚物加热器 H2 、 H3力 B热, 蒸出游离水并提高温度, 预聚物加热器 H2 压力较高, 防止水分蒸发太快, 瞬间降温幅度太大, 预聚物加热器 H3压力同缩聚釜。 预热的预聚物经可在线切换的预聚物过滤器 F1去除杂质后喂入缩聚釜 R2的预聚物入 e, 经预聚物分布器 R2-12周向均布沿釜体 R2-2壁面呈膜状落向管板 R2-5, 部分预 聚物穿过管板和筒体壁面间环隙继续降膜,其余预聚物在管板 R2-5上从周边向中央汇 聚, 顺序穿过管板上诸降膜管孔 R2-6和降膜管 R2-9间环隙沿降膜管外壁面降膜, 管 板 R2-5上液位高于降膜管 R2-9顶端, 部分预聚物越过降膜管顶溢流沿诸降膜管内壁 降膜, 汽液界面积大, 缩合水蒸出快; 缩聚塔常压操作, 从塔下部惰性气体入口 h喂 入的高纯氮气经分布器 R2-13周向均布进入缩聚釜向上流动, 部分氮气通过降膜管和 从降膜管内壁液膜逸出的水蒸气一起上升, 其余氮气穿过诸降膜管管间的通道和从降 膜管外壁液膜逸出的水蒸气一起穿过管板 R2-5上升气管 R2-8上升。 上升的氮气和下 降的液膜各自保持平推流动, 因氮气分子数恒定, 越往下气相中水蒸气分子数越少, 水蒸气分压越低, 越有利缩合水蒸出, 从而提高平衡聚合度, 加快缩聚速度, 在较短 的时间内和较低的温度下达到工艺规定的聚合度指标,减少凝胶量,提高聚合物品质; 由于下降的液膜包覆釜壁并和反应釜底液面连接, 避免了传统装置因缩合水蒸发夹带 的熔体雾沫飞溅至釜壁或因釜底液位波动造成釜壁结疤,保证装置长期连续稳定运行。 用泵 P2将釜底聚合物熔体送往切粒系统制成切片或送往纺丝机直接纺丝。从釜顶蒸汽 出口 g排出的气体凝析出水蒸气并净化后可循环使用。 尼龙 56及其它以双组分单体为原料的尼龙聚合过程与尼龙 66相近, 但相应工艺 参数须作调整。 采用 ASPEN模拟实施例计算结果见如下实施例 3至 5 : 实施例 3 : 将温度 95 °C、浓度 50%的尼龙 66盐水溶液喂入操作压力 0.6MPa的预缩聚塔, 先 在塔上部逐渐升温至 200°C, 蒸出溶剂水, 再在塔下部逐渐升温至 258 °C进行预缩聚, 塔下部预缩聚反应时间 18min, 生成聚合度 23的预聚物, 塔顶冷凝水回流比 0.15, 冷 凝水中己二胺含量小于 20ppm; 将该预聚物预热至 278 °C喂入缩聚釜, 常压操作, 预 聚物分别沿釜壁和降膜管内、 外壁降膜, 在绝热条件下进行缩聚, 缩聚釜底部喂入高 纯 N2, N2和 66盐摩尔比 0.3, 釜底温度 272°C, 缩聚反应时间 10.5min, 获得聚合度 98的尼龙 66熔体。 实施例 4: 预缩聚环节原料及工艺参数同实施例 1, 生成的预聚物预热至 277°C进缩聚釜,缩 聚釜内不设降膜管, 全部预聚物沿釜壁降膜, 常压操作, 不加入 N2, 釜底温度 275 °C, 缩聚反应时间 25min, 获得聚合度 76的尼龙 66熔体。 实施例 5 : 将温度为 95 V、 浓度为 50%的尼龙 56盐水溶液喂入操作压力 0.45MPa的预缩聚 塔, 先在塔上部逐渐升温至 185 °C, 蒸出溶剂水, 再在塔下部继续逐渐升温至 240°C进 行预缩聚, 塔下部预缩聚反应时间 22min, 获得聚合度 23的预聚物, 塔顶冷凝水回流 比 0.15, 冷凝水中戊二胺含量小于 20ppm。 将该预聚物预热至 270°C喂入缩聚釜, 常 压操作, 部分预聚物沿釜壁降膜, 其余预聚物呈条状自由落体, 釜底温度 265 °C, 缩 聚反应时间 15min, 获得聚合度 78的尼龙 56熔体。 实施方式三: 采用附图 3所示流程并采用图 4-6及图 10所示的设备, 实施尼龙 66聚合。 50% 的尼龙 66盐水溶液进入操作压力 0.05MPa的浓缩槽 VI的入口 b', 在槽内获取加热器 H3提供的热量升温、蒸发、浓缩,浓度升至 70%, P3泵将浓缩液送入操作压力 0.6MPa 预缩聚塔 R1的 b口, 按照和实施方式二相同的实施方式继续浓缩并预缩聚, P2泵将 预聚物送至图 10所示的缩聚釜入口 e 。 从预缩聚塔 R1顶部排出的蒸汽流入浓缩槽 VI的加热器 HI '将热量传递给浓缩槽内的尼龙 66盐水溶液, 所述蒸汽凝结生成的冷 凝水流入冷凝水槽 Tl, 部分冷凝水回流进预缩聚塔 R1 回流水入口 a, 其余冷凝水可 用于预热 50%的尼龙 66盐水溶液。 预聚物由入口 e进入缩聚塔 R2的预聚物分布器上层, 经上环隙进入分布器下层, 再经下环隙周向均勾分布沿筒壁呈薄膜状降落, 筒体两次缩径产生的阶梯修复整理液 膜, 保证膜面均勾、 完整; 符合工艺指标的聚合物从 f口排出。 根据热量平衡计算, 本流程预缩聚环节能耗较未采用两效蒸发的实施方式一和二 节省 42%。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种尼龙 66短流程连续聚合的方法, 以尼龙 66盐水溶液为原料,其特征在于,
A. 流程主要含预缩聚和缩聚两个环节;
B. 所述预缩聚环节在常压、 低压下进行, 采用反应蒸馏的方法, 主要措 施包括:
i . 使所述尼龙 66盐水溶液在预缩聚塔内凭自重下降,进程中逐渐加热升 温, 相继进行浓缩和预缩聚反应, 生成预聚物;
ϋ . 使浓缩过程蒸出的溶剂水和预缩聚过程蒸出的缩合水以气泡形态上 升, 少量己二胺蒸发进入气泡;
iii. 使 i项下降的料液和 ii项上升的气泡逆向平推流动, 相互传热、传质, 气泡中己二胺组分渐次凝析回液相;
iv. 在所述尼龙 66盐水溶液上方加入回流水,使凭自重下降的回流水和穿 过尼龙 66盐水溶液上升的气泡逆向平推流动, 相互传热、传质, 气泡中残存的 己二胺组分渐次凝析进入下降的回流水;
C. 在所述缩聚环节中, 对所述预缩聚环节生成的端胺基和端羧基等摩尔 比的预聚物进行缩聚反应生成聚合度符合工艺指标的尼龙 66聚合物。
2. 根据权利要求 1所述的方法,其特征在于,所述预缩聚环节在压力低于等于 1.2 MPa, 高于反应体系中固体盐析出的压力下进行。
3. 一种以双组分单体为原料的尼龙连续聚合方法, 以含等摩尔二元胺和二元酸的 尼龙盐水溶液为原料, 其特征在于-
A. 流程主要包括预缩聚和缩聚两个环节,
B. 所述尼龙盐水溶液在预缩聚塔内反应精馏, 生成预聚物; 所述预缩聚 塔操作压力大于或等于 0.3MPa、 小于或等于 1.2MPa, 液相为连续相、 气相为 分散相, 下降的液体和上升的气泡各自保持平推流动, 包括以下措施:
i . 将所述尼龙盐水溶液喂入所述预缩聚塔中上部, 经尼龙盐水溶液分布 器于截面均布;
ϋ . 塔顶排出的水蒸气冷凝后部分回流进塔上部, 在尼龙盐水溶液分布器 上方形成回流水层; iii. 在塔内尼龙盐水溶液分布器下方设多层加热管, 管内通热媒加热下降 的尼龙盐水溶液, 使之渐次升温、 浓缩、 缩聚, 至塔底生成预聚物; 浓缩蒸出 的溶剂水、 缩聚蒸出的缩合水以及蒸出的部分二元胺以气泡形态上升;
iv. 所述尼龙盐水溶液分布器上方的回流水层装填填料, 抑制鼓泡产生的 轴向返混, 使下降的回流水和上升的气泡各自保持平推流动; 尼龙盐水溶液分 布器下方借助塔内加热管层布置方式抑制鼓泡产生的轴向返混, 使下降的尼龙 盐水溶液和上升的气泡各自保持平推流动, 并在塔内建立稳定的从上至下渐升 的轴向温度梯度和组成梯度;
v . 下降的液体和上升的气泡相互传热、 传质, 所述尼龙盐水溶液下降进 程温度渐升, 一旦有缩合水生成立即蒸出, 抑制逆反应, 加快分子链增长, 提 高平衡聚合度;气泡上升进程温度渐降,所含二元胺组分渐次凝析随液体下降, 从回流水层液面蒸出的水蒸气不含二元胺, 从塔底流出的预聚体羧基和胺基等 摩尔,
C. 所述预聚物预热后在缩聚环节生成聚合物。 根据权利要求 1或 3所述的方法, 其特征在于, 所述预缩聚环节在压力为保证 浓缩过程不析出固体盐的最低压力下进行。 根据权利要求 1或 3所述的方法, 其特征在于, 所述预聚物的聚合度为 5~50。 根据权利要求 1或 3所述的方法, 其特征在于, 所述预聚物的聚合度为 20~40。 根据权利要求 1或 3所述的方法, 其特征在于, 所述尼龙盐水溶液经第一次浓 缩后喂入所述预缩聚塔中进行第二次浓缩, 所述第一次缩聚的压力低于所述预 缩聚塔的压力, 所述预缩聚塔所产生的蒸汽作为所述第一次浓缩的加热热源, 形成两效蒸发的方式。 根据权利要求 1或 3所述的方法, 其特征在于, 在所述缩聚环节中采用降膜脱 挥方法, 使预聚物沿缩聚釜内壁均勾分布呈薄膜状降落。 根据权利要求 1或 3所述的方法, 其特征在于, 在所述缩聚环节中使部分预聚 体沿缩聚釜内壁均勾分布呈薄膜状降落, 其余预聚物沿所述缩聚釜内设置的降 膜管管壁降落, 或从设置在所述缩聚釜中的分布器底部流出呈条状自由下落。 一种尼龙 66短流程连续聚合设备, 其特征在于, 含串接的预缩聚塔和缩聚釜, 所述预缩聚塔含塔顶、 塔体、 塔底、 外夹套及塔内构件, 塔体上方设回流水入 口, 回流水入口下方设尼龙 66盐水溶液入口, 塔底设预聚物出口, 塔顶设蒸汽 出口, 塔体设多对加热热媒进口和出口; 塔内构件包括: 接回流水入口的回流 水分布器、 接尼龙 66盐水溶液入口的尼龙 66盐水溶液分布器、 回流水分布器 和尼龙 66盐水溶液分布器之间的塔段内装填的填料、 尼龙 66盐水溶液分布器 至塔底之间的塔段内设置的多层加热管层。
11. 根据权利要求 10所述的设备, 其特征在于, 所述预缩聚塔截面为圆形, 上部粗 下部细, 中间用倒圆台连接, 所述加热管层分别布置在塔上部和下部, 所述加 热管层的结构从下述两种设计择一:1 )各所述加热管层分别具有螺旋盘管结构, 两层螺旋盘管的中心侧管口相接, 外缘侧管口分别穿过塔壁成为热媒进口和出 口, 两层螺旋管在水平面的投影交替排布并部分重叠; 2)各所述加热管层分别 由多根不等长的直管段平行等距排布, 各直管两端和塔壁保持相同的距离, 且 各直管段顺序串接形成管串, 所述管串的两端分别穿过塔壁成为热媒进口和出 口、 出, 相邻两加热管层直管段水平投影交替排布并部分重叠。
12. 根据权利要求 10所述的设备, 其特征在于, 所述预缩聚塔截面为方形, 上部宽 下部窄, 中间用倒四棱台连接, 所述加热管层分别置于塔上部和下部, 各所述 加热管层由平行等距排列的直管段组成, 诸直管段两端管口分别穿过两侧塔壁 成为热媒进口和出口, 相邻两加热管层的管在水平面的投影交替排列并部分重 叠; 在各加热管层中, 或者将最边缘的管的轴线与塔壁之间距离设置为等于管 层中部相邻两管轴线距的一半, 或者使最边缘为半根加热管贴合于塔壁, 且相 邻两加热管层以该两种方式交替; 所述加热管为圆管或菱形管。
13. 根据权利要求 10所述的设备, 其特征在于, 所述缩聚釜包括上封头、 釜体、 锥 形下封头及保温夹套, 釜体上部设预聚物入口, 锥形下封头的底部设聚合物出 口, 上封头的顶部设蒸汽出口, 釜体外设与预聚物入口相接的预聚物环周分布 器, 锥形下封头中设螺带搅拌器。
14. 根据权利要求 13所述的设备, 其特征在于, 用双层预聚物分布器取代设在釜 体外的预聚物环周分布器, 双层预聚物分布器的结构是:
配备蒸汽管穿过所述上封头颈部, 其下段伸入所述缩聚釜内, 所述蒸汽管 的外壁和所述上封头的颈部内壁间留有周向的上层环隙, 且两者之间用径向片 固定连接, 所述蒸汽管的上段设有外夹套, 所述外夹套的下部为倒圆台, 所述 倒圆台的底部和所述上封头的颈部上端密封连接; 所述外夹套和所述蒸汽管的 上段围成的空间为分布器上层; 所述上封头的下方设一伞板, 所述伞板的上口 和所述蒸汽管的下端口连接固定, 所述伞板的下口和所述上封头的直立段齄而 留有周向的下层环隙, 所述上封头、 所述伞板、 所述蒸汽管的下段外壁围成的 空间为分布器下层, 预聚物入口 e和所述蒸汽管的上段外夹套连接。
15. 根据权利要求 10所述的设备, 其特征在于, 所述缩聚釜的釜体从上至下一次或 数次缩径, 形成一级或数级缩径阶梯。
16. 根据权利要求 13所述的设备, 其特征在于, 所述缩聚釜中增设以下塔内构件: 1 )管板, 位于预聚物环周分布器下方, 所述管板的边缘和所述缩聚釜的釜壁之 间留有环隙, 所述管板上均布降膜管孔和升气管孔, 所述降膜管孔按正三角形 或正方形排布, 所述升气管孔位于所述降膜管孔的正三角形或正方形形心; 2) 降膜管, 外径小于所述降膜管孔, 穿过所述降膜管孔并以可拆卸方式固定于所 述管板上, 所述降膜管的顶端低于所述管板上的预聚物最高液位, 下端高于锥 形下封头底部的聚合物最高液位; 3 )升气管, 直接固定在所述管板上, 顶端高 于所述管板上的聚合物液位。
PCT/CN2013/070797 2012-01-20 2013-01-21 尼龙66等以双组分单体为原料的尼龙连续聚合方法及设备 WO2013107425A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210019924.7A CN102585216B (zh) 2012-01-20 2012-01-20 尼龙66短流程连续聚合的方法及设备
CN201210019924.7 2012-01-20
CN201210254788XA CN102746509A (zh) 2012-07-20 2012-07-20 以双组分单体为原料的尼龙连续聚合的方法
CN201210254788.X 2012-07-20

Publications (1)

Publication Number Publication Date
WO2013107425A1 true WO2013107425A1 (zh) 2013-07-25

Family

ID=48798680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070797 WO2013107425A1 (zh) 2012-01-20 2013-01-21 尼龙66等以双组分单体为原料的尼龙连续聚合方法及设备

Country Status (1)

Country Link
WO (1) WO2013107425A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016115A1 (en) * 2014-07-29 2016-02-04 Dsm Ip Assets B.V. Process for preparing nylon salt and its polymerization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207746A (zh) * 1995-12-12 1999-02-10 聚合物工程有限公司 统一连续制备聚酰胺的方法和设备
CN1474843A (zh) * 2000-10-04 2004-02-11 �޵��Ǿ������м��幫˾ 制备聚酰胺的方法
JP2009286896A (ja) * 2008-05-29 2009-12-10 Mitsubishi Gas Chem Co Inc ポリアミド樹脂の製造装置
JP2010053359A (ja) * 2008-07-31 2010-03-11 Toray Ind Inc ポリアミドプレポリマーおよびポリアミドの連続製造方法ならびに製造装置
CN102585216A (zh) * 2012-01-20 2012-07-18 北京伊克希德化工技术有限公司 尼龙66短流程连续聚合的方法及设备
CN102746509A (zh) * 2012-07-20 2012-10-24 北京伊克希德化工技术有限公司 以双组分单体为原料的尼龙连续聚合的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207746A (zh) * 1995-12-12 1999-02-10 聚合物工程有限公司 统一连续制备聚酰胺的方法和设备
CN1474843A (zh) * 2000-10-04 2004-02-11 �޵��Ǿ������м��幫˾ 制备聚酰胺的方法
JP2009286896A (ja) * 2008-05-29 2009-12-10 Mitsubishi Gas Chem Co Inc ポリアミド樹脂の製造装置
JP2010053359A (ja) * 2008-07-31 2010-03-11 Toray Ind Inc ポリアミドプレポリマーおよびポリアミドの連続製造方法ならびに製造装置
CN102585216A (zh) * 2012-01-20 2012-07-18 北京伊克希德化工技术有限公司 尼龙66短流程连续聚合的方法及设备
CN102746509A (zh) * 2012-07-20 2012-10-24 北京伊克希德化工技术有限公司 以双组分单体为原料的尼龙连续聚合的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016115A1 (en) * 2014-07-29 2016-02-04 Dsm Ip Assets B.V. Process for preparing nylon salt and its polymerization
US10590238B2 (en) 2014-07-29 2020-03-17 Dsm Ip Assets B.V. Process for preparing nylon salt and its polymerization
US11306181B2 (en) 2014-07-29 2022-04-19 Dsm Ip Assets B.V. Process for preparing nylon salt and its polymerization

Similar Documents

Publication Publication Date Title
CN105885037B (zh) 一种聚酰胺5x的生产设备及方法
CN102585216B (zh) 尼龙66短流程连续聚合的方法及设备
JP5542667B2 (ja) ポリアミドの製造方法
KR101011062B1 (ko) 폴리아미드의 제조 방법
CN102746509A (zh) 以双组分单体为原料的尼龙连续聚合的方法
KR101672066B1 (ko) 락탐 및 디아민과 디카르복실산의 염으로부터 코폴리아미드의 연속 제조 방법
US8297832B2 (en) Process for producing polyamide
TW200902591A (en) Process for the manufacturing of polyamide
JP2005519141A (ja) 高分子量ポリエステルの連続製造方法及び該方法を実施する装置
WO2013129341A1 (ja) ポリアミドの製造方法
CN105013196B (zh) 用于制备聚酰胺的装置、原料浓缩方法、以及聚酰胺的生产设备、生产方法
US20210130547A1 (en) Process for preparing polymers
KR20160088887A (ko) 연속적인 폴리아미드화 방법-ii
KR102254364B1 (ko) 가스상 물질이 분리되는 중합체 합성용 장치 및 방법
WO2013107425A1 (zh) 尼龙66等以双组分单体为原料的尼龙连续聚合方法及设备
CN105013205B (zh) 用于制备聚酰胺的装置、减压方法以及聚酰胺的生产设备、生产方法
TW201920497A (zh) 製作極低苯胺含量之靛白溶液的方法、及對應之穩定的水性靛白溶液及製備靛藍的方法
CN109705337B (zh) 一种聚酰胺的连续合成方法及立式多阶段反应器
KR20160089393A (ko) 연속적인 폴리아미드화 방법-i
US20080051527A1 (en) Method and Device for Continuously Producing Copolyamides with Melting Points Gr Eater Than 265 C
CN204779449U (zh) 一种聚酰胺5x的生产设备
CN105085904B (zh) 一种用于制备聚酰胺5x的装置、终聚方法及聚酰胺5x的生产设备、方法
TW200531982A (en) Continuous process for production of polyamides
CN111097358B (zh) 一种聚酰胺的连续合成反应回收系统及方法
JP2007533799A (ja) ポリエステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738709

Country of ref document: EP

Kind code of ref document: A1