WO2013105588A1 - フルクトシルバリルヒスチジンオキシダーゼ製剤の製造方法 - Google Patents

フルクトシルバリルヒスチジンオキシダーゼ製剤の製造方法 Download PDF

Info

Publication number
WO2013105588A1
WO2013105588A1 PCT/JP2013/050259 JP2013050259W WO2013105588A1 WO 2013105588 A1 WO2013105588 A1 WO 2013105588A1 JP 2013050259 W JP2013050259 W JP 2013050259W WO 2013105588 A1 WO2013105588 A1 WO 2013105588A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
fvho
enzyme
melibiose
solution
Prior art date
Application number
PCT/JP2013/050259
Other languages
English (en)
French (fr)
Inventor
理恵 平尾
岸本 高英
柳谷 周作
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US14/371,288 priority Critical patent/US9994827B2/en
Publication of WO2013105588A1 publication Critical patent/WO2013105588A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0032Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin

Definitions

  • the present invention relates to a method for producing a fructosyl valyl histidine oxidase (hereinafter also referred to as FVHO) preparation, and an FVHO preparation produced by the method.
  • FVHO fructosyl valyl histidine oxidase
  • the invention also relates to formulations or sensors containing FVHO.
  • FVHO acts on fructosyl valyl histidine in the presence of oxygen to catalyze the reaction producing gluconoson, valyl histidine and hydrogen peroxide.
  • FVHO is conventionally used together with protease as a raw enzyme for a reagent for measuring hemoglobin A1c, and the enzyme alone is also used for an enzyme sensor.
  • the hemoglobin A1c value in the blood is an index for long-term blood glucose control.
  • the genus Koniochaeta As the supply source, the genus Koniochaeta, the genus Eupenicillium (Patent Document 1), the genus Phaeosferia (Patent Document 2, Non-Patent Document 1), the Emerycera genus (Patent Document 3), and the like are known.
  • the raw material enzyme used for a reagent and a sensor takes various formulation forms, such as a solution state and a dry state, according to the purpose.
  • a solution state when FVHO is used as a reagent for measuring hemoglobin A1c, it is often stored in a form that exists in a solution.
  • a hemoglobin A1c sensor when used for a hemoglobin A1c sensor, it is often stored in a dry state.
  • enzymes used in reagents and sensors are distributed as dry products.
  • the preparation in the solution state is also referred to as a solution preparation or a liquid reagent.
  • the preparation in the dry state is also referred to as a dry preparation.
  • a dried product is light and small in volume, and therefore easy to handle and transport, and since it is dry, the risk of spoilage due to microbial contamination is reduced.
  • the dissolution concentration of the enzyme can be freely adjusted according to the purpose of use, and the type of buffer solution for dissolution can be arbitrarily selected, so that it can be developed for various uses.
  • the enzyme activity can be stably maintained for a long time in a dry state rather than in a solution state.
  • a preparation in a solution state solution preparation
  • the operation is not complicated, and there is an advantage in that the possibility of contamination of the solution and contamination is reduced.
  • For liquid reagents even if the stability is poor, correct results can be obtained if calibration is performed using a reference substance for each measurement. However, since the sensor does not perform calibration, further improvement in storage stability is required. .
  • the stabilizer added to the enzyme product must not only prevent denaturation and deactivation of the enzyme protein due to drying, but also have the ability to prevent loss of activity during storage and distribution.
  • the means of making an enzyme dry is various.
  • An object of the present invention is to provide a highly stable FVHO preparation. Furthermore, the present inventors have newly added to the FVHO dry preparation in the prior art for the purpose of providing a method of using FVHO in a more preferable state in a dry state from the viewpoint of application to a sensor or the like. The composition was studied.
  • the hygroscopicity of the additive leads to deterioration of sensor performance.
  • amino acids such as sodium glutamate have a hydrophilic group such as an amino group and a carboxyl group, and are considered to be hygroscopic because these hydrophilic groups adsorb water.
  • salts it is known that salts such as calcium chloride have deliquescence.
  • the enzyme concentration at the time of measurement is diluted by the retained water, or the preparation becomes clay-like or cocoon-like and cannot be dissolved quickly, leading to a lack of reagent components at the initial stage of the reaction.
  • the amount of enzyme used for cost reduction may be kept to a minimum. In such a case, a shortage of reagent components causes variations in enzyme reaction rate, which leads to measurement accuracy. This may lead to a decline in
  • the present inventors have found a new problem related to the hygroscopicity of the dry preparation of FVHO as described above. Such problems have not been pointed out until now.
  • a method for improving the hygroscopicity of a dry preparation of FVHO has not been known so far.
  • an object of the present invention is to provide an FVHO dry preparation with low hygroscopicity.
  • this invention consists of the following structures.
  • A Phosphoric acid, casein peptone, D-glucosamine hydrochloride, melibiose, sorbose, lactose, fructose, melezitose, glucono-1,5-lactone, ribitol, sorbose
  • a reagent for measuring hemoglobin A1c comprising the FVHO dry preparation according to any one of Items 4 to 6.
  • a hemoglobin A1c sensor comprising the dried FVHO preparation according to any one of Items 4 to 6.
  • Claim 9 Item 9.
  • the stability of the FVHO preparation can be ensured, and inactivation of the enzyme can be prevented even during long-term storage.
  • the hygroscopicity of the dry preparation of FVHO can be reduced.
  • FVHO used in the present invention is an oxidase that acts on a fructosyl peptide in the presence of oxygen to produce valylhistidine, gluconoson, and hydrogen peroxide, and any oxidase is included as long as it has this action.
  • the origin of FVHO used in the present invention may be any, and may be produced by a gene recombinant.
  • the FVHO preparation refers to a preparation containing the above FVHO. Typically, it is a dry preparation or a solution preparation (liquid reagent).
  • the FVHO dry preparation refers to a preparation obtained through a step of drying the composition containing the FVHO using a drying means that can be commonly used by those skilled in the art, such as freeze drying and air drying.
  • the drying means is not particularly limited.
  • the target enzyme is precipitated from an enzyme protein-containing solution using an organic solvent such as acetone or alcohol, and this is recovered to form a dry powder.
  • air drying it is possible to prevent inactivation of the enzyme by appropriately controlling the drying temperature and time, which is preferable.
  • the production of the FVHO preparation includes a step of allowing any one or more reagents selected from the following (A) to coexist.
  • A Phosphoric acid, casein peptone, D-glucosamine hydrochloride, melibiose, sorbose, lactose, fructose, melezitose, glucono-1,5-lactone, ribitol, sorbose, and various commercially available reagents can be used.
  • the concentration of the reagent mentioned in the above (A) is not particularly limited, but in the dry preparation, the preferable lower limit is FVHO: 2: 1 by weight ratio of each reagent described in (A) above, and further Preferably it is 1: 1.
  • the upper limit is preferably 1: 2 in terms of the weight ratio of FVHO: (A) due to the risk of bringing in foreign substances.
  • the upper limit is preferably 200 mM or less, more preferably 100 mM or less, still more preferably 50 mM or less, still more preferably 30 mM or less, and even more preferably less than 20 mM because of the risk of bringing in foreign substances.
  • a preferred lower limit is 1 mM or more, more preferably 5 mM or more, from the viewpoint of improving stability.
  • the content of the reagent mentioned in the above (A) in the preparation is as it is in the case of a solution preparation, and in the case of a dry preparation, HPLC or the like is used for a solution obtained by dissolving the preparation in an appropriate amount of water. It is possible to estimate with high accuracy by performing various types of chromatography and analysis such as titration using perchloric acid / chelating reagent.
  • the FVHO preparation of the present invention can contain optional components as necessary, and the composition is not particularly limited.
  • the composition of the buffer solution is not particularly limited, but any buffer solution having a buffering ability in the range of pH 4 to 9 is preferable.
  • a buffering agent such as boric acid, Tris hydrochloric acid, potassium phosphate, ACES, BES, Bicine , Bis-Tris, CHES, EPPS, HEPES, HEPPSO, MES, MOPS, MOPSO, PIPES, POPSO, TAPS, TAPSO, TES, and Tricine.
  • buffers based on dicarboxylic acids such as phthalic acid, maleic acid, glutaric acid and the like. Among these, only 1 type may be applied and 2 or more types may be used.
  • one or more composite compositions including those other than the above may be used.
  • a chelating agent such as EDTA and / or a surfactant may be contained in the buffer as necessary.
  • concentration of these additives is not particularly limited as long as it has a buffer capacity, but the preferable upper limit is 100 mM or less, more preferably 50 mM or less. A preferred lower limit is 5 mM or more.
  • the content of the buffer in the dry powder or lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0.1 to 80% (weight). Ratio). For these, various commercially available reagents can be used.
  • the concentration of the enzyme solution to be subjected to the drying step is adjusted so that the protein concentration is preferably 5 g / L or more, more preferably 10 g / L or more, and further preferably 20 g / L or more. If the enzyme used in the drying process is too dilute, the recovery rate often decreases in the drying process, and the resulting dried product often has a shape that is difficult to handle. In addition, when the concentration is excessively high, drying may take time.
  • One of other embodiments of the present invention is a hemoglobin A1c measurement reagent containing the above FVHO preparation. Or it is a hemoglobin A1c sensor containing this formulation.
  • Another embodiment of the present invention is a hemoglobin A1c measurement method using such a hemoglobin A1c measurement reagent or a hemoglobin A1c sensor. These can be produced by including the FVHO preparation prepared by the method described above in a reagent or sensor by various known methods. And hemoglobin A1c can be measured by a well-known method using such a reagent or a sensor.
  • the improvement in stability means that after maintaining FVHO at 37 ° C. for 1 week, the residual ratio (%) of FVHO maintained is higher than when no stabilizer is added. Or at least maintained.
  • the stability was determined as follows.
  • the FVHO oxidase activity value (a) per dry product weight after drying and the dry product weight after storage at a constant temperature for a certain period of time The FVHO oxidase activity value (b) was measured, and the relative value ((b) / (a) ⁇ 100) with respect to the measured value (a) of 100 was determined. This relative value was defined as the residual rate.
  • the presence or absence of the addition of the compound was compared, and when the residual ratio increased by the addition, it was judged that the stability was improved.
  • the method for producing a dry FVHO preparation according to the present invention is characterized in that the production of the dry FVHO preparation includes a step of coexisting Bicine.
  • Bicine is one of the good buffers and is a typical buffer widely used in the biochemical field, and a commercially available product can be easily obtained.
  • the concentration of Bicine is not particularly limited, but the preferred lower limit is 2: 1 by weight ratio of FVHO: Bicine, more preferably 1: 1. In view of the risk of bringing in foreign substances, the preferable upper limit is 1: 2 in terms of the weight ratio of FVHO: Bicine.
  • the content of Bicine in the dry preparation can be obtained with high accuracy by dissolving the preparation in an appropriate amount of water or other solution and performing perchloric acid titration or titration using the chelating action of Bicine. Can be estimated.
  • the process of coexisting another substance may be further included for the purpose of stabilizing the FVHO formulation.
  • examples of such substances include, but are not limited to, casein peptone, D-glucosamine hydrochloride, melibiose, sorbose, lactose, fructose, melezitose, glucono-1,5-lactone, ribitol, sorbose, ribitol and the like.
  • melibiose, D-glucosamine hydrochloride and sorbose are preferable. More preferred is melibiose.
  • various commercially available reagents can be used.
  • the concentration of each compound to be coexistent is not particularly limited, but the preferred lower limit is 2: 1 by weight ratio of FVHO: each compound. In view of the risk of bringing in foreign substances, the preferred upper limit is 4: 3 by weight ratio of FVHO: each compound.
  • a dried preparation having good performance in both hygroscopicity and stability can be obtained by adding Bicine and melibiose.
  • the Bicine concentration is 2: 1 to 1: 2 by weight ratio of FVHO: Bicine
  • the melibiose concentration is 2: 1 to 4: 3 by weight ratio of FVHO: melibiose.
  • the Bicine concentration is 1: 1 to 1: 2 by weight ratio of FVHO: Bicine
  • the melibiose concentration is 2: 1 to 4: 3 by weight ratio of FVHO: melibiose.
  • the content of each compound in the dry preparation can be estimated with high accuracy by dissolving the preparation with an appropriate amount of a solution such as water and using means such as HPLC.
  • the FVHO dry preparation of the present invention can contain optional components as necessary, and the composition is not particularly limited.
  • the buffer solution the buffering ability of the above-mentioned Bicine may be used, but those having a buffering ability in the range of pH 4 to 9 may be appropriately added.
  • a buffering agent such as boric acid, Tris hydrochloric acid, potassium phosphate
  • good buffering agents such as ACES, BES, Bis-Tris, CHES, EPPS, HEPES, HEPPSO, MES, MOPS, MOPSO, PIPES, POPSO, TAPS, TAPSO, TES, and Tricine.
  • buffers based on dicarboxylic acids such as phthalic acid, maleic acid, glutaric acid and the like. Of these, only one type may be applied, or two or more types may be used. Furthermore, one or more composite compositions including those other than the above may be used.
  • a chelating agent such as EDTA and / or a surfactant may be contained in the buffer as necessary.
  • concentration of these additives is not particularly limited as long as it has a buffer capacity, but the preferable upper limit is 100 mM or less, more preferably 50 mM or less. A preferred lower limit is 5 mM or more.
  • the content of the buffer in the dry powder or lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0.1 to 80% (weight). Ratio). For these, various commercially available reagents can be used.
  • the enzyme solution used for the drying step is preferably adjusted to have a protein concentration of 5 g / L or more, more preferably 10 g / L or more, and even more preferably 20 g / L or more. If the enzyme used in the drying process is too dilute, the recovery rate often decreases in the drying process, and the resulting dried product often has a shape that is difficult to handle. In addition, when the concentration is excessively high, drying may take time.
  • Another embodiment of the present invention is a dry FVHO preparation characterized in that it contains Bicine.
  • the dry preparation can be produced by any of the methods described above, and can take the form of, for example, a dry powder or a lyophilized preparation.
  • a component other than FVHO may be further contained in the dry preparation, and the reagent may be used as a hemoglobin A1c measurement reagent or a hemoglobin A1c sensor equipped with the dry preparation.
  • hemoglobin A1c measurement method using such a hemoglobin A1c measurement reagent or a hemoglobin A1c sensor is also one embodiment of the present invention.
  • the hygroscopicity of a dry preparation of FVHO can be reduced.
  • the low hygroscopicity referred to in the present invention means that the FVHO freeze-dried preparation is stored for 7 hours at a humidity of 70% and 25 ° C., and then mixed with a spatula or the like, the powder becomes a clay or adsorbs to the spatula. It means not coming.
  • Table 1 shows the compositions of the activity measurement reagents used in the examples.
  • the reagents used in the examples were those purchased from Nacalai Tesque unless otherwise specified.
  • One unit refers to the amount of FVHO enzyme that produces 1 micromole of H 2 O 2 per minute under the conditions described below.
  • Procedure 1 The following reaction mixture was prepared in a light-shielding bottle and stored on ice (prepared at the time of use). 0.4mL 1.5% phenol aqueous solution (A) 0.6mL 0.5% 4-AA solution (B) 0.3 mL 500 U / mL peroxidase solution (C) 3.7 mL 50 mM MES buffer (pH 6.5) (D) • 2.5 mL and 0.5 mL (E) of the reaction mixture were placed in a test tube and pre-warmed for about 5 minutes at 37 ° C. • Add 0.1 mL enzyme solution and mix gently.
  • the weight ratio of the enzyme amount and the additive amount in the dry preparation is 2: 1.
  • filter filtration pore size; 0.2 ⁇ m
  • What added no additive was prepared for control.
  • This was freeze-dried (FDR) to completely evaporate water, and then pulverized with a spatula.
  • FDR freeze-dried
  • ⁇ Hygroscopic test> Thereafter, about 10 mg of powder was accurately weighed into a spitz roll, stored at 70% humidity, 25 ° C. for 7 hours, mixed with a spatula, and judged according to the following criteria.
  • Example 2 Examination of various buffer solutions Modification of the buffer solution composition was examined.
  • the composition and method were the same as in Example 1, and each buffer used was 50 mM and pH 6.5.
  • each buffer solution other than phosphate was used, the stability was lowered as compared with the phosphate buffer solution (Table 3). This surprisingly indicates that phosphoric acid had a stabilizing effect.
  • Example 3 Examination of phosphate concentration causing turbidity when mixed with blood sample
  • the phosphate buffer solution found to have a stabilizing effect in Example 2 has a wide buffer range and can be easily obtained at low cost. It is generally known that when phosphate and calcium coexist, calcium phosphate is formed and turbidity occurs. Since blood contains calcium, if phosphoric acid is included in the powder, turbidity may occur and the absorbance may not be measured correctly. Therefore, the mixed concentration of phosphate buffer and calcium was examined, and it was verified whether turbidity was generated. The composition and method were in accordance with Example 1.
  • the maximum calcium concentration in blood was 10 mg / dL, and this and a solution containing a phosphate buffer solution of each concentration were mixed to measure turbidity.
  • a solution containing (1) a 20 mg / dL calcium chloride aqueous solution and (2) 60, 50, 40, 30, 20, and 10 mM potassium phosphate aqueous solution pH 6.5 was prepared.
  • (1) and (2) were mixed one-on-one, and turbidity (OD660 nm) was measured.
  • the use of phosphoric acid which is usually not preferred for liquid reagents, makes it possible for the FVHO solution preparation of the present invention to be surprisingly free from problems such as turbidity and to improve stability. It was. In the case of a sensor, since the current value is directly detected, some turbidity may be generated.
  • Example 4 Confirmation of stabilizer effect using buffer other than phosphate buffer
  • Table 2 Effective only when coexisting with phosphate buffer or buffer? It was verified whether it was effective regardless of the liquid composition.
  • the method is in accordance with Example 2.
  • the buffer used Bicine having the highest residual activity rate in Example 24 and citric acid having the lowest residual activity were used.
  • the stability improving effect was similarly observed in the additive shown in Example 2 except for the phosphate buffer (Table 5).
  • the weight ratio of the amount of enzyme and the amount of additive in the dry preparation is 2: 1 and 4: 1, respectively.
  • the concentration of other various additives is 50% of the enzyme concentration (final concentration 20 mg / mL).
  • the weight ratio of the enzyme amount to the additive amount in the dry preparation is 2: 1.
  • Example 6 Optimization of melibiose and bicine concentrations
  • melibiose and bicine concentrations were optimized. Preparation of the dried preparation was carried out in the same manner as in Example 1.
  • the concentration of melibiose was added at three levels: 75% by weight of enzyme concentration (final concentration 30 mg / mL), 50% by weight (final concentration 20 mg / mL) and 25% by weight (final concentration 10 mg / mL).
  • the weight ratio of the amount of enzyme and the amount of additive in the dry preparation is 4: 3, 4: 2 (2: 1) and 4: 1, respectively).
  • % Fluor concentration 80 mg / mL
  • weight ratio 100% final concentration 40 mg / mL
  • weight ratio 50% final concentration 20 mg / mL.
  • the weight ratio of the enzyme amount to the additive amount in the dry preparation is 1: 2, 1: 1, and 2: 1.
  • the stability of the FVHO preparation can be improved, and the hygroscopicity of the FVHO lyophilized preparation can be reduced to improve the stability.
  • These preparations can also be used to stabilize enzyme sensors based on electrochemical principles. Therefore, it can contribute to the further spread of clinical tests based on preventive medicine.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】安定性の高いFVHO製剤、吸湿性の低いFVHO乾燥製剤を提供する。 【解決手段】リン酸、カゼインペプトン、D-グルコサミン塩酸塩、メリビオース、ソルボース、ラクトース、フルクトース、メレジトース、グルコノ-1,5-ラクトン、リビトール、ソルボースから選ばれるいずれか1つ以上を共存させる工程を含むことを特徴とするFVHO製剤の製造方法、および、Bicineを共存させる工程を含むことを特徴とするFVHO乾燥製剤の製造方法。

Description

フルクトシルバリルヒスチジンオキシダーゼ製剤の製造方法
本発明は、フルクトシルバリルヒスチジンオキシダーゼ(以下FVHOとも記載する。)製剤の製造方法、および、当該方法で製造したFVHO製剤に関する。本発明は、また、FVHOを含有する製剤またはセンサに関する。
FVHOは、酸素の存在下でフルクトシルバリルヒスチジンに作用し、グルコノソン、バリルヒスチジンおよび過酸化水素を生成する反応を触媒する。FVHOは、従来からヘモグロビンA1c測定用試薬の原料酵素としてプロテアーゼと共に使用されている他、本酵素単独で酵素センサにも用いられる。血液中のヘモグロビンA1c値は長期血糖コントロールの指標となる。その給源としては、コニオカエタ属、ユーペニシリウム属(特許文献1)、ファエオスフェリア属(特許文献2、非特許文献1)、エメリセラ属(特許文献3)等が知られている。
一般に、試薬やセンサに用いられる原料酵素は、その目的により溶液状態や乾燥状態など種々の製剤形態をとる。例えば、FVHOは、ヘモグロビンA1c測定用試薬に用いられる場合は、溶液中に存在する形態で保存されることが多い。また、ヘモグロビンA1cセンサに用いられる場合では、乾燥状態で保存されることが多い。また、試薬やセンサに用いられる酵素は、多くの場合、乾燥状態の製品として流通している。(以下、溶液状態の製剤を溶液製剤または液状試薬とも表す。また、乾燥状態の製剤を乾燥製剤とも表す。)
乾燥状態の製品(乾燥製剤)は、製品が軽く体積が小さいため、保管や輸送といった取り扱いが容易であり、乾燥しているため微生物汚染による腐敗の心配が軽減される。また、酵素の溶解濃度を使用目的に応じて自由に調整でき、溶解するための緩衝液の種類も任意に選定できるため、様々な用途に展開できる。さらに、一般的に乾燥状態である方が、溶液状態であるよりも酵素活性が安定的に長期間保持できる。
一方、溶液状態の製剤(溶液製剤)には、使用時に溶解する必要がないため、操作が煩雑にならず、溶解液の取り違えや汚染の可能性が低減する長所がある。
また、液状試薬では、安定性が悪くとも測定のたびに基準物質を用いてキャリブレーションすれば正しい結果が得られるが、センサではキャリブレーションを行わないため、さらなる保存安定性の向上が必要である。
いずれの使用形態にしても、酵素タンパク質を保護し変性失活を防ぐための安定化剤の添加が不可欠である。酵素製品に添加する安定化剤は、単に製品化時、乾燥による酵素タンパク質の変性失活を防止するだけでなく、保存中や流通過程での活性損失を防止する能力も具備する必要がある。
また、乾燥製剤を製造する場合、酵素を乾燥状態にする手段は様々である。例えば、酵素タンパク質を含む溶液中からアセトンやアルコール等の有機溶媒によって目的酵素を析出させ、これを回収して乾燥粉末とする方法、酵素を含む溶液を噴霧し熱風を当てて乾燥させるスプレードライ法、酵素を含む溶液を凍結させ、減圧して乾燥するフリーズドライ(凍結乾燥)法などがある。
酵素を乾燥させた場合、タンパク質変性による活性の損失や再溶解時の濁質生成等の問題が発生することがある。そのような場合は、酵素タンパク質を保護し変性失活を防ぐための安定化剤が添加されることが多い。
従来、FVHO活性を有する酵素の凍結乾燥製剤を安定化する方法については、エチレンジアミン4酢酸およびグルタミン酸ナトリウム、または、塩化カルシウムおよびトレハロースを該酵素と共存させて凍結乾燥させる技術が知られていた(特許文献4参照)。
また、FVHOの溶液製剤を安定化する方法について、エチレンジアミン4酢酸を添加し、さらに硫酸アンモニウム、キシリトール、グリシンより選ばれる1種以上をFVHOと共存させて凍結乾燥させる技術が知られていた(特許文献5参照)。
特許第4231668号公報 国際公開2010/041419号パンフレット 国際公開2010/041715号パンフレット 特許4557571号公報 特許第4798600号公報
Biotecnology and Bioengineering,Vol.106,358-366(2010)
本発明は、安定性の高いFVHO製剤を提供することを目的とする。
さらに、本発明者らは、センサ等への適用という観点から、より好ましい状態で、乾燥状態でFVHOを使用する方法を提供することを目的に、改めて先行技術においてFVHO乾燥製剤に添加されている組成物を検討した。
添加物の吸湿性は、センサ性能の劣化につながる。具体的には、グルタミン酸ナトリウムなどのアミノ酸は、アミノ基やカルボキシル基などの親水基を有し、それらの親水基が水を吸着するため吸湿性があると考えられる。また、塩類についても、塩化カルシウムなどの塩類に潮解性があることが知られている。
例えば、センサ表面上に酵素製剤が凍結乾燥で装着され、測定時に、微量の液体試料と酵素製剤が混合され溶解することにより反応が開始するタイプのセンサは、酵素を含む乾燥製剤が吸湿すると、保持された水分によって測定時の酵素濃度が希釈されたり、製剤が粘土状や飴状になり速やかに溶解されなくなって反応初期における試薬成分の不足をまねいたりする。最近のセンサは、コストダウンのため用いる酵素の量が最小限にとどめられている場合があり、このような場合、わずかな試薬成分の不足が、酵素反応速度のばらつきを招き、それが測定精度の低下に結びつく可能性が考えられる。
本発明者らは、上述のような、FVHOの乾燥製剤の吸湿性に関する問題点を新たに見出した。このような問題点は今まで指摘されていなかった。また、FVHOの乾燥製剤の吸湿性を改善する方法も今まで知られていなかった。
本発明は、かかる課題を背景になされたものである。すなわち、本発明の目的は、吸湿性の低いFVHO乾燥製剤を提供することにある。
本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は、以下の構成からなる。
[項1]
Bicineを共存させる工程を含むことを特徴とするFVHO乾燥製剤の製造方法。
[項2]
メリビオースを共存させる工程を含む、項1に記載のFVHO乾燥製剤の製造方法。
[項3]
以下の(A)から選ばれるいずれか1つ以上を共存させる工程を含むことを特徴とするFVHO製剤の製造方法。
(A)リン酸、カゼインペプトン、D-グルコサミン塩酸塩、メリビオース、ソルボース、ラクトース、フルクトース、メレジトース、グルコノ-1,5-ラクトン、リビトール、ソルボース
[項4]
Bicineを含有することを特徴とするFVHO乾燥製剤。
[項5]
メリビオースを含有する、項3に記載のFVHO乾燥製剤。
[項6]
以下の(A)から選ばれるいずれか1つ以上を含有する、FVHO製剤。
(A)リン酸、カゼインペプトン、D-グルコサミン塩酸塩、メリビオース、ソルボース、ラクトース、フルクトース、メレジトース、グルコノ-1,5-ラクトン、リビトール、ソルボース
[項7]
項4から6のいずれかに記載のFVHO乾燥製剤を含む、ヘモグロビンA1c測定試薬。
[項8]
項4から6のいずれかに記載のFVHO乾燥製剤を含む、ヘモグロビンA1cセンサ。
[項9]
項7または項8に記載のヘモグロビンA1c測定試薬またはヘモグロビンA1cセンサを用いる、ヘモグロビンA1c測定方法。
本発明により、FVHO製剤の安定性を確保し、長期間の保存においても酵素の失活を防止することができる。
また、本発明により、FVHOの乾燥製剤の吸湿性を低下させることができる。
以下、本発明を詳述する。本発明に用いられるFVHOは、酸素存在下でフルクトシルペプチドに作用し、バリルヒスチジン、グルコノソン、過酸化水素を生成するオキシダーゼであり、この作用を有する酵素であれば、如何なるオキシダーゼも含まれる。本発明に用いられるFVHOの起源は如何なるものであってもよく、遺伝子組み換え体によって製造されたものでもよい。
本発明において、FVHO製剤とは、上記FVHO含む製剤をいう。典型的には乾燥製剤または溶液製剤(液状試薬)である。
本発明において、FVHO乾燥製剤とは、上記FVHOを含む組成物を凍結乾燥や風乾など当業者が通常用いうる乾燥手段を用いて乾燥する工程を経て得られた製剤をいう。乾燥手段は特に限定されないが、例えば、酵素タンパク質を含む溶液中からアセトンやアルコール等の有機溶媒によって目的酵素を析出させ、これを回収して乾燥粉末とする方法、酵素を含む溶液を噴霧し熱風を当てて乾燥させるスプレードライ法、酵素を含む溶液を凍結させ、減圧して乾燥するフリーズドライ(凍結乾燥)法などがある。
凍結乾燥は酵素の失活を極力防止する観点から好ましい。また、風乾の場合は乾燥温度と時間を適宜コントロールすることで酵素の失活を防止することが可能であり好ましい。
(実施形態1)
本発明のFVHO製剤の製造方法においては、FVHO製剤の製造にあたり、以下の(A)から選ばれるいずれか1つ以上の試薬を共存させる工程を含むことを特徴とする。
(A)リン酸、カゼインペプトン、D-グルコサミン塩酸塩、メリビオース、ソルボース、ラクトース、フルクトース、メレジトース、グルコノ-1,5-ラクトン、リビトール、ソルボース
これらは、種々の市販の試薬を用いることができる。
上記(A)で挙げられた試薬の添加目的は、FVHO製剤の安定性を向上させることであるから、その目的を達成し得る範囲で適宜添加量を設定できる。したがって上記(A)で挙げられた試薬の濃度は特に限定されるものではないが、乾燥製剤においては、好ましい下限は FVHO:上記(A)に記載の各試薬 の重量比で2:1、更に好ましくは1:1である。夾雑物の持込の危険性から、好ましい上限はFVHO:(A)の重量比で1:2である。溶液製剤においては、夾雑物の持込の危険性などから、好ましい上限は200mM以下、更に好ましくは100mM以下、更に好ましくは50mM以下、更に好ましくは30mM以下、更に好ましくは20mM未満である。好ましい下限は安定性向上の観点から1mM以上、更に好ましくは5mM以上である。
製剤中の上記(A)で挙げられた試薬の含有量は、溶液製剤の場合はそのまま、乾燥製剤の場合は当該製剤を適当な量の水などの溶液で溶解した溶液に対して、HPLCなどの各種クロマトグラフィーや、過塩素酸・キレート試薬などを用いる滴定などの分析を行うことなどにより、高い精度で推定することができる。
本発明のFVHO製剤には、上記のほかに必要に応じて任意の成分を含有させることができ、その組成は特に限定されない。
緩衝液としては、組成は特に限定しないが、好ましくはpH4~9の範囲で緩衝能を有するものであればよく例えばホウ酸、トリス塩酸、リン酸カリウム等の緩衝剤や、ACES、BES、Bicine、Bis-Tris,CHES、EPPS、HEPES、HEPPSO、MES、MOPS、MOPSO、PIPES、POPSO、TAPS、TAPSO、TES、Tricineといったグッド緩衝剤が挙げられる。また、フタル酸、マレイン酸、グルタル酸などのような、ジカルボン酸をベースとした緩衝剤も挙げることができる。これらのうち1種のみを適用してもよいし、2種以上を用いてもよい。更には上記以外を含む1種以上の複合組成であってもよい。
また、必要に応じて緩衝液中にEDTA等のキレート剤、および、または、界面活性剤を含んでいてもよい。また、これらの添加濃度としては、緩衝能を持つ範囲であれば特に限定されないが、好ましい上限は100mM以下、より好ましくは50mM以下である。好ましい下限は5mM以上である。乾燥粉末あるいは凍結乾燥物などの中においては緩衝剤の含有量は、特に限定されるものではないが、好ましくは0.1%(重量比)以上、特に好ましくは0.1~80%(重量比)の範囲で使用される。
これらは、種々の市販の試薬を用いることができる。
乾燥製剤を作製する場合、乾燥工程に供する酵素液は、好ましくはタンパク質濃度として5g/L以上、より好ましくは10g/L以上、更に好ましくは20g/L以上であるように濃度を調整する。乾燥工程に供する酵素があまりに希薄な場合、乾燥工程で回収率が低下することが多く、得られた乾燥製品が取り扱いにくい形状となることが多い。また、過度に高濃度である場合、乾燥に時間がかかることがある。
本発明の他の実施形態の一つは、上記のFVHO製剤を含むヘモグロビンA1c測定試薬である。あるいは、該製剤を含むヘモグロビンA1cセンサである。また、本発明の他の実施形態の一つは、そのようなヘモグロビンA1c測定試薬またはヘモグロビンA1cセンサを用いるヘモグロビンA1c測定方法である。
これらは、上記で説明した方法により作製したFVHO製剤を、種々の公知の方法で試薬またはセンサに含ませることで製造できる。そして、そのような試薬またはセンサを用いて、公知の方法により、ヘモグロビンA1cを測定することができる。
本発明でいう安定性の向上とは、FVHOを37℃で1週間保存した後、維持されているFVHOの残存率(%)が安定化剤を何も添加しない場合に比して増大するか、もしくは少なくとも維持されることを意味する。
具体的に、安定性が向上しているかどうかの判断は、次のように行った。
後述のFVHO酵素活性の測定方法に記載の活性測定法において、乾燥化を行った後の乾燥品重量あたりのFVHOオキシダーゼ活性値(a)と、一定温度で一定期間保存した後の乾燥品重量あたりのFVHOオキシダーゼ活性値(b)を測定し、測定値(a)を100とした場合に対する相対値((b)/(a)×100)を求めた。この相対値を残存率とした。そして、該化合物の添加の有無を比較して、添加により残存率が増大した場合、安定性が向上したと判断した。
(実施形態2)
本発明のFVHO乾燥製剤の製造方法においては、FVHO乾燥製剤の製造にあたり、Bicineを共存させる工程を含むことを特徴とする。Bicineはグッド緩衝剤の一つであって生化学分野で広く使用されている代表的な緩衝剤であり、市販品を容易に入手することができる。
Bicineの添加目的は、FVHO乾燥製剤の吸湿性を抑えることであるから、その目的を達成し得る範囲で適宜添加量を設定できる。したがってBicineの濃度は特に限定されるものではないが、好ましい下限はFVHO:Bicineの重量比で2:1、更に好ましくは1:1である。夾雑物の持込の危険性から、好ましい上限はFVHO:Bicineの重量比で1:2である。
乾燥製剤中のBicineの含有量は、当該製剤を適当な量の水などの溶液で溶解し、過塩素酸滴定や、Bicineの持つキレート作用を利用した滴定などを行うことなどにより、高い精度で推定することができる。
本発明のFVHO乾燥製剤の製造方法においては、FVHO製剤の安定化などの目的で、さらに、ほかの物質を共存させる工程を含んでいてもよい。そのような物質は特に限定されないが、カゼインペプトン、D-グルコサミン塩酸塩、メリビオース、ソルボース、ラクトース、フルクトース、メレジトース、グルコノ-1,5-ラクトン、リビトール、ソルボース、リビトールなどを例示できる。中でも好ましくはメリビオース、D-グルコサミン塩酸塩、ソルボースである。さらに好ましくはメリビオースである。これらは、種々の市販の試薬を用いることができる。
これらの化合物は、安定化の目的を達成し得る範囲で適宜添加量を設定できる。したがってこれらの共存させる各化合物の濃度は特に限定されるものではないが、好ましい下限はFVHO:各化合物の重量比で2:1である。夾雑物の持込の危険性から、好ましい上限はFVHO:各化合物の重量比で4:3である。
本発明のFVHO乾燥製剤の製造方法においては、Bicineとメリビオースとを添加することにより、吸湿性と安定性の両方について良好な性能を有する乾燥製剤を得ることができる。
好ましくは、Bicine濃度がFVHO:Bicineの重量比で2:1~1:2、かつ、メリビオース濃度がFVHO:メリビオースの重量比で2:1~4:3である。更に好ましくは、Bicine濃度がFVHO:Bicineの重量比で1:1~1:2、かつ、メリビオース濃度がFVHO:メリビオースの重量比で2:1~4:3である。
乾燥製剤中の各化合物の含有量は、当該製剤を適当な量の水などの溶液で溶解し、HPLCなどの手段により、高い精度で推定することができる。
本発明のFVHO乾燥製剤には、上記のほかに必要に応じて任意の成分を含有させることができ、その組成は特に限定されない。
緩衝液としては、上記のBicineの緩衝能を利用してもよいが、pH4~9の範囲で緩衝能を有するものを適宜加えてよく、例えばホウ酸、トリス塩酸、リン酸カリウム等の緩衝剤や、ACES、BES、Bis-Tris,CHES、EPPS、HEPES、HEPPSO、MES、MOPS、MOPSO、PIPES、POPSO、TAPS、TAPSO、TES、Tricineといったグッド緩衝剤が挙げられる。また、フタル酸、マレイン酸、グルタル酸などのような、ジカルボン酸をベースとした緩衝剤も挙げることができる。これらのうち1種のみを適用してもよいし、2種以上を用いてもよい。更には上記以外を含む1種以上の複合組成であってもよい。
また、必要に応じて緩衝液中にEDTA等のキレート剤、および、または、界面活性剤を含んでいてもよい。また、これらの添加濃度としては、緩衝能を持つ範囲であれば特に限定されないが、好ましい上限は100mM以下、より好ましくは50mM以下である。好ましい下限は5mM以上である。乾燥粉末あるいは凍結乾燥物などの中においては緩衝剤の含有量は、特に限定されるものではないが、好ましくは0.1%(重量比)以上、特に好ましくは0.1~80%(重量比)の範囲で使用される。
これらは、種々の市販の試薬を用いることができる。
乾燥工程に供する酵素液は、好ましくはタンパク質濃度として5g/L以上、より好ましくは10g/L以上、更に好ましくは20g/L以上であるように濃度を調整する。乾燥工程に供する酵素があまりに希薄な場合、乾燥工程で回収率が低下することが多く、得られた乾燥製品が取り扱いにくい形状となることが多い。また、過度に高濃度である場合、乾燥に時間がかかることがある。
本発明の他の実施形態の一つは、Bicineを含有することを特徴とするFVHO乾燥製剤である。該乾燥製剤は、上記のいずれかに記載の方法により製造することができ、たとえば乾燥粉末や凍結乾燥製剤のような形態をとることができる。
本発明の他の実施形態として、上記乾燥製剤にさらにFVHO以外の成分を含有させ、ヘモグロビンA1c測定試薬としてもよいし、該乾燥製剤を搭載したヘモグロビンA1cセンサとしてもよい。
さらには、そのようなヘモグロビンA1c測定試薬またはヘモグロビンA1cセンサを用いるヘモグロビンA1c測定方法も、本発明の実施形態の1つである。
本発明により、FVHOの乾燥製剤の吸湿性を低下させることができる。
本発明でいう吸湿性の低さとは、FVHO凍結乾燥製剤を湿度70%、25℃で7時間保存した後、スパチュラ等で粉末を混ぜたときに、粉末が粘土状になったり、スパチュラに吸着してこないことをいう。
以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。表1に実施例において使用した活性測定試薬の組成を示した。なお、実施例において使用した試薬は特記しない限り、ナカライテスク社より購入したものを用いた。
Figure JPOXMLDOC01-appb-T000001
 
[実施例におけるFVHOの活性測定条件]
<測定原理>
フルクトシルバリルヒスチジン+O→L-バリルヒスチジン+グルコノソン+H
2H+4-AA+フェノール→Quinoneimine色素+4H
FVHOの触媒する反応により生成した過酸化水素(H)2分子、4-アミノアンチピリン(4-AA)、およびフェノールが溶液中に共存するペルオキシダーゼの触媒する反応によって酸化縮合し、Quinoneimine色素が生じる。この色素の存在は、500nmにおける分光光度法により測定した。
<単位の定義>
1単位は、以下に記載の条件下で1分間にHを1マイクロモル生成させるFVHOの酵素量をいう。
<方法>
試薬の調製
A.0.5%(w/v)4-AA溶液
B.1.5%(w/v)フェノール溶液
C. 500U/mLペルオキシダーゼ(東洋紡績製、製品コード:PEO-301)溶液
D.50mM MES緩衝液(pH6.5)
E.1.0mg/mLフルクトシルバリルヒスチジン水溶液 (用時調製)
F. 酵素希釈液:0.1% TritonX-100を含む50mM リン酸カリウム緩衝液(pH6.5)
G. 粉末溶解液:50mM リン酸カリウム緩衝液(pH6.5)
手順
1.遮光瓶に以下の反応混合物を調製し、氷上で貯蔵した(用時調製)。
0.4mL 1.5%フェノール水溶液(A)
0.6mL 0.5%4-AA溶液 (B)
0.3mL 500U/mLペルオキシダーゼ溶液(C)
3.7mL 50mM MES緩衝液(pH6.5)(D)
・反応混合物2.5mLと0.5mL(E)を試験管に入れ、37℃で約5分間予備加温した。
・ 0.1mLの酵素溶液を加え、穏やかに混合した。
・ 37℃に維持しながら500nmでの吸光度(水対照)の増加を2.5分間記録し、1分から2.5分までの1分間当たりのΔODを計算した(ΔODtest)。
同時に、酵素溶液に代えて酵素希釈液(F)を加えることを除いては同一の方法を繰り返し、ブランク(ΔODblank)を測定した。
アッセイの直前に氷冷した粉末溶解液(G)で酵素粉末を溶解し、酵素希釈液(F)で0.5-0.1U/mLに希釈した。
<計算>
活性は以下の式を用いて計算する:
U/mL={ΔOD/min(ΔODtest-ΔODblank)×Vt×df}/(13.3×1/2×1.0×Vs)
U/mg=(U/mL)×1/C
Vt:総体積(3.1mL)
Vs:サンプル体積(0.1mL)
13.3:上記測定条件でのQuinoneimine色素のミリモル分子吸光係数(cm/マイクロモル)
1/2:酵素反応で生成したHの1分子から形成するQuinoneimine色素は1/2分子であることによる係数
1.0:光路長(cm)
df:希釈係数
C:溶解時の酵素濃度(c mg/mL)
[実施例1]各種添加剤の検討(1)
<乾燥製剤の調製>
まず、50mM、pH6.5のリン酸緩衝液をベースに、FVOHおよび各種添加剤を含有する溶液を作製した。
FVHOは、東洋紡績製:製品コードFPO-301を使用し、A280(280nmにおける吸光度)=40になるように調整した。
各種添加剤の濃度は酵素濃度(A280=1を1mg/mLとする)に対する割合で計算した。各種添加剤は酵素濃度の50%濃度(重量比)で添加した。具体的には、酵素濃度のA280=40なので、終濃度20mg/mLになるように各種添加剤を添加した。(この場合、乾燥製剤における酵素量と添加剤量の重量比は2:1となる。)
FVOHおよび各種添加剤を添加後、フィルターろ過(ポアサイズ;0.2μm)し、これらを正確に2mLずつ、バイアルに分取した。また、コントロールには何も添加剤を加えていないものを用意した。これを凍結真空乾燥(FDR)して、水分を完全に蒸発させた後、スパチュラで粉砕して粉末化した。
<吸湿性試験>
その後、約10mgの粉末をスピッツロールに正確に計量して入れ、湿度70%、25度、7時間保存した後、スパチュラで混ぜ、以下の基準で判定した。
++;吸湿前と変わらない形状
+;吸着前と同じではないが、粘土状にならず、スパチュラにも吸着しない
-;粘土状になるまたは、スパチュラに吸着する
<安定性試験>
約10mgの粉末をスピッツロールに正確に計量し、(1)直ちにFVHO活性測定(このときの活性値を(a)とする。)、(2)37℃で1週間保存してからFVHO活性測定(この時の活性値を(b)とする。)、を行い粉末重量あたりの活性を計算した。活性残存率は、測定値(a)を100%とした場合に対する相対値((b)/(a)×100)を求め、この相対値を残存率とした。
結果を表2に示す。安定性に関しては、何も添加しないものに比べてカゼインペプトン、D-グルコサミン塩酸塩、メリビオース、ソルボース、ラクトース、フルクトース、メレジトース、グルコノ-1,5-ラクトン、リビトール、ソルボースを添加すると残存活性率が向上した。中でも、メリビオースが最も残存活性率が高かった。一方、吸湿性試験の結果は、上記のほとんどの添加剤で形状の悪化が見られた。
Figure JPOXMLDOC01-appb-T000002
 
[実施例2]各種緩衝液の検討
緩衝液組成の変更を検討した。組成および方法は実施例1に準じ、各緩衝液は50mM、pH6.5のものを用いた。その結果、リン酸以外の各緩衝液を用いた場合、リン酸緩衝液に比べて安定性が低下した(表3)。このことは、意外にも、リン酸に安定化効果があったことを示している。
Figure JPOXMLDOC01-appb-T000003
 
[実施例3]血液試料と混合時に濁質が生じるリン酸濃度の検討
実施例2で安定化効果があることが判明したリン酸緩衝液は、緩衝域も広く、安価で容易に入手できるが、リン酸とカルシウムが共存するとリン酸カルシウムが形成され、濁りが生じることが一般的に知られている。血液中にはカルシウムが含まれるため、粉末にリン酸を含むと、濁りが生じて正しく吸光度が測定できない恐れがある。そこで、リン酸緩衝液とカルシウムとの混合濃度を検討し、濁質が生じるか否かを検証した。
組成および方法は実施例1に準じた。血液中のカルシウム濃度は最大10mg/dLであり、これと各濃度のリン酸緩衝液を含む溶液を混合して濁度を測定した。具体的には、(1)20mg/dLの塩化カルシウム水溶液と(2)60、50、40、30、20、10mMのリン酸カリウム水溶液pH6.5を含む溶液を用意した。次に、(1)と(2)をそれぞれ1対1で混合し、濁度(OD660nm)を測定した。
その結果、リン酸の終濃度20mM未満であれば、濁度は検出限界以下であった(表4)。よって、粉末を溶解したときにリン酸緩衝液終濃度が20mM未満になるように添加すれば問題ない。FVHOを含むヘモグロビンA1c測定液状試薬の場合は、実用上、汎用の自動分析機に適用するケース等においては、試料は十倍から数十倍程度に希釈されるため、実質的には、リン酸の添加量が上限200mM程度、好ましくは100mM程度、さらに好ましくは50mM程度であっても問題ない。つまり、液状試薬では通常好ましくないとされているリン酸を用いることによって、本発明のFVHO溶液製剤は、意外にも濁りの発生などの問題点がなく、しかも、安定性が向上することがわかった。
なお、センサであれば電流値を直接検出するので、多少の濁り発生は差し支えない。
Figure JPOXMLDOC01-appb-T000004
 
[実施例4]リン酸緩衝液以外の緩衝液を用いた安定化剤効果の確認
次に、表2で示した安定化剤はリン酸緩衝液と共存して初めて効果があるのか、それとも緩衝液組成を問わず効果があるのかを検証した。方法は実施例2に準じる。使用した緩衝液は実施例24で残存活性率が最も高かったBicineと最も低かったクエン酸を用いている。
その結果、リン酸緩衝液以外でも同様に実施例2で示した添加剤に安定性向上効果が見られた(表5)。
Figure JPOXMLDOC01-appb-T000005
 
[実施例5]各種添加剤の検討(2)
次に、実施例2で最も残存活性率の高かったメリビオースを共存させた状態での吸湿後形状を改善するために、メリビオースと組み合わせる添加剤を検討した。
乾燥製剤の作製は実施例1と同様に行った。FVOHおよび各種添加剤を含有する溶液の作製において、FVHOは、東洋紡績製:製品コードFPO-301を使用し、A280(280nmにおける吸光度)=40になるように調整した。メリビオースの濃度は酵素濃度の重量比50%(終濃度20mg/mL)および重量比25%(終濃度10mg/mL)の2水準で添加した。(この場合、乾燥製剤における酵素量と添加剤量の重量比はそれぞれ2:1、4:1となる。)また、その他の各種添加剤の濃度は酵素濃度の50%(終濃度20mg/mL)とした。(この場合、乾燥製剤における酵素量と添加剤量の重量比は2:1となる。)添加後、実施例1と同様の手順で粉末化を行った。
結果を表6に示す。吸湿性に関しては、メリビオース濃度を低下させ、かつ、L-オルニチン塩酸塩、Bicine、グリシルグリシン、カゼインペプトン、ポリビニルピロリドン25からなる群のうちいずれかを添加した場合に改善効果が見られ、特にBicineを加えると、良好であった。一方、メリビオース濃度を低下させると安定性の低下が見られた。
Figure JPOXMLDOC01-appb-T000006
 
[実施例6]メリビオース及びBicine濃度の至適化
次に、メリビオース濃度、Bicine濃度の至適化を行った。
乾燥製剤の作製は実施例1と同様に行った。FVOHおよび各種添加剤を含有する溶液の作製において、FVHOは、東洋紡績製:製品コードFPO-301を使用し、A280(280nmにおける吸光度)=40になるように調整した。メリビオースの濃度は酵素濃度の重量比75%(終濃度30mg/mL)、重量比50%(終濃度20mg/mL)および重量比25%(終濃度10mg/mL)の3水準で添加した。(この場合、乾燥製剤における酵素量と添加剤量の重量比はそれぞれ4:3、4:2(2:1)および4:1となる。)また、Bicineの濃度は酵素濃度の重量比200%(終濃度80mg/mL)、重量比100%(終濃度40mg/mL)および重量比50%(終濃度20mg/mL)の3水準とした。(この場合、乾燥製剤における酵素量と添加剤量の重量比は1:2、1:1および2:1となる。)添加後、実施例1と同様の手順で粉末化を行った。
結果を表7に示す。メリビオース濃度、Bicine濃度を共に向上させると、安定性も確保したまま、吸湿性も改善されることがわかった。
Bicineの添加量については、FVHO:Bicineの重量比で2:1~1:2の範囲で添加した場合、さらに好ましくは1:1~1:2の範囲で添加した場合、吸湿性が改善されることが確認できた。
このときメリビオースの添加量を、FVHO:メリビオースの重量比で2:1~4:3の範囲で添加した場合、良好な安定性を確保できることが確認できた。
Figure JPOXMLDOC01-appb-T000007
 
 本発明により、FVHO製剤の安定性を向上させることができる他、FVHO凍結乾燥製剤の吸湿性を低下させ、安定性を向上させることができる。これらの製剤は、電気化学的な原理に基づいた酵素センサの安定化にも用いることができる。したがって、予防医学に基づく臨床検査の更なる普及に貢献することができる。
 

Claims (9)

  1. Bicineを共存させる工程を含むことを特徴とするフルクトシルバリルヒスチジンオキシダーゼ乾燥製剤の製造方法。
  2. メリビオースを共存させる工程を含む、請求項1に記載のフルクトシルバリルヒスチジンオキシダーゼ乾燥製剤の製造方法。
  3. 以下の(A)から選ばれるいずれか1つ以上を共存させる工程を含むことを特徴とするフルクトシルバリルヒスチジンオキシダーゼ製剤の製造方法。
    (A)リン酸、カゼインペプトン、D-グルコサミン塩酸塩、メリビオース、ソルボース、ラクトース、フルクトース、メレジトース、グルコノ-1,5-ラクトン、リビトール、ソルボース
  4. Bicineを含有することを特徴とするフルクトシルバリルヒスチジンオキシダーゼ乾燥製剤。
  5. メリビオースを含有する、請求項3に記載のフルクトシルバリルヒスチジンオキシダーゼ乾燥製剤。
  6. 以下の(A)から選ばれるいずれか1つ以上を含有する、フルクトシルバリルヒスチジンオキシダーゼ製剤。
    (A)リン酸、カゼインペプトン、D-グルコサミン塩酸塩、メリビオース、ソルボース、ラクトース、フルクトース、メレジトース、グルコノ-1,5-ラクトン、リビトール、ソルボース
  7. 請求項4から6のいずれかに記載のフルクトシルバリルヒスチジンオキシダーゼ乾燥製剤を含む、ヘモグロビンA1c測定試薬。
  8. 請求項4から6のいずれかに記載のフルクトシルバリルヒスチジンオキシダーゼ乾燥製剤を含む、ヘモグロビンA1cセンサ。
  9. 請求項7または請求項8に記載のヘモグロビンA1c測定試薬またはヘモグロビンA1cセンサを用いる、ヘモグロビンA1c測定方法。
     
PCT/JP2013/050259 2012-01-13 2013-01-10 フルクトシルバリルヒスチジンオキシダーゼ製剤の製造方法 WO2013105588A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/371,288 US9994827B2 (en) 2012-01-13 2013-01-10 Method for producing fructosyl valyl histidine oxidase preparation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-004814 2012-01-13
JP2012004813 2012-01-13
JP2012004814 2012-01-13
JP2012-004813 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105588A1 true WO2013105588A1 (ja) 2013-07-18

Family

ID=48781532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050259 WO2013105588A1 (ja) 2012-01-13 2013-01-10 フルクトシルバリルヒスチジンオキシダーゼ製剤の製造方法

Country Status (3)

Country Link
US (1) US9994827B2 (ja)
JP (1) JP6155647B2 (ja)
WO (1) WO2013105588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520633A (ja) * 2017-05-19 2020-07-16 ジェン−プローブ・インコーポレーテッド フラップエンドヌクレアーゼを含む乾燥組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6764219B2 (ja) * 2014-12-26 2020-09-30 キッコーマン株式会社 グッド緩衝液に対して安定なアマドリアーゼ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245315A (ja) * 2004-03-04 2005-09-15 Kikkoman Corp フルクトシルペプチドオキシダ−ゼの安定化方法
JP2005261383A (ja) * 2004-03-22 2005-09-29 Asahi Kasei Pharma Kk キャリブレーション方法
JP2006325547A (ja) * 2005-05-30 2006-12-07 Kikkoman Corp フルクトシルペプチドオキシダ−ゼの安定化方法
WO2011126067A1 (ja) * 2010-04-09 2011-10-13 東洋紡績株式会社 糖化ヘモグロビンの測定方法
JP2011229526A (ja) * 2010-04-09 2011-11-17 Toyobo Co Ltd ヘモグロビンA1cの測定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029005B2 (ja) * 1972-05-08 1975-09-19
JPS5195118A (ja) * 1975-02-10 1976-08-20 Anteinamakuromomaishinfunmatsunoseizohoho
WO1997020039A1 (fr) * 1995-11-30 1997-06-05 Kyoto Daiichi Kagaku Co., Ltd. Oxydase de fructosylaminoacides, son procede d'obtention, et methode d'essai des composes d'amadori utilisant ladite oxydase
EP2248909B1 (en) * 2001-01-31 2016-09-28 Asahi Kasei Pharma Corporation Compositions for assaying glycoprotein
JP4169344B2 (ja) * 2001-07-02 2008-10-22 旭化成ファーマ株式会社 アルカリホスファターゼ安定化方法
JP4231668B2 (ja) 2001-09-04 2009-03-04 キッコーマン株式会社 新規なフルクトシルペプチドオキシダーゼ
US7485436B2 (en) * 2001-10-11 2009-02-03 Arkray, Inc. Method of stabilizing oxidation color former
JP2008154573A (ja) * 2006-03-31 2008-07-10 Toyobo Co Ltd 可溶性グルコースデヒドロゲナーゼ(gdh)を含む組成物の安定性を向上する方法
JP2009203223A (ja) * 2008-01-29 2009-09-10 Sanyo Chem Ind Ltd 凍結乾燥用保護剤及び生理活性物質の製造方法
EP2357228B1 (en) * 2008-10-09 2017-05-10 Kyowa Medex CO., LTD. Novel fructosyl peptide oxidase
EP2354224B1 (en) * 2008-10-10 2018-02-14 Toyobo Co., Ltd. Novel protein having fructosyl valyl histidine oxidase activity and modified product thereof, and use of the protein or the modified product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245315A (ja) * 2004-03-04 2005-09-15 Kikkoman Corp フルクトシルペプチドオキシダ−ゼの安定化方法
JP2005261383A (ja) * 2004-03-22 2005-09-29 Asahi Kasei Pharma Kk キャリブレーション方法
JP2006325547A (ja) * 2005-05-30 2006-12-07 Kikkoman Corp フルクトシルペプチドオキシダ−ゼの安定化方法
WO2011126067A1 (ja) * 2010-04-09 2011-10-13 東洋紡績株式会社 糖化ヘモグロビンの測定方法
JP2011229526A (ja) * 2010-04-09 2011-11-17 Toyobo Co Ltd ヘモグロビンA1cの測定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520633A (ja) * 2017-05-19 2020-07-16 ジェン−プローブ・インコーポレーテッド フラップエンドヌクレアーゼを含む乾燥組成物
JP2022002549A (ja) * 2017-05-19 2022-01-11 ジェン−プローブ・インコーポレーテッド フラップエンドヌクレアーゼを含む乾燥組成物
US11952630B2 (en) 2017-05-19 2024-04-09 Gen-Probe Incorporated Dried compositions containing flap endonuclease
JP7491885B2 (ja) 2017-05-19 2024-05-28 ジェン-プローブ・インコーポレーテッド フラップエンドヌクレアーゼを含む乾燥組成物

Also Published As

Publication number Publication date
US9994827B2 (en) 2018-06-12
JP6155647B2 (ja) 2017-07-05
JP2013162784A (ja) 2013-08-22
US20140349327A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
CN112972662B (zh) 一种蛋白酶k的冻干保护剂及制备方法和应用
JP6155647B2 (ja) フルクトシルバリルヒスチジンオキシダーゼ製剤の製造方法
JP2854995B2 (ja) 尿酸測定用試薬組成物
CN108690868B (zh) 一种腺苷脱氨酶测定试剂盒及其测定方法
JP2004191367A (ja) トロンビン試薬及び検査試薬キット
EP2639586B1 (en) Measurement method using enzymes
JP2023063608A (ja) 生体成分測定試薬キットの感度低下抑制方法
JPH09500027A (ja) 液体の安定なチオール活性化剤
JP6349452B1 (ja) L−グルタミン酸オキシダーゼ乾燥組成物
JP2008206491A (ja) p−ヒドロキシ安息香酸水酸化酵素の安定化方法
JP4798600B2 (ja) フルクトシルペプチドオキシダ−ゼの安定化方法
CN109307720B (zh) 一种组合物和复合校准品及其应用
JP4557571B2 (ja) フルクトシルペプチドオキシダ−ゼの安定化方法
JP2003235600A (ja) 遊離脂肪酸(nefa)の測定用液状試薬
JP3541677B2 (ja) 直接型ビリルビンの測定方法および測定用試薬
JP6795887B2 (ja) 血清又は血漿中の高密度リポ蛋白の安定化剤及び安定化方法
JP4797349B2 (ja) ビタミンb6酵素を用いた試薬の安定化法およびその試薬
JP7294319B2 (ja) アスコルビン酸オキシダーゼの安定化方法
JP2003043035A (ja) 液状試薬原料の製造方法および組成物
EP3379248B1 (en) Arginase activity measurement method, arginase activity detection kit, arginase-related disease detection kit, and arginase inhibitor or active agent screening method
JP2000253899A (ja) ホタルルシフェリンの安定化方法
JPH11164699A (ja) トリプシンの安定化方法およびトリプシンの酵素活性向上方法並びにトリプシン酵素活性測定用キット
WO2019216408A1 (ja) 生体成分測定試薬キットの感度低下抑制方法
JPWO2019216406A1 (ja) 生体成分測定試薬キットの感度低下抑制方法
JP2003066040A (ja) 液状試薬原料の製造方法および組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13735723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14371288

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13735723

Country of ref document: EP

Kind code of ref document: A1