WO2013105539A1 - 樹脂複合材料及び樹脂複合材料の製造方法 - Google Patents

樹脂複合材料及び樹脂複合材料の製造方法 Download PDF

Info

Publication number
WO2013105539A1
WO2013105539A1 PCT/JP2013/050068 JP2013050068W WO2013105539A1 WO 2013105539 A1 WO2013105539 A1 WO 2013105539A1 JP 2013050068 W JP2013050068 W JP 2013050068W WO 2013105539 A1 WO2013105539 A1 WO 2013105539A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composite material
resin composite
silane compound
functional group
Prior art date
Application number
PCT/JP2013/050068
Other languages
English (en)
French (fr)
Inventor
大輔 向畑
延彦 乾
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2013501966A priority Critical patent/JP5374665B1/ja
Priority to US14/124,676 priority patent/US20140113988A1/en
Priority to KR1020137032859A priority patent/KR20140123405A/ko
Priority to CN201380003129.1A priority patent/CN103827224A/zh
Priority to EP13735987.3A priority patent/EP2803703A4/en
Publication of WO2013105539A1 publication Critical patent/WO2013105539A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a resin composite material in which a silane compound is dispersed in a thermoplastic resin and a method for producing the resin composite material, and in particular, a resin composite in which the silane compound and the resin form an IPN structure or a semi-IPN structure.
  • the present invention relates to a material and a method for producing a resin composite material.
  • resin composite materials in which fillers and rubber-like components are blended in various resins are known.
  • various fillers and rubber-like components By blending various fillers and rubber-like components into the thermoplastic resin, various physical properties can be imparted to the resin composite material, such as increasing the linear expansion coefficient of the resin composite material.
  • Patent Document 1 discloses a resin composite material having a form in which a thermoplastic elastomer is dispersed in a network in a thermoplastic resin, and can reduce the linear expansion coefficient of the resin composite material. ing.
  • thermoplastic elastomer has a problem that the glass transition temperature is low and the heat resistance is low. Therefore, the linear expansion coefficient of the resin composite material cannot be sufficiently lowered.
  • An object of the present invention is to provide a resin composite material that realizes networking of a silane compound having high heat resistance in a resin and has a low linear expansion coefficient, and a method for producing the resin composite material.
  • the resin composite material according to the present invention is a resin composite material containing a resin and a silane compound having the structure of formula (1), wherein the molecular chain of the resin and the molecular chain of the silane compound have an IPN structure. Alternatively, a semi-IPN structure is formed.
  • Each R in the formula (1) is independently selected from the group consisting of hydrogen, halogen and any organic functional group, and at least one is a reactive organic functional group.
  • x is 1 or 1.5.
  • n is an integer of 100 or more and 10,000 or less.
  • Another resin composite material according to the present invention is a resin composite material containing a resin and a silane compound having the structure of formula (1), wherein the resin composite material is at a temperature equal to or higher than the melting point of the resin composite material.
  • the storage elastic modulus is always larger than the loss elastic modulus in the frequency range of 0.01 to 100 Hz
  • the gel contained in the resin composite material contains a compound having a silicon atom
  • the degree of swelling of the gel contained in the resin composite material is 500% or less.
  • Each R in the formula (1) is independently selected from the group consisting of hydrogen, halogen and any organic functional group, and at least one is a reactive organic functional group.
  • x is 1 or 1.5.
  • n is an integer of 100 or more and 10,000 or less.
  • each R in the formula (1) is hydrogen, chlorine, silyl, siloxy, alkoxy, vinyl, aryl, alkyl, alkylamine, ether, ester, amine, amide. , Thiol, methacrylic, acrylic, epoxy, ureido, mercapto, sulfide and isocyanate.
  • each R in the formula (1) is vinyl, alkylamine, amine, methacryl, acrylic, epoxy, ureido, mercapto, sulfide, and isocyanate.
  • a reactive organic functional group selected from the group consisting of
  • a reactive organic functional group contained in the silane compound reacts to form a polymer of the reactive organic functional group. ing.
  • the networking of the silane compound is promoted, the movement of the silane compound in the resin is further limited. Therefore, the linear expansion coefficient of the resin composite material can be further reduced.
  • a reactive organic functional group contained in the silane compound reacts to form a chemical bond between the silane compound and the resin. is doing. In that case, since the silane compound and the resin are chemically bonded, there is an advantage that the silane compound and the resin are difficult to phase-separate.
  • thermoplastic resin any of a crystalline resin and an amorphous resin can be used.
  • the molecular chain constituting the amorphous part of the crystalline resin forms an IPN structure or a semi-IPN structure with the molecular chain of the silane compound.
  • polyolefin is used as the thermoplastic resin.
  • the cost of the resin composite material can be reduced, and the resin composite material can be easily molded.
  • the method for producing a resin composite material of the present invention includes a step of obtaining a resin composition by mixing a resin and a silane compound having the structure of formula (2), and a plurality of the silane compounds contained in the resin composition An IPN structure forming step of condensing each other.
  • Each R in the formula (2) is independently selected from the group consisting of hydrogen, halogen and any organic functional group, and at least one is a reactive organic functional group.
  • x is 1 or 1.5.
  • n is an integer of 1 or more and 100 or less.
  • the resin composition in the IPN structure forming step, is placed in the presence of water at 80 ° C. or higher, whereby a plurality of the resin compositions are included.
  • the silane compounds are condensed together. In that case, since sufficient temperature and water required for hydrolysis can be secured, the degree of condensation between the silane compounds can be increased.
  • each R in the formula (1) is hydrogen, chlorine, silyl, siloxy, alkoxy, vinyl, aryl, alkyl, alkylamine, ether, ester. , Amine, amide, thiol, methacryl, acrylic, epoxy, ureido, mercapto, sulfide and isocyanate.
  • each R in the formula (1) is vinyl, alkylamine, amine, methacryl, acrylic, epoxy, ureido, mercapto, sulfide.
  • a reactive organic functional group selected from the group consisting of isocyanates.
  • a reactive organic functional group contained in the silane compound reacts to form the reactive organic functional group.
  • the method further includes the step of forming a polymer. In that case, since the networking of the silane compound is promoted, the movement of the silane compound in the resin is further limited. Therefore, the linear expansion coefficient of the resin composite material can be further reduced.
  • the step of forming the polymer of the reactive organic functional group is performed by irradiating the resin composition with radiation. In that case, compared with the method of adding a peroxide etc., there is little deterioration of the said resin.
  • a reactive organic functional group contained in the silane compound reacts to form the silane compound and the resin. Further includes the step of forming a chemical bond. In that case, since the silane compound and the resin are chemically bonded, there is an advantage that the silane compound and the resin are difficult to phase-separate.
  • the step of forming the chemical bond is performed by irradiating the resin composition with radiation.
  • the step of forming the chemical bond is performed by irradiating the resin composition with radiation.
  • the molecular chain constituting the amorphous part of the resin and the molecular chain of the silane compound having the structure of the formula (1) form an IPN structure or a semi-IPN structure.
  • the silane compound is fixed to the amorphous part of the resin.
  • the manufacturing method of the resin composite material which concerns on this invention in the resin composition obtained by mixing resin and the silane compound which has a structure of Formula (2), several said silane compounds are condensed. Therefore, in the resin composite material, an IPN structure or a semi-IPN structure is formed between the molecular chain constituting the amorphous part of the resin and the molecular chain of the silane compound. Therefore, the carbon material is uniformly dispersed in the composite resin molded body. Therefore, aggregation of the silane compound in the resin is suppressed. Therefore, the linear expansion coefficient of the resin composite material obtained by the production method of the present invention can be effectively reduced.
  • FIG. 1 is a schematic diagram showing an IPN structure formed in a resin composite material according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a process of forming an IPN structure in an embodiment of the manufacturing method of the present invention.
  • the resin composite material of the present invention includes a resin and a silane compound having a structure of the formula (1).
  • each R is independently selected from the group consisting of hydrogen, halogen and any organic functional group.
  • each R consists of hydrogen, chlorine, silyl, siloxy, alkoxy, vinyl, aryl, alkyl, alkylamine, ether, ester, amine, amide, thiol, methacryl, acrylic, epoxy, ureido, mercapto, sulfide and isocyanate. Selected independently from the group.
  • Each R may be the same or different.
  • each R in the formula (1) is a reactive organic functional group.
  • the reactive organic functional group is not particularly limited, and is selected from the group consisting of vinyl, alkylamine, amine, methacryl, acrylic, epoxy, ureido, mercapto, sulfide, and isocyanate.
  • a plurality of R in the formula (1) may be reactive organic functional groups. In that case, the plurality of R reactive organic functional groups may be the same or different.
  • x is 1 or 1.5.
  • n is an integer of 100 or more and 10,000 or less. When n is smaller than 100, the strength of the silane compound is lowered, and even if an IPN structure or a semi-IPN structure described later is formed, the linear expansion coefficient of the resin composite material may not be sufficiently lowered. When n is larger than 10,000, the compatibility with the resin is deteriorated, phase separation occurs, and the IPN structure or semi-IPN structure described later may not be sufficiently formed.
  • the compound having the structure of the formula (1) can be obtained, for example, by condensing alkoxysilane.
  • a compound also includes a compound having a structure in which alkoxysilane is sterically bonded.
  • an example of a compound in which x is 1.5 includes silsesquioxane.
  • Silsesquioxane is obtained by hydrolyzing a trifunctional silane and is a network polymer having a structure of (RSiO 1.5 ) n .
  • n is an integer of 100 or more and 1000 or less in the present invention as described above.
  • Silsesquioxane has a so-called cage structure. Silsesquioxane, which has a size of about several nm, can be dispersed in a resin at the molecular level. Therefore, the strength can be increased while maintaining the workability and mechanical properties of the resin composite material. Furthermore, various physical properties can be expressed by selecting the functional group R.
  • thermoplastic resin either a thermoplastic resin or a thermosetting resin can be used.
  • thermoplastic resin any of a crystalline thermoplastic resin and an amorphous thermoplastic resin can be used.
  • thermoplastic resin is not particularly limited, and various known thermoplastic resins can be used.
  • the thermoplastic resin include polyethylene, polypropylene, ethylene vinyl acetate copolymer, acrylonitrile styrene copolymer, acrylonitrile butadiene styrene copolymer, polyvinyl chloride, acrylic resin, methacrylic resin, polystyrene, polytetrafluoroethylene, Polychlorotrifluoroethylene, polyvinylidene fluoride, ethylene vinyl alcohol copolymer, vinylidene chloride resin, chlorinated polyethylene, polydicyclopentadiene, methylpentene resin, polybutylene, polyphenylene ether, polyamide, polyphenylene ether, polyphenylene sulfide, polyether ether Ketone, polyallyl ether ketone, polyamideimide, polyimide, polyetherimide, polysulfone, polyether Sulfone, norbornene resins
  • polyolefin such as polypropylene, polyethylene, ethylene-propylene copolymer, etc.
  • polyolefin such as polypropylene, polyethylene, ethylene-propylene copolymer, etc.
  • Polyolefin is inexpensive and easy to mold under heating. Therefore, by using polyolefin as the thermoplastic resin, the cost of the resin composite material can be reduced, and the resin composite material can be easily molded.
  • thermoplastic resins examples include polyolefin and polyamide.
  • the molecular chain of the amorphous part in the crystalline resin forms an IPN structure or a semi-IPN structure with the molecular chain of the silane compound.
  • the amorphous resin examples include polystyrene and polycarbonate. In this case, the molecular chain of the amorphous resin forms an IPN structure or a semi-IPN structure with the molecular chain of the silane compound.
  • thermosetting resin may be used as the resin.
  • the molecular chain of the thermosetting resin can form an IPN structure or a semi-IPN structure together with the molecular chain of the silane compound. Therefore, the linear expansion coefficient can be effectively lowered even in the case of a thermosetting resin.
  • a thermosetting resin is not particularly limited, and examples thereof include an epoxy resin, a soft polyurethane, and a hard polyurethane. In particular, when a soft thermosetting resin such as soft soft polyurethane is used, the linear expansion coefficient can be effectively reduced.
  • the content ratio of the resin and the silane compound in the resin composite material of the present invention is not particularly limited, but the silane compound is preferably contained in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the resin. .
  • the linear expansion coefficient of a resin composite material can be lowered effectively. If the silane compound is less than 1 part by weight, the linear expansion coefficient of the resin material may not be sufficiently lowered. If the silane compound exceeds 50 parts by weight, phase separation with the resin may occur, and a resin composite material may not be produced.
  • the molecular chain constituting the amorphous portion of the thermoplastic resin and the molecular chain of the silane compound having the structure of the formula (1) have an IPN structure ( An interpenetrating network structure) or a semi-IPN structure (semi-interpenetrating network structure) is formed.
  • FIG. 1 is a schematic diagram showing an IPN structure in a resin composite material.
  • the thermoplastic resin constituting the resin composite material includes a crystalline portion 13 and an amorphous portion 11.
  • the amorphous part 11 exists in the gap between the crystals constituting the crystal part 13.
  • the amorphous portion 11 has a molecular chain that constitutes the amorphous portion 11.
  • One molecular chain of the thermoplastic resin is not necessarily entirely the crystal part 13 or the amorphous part 11, but a part of the molecular chain forms a crystal structure to form a crystal part 13. It may be an amorphous portion 11 that does not form a structure. In that case, one molecular chain of the thermoplastic resin constitutes a crystal part 13 forming a crystal structure and an amorphous part 11 not forming a crystal structure. That is, the crystal part 13 and the amorphous part 11 may be connected by one molecular chain.
  • the silane compound 12 exists in the amorphous part 11 which is a gap between the crystal parts 13 of the thermoplastic resin.
  • the molecular chain of the silane compound 12 forms an IPN structure or a semi-IPN structure with the molecular chain of the amorphous portion 11. That is, a network structure in which the molecular chain of the silane compound 12 and the molecular chain constituting the amorphous portion 11 of the thermoplastic resin are entangled with each other is formed. Since the molecular chains of the silane compound 12 and the amorphous part 11 are entangled with each other, the movement of the molecular chain of the amorphous part 11 in the thermoplastic resin is limited. Therefore, when the silane compound 12 forms an IPN structure or a semi-IPN structure in the thermoplastic resin, the linear expansion coefficient of the resin composite material can be effectively reduced.
  • the IPN structure generally refers to a structure in which two polymer molecular chains both have a network structure in a network structure in which a plurality of polymer molecular chains intrude each other.
  • the structure means a structure in which one polymer has a network structure and the other has a linear or branched structure.
  • the resin composite material of the present invention it is only necessary to form a network structure in which the molecular chain of the silane compound 12 and the molecular chain constituting the amorphous part 11 of the thermoplastic resin are entangled with each other, as described above.
  • the structure may be an IPN structure or a semi-IPN structure.
  • an amorphous thermoplastic resin may be used as the resin.
  • the molecular chain constituting the amorphous resin is the molecular chain of the silane compound.
  • the IPN structure or the semi-IPN structure is formed.
  • a thermosetting resin may be used as the resin.
  • the molecular chain of the thermosetting resin, together with the molecular chain of the silane compound has an IPN structure or semi-IPN. A structure can be formed.
  • the silane compound 12 is fixed to the amorphous portion 11 by the IPN structure or semi-IPN structure as described above, viscoelasticity measurement was performed at a temperature equal to or higher than the melting point of the resin composite material.
  • the storage elastic modulus is always larger than the loss elastic modulus in the frequency range of 0.01 to 100 Hz.
  • the portion where the IPN structure or the semi-IPN structure is formed as described above is a gel.
  • the gel is composed of a network structure including an inorganic substance, that is, a network structure including the silane compound 12 as a compound having a silicon atom. For this reason, the degree of swelling of the gel is lower than the degree of swelling of the gel by a general crosslinked resin, and is 500% or less.
  • whether the resin composite material has an IPN structure or a semi-IPN structure is measured by the above-described viscoelasticity measurement or a measurement that a compound having a silicon atom is contained in the gel. And by measuring the degree of swelling of the gel.
  • the frequency of the resin composite material when the viscoelasticity measurement is performed at a temperature equal to or higher than the melting point of the resin composite material is always larger than the loss elastic modulus in the range of 0.01 to 100 Hz, and the gel contained in the resin composite material contains a compound containing a silicon atom, and the degree of swelling of the gel contained in the resin composite material Is 500% or less, the compound is recognized as the resin composite material of the present invention having an IPN structure or a semi-IPN structure.
  • the gel contains a compound having a silicon atom, and when measuring the degree of swelling of the gel, it is preferable to take out the gel from the resin composite material and measure it.
  • a method of taking out the gel for example, there is a method of immersing the resin composite material in a good solvent and taking out a component that has not been dissolved as a gel.
  • the reactive organic functional group contained in the compound having the structure of the formula (1) may form a polymer.
  • networking of the compound having the structure of the formula (1) is promoted, and a denser IPN structure or semi-IPN structure is formed. Therefore, the movement in the resin is further limited, and the linear expansion coefficient of the resin composite material can be further reduced.
  • the reactive organic functional group contained in the compound having the structure of the formula (1) may form a chemical bond with the resin.
  • the compound having the structure of the formula (1) and the resin are not only entangled with each other by the IPN structure or the semi-IPN structure, but also have a chemical bond, there is an advantage that it is difficult to separate from the resin. .
  • Each R in Formula (2) is the same as each R in Formula (1) described above.
  • x is 1 or 1.5.
  • n of Formula (2) is an integer of 1 or more and 100 or less. When n is larger than 100, an IPN structure may not be formed in the resulting resin composite material.
  • Examples of the compound having the structure of the formula (2) include vinyltriethoxysilane, 3-aminopropyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, and ethyltrimethoxysilane.
  • n is about 10 to 100
  • the amount of by-products generated during the condensation described later can be reduced. Therefore, a silane compound can be efficiently added to the obtained resin composite material.
  • the mixing method is not particularly limited, and can be mixed by an appropriate method. Examples thereof include a melt kneading method performed by kneading under heating using a kneading apparatus such as a twin screw kneader such as a plast mill, a single screw extruder, a twin screw extruder, a Banbury mixer, and a roll. Further, a method in which the thermoplastic resin and the silane compound are dissolved or dispersed in a solvent and mixed can also be used.
  • the blending ratio of the thermoplastic resin and the silane compound is not particularly limited, but the silane compound is preferably blended in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the resin. If the silane compound is less than 1 part by weight, the linear expansion coefficient of the resin material may not be sufficiently lowered. If the silane compound exceeds 50 parts by weight, phase separation may occur with the resin, and a composite material may not be prepared.
  • a step of forming a polymer of the reactive organic functional group by polymerizing the reactive organic functional group of the silane compound in the obtained resin is performed. May be.
  • the linear expansion coefficient of the resin composite material obtained by the production method of the present invention can be further reduced. Furthermore, when condensing the silane compounds described later, the silane compounds are less likely to aggregate, so that an IPN structure or a semi-IPN structure can be formed more effectively.
  • the method for forming the chemical bond is not particularly limited.
  • the method of irradiating the said resin composition with an electron beam is mentioned.
  • a radical is generated in the reactive organic functional group by an electron beam.
  • the reactive organic functional group can form a polymer.
  • the step of forming the chemical bond is not an essential step in the method for producing the resin composite material of the present invention and may not be performed.
  • the reactive organic functional group of the silane compound is reacted with the resin to form a chemical bond between the silane compound and the resin. You may perform the process of forming.
  • phase separation of the resin composite material obtained by the production method of the present invention can be suppressed. Furthermore, when condensing the silane compounds described later, the silane compounds are less likely to aggregate, so that an IPN structure or a semi-IPN structure can be formed more effectively.
  • the method for forming the chemical bond is not particularly limited.
  • the method of irradiating the said resin composition with an electron beam is mentioned.
  • a radical is generated in the reactive organic functional group by an electron beam.
  • the radicals generated in the reactive organic functional group can graft the silane compound onto the resin.
  • the reactive organic functional group is an amide group and the resin is a maleic acid-modified thermoplastic resin
  • a chemical bond by an amide bond can be formed between the silane compound and the thermoplastic resin.
  • the step of forming the chemical bond is not an essential step in the method for producing the resin composite material of the present invention and may not be performed.
  • a step of condensing a plurality of the silane compounds contained in the resin composition is performed.
  • the plurality of silane compounds contained in the resin composition are condensed to form an IPN structure or a semi-IPN structure with an amorphous part of the resin.
  • the resin composite material of the present invention can be obtained.
  • FIG. 2 is a schematic diagram illustrating an example of an embodiment when the resin is a thermoplastic resin as described above.
  • FIG. 2 is a schematic view showing a process in which an IPN structure (right of FIG. 2) is formed by condensation of silane compounds from the thermoplastic resin composition before condensation (left of FIG. 2).
  • the silane compound 12a is present in the amorphous portion 11.
  • the silane compounds 12a contained in the said thermoplastic resin composition when the silane compounds 12a contained in the said thermoplastic resin composition are condensed, the silane compounds 12a will couple
  • the resin composite material of the present invention in which a network structure in which the molecular chains of the amorphous portion 11 and the silane compound 12 are entangled with each other, that is, an IPN structure or a semi-IPN structure, can be obtained.
  • the silane compound 12a is chemically bonded to the thermoplastic resin. Therefore, when the silane compounds 12a condense with each other, the movement of the silane compound 12a is restricted by the chemical bond, and therefore the condensation occurs without aggregation of the silane compound 12a. Therefore, an IPN structure or a semi-IPN structure in which the amorphous portion 11 and the silane compound 12 are entangled with each other by condensation can be more effectively formed.
  • the resin is a thermoplastic resin
  • a thermosetting resin may be used as the resin in the present invention.
  • an IPN structure or a semi-IPN structure is formed by the molecular chain of the resin and the molecular chain of the silane compound.
  • the condensation method is not particularly limited as long as the silane compound can be condensed, and examples thereof include a method of placing the thermoplastic resin composition in the presence of water at 80 ° C. or higher. In that case, although it depends on the silane compound to be used, the time for keeping in the presence of water at 80 ° C. or higher is preferably 24 hours or longer in order to sufficiently condense the silane compound.
  • Example 1 100 parts by weight of polypropylene (trade name “J-721GR” manufactured by Prime Polymer Co., Ltd., tensile modulus: 1.2 GPa, linear expansion coefficient: 11 ⁇ 10 ⁇ 5 / K) and 10 parts by weight of vinyltriethoxysilane It was melt-kneaded at 180 ° C. with a plast mill (trade name “R-100” manufactured by Toyo Seiki Co., Ltd.), and formed into a sheet by pressing. Thereby, a resin composition sheet having a thickness of 0.5 mm was obtained.
  • a plast mill trade name “R-100” manufactured by Toyo Seiki Co., Ltd.
  • the vinyl triethoxysilane was reacted by immersing the resin composition sheet in warm water at 80 ° C. for 24 hours to obtain a resin composite sheet having a thickness of 0.5 mm.
  • Example 2 A resin composite material sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 1 except that 20 parts by weight of vinyltriethoxysilane was added.
  • Example 3 A resin composite material sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 1 except that 40 parts by weight of vinyltriethoxysilane was added.
  • Example 4 A resin composite material sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 1 except that methylmethoxysilane oligomer was used instead of vinyltriethoxysilane.
  • Example 5 A resin composite material sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 1 except that silsesquioxane (product number “560391” manufactured by Sigma-Aldrich) was used instead of vinyltriethoxysilane.
  • Example 6 100 parts by weight of polypropylene (trade name “J-721GR” manufactured by Prime Polymer Co., Ltd., tensile modulus: 1.2 GPa, linear expansion coefficient: 11 ⁇ 10 ⁇ 5 / K) and 10 parts by weight of 3-methacryloxypropyltrimethoxysilane Were melt-kneaded at 180 ° C. with a lab plast mill (trade name “R-100” manufactured by Toyo Seiki Co., Ltd.) and formed into a sheet by pressing. Thereby, a resin composition sheet having a thickness of 0.5 mm was obtained.
  • a lab plast mill trade name “R-100” manufactured by Toyo Seiki Co., Ltd.
  • the organic functional group portion of the 3-methacryloxypropyltrimethoxysilane was polymerized by irradiating the resin composition sheet with an electron beam.
  • the resin composition sheet was immersed in warm water at 80 ° C. for 24 hours, whereby the 3-methacryloxypropyltrimethoxysilane was reacted to obtain a resin composite material sheet having a thickness of 0.5 mm.
  • Example 7 100 parts by weight of polypropylene (trade name “J-721GR” manufactured by Prime Polymer Co., Ltd., tensile modulus: 1.2 GPa, linear expansion coefficient: 11 ⁇ 10 ⁇ 5 / K) and 10 parts by weight of vinyltriethoxysilane It was melt-kneaded at 180 ° C. with a plast mill (trade name “R-100” manufactured by Toyo Seiki Co., Ltd.), and formed into a sheet by pressing. Thereby, a resin composition sheet having a thickness of 0.5 mm was obtained.
  • a plast mill trade name “R-100” manufactured by Toyo Seiki Co., Ltd.
  • the polypropylene and the vinyltriethoxysilane were chemically bonded by irradiating the resin composition sheet with an electron beam.
  • the resin composition sheet was immersed in warm water at 80 ° C. for 24 hours to cause the vinyltriethoxysilane to react to obtain a resin composite material sheet having a thickness of 0.5 mm.
  • Example 8 Maleic anhydride-modified polypropylene (trade name “Admer QE800” manufactured by Mitsui Chemicals, Ltd., tensile elastic modulus: 1.5 GPa, linear expansion coefficient: 10 ⁇ 10 ⁇ 5 / K) and 3-aminopropyltriethoxysilane 10
  • the parts by weight were melt-kneaded at 180 ° C. with a lab plast mill (trade name “R-100” manufactured by Toyo Seiki Co., Ltd.) and formed into a sheet by pressing. Thereby, a resin composition sheet having a thickness of 0.5 mm was obtained.
  • the resin composition sheet was immersed in warm water at 80 ° C. for 24 hours, whereby the 3-aminopropyltriethoxysilane was subjected to a coupling reaction to obtain a resin composite material sheet having a thickness of 0.5 mm.
  • Example 9 Laboplast mill 100 parts by weight of polyethylene (trade name “1300J” manufactured by Prime Polymer Co., Ltd., flexural modulus: 1.3 GPa, linear expansion coefficient: 11 ⁇ 10 ⁇ 5 / K) and 10 parts by weight of vinyltriethoxysilane (Product name “R-100” manufactured by Toyo Seiki Co., Ltd.) was melt-kneaded at 180 ° C. and formed into a sheet by pressing. Thereby, a resin composition sheet having a thickness of 0.5 mm was obtained.
  • the vinyl triethoxysilane was reacted by immersing the resin composition sheet in warm water at 80 ° C. for 24 hours to obtain a resin composite sheet having a thickness of 0.5 mm.
  • Example 10 100 parts by weight of polyamide (trade name “1300S” manufactured by Asahi Kasei Co., Ltd., flexural modulus: 2.7 GPa, linear expansion coefficient: 8 ⁇ 10 ⁇ 5 / K) and 10 parts by weight of 3-glycidoxypropyltriethoxysilane Then, it was melt kneaded at 270 ° C. with a lab plast mill (trade name “R-100” manufactured by Toyo Seiki Co., Ltd.), and formed into a sheet by pressing. Thereby, a resin composition sheet having a thickness of 0.5 mm was obtained.
  • a lab plast mill trade name “R-100” manufactured by Toyo Seiki Co., Ltd.
  • the resin composition sheet was immersed in warm water at 80 ° C. for 24 hours, whereby the 3-glycidoxypropyltriethoxysilane was reacted to obtain a resin composite material sheet having a thickness of 0.5 mm.
  • ABS (trade name “Toyolac 100” manufactured by Toray Industries, Inc., flexural modulus: 2.3 GPa, linear expansion coefficient: 7.4 ⁇ 10 ⁇ 5 / K) 100 parts by weight and 3-glycidoxypropyltriethoxysilane 10 parts by weight
  • the parts were melt-kneaded at 200 ° C. with a lab plast mill (trade name “R-100” manufactured by Toyo Seiki Co., Ltd.), and formed into a sheet by pressing. Thereby, a resin composition sheet having a thickness of 0.5 mm was obtained.
  • the resin composition sheet was immersed in warm water at 80 ° C. for 24 hours, whereby the 3-glycidoxypropyltriethoxysilane was reacted to obtain a resin composite material sheet having a thickness of 0.5 mm.
  • Example 12 100 parts by weight of polycarbonate (trade name “H-4000”, manufactured by Mitsubishi Engineering Plastics Co., Ltd., tensile modulus: 2.4 GPa, linear expansion coefficient: 6.5 ⁇ 10 ⁇ 5 / K) and 3-glycidoxypropyltri 10 parts by weight of ethoxysilane was melt-kneaded at 270 ° C. with a lab plast mill (trade name “R-100” manufactured by Toyo Seiki Co., Ltd.) and formed into a sheet by pressing. Thereby, a resin composition sheet having a thickness of 0.5 mm was obtained.
  • a lab plast mill trade name “R-100” manufactured by Toyo Seiki Co., Ltd.
  • the resin composition sheet was immersed in warm water at 80 ° C. for 24 hours, whereby the 3-glycidoxypropyltriethoxysilane was reacted to obtain a resin composite material sheet having a thickness of 0.5 mm.
  • Example 13 50 parts by weight of a bisphenol A type epoxy resin (trade name “828” manufactured by Mitsubishi Chemical Co., Ltd.), 50 parts by weight of a curing agent (trade name “Licacid TH” manufactured by Shin Nippon Chemical Co., Ltd.) 2MZ-A ”) 2 parts by weight and 10 parts by weight of vinyltriethoxysilane were mixed and stirred with a homodisper type stirrer. Subsequently, the mixture was applied to a release PET sheet and dried in an oven at 130 ° C. for 3 hours to obtain a resin composition sheet having a thickness of 0.5 mm.
  • a bisphenol A type epoxy resin trade name “828” manufactured by Mitsubishi Chemical Co., Ltd.
  • a curing agent trade name “Licacid TH” manufactured by Shin Nippon Chemical Co., Ltd.” 2MZ-A
  • the vinyl triethoxysilane was reacted by immersing the resin composition sheet in warm water at 80 ° C. for 24 hours to obtain a resin composite sheet having a thickness of 0.5 mm.
  • Example 3 A resin composite material sheet having a thickness of 0.5 mm was obtained in the same manner as in Example 3 except that 60 parts by weight of vinyltriethoxysilane was added.
  • Viscoelasticity measurement The prepared sheet was cut into a disk shape having a diameter of 8 mm and a thickness of 0.5 mm. This sample was attached to a dynamic viscoelasticity measuring apparatus (TA Instruments, ARES) and measured under the conditions of shear mode, measurement frequency of 0.1 to 100 Hz, and strain of 1%. Tables 1 and 2 show the relationship between the measurement temperature and the storage elastic modulus Ga and the loss elastic modulus Gb.
  • the resin composite material sheet has the IPN structure needs to satisfy the following points in the measurement results of a) to c).
  • the gel contained in the resin composite material contains a compound having a silicon atom.
  • the degree of swelling of the gel is 500% or less.
  • thermosetting resin when the said requirements in evaluation of a) and b) were satisfy
  • the resin composite material sheets obtained in Examples 1 to 13 have a lower linear expansion coefficient than the resin composite material sheets obtained in the corresponding Comparative Examples 1 to 13. This is considered due to the fact that the resin composite material sheet has an IPN structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Silicon Polymers (AREA)

Abstract

 樹脂中におけるシラン化合物の凝集を抑制し、線膨張率が低められた樹脂複合材料、及び樹脂複合材料の製造方法を提供する。 樹脂と、式(1)の構造を有するシラン化合物12とを含む樹脂複合材料であって、前記樹脂の分子鎖と、前記シラン化合物12の分子鎖とが、IPN構造またはセミIPN構造を形成している樹脂複合材料、及び樹脂とシラン化合物12aとを混合することにより樹脂組成物を得る工程と、前記樹脂組成物に含まれる複数の前記シラン化合物12a同士を縮合させるIPN構造形成工程とを備える樹脂複合材料の製造方法。前記式(1)中の各Rは、水素、ハロゲン及び任意の有機官能基からなる群から独立して選択され、少なくとも1つが反応性有機官能基である。xは1または1.5である。nは100以上かつ10000以下の整数である。

Description

樹脂複合材料及び樹脂複合材料の製造方法
 本発明は、シラン化合物が熱可塑性樹脂中に分散されてなる樹脂複合材料及び樹脂複合材料の製造方法に関し、特に、シラン化合物と樹脂とがIPN構造またはセミIPN構造を形成している、樹脂複合材料及び樹脂複合材料の製造方法に関する。
 従来、様々な樹脂中にフィラーやゴム状成分が配合された樹脂複合材料が知られている。様々なフィラーやゴム状成分を熱可塑性樹脂に配合することにより、上記樹脂複合材料の線膨張率を高めるなど、上記樹脂複合材料に様々な物性を付与することができる。
 下記の特許文献1には、熱可塑性樹脂の中で熱可塑性エラストマーをネットワーク状に分散させた形態を有する樹脂複合材料が示されており,樹脂複合材料の線膨張率を低めることができるとされている。
特許第3290740号
 しかしながら、特許文献1の樹脂複合材料のように単に熱可塑性樹脂に熱可塑性エラストマーを配合しただけでは、ネットワークの密度を高めることは困難であった。また熱可塑性エラストマーはガラス転移温度が低く、耐熱性が低いという問題があった。従って、樹脂複合材料の線膨張率を充分に低めることができなかった。
 本発明は、樹脂中において耐熱性の高いシラン化合物のネットワーク化を実現し、線膨張率が低められた樹脂複合材料、及び樹脂複合材料の製造方法を提供することを目的とする。
 本発明に係る樹脂複合材料は、樹脂と、式(1)の構造を有するシラン化合物とを含む樹脂複合材料であって、前記樹脂の分子鎖と、前記シラン化合物の分子鎖とが、IPN構造またはセミIPN構造を形成している。
Figure JPOXMLDOC01-appb-C000004
 前記式(1)中の各Rは、水素、ハロゲン及び任意の有機官能基からなる群から独立して選択され、少なくとも1つが反応性有機官能基である。xは1または1.5である。nは100以上かつ10000以下の整数である。
 本発明に係る他の樹脂複合材料は、樹脂と、式(1)の構造を有するシラン化合物とを含む樹脂複合材料であって、前記樹脂複合材料が、前記樹脂複合材料の融点以上の温度において粘弾性測定を行った際に、周波数0.01~100Hzの範囲において常に貯蔵弾性率が損失弾性率より大きく、前記樹脂複合材料に含まれるゲルが、ケイ素原子を備える化合物を含んでおり、前記樹脂複合材料に含まれるゲルの膨潤度が500%以下である。
Figure JPOXMLDOC01-appb-C000005
 前記式(1)中の各Rは、水素、ハロゲン及び任意の有機官能基からなる群から各々独立して選択され、少なくとも1つが反応性有機官能基である。xは1または1.5である。nは100以上かつ10000以下の整数である。
 本発明の樹脂複合材料のある特定の局面では、前記式(1)中の各Rが、水素、塩素、シリル、シロキシ、アルコキシ、ビニル、アリール、アルキル、アルキルアミン、エーテル、エステル、アミン、アミド、チオール、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド及びイソシアネートからなる群から独立して選択される。
 本発明の樹脂複合材料の別の特定の局面では、前記式(1)中の各Rのうち少なくとも1つが、ビニル、アルキルアミン、アミン、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド、及びイソシアネートからなる群から選択される反応性有機官能基である。
 本発明の樹脂複合材料のさらに他の特定の局面では、前記樹脂複合材料において、前記シラン化合物に含まれる反応性有機官能基が反応することにより、前記反応性有機官能基の重合体を形成している。その場合には、前記シラン化合物のネットワーク化が促進されるため、前記シラン化合物の樹脂中の運動がより一層制限される。従って、樹脂複合材料の線膨張率をより一層低めることができる。
 本発明の樹脂複合材料のさらに別の特定の局面では、前記樹脂複合材料において、前記シラン化合物に含まれる反応性有機官能基が反応することにより、前記シラン化合物と前記樹脂とが化学結合を形成している。その場合には、前記シラン化合物と前記樹脂とが化学結合しているため、前記シラン化合物と前記樹脂が相分離しにくいといった利点がある。
 本発明の樹脂複合材料における上記樹脂としては、熱可塑性樹脂及び熱硬化性樹脂のいずれをも用いることができる。熱可塑性樹脂としては、結晶性樹脂及び非晶性樹脂のいずれをも用いることができる。結晶性樹脂の場合には、結晶性樹脂の非晶部分を構成している分子鎖が、上記シラン化合物の分子鎖と、IPN構造またはセミIPN構造を形成する。
 好ましくは、上記熱可塑性樹脂として、ポリオレフィンが用いられる。その場合には、樹脂複合材料のコストを低減でき、かつ樹脂複合材料を容易に成形することができる。
 本発明の樹脂複合材料の製造方法は、樹脂と、式(2)の構造を有するシラン化合物とを混合することにより樹脂組成物を得る工程と、前記樹脂組成物に含まれる複数の前記シラン化合物同士を縮合させるIPN構造形成工程とを備える。
Figure JPOXMLDOC01-appb-C000006
 前記式(2)中の各Rは、水素、ハロゲン及び任意の有機官能基からなる群から独立して選択され、少なくとも1つが反応性有機官能基である。xは1または1.5である。nは1以上かつ100以下の整数である。
 本発明の樹脂複合材料の製造方法のある特定の局面では、前記IPN構造形成工程において、前記樹脂組成物を80℃以上の水の存在下におくことにより、前記樹脂組成物に含まれる複数の前記シラン化合物同士を縮合させる。その場合には、加水分解に必要な温度と水を十分に確保できるため,前記シラン化合物同士の縮合度を高めることができる。
 本発明の樹脂複合材料の製造方法の他の特定の局面では、前記式(1)中の各Rが、水素、塩素、シリル、シロキシ、アルコキシ、ビニル、アリール、アルキル、アルキルアミン、エーテル、エステル、アミン、アミド、チオール、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド及びイソシアネートからなる群から独立して選択される。
 本発明の樹脂複合材料の製造方法の別の特定の局面では、前記式(1)中の各Rのうち少なくとも1つが、ビニル、アルキルアミン、アミン、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド、及びイソシアネートからなる群から選択される反応性有機官能基である。
 本発明の樹脂複合材料の製造方法のさらに他の特定の局面では、前記IPN構造形成工程の前に、前記シラン化合物に含まれる反応性有機官能基が反応して、前記反応性有機官能基の重合体を形成する工程をさらに備える。その場合には、前記シラン化合物のネットワーク化が促進されるため、前記シラン化合物の樹脂中の運動がより一層制限される。従って、樹脂複合材料の線膨張率をより一層低めることができる。
 好ましくは、前記反応性有機官能基の重合体を形成する工程は、樹脂組成物に放射線を照射することにより行われる。その場合には、過酸化物を添加する方法などと比較して、上記樹脂の劣化が少ない。
 本発明の樹脂複合材料の製造方法のさらに別の特定の局面では、前記IPN構造形成工程の前に、前記シラン化合物に含まれる反応性有機官能基が反応して、前記シラン化合物と前記樹脂とが化学結合を形成する工程をさらに備える。その場合には、前記シラン化合物と前記樹脂とが化学結合しているため、前記シラン化合物と前記樹脂が相分離しにくいといった利点がある。
 好ましくは、前記化学結合を形成する工程は、樹脂組成物に放射線を照射することにより行われる。その場合には、過酸化物を添加する方法などと比較して、上記樹脂の劣化が少ない。
 本発明に係る樹脂複合材料では、樹脂の非晶部分を構成する分子鎖と、式(1)の構造を有するシラン化合物の分子鎖とが、IPN構造またはセミIPN構造を形成しているため、上記シラン化合物が上記樹脂の非晶部分に固定される。それによって、上記樹脂中における上記シラン化合物の運動が制限されるため、上記樹脂中における上記シラン化合物の凝集が抑制される。従って、本発明によれば、線膨張率が低められた樹脂複合材料を提供することができる。
 また、本発明に係る樹脂複合材料の製造方法では、樹脂と、式(2)の構造を有するシラン化合物とを混合することにより得られた樹脂組成物において、複数の前記シラン化合物同士を縮合させるため、樹脂複合材料中において、上記樹脂の非晶部分を構成する分子鎖と上記シラン化合物の分子鎖とのIPN構造またはセミIPN構造が形成される。従って、上記炭素材料が複合樹脂成形体中に均一に分散されている。そのため、上記樹脂中における上記シラン化合物の凝集が抑制される。従って、本発明の製造方法により得られる樹脂複合材料の線膨張率を効果的に低めることができる。
図1は、本発明の一実施形態における樹脂複合材料中において形成されるIPN構造を示す模式図である。 図2は、本発明の製造方法の一実施形態において、IPN構造が形成される過程を示す模式図である。
 以下、本発明の詳細を説明する。
 (樹脂複合材料)
 本発明の樹脂複合材料は、樹脂と、式(1)の構造を有するシラン化合物を含む。
Figure JPOXMLDOC01-appb-C000007
 式(1)において、各Rは、水素、ハロゲン及び任意の有機官能基からなる群から独立して選択される。好ましくは、各Rは水素、塩素、シリル、シロキシ、アルコキシ、ビニル、アリール、アルキル、アルキルアミン、エーテル、エステル、アミン、アミド、チオール、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド及びイソシアネートからなる群から独立して選択される。各Rは同じであってもよく、異なっていてもよい。
 式(1)の各Rのうち少なくとも1つは、反応性有機官能基である。反応性有機官能基は特に限定されず、例えば、ビニル、アルキルアミン、アミン、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド、及びイソシアネートからなる群から選択される。もっとも、式(1)の複数のRが反応性有機官能基であってもよい。その場合には、複数のRの反応性有機官能基は同じであってもよく、異なっていてもよい。
 式(1)において、xは1または1.5である。nは100以上かつ10000以下の整数である。nが100より小さいと、シラン化合物の強度が低くなり、後述するIPN構造またはセミIPN構造が形成しても、樹脂複合材料の線膨張率を充分に低められないことがある。nが10000より大きいと、樹脂との相溶性が悪くなり,相分離が生じてしまい、後述するIPN構造またはセミIPN構造が充分に形成できないことがある。
 式(1)の構造を有する化合物は、例えばアルコキシシランを縮合させることにより得られる。このような化合物は、アルコキシシランが立体的に結合している構造の化合物をも含む。
 また、式(1)の構造を有する化合物において、xが1.5である化合物の例としては、シルセスキオキサンが挙げられる。シルセスキオキサンは、三官能性シランを加水分解することにより得られ、(RSiO1.5の構造を有するネットワーク型ポリマーである。ここでnを上記と同様に、本発明では、100以上、1000以下の整数である。
 シルセスキオキサンは、いわゆる籠型の構造を有する。また、シルセスキオキサンは、大きさが約数nmであるため、分子レベルで樹脂に分散させることができる。従って、樹脂複合材料の加工性や機械的性質を保ちながら、強度を高めることができる。さらに、官能基Rを選択することにより様々な物性を発現させることができる。
 本発明において、上記樹脂としては、熱可塑性樹脂及び熱硬化性樹脂のいずれをも用いることができる。また、熱可塑性樹脂としては、結晶性熱可塑性樹脂及び非晶性熱可塑性樹脂のいずれをも用いることができる。
 上記熱可塑性樹脂は特に限定されず、様々な公知の熱可塑性樹脂を用いることができる。上記熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、アクリロニトリルスチレン共重合体、アクリロニトリルブタジエンスチレン共重合体、ポリ塩化ビニル、アクリル樹脂、メタクリル樹脂、ポリスチレン、ポリテトラフルオロエチレン、ポリクロロトリフロオロエチレン、ポリビニリデンフルオライド、エチレンビニルアルコール共重合体、塩化ビニリデン樹脂、塩素化ポリエチレン、ポリジシクロペンタジエン、メチルペンテン樹脂、ポリブチレン、ポリフェニレンエーテル、ポリアミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリアリルエーテルケトン、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ノルボルネン系樹脂、ポリビニルアルコール、ウレタン樹脂、ポリビニルピロリドン、ポリエトキシエチルメタクリレート、ポリホルムアルデヒド、セルロースジアセテート、ポリビニルブチラール、ABS樹脂等が挙げられる。これら熱可塑性樹脂は単独で用いてもよく、あるいは複数種を組み合わせて用いてもよい。
 好ましくは、上記熱可塑性樹脂としては、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体などのポリオレフィンを用いることができる。ポリオレフィンは安価であり、加熱下の成形が容易である。そのため、上記熱可塑性樹脂としてポリオレフィンを用いることにより、樹脂複合材料のコストを低減でき、かつ樹脂複合材料を容易に成形することができる。
 上記熱可塑性樹脂のうち、結晶性樹脂としては、ポリオレフィンやポリアミドなどを挙げることができる。結晶性樹脂の場合には、結晶性樹脂中の非晶部分の分子鎖が、シラン化合物の分子鎖とIPN構造またはセミIPN構造を形成している。非晶性樹脂としては、ポリスチレンやポリカーボネートなどが挙げられる。この場合には、該非晶性樹脂の分子鎖が、シラン化合物の分子鎖とIPN構造またはセミIPN構造を形成することとなる。
 本発明においては、上記樹脂として熱硬化性樹脂を用いてもよい。熱硬化性樹脂の場合にも、熱硬化性樹脂の分子鎖がシラン化合物の分子鎖とともに、IPN構造またはセミIPN構造を形成し得る。従って、熱硬化性樹脂の場合にも線膨張率を効果的に低めることができる。このような熱硬化性樹脂としては特に限定されず、エポキシ樹脂、軟質ポリウレタン、硬質ポリウレタンなどを挙げることができる。特に、柔らかい軟質ポリウレタンなどの柔らかい熱硬化性樹脂を用いた場合、線膨張率を効果的に低めることができる。
 本発明の樹脂複合材料における上記樹脂と上記シラン化合物との含有割合は特に限定されないが、上記樹脂100重量部に対し、上記シラン化合物が1~50重量部の範囲で含まれていることが好ましい。上記含有割合を上記範囲とすることにより、樹脂複合材料の線膨張率を効果的に低めることができる。上記シラン化合物が1重量部未満だと、樹脂材料の線膨張率を十分に低められないことがある。上記シラン化合物が50重量部を超えると、上記樹脂と相分離を生じてしまい、樹脂複合材料が作成できないことがある。
 本発明の樹脂複合材料では、樹脂が熱可塑性樹脂の場合、上記熱可塑性樹脂の非晶部分を構成する分子鎖と、式(1)の構造を有するシラン化合物の分子鎖とが、IPN構造(相互貫入型網目構造)またはセミIPN構造(半相互貫入型網目構造)を形成している。図1は、樹脂複合材料中におけるIPN構造を示す模式図である。
 樹脂複合材料を構成する熱可塑性樹脂は、結晶部分13及び非晶部分11からなる。上記非晶部分11は、結晶部分13を構成する結晶の隙間に存在する。非晶部分11には、非晶部分11を構成する分子鎖が存在する。
 熱可塑性樹脂の1つの分子鎖は、必ずしも全体が結晶部分13または非晶部分11とは限らず、上記分子鎖の一部分が結晶構造を形成して結晶部分13となり、上記と異なる部分においては結晶構造を形成しない非晶部分11となっていてもよい。その場合には、熱可塑性樹脂の1つの分子鎖は、結晶構造を形成している結晶部分13及び結晶構造を形成しない非晶部分11を構成している。すなわち、結晶部分13と非晶部分11は、1つの分子鎖により繋がっていてもよい。
 シラン化合物12は、熱可塑性樹脂の結晶部分13の隙間である非晶部分11に存在する。本発明では、シラン化合物12の分子鎖が、非晶部分11の分子鎖とIPN構造またはセミIPN構造を形成している。すなわち、シラン化合物12の分子鎖と、熱可塑性樹脂の非晶部分11を構成する分子鎖とが相互に絡み合った網目構造を形成している。シラン化合物12及び非晶部分11の分子鎖が相互に絡み合うことによって、熱可塑性樹脂中における非晶部分11の分子鎖の運動が制限される。従って、熱可塑性樹脂中においてシラン化合物12がIPN構造またはセミIPN構造を形成することにより、樹脂複合材料の線膨張率を効果的に低めることができる。
 なお、IPN構造とは、一般に、複数の高分子の分子鎖が相互に侵入し合った網目構造において、2つの高分子分子鎖が共に網目構造を有している場合の構造をいい、セミIPN構造とは、一方のポリマーが網目構造、もう一方が線状もしくは枝分かれ構造である場合の構造をいう。本発明の樹脂複合材料では、上述のようにシラン化合物12の分子鎖と、熱可塑性樹脂の非晶部分11を構成する分子鎖とが相互に絡み合った網目構造を形成していればよく、その構造はIPN構造であってもよく、セミIPN構造であってもよい。
 前述したように、本発明においては、樹脂として、非晶性の熱可塑性樹脂を用いてもよく、その場合には、非晶性樹脂を構成している分子鎖が、シラン化合物の分子鎖と上記IPN構造またはセミIPN構造を形成する。また、前述したように、本発明においては、樹脂として熱硬化性樹脂を用いてもよく、その場合には、熱硬化性樹脂の分子鎖が、シラン化合物の分子鎖とともに、IPN構造またはセミIPN構造を形成し得る。
 本発明の樹脂複合材料では、上述のようなIPN構造またはセミIPN構造によりシラン化合物12が非晶部分11に固定されているため、上記樹脂複合材料の融点以上の温度において粘弾性測定を行った際に、周波数0.01~100Hzの範囲において常に貯蔵弾性率が損失弾性率より大きくなる。
 また、上記樹脂複合材料では、上述のようにIPN構造またはセミIPN構造が形成されている部分がゲルとなっている。上記ゲルは、無機物を含む網目構造、すなわちケイ素原子を備える化合物としてのシラン化合物12を含む網目構造により構成されている。そのため、上記ゲルの膨潤度は、一般的な樹脂の架橋体によるゲルの膨潤度よりも低く、500%以下である。
 上記の特徴を考慮することにより、樹脂複合材料がIPN構造またはセミIPN構造を有しているかについては、上述した粘弾性測定や、ゲル中にケイ素原子を備える化合物が含まれていることの測定、及び上記ゲルの膨潤度を測定することによって確認することができる。
 すなわち、樹脂複合材料が樹脂と、式(1)の構造を有する化合物とを含んでおり、前記樹脂複合材料が、前記樹脂複合材料の融点以上の温度において粘弾性測定を行った際に、周波数0.01~100Hzの範囲において常に貯蔵弾性率が損失弾性率より大きく、前記樹脂複合材料に含まれるゲルが、ケイ素原子を備える化合物を含んでおり、前記樹脂複合材料に含まれるゲルの膨潤度が500%以下である場合には、その化合物はIPN構造またはセミIPN構造を有する本発明の樹脂複合材料として認められる。
 上記ゲルにケイ素原子を備える化合物が含まれていることを評価する際には、及び上記ゲルの膨潤度を測定する際には、上記樹脂複合材料からゲルを取り出して測定することが好ましい。上記ゲルを取り出す方法としては、例えば、樹脂複合材料を良溶媒に浸漬し,溶解しなかった成分をゲルとして取り出す方法がある。
 また、本発明の樹脂複合材料では、式(1)の構造を有する前記化合物に含まれる反応性有機官能基が、重合体を形成していてもよい。その場合には、式(1)の構造を有する化合物のネットワーク化が促され、より緻密なIPN構造またはセミIPN構造が形成され。従って、樹脂中の運動がより一層制限され、樹脂複合材料の線膨張率をより一層低めることができる。
 さらに、本発明の樹脂複合材料では、式(1)の構造を有する前記化合物に含まれる反応性有機官能基が、前記樹脂と化学結合を形成していてもよい。その場合には、式(1)の構造を有する化合物と樹脂は、IPN構造またはセミIPN構造により相互に絡み合うだけでなく、化学結合もしているため、前記樹脂と相分離しにくいといった利点がある。
 (樹脂複合材料の製造方法)
 本発明の樹脂複合材料の製造方法では、まず、上記樹脂と、式(2)の構造を有する上記シラン化合物とを混合することにより樹脂組成物を得る工程を行う。
Figure JPOXMLDOC01-appb-C000008
 式(2)の各Rは、上述の式(1)の各Rと同様である。xは1または1.5である。また、式(2)のnは、1以上かつ100以下の整数である。nが100より大きいと、得られる樹脂複合材料においてIPN構造を形成できないことがある。式(2)の構造を有する化合物としては、ビニルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシランなどを挙げることができる。また、x=1.5の化合物としては、前述したシルセスキオキサンなどが挙げられる。
 なお、nが10~100程度であるオリゴマーの場合には、後述する縮合の際に発生する副生成物の量を減らすことができる。そのため、得られる樹脂複合材料にシラン化合物を効率的に添加することができる。
 上記混合方法は特に限定されず、適宜の方法により混合することができる。例えば、プラストミル等の二軸スクリュー混練機、単軸押出機、二軸押出機、バンバリーミキサー、ロールなどの混練装置を用いて、加熱下において混練することにより行う溶融混練方法などが挙げられる。また、上記熱可塑性樹脂と上記シラン化合物を溶媒中において溶解または分散させ、混合する方法を用いることもできる。
 上記熱可塑性樹脂と上記シラン化合物との配合割合は特に限定されないが、上記樹脂100重量部に対し、上記シラン化合物が1~50重量部の範囲で配合することが好ましい。上記シラン化合物が1重量部未満だと、樹脂材料の線膨張率を充分に低められないことがある。上記シラン化合物が50重量部を超えると、上記樹脂と相分離を生じてしまい,複合材料が作成できないことがある。
 上記混合の後に、必須の工程ではないが、得られた上記樹脂中において、上記シラン化合物の反応性有機官能基を重合させることにより、上記反応性有機官能基の重合体を形成する工程を行ってもよい。
 上記のように重合体が形成されるため、本発明の製造方法により得られる樹脂複合材料の線膨張率をより一層低めることができる。さらに、後述する上記シラン化合物同士の縮合をさせる際において、上記シラン化合物が凝集しにくくなるため、IPN構造またはセミIPN構造をより効果的に形成することができる。
 上記化学結合を形成する方法は特に限定されない。例えば、上記樹脂組成物に電子線を照射する方法が挙げられる。その場合には、電子線により上記反応性有機官能基にラジカルが発生する。上記反応性有機官能基に発生したラジカルにより、上記反応性有機官能基が重合体を形成することができる。
 もっとも、上記化学結合を形成する工程は、本発明の樹脂複合材料の製造方法においては必須の工程ではなく、行わなくてもよい。
 また、上記混合の後に、必須の工程ではないが、得られた上記樹脂中において、上記シラン化合物の反応性有機官能基を樹脂と反応させることにより、上記シラン化合物と樹脂との間に化学結合を形成する工程を行ってもよい。
 上記のように化学結合が形成されるため、本発明の製造方法により得られる樹脂複合材料の相分離を抑制することができる。さらに、後述する上記シラン化合物同士の縮合をさせる際において、上記シラン化合物が凝集しにくくなるため、IPN構造またはセミIPN構造をより効果的に形成することができる。
 上記化学結合を形成する方法は特に限定されない。例えば、上記樹脂組成物に電子線を照射する方法が挙げられる。その場合には、電子線により上記反応性有機官能基にラジカルが発生する。上記反応性有機官能基に発生したラジカルにより、上記シラン化合物が樹脂にグラフトし得る。
 また、上記反応性有機官能基がアミド基であり、上記樹脂がマレイン酸変性熱可塑性樹脂の場合には、上記シラン化合物と熱可塑性樹脂との間にアミド結合による化学結合を形成することができる。
 もっとも、上記化学結合を形成する工程は、本発明の樹脂複合材料の製造方法においては必須の工程ではなく、行わなくてもよい。
 次に、前記樹脂組成物に含まれる複数の前記シラン化合物同士を縮合させる工程を行う。それによって、前記樹脂組成物に含まれる複数上記シラン化合物が縮合し、樹脂の非晶部分とIPN構造またはセミIPN構造を形成する。それによって、本発明の樹脂複合材料を得ることができる。
 上記工程による縮合の様子を図2により示す。なお、図2は、前述したように、樹脂が熱可塑性樹脂の場合の実施態様の一例を示す模式図である。図2は縮合を行う前の上記熱可塑性樹脂組成物(図2左)から、シラン化合物同士の縮合によりIPN構造(図2右)が形成される過程を示す模式図である。原料を混合して得られる熱可塑性樹脂組成物では、上記シラン化合物12aが非晶部分11に存在している。
 ここで、上記熱可塑性樹脂組成物において、上記熱可塑性樹脂組成物に含まれるシラン化合物12a同士を縮合させると、非晶部分11を構成する分子鎖の合間を縫ってシラン化合物12a同士が結合する。従って、シラン化合物12a同士が縮合することによって、図1に示されるように、非晶部分11を構成する分子鎖と網目状に絡み合ったシラン化合物12の分子鎖が形成される。このようにして、非晶部分11及びシラン化合物12の分子鎖が互いに絡み合った網目構造、すなわちIPN構造またはセミIPN構造が形成された、本発明の樹脂複合材料を得ることができる。
 さらに、上記IPN構造またはセミIPN構造を形成する工程の前に、上述の電子線を照射する工程を行った場合には、シラン化合物12aが熱可塑性樹脂に化学結合している。そのため、シラン化合物12a同士が縮合する際に、上記化学結合によりシラン化合物12aの移動が制限されているため、シラン化合物12aが凝集することなく縮合が起こる。従って、縮合により非晶部分11とシラン化合物12とが互いに絡み合ったIPN構造またはセミIPN構造をより効果的に形成することができる。
 上記図2を参照して行った実施の態様では、樹脂が熱可塑性樹脂である場合を示したが、前述したように、本発明においては、樹脂として熱硬化性樹脂を用いてもよい。その場合においても、樹脂の分子鎖とシラン化合物の分子鎖とにより、IPN構造またはセミIPN構造が形成される。
 上記縮合させる方法は、上記シラン化合物が縮合できる限りにおいて特に限定されないが、例えば、上記熱可塑性樹脂組成物を80℃以上の水存在下におく方法が挙げられる。その場合には、80℃以上の水存在下におく時間は、用いる上記シラン化合物にもよるが、上記シラン化合物を充分に縮合させるために、24時間以上が好ましい。
 以下、本発明を具体的に実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 ポリプロピレン(プライムポリマー社製 商品名「J-721GR」、引張弾性率:1.2GPa、線膨張率:11×10-5/K)100重量部と、ビニルトリエトキシシラン10重量部とを、ラボプラストミル(東洋精機社製 商品名「R-100」)にて180℃で溶融混練し、プレス加工によりシート状に成形した。それによって、厚み0.5mmの樹脂組成物シートを得た。
 続いて、上記樹脂組成物シートを80℃の温水中に24時間浸漬させることによって、上記ビニルトリエトキシシランを反応させ、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例2)
 ビニルトリエトキシシランを20重量部添加したこと以外は実施例1と同様にして、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例3)
 ビニルトリエトキシシランを40重量部添加したこと以外は実施例1と同様にして、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例4)
 ビニルトリエトキシシランのかわりにメチルメトキシシランオリゴマーを用いたこと以外は実施例1と同様にして、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例5)
 ビニルトリエトキシシランのかわりにシルセスキオキサン(シグマアルドリッチ社製 商品番号「560391」)を用いたこと以外は実施例1と同様にして、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例6)
 ポリプロピレン(プライムポリマー社製 商品名「J-721GR」、引張弾性率:1.2GPa、線膨張率:11×10-5/K)100重量部と、3-メタクリロキシプロピルトリメトキシシラン10重量部とを、ラボプラストミル(東洋精機社製 商品名「R-100」)にて180℃で溶融混練し、プレス加工によりシート状に成形した。それによって、厚み0.5mmの樹脂組成物シートを得た。
 続いて、上記樹脂組成物シートに電子線を照射することによって、上記3-メタクリロキシプロピルトリメトキシシランの有機官能基部分を重合させた。
 その後、上記樹脂組成物シートを80℃の温水中に24時間浸漬させることによって、上記3-メタクリロキシプロピルトリメトキシシランを反応させ、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例7)
 ポリプロピレン(プライムポリマー社製 商品名「J-721GR」、引張弾性率:1.2GPa、線膨張率:11×10-5/K)100重量部と、ビニルトリエトキシシラン10重量部とを、ラボプラストミル(東洋精機社製 商品名「R-100」)にて180℃で溶融混練し、プレス加工によりシート状に成形した。それによって、厚み0.5mmの樹脂組成物シートを得た。
 続いて、上記樹脂組成物シートに電子線を照射することによって、上記ポリプロピレンと上記ビニルトリエトキシシランを化学結合させた。
 その後、上記樹脂組成物シートを80℃の温水中に24時間浸漬させることによって、上記ビニルトリエトキシシランを反応させ、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例8)
 無水マレイン酸変性ポリプロピレン(三井化学社製 商品名「アドマーQE800」、引張弾性率:1.5GPa、線膨張率:10×10-5/K)100重量部と、3-アミノプロピルトリエトキシシラン10重量部とを、ラボプラストミル(東洋精機社製 商品名「R-100」)にて180℃で溶融混練し、プレス加工によりシート状に成形した。それによって、厚み0.5mmの樹脂組成物シートを得た。
 その後、上記樹脂組成物シートを80℃の温水中に24時間浸漬させることによって、上記3-アミノプロピルトリエトキシシランをカップリング反応させ、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例9)
 ポリエチレン(プライムポリマー社製 商品名「1300J」、曲げ弾性率:1.3GPa、線膨張率:11×10-5/K)100重量部と、ビニルトリエトキシシラン10重量部とを、ラボプラストミル(東洋精機社製 商品名「R-100」)にて180℃で溶融混練し、プレス加工によりシート状に成形した。それによって、厚み0.5mmの樹脂組成物シートを得た。
 続いて、上記樹脂組成物シートを80℃の温水中に24時間浸漬させることによって、上記ビニルトリエトキシシランを反応させ、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例10)
 ポリアミド(旭化成社製 商品名「1300S」、曲げ弾性率:2.7GPa、線膨張係数:8×10-5/K)100重量部と、3‐グリシドキシプロピルトリエトキシシラン10重量部とを、ラボプラストミル(東洋精機社製 商品名「R-100」)にて270℃で溶融混練し、プレス加工によりシート状に成形した。それによって、厚み0.5mmの樹脂組成物シートを得た。
 続いて、上記樹脂組成物シートを80℃の温水中に24時間浸漬させることによって、上記3‐グリシドキシプロピルトリエトキシシランを反応させ、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例11)
 ABS(東レ社製 商品名「トヨラック100」、曲げ弾性率:2.3GPa、線膨張係数:7.4×10-5/K)100重量部と、3‐グリシドキシプロピルトリエトキシシラン10重量部とを、ラボプラストミル(東洋精機社製 商品名「R-100」)にて200℃で溶融混練し、プレス加工によりシート状に成形した。それによって、厚み0.5mmの樹脂組成物シートを得た。
 続いて、上記樹脂組成物シートを80℃の温水中に24時間浸漬させることによって、上記3‐グリシドキシプロピルトリエトキシシランを反応させ、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例12)
 ポリカーボネート(三菱エンジニアリングプラスチックス社製 商品名「H-4000」、引張弾性率:2.4GPa、線膨張係数:6.5×10-5/K)100重量部と、3‐グリシドキシプロピルトリエトキシシラン10重量部とを、ラボプラストミル(東洋精機社製 商品名「R-100」)にて270℃で溶融混練し、プレス加工によりシート状に成形した。それによって、厚み0.5mmの樹脂組成物シートを得た。
 続いて、上記樹脂組成物シートを80℃の温水中に24時間浸漬させることによって、上記3‐グリシドキシプロピルトリエトキシシランを反応させ、厚み0.5mmの樹脂複合材料シートを得た。
 (実施例13)
 ビスフェノールA型エポキシ樹脂(三菱化学社製 商品名「828」)50重量部と、硬化剤(新日本理化社製 商品名「リカシッドTH」)50重量部、硬化促進剤(四国化成製 商品名「2MZ‐A」)2重量部、ビニルトリエトキシシラン10重量部とを配合し、ホモディスパー型撹拌機にて撹拌した。続けて離型PETシート状に混合物を塗工し、130℃のオーブンで3時間乾燥させることにより、厚み0.5mmの樹脂組成物シートを得た。
 続いて、上記樹脂組成物シートを80℃の温水中に24時間浸漬させることによって、上記ビニルトリエトキシシランを反応させ、厚み0.5mmの樹脂複合材料シートを得た。
 (比較例1、2および4~13)
 80℃の温水中に24時間浸漬しなかったこと以外は実施例1、2および4~13と同様にして、厚み0.5mmの樹脂複合材料シートを得た。
 (比較例3)
 ビニルトリエトキシシランを60重量部添加したこと以外は実施例3と同様にして、厚み0.5mmの樹脂複合材料シートを得た。
 〔実施例及び比較例の評価〕
 上記のようにして得た実施例1~13及び比較例1~13の樹脂複合材料シートについて、IPN構造の有無及び線膨張率を、以下の要領でそれぞれ評価した。
 (1)IPN構造の評価
 実施例1~13及び比較例1~13により得られた樹脂複合材料シートについて、以下のa)~c)についてそれぞれ測定した。
 a)粘弾性測定
 作製したシートを直径8mm,厚さ0.5mmの円盤状にカットした.このサンプルを動的粘弾性測定装置(TAインスツルメンツ製,ARES)に取り付け,せん断モード,測定周波数0.1~100Hz,ひずみ1%の条件で測定した。測定温度及び貯蔵弾性率Gaと損失弾性率Gbとの関係を表1及び表2に示す。
 b)ケイ素化合物の有無
 試験管に作製したシートと溶媒を適量入れて未反応のシラン化合物を除去した。溶媒は表1に示す。8時間後にゲルを取り出し,120℃で3時間真空乾燥し、固形物を得た。その後核磁気共鳴装置(日本電子株式会社製、JNM-ECA)にてケイ素の有無を分析した。
 c)膨潤性測定
試験管に作製したシートと溶媒を適量入れた。溶媒は表1に示す。8時間後にゲルを取り出し,電子天秤にて重量を測定した。続いてゲルを120℃で3時間真空乾燥し、電子天秤にて重量を測定した。得られた結果を次の計算式にあてはめて膨潤度を算出した。
 膨潤度={(乾燥前のゲル重量)-(乾燥後のゲル重量)}/(乾燥後のゲル重量)×100
 前述したように、樹脂複合材料シートがIPN構造を有しているか否かは、a)~c)の測定結果において以下の点が満たされていることが必要である。a)粘弾性測定条件では、常に貯蔵弾性率が損失弾性率よりも大きいこと。b)ケイ素化合物の有無の評価では、樹脂複合材料に含まれるゲルがケイ素原子を有する化合物を含んでいること。c)膨潤性測定では、ゲルの膨潤度が500%以下であること。
 上記樹脂複合材料シートが全ての要件が満たしている場合には、IPN構造を有しているものと認めた。また熱硬化性樹脂に関してはa)及びb)の評価における上記要件が満たされている場合に、IPN構造を有しているものと認めた。結果を下記の表1及び表2に示す。
 (2)線膨張率の評価
 実施例1~13及び比較例1~13により得られた樹脂複合材料シートの30~80℃における線膨張率を、JIS K7197に準拠して測定した。結果を下記の表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 比較例1~13では温水処理を施していないため、ゲルを形成しなかった。従って、b)及びc)の評価はできなかった。
 表1及び表2から明らかなように、本発明の製造方法に従う実施例1~13により得られた樹脂複合材料シートは、IPN構造を有していることがわかる。これに対し、温水処理によりシラン化合物を縮合させていない比較例1、2、4~13の製造方法では、IPN構造を有する樹脂複合材料シートが得られていない。さらに、比較例3においても、IPN構造を有する樹脂複合材料シートが得られていない。
 また、実施例1~13により得られた樹脂複合材料シートは、対応する比較例1~13により得られた樹脂複合材料シートに比べて、線膨張率が低くなっている。これは、上記樹脂複合材料シートがIPN構造を有していることによると考えられる。
 11…非晶部分
 12,12a…シラン化合物
 13…結晶部分

Claims (18)

  1.  樹脂と、式(1)の構造を有するシラン化合物とを含む樹脂複合材料であって、
     前記樹脂の分子鎖と、前記シラン化合物の分子鎖とが、IPN構造またはセミIPN構造を形成している、樹脂複合材料。
    Figure JPOXMLDOC01-appb-C000001
     前記式(1)中の各Rは、水素、ハロゲン及び任意の有機官能基からなる群から独立して選択され、少なくとも1つが反応性有機官能基である。xは1または1.5である。nは100以上かつ10000以下の整数である。
  2.  樹脂と、式(1)の構造を有するシラン化合物とを含む樹脂複合材料であって、
     前記樹脂複合材料が、前記樹脂複合材料の融点以上の温度において粘弾性測定を行った際に、周波数0.01~100Hzの範囲において常に貯蔵弾性率が損失弾性率より大きく、 
     前記樹脂複合材料に含まれるゲルが、ケイ素原子を備える化合物を含んでおり、
     前記樹脂複合材料に含まれるゲルの膨潤度が500%以下である、樹脂複合材料。
    Figure JPOXMLDOC01-appb-C000002
     前記式(1)中の各Rは、水素、ハロゲン及び任意の有機官能基からなる群から各々独立して選択され、少なくとも1つが反応性有機官能基である。xは1または1.5である。nは100以上かつ10000以下の整数である。
  3.  前記式(1)中の各Rが、水素、塩素、シリル、シロキシ、アルコキシ、ビニル、アリール、アルキル、アルキルアミン、エーテル、エステル、アミン、アミド、チオール、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド及びイソシアネートからなる群から独立して選択される、請求項1または2に記載の樹脂複合材料。
  4.  前記式(1)中の各Rのうち少なくとも1つが、ビニル、アルキルアミン、アミン、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド及びイソシアネートからなる群から選択される反応性有機官能基である、請求項1~3のいずれか1項に記載の樹脂複合材料。
  5.  前記樹脂複合材料において、前記シラン化合物に含まれる反応性有機官能基が反応することにより、反応性有機官能基の重合体が形成されている、請求項1~4のいずれか1項に記載の樹脂複合材料。
  6.  前記樹脂複合材料において、前記シラン化合物に含まれる反応性有機官能基が反応することにより、前記シラン化合物と前記樹脂とが化学結合を形成している、請求項1~5のいずれか1項に記載の樹脂複合材料。
  7.  前記樹脂が、熱可塑性樹脂である、請求項1~6のいずれか1項に記載の樹脂複合材料。
  8.  前記熱可塑性樹脂が結晶性樹脂であり、該結晶性樹脂の非晶部分を構成している分子鎖と、前記シラン化合物の分子鎖とが、前記IPN構造またはセミIPN構造を形成している、請求項7に記載の樹脂複合材料。
  9.  前記熱可塑性樹脂が、非晶性樹脂である、請求項7のいずれか1項に記載の樹脂複合材料。
  10.  前記樹脂が、熱硬化性樹脂である、請求項1~6のいずれか1項に記載の樹脂複合材料。
  11.  樹脂と、式(2)の構造を有するシラン化合物とを混合することにより樹脂組成物を得る工程と、
     前記樹脂組成物に含まれる複数の前記シラン化合物同士を縮合させるIPN構造形成工程とを備える、樹脂複合材料の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     前記式(2)中の各Rは、水素、ハロゲン及び任意の有機官能基からなる群から独立して選択され、少なくとも1つが反応性有機官能基である。xは1または1.5である。nは1以上かつ100以下の整数である。
  12.  前記IPN構造形成工程において、前記樹脂組成物を80℃以上の水の存在下におくことにより、前記樹脂組成物に含まれる複数の前記シラン化合物同士を縮合させる、請求項11に記載の樹脂複合材料の製造方法。
  13.  前記式(1)中の各Rが、水素、塩素、シリル、シロキシ、アルコキシ、ビニル、アリール、アルキル、アルキルアミン、エーテル、エステル、アミン、アミド、チオール、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド及びイソシアネートからなる群から独立して選択される、請求項11または12に記載の樹脂複合材料の製造方法。
  14.  前記式(1)中の各Rのうち少なくとも1つが、ビニル、アルキルアミン、アミン、メタクリル、アクリル、エポキシ、ウレイド、メルカプト、スルフィド、及びイソシアネートからなる群から選択される反応性有機官能基である、請求項11~13のいずれか1項に記載の樹脂複合材料の製造方法。
  15.  前記IPN構造形成工程の前に、前記シラン化合物に含まれる反応性有機官能基が反応して、反応性有機官能基の重合体を形成する工程をさらに備える、請求項11~14のいずれか1項に記載の樹脂複合材料の製造方法。
  16.  前記反応性有機官能基の重合体を形成する工程が、樹脂組成物に放射線を照射することにより行われる、請求項15に記載の樹脂複合材料の製造方法。
  17.  前記IPN構造形成工程の前に、前記シラン化合物に含まれる反応性有機官能基が反応して、前記シラン化合物と前記樹脂とが化学結合を形成する工程をさらに備える、請求項11~16のいずれか1項に記載の樹脂複合材料の製造方法。
  18.  前記化学結合を形成する工程が、樹脂組成物に放射線を照射することにより行われる、請求項17に記載の樹脂複合材料の製造方法。
PCT/JP2013/050068 2012-01-12 2013-01-08 樹脂複合材料及び樹脂複合材料の製造方法 WO2013105539A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013501966A JP5374665B1 (ja) 2012-01-12 2013-01-08 樹脂複合材料及び樹脂複合材料の製造方法
US14/124,676 US20140113988A1 (en) 2012-01-12 2013-01-08 Resin composite material and method for producing resin composite material
KR1020137032859A KR20140123405A (ko) 2012-01-12 2013-01-08 수지 복합 재료 및 수지 복합 재료의 제조 방법
CN201380003129.1A CN103827224A (zh) 2012-01-12 2013-01-08 树脂复合材料及树脂复合材料的制造方法
EP13735987.3A EP2803703A4 (en) 2012-01-12 2013-01-08 RESIN COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012004072 2012-01-12
JP2012-004072 2012-01-12
JP2012149483 2012-07-03
JP2012-149483 2012-07-03

Publications (1)

Publication Number Publication Date
WO2013105539A1 true WO2013105539A1 (ja) 2013-07-18

Family

ID=48781487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050068 WO2013105539A1 (ja) 2012-01-12 2013-01-08 樹脂複合材料及び樹脂複合材料の製造方法

Country Status (6)

Country Link
US (1) US20140113988A1 (ja)
EP (1) EP2803703A4 (ja)
JP (2) JP5374665B1 (ja)
KR (1) KR20140123405A (ja)
CN (1) CN103827224A (ja)
WO (1) WO2013105539A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201610665YA (en) * 2014-06-20 2017-01-27 Agency Science Tech & Res Anti-scratch coating
CN109651693A (zh) * 2018-12-26 2019-04-19 无锡杰科塑业有限公司 微互穿网络交联型低烟无卤阻燃电缆料及其制备方法
JP7031614B2 (ja) 2019-01-07 2022-03-08 信越化学工業株式会社 オルガノポリシロキサン架橋物と(メタ)アクリル重合体からなる相互侵入網目重合体及びその製造方法
CN113072752B (zh) * 2021-04-01 2022-11-22 西南科技大学 一种兼具优异核防护和柔韧性的橡胶复合材料及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55500848A (ja) * 1978-10-23 1980-10-23
JPH10506956A (ja) * 1995-04-21 1998-07-07 アメロン インターナショナル コーポレイション 改良された耐衝撃性を有するフェノール樹脂組成物
JP3290740B2 (ja) 1993-03-19 2002-06-10 三菱化学株式会社 熱可塑性樹脂組成物
JP2004303567A (ja) * 2003-03-31 2004-10-28 Shirouma Science Co Ltd ポリシロキサン系ゲル電解質組成物およびその製造法
JP2005285377A (ja) * 2004-03-26 2005-10-13 Shirouma Science Co Ltd ポリシロキサンおよびポリオレフィン複合ゲル電解質およびそれを用いたリチウム電池
JP2008115292A (ja) * 2006-11-06 2008-05-22 Toyohashi Univ Of Technology ポリイミド/シロキサン組成物
JP2008163055A (ja) * 2006-12-26 2008-07-17 Hokkaido Univ 高強度ゲルおよびそのゲルの製造方法
JP2011527377A (ja) * 2008-07-07 2011-10-27 バイオミメディカ インコーポレイテッド 疎水性ポリマーに由来する親水性相互貫入ポリマーネットワーク

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500688A (en) * 1982-04-20 1985-02-19 Petrarch Systems Inc. Curable silicone containing compositions and methods of making same
US6013715A (en) * 1997-04-22 2000-01-11 Dow Corning Corporation Thermoplastic silicone elastomers
JP2002332354A (ja) * 2001-05-08 2002-11-22 Jsr Corp 水系分散体とその製造方法および塗装体
US7230047B2 (en) * 2003-06-25 2007-06-12 Henkel Corporation Reformable compositions
JP4690737B2 (ja) * 2005-02-10 2011-06-01 リンテック株式会社 ラダー型ポリシルセスキオキサンを含む樹脂組成物およびその用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55500848A (ja) * 1978-10-23 1980-10-23
JP3290740B2 (ja) 1993-03-19 2002-06-10 三菱化学株式会社 熱可塑性樹脂組成物
JPH10506956A (ja) * 1995-04-21 1998-07-07 アメロン インターナショナル コーポレイション 改良された耐衝撃性を有するフェノール樹脂組成物
JP2004303567A (ja) * 2003-03-31 2004-10-28 Shirouma Science Co Ltd ポリシロキサン系ゲル電解質組成物およびその製造法
JP2005285377A (ja) * 2004-03-26 2005-10-13 Shirouma Science Co Ltd ポリシロキサンおよびポリオレフィン複合ゲル電解質およびそれを用いたリチウム電池
JP2008115292A (ja) * 2006-11-06 2008-05-22 Toyohashi Univ Of Technology ポリイミド/シロキサン組成物
JP2008163055A (ja) * 2006-12-26 2008-07-17 Hokkaido Univ 高強度ゲルおよびそのゲルの製造方法
JP2011527377A (ja) * 2008-07-07 2011-10-27 バイオミメディカ インコーポレイテッド 疎水性ポリマーに由来する親水性相互貫入ポリマーネットワーク

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2803703A4 *

Also Published As

Publication number Publication date
US20140113988A1 (en) 2014-04-24
EP2803703A4 (en) 2015-07-15
JPWO2013105539A1 (ja) 2015-05-11
EP2803703A1 (en) 2014-11-19
CN103827224A (zh) 2014-05-28
KR20140123405A (ko) 2014-10-22
JP5374665B1 (ja) 2013-12-25
JP2014028919A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
Delebecq et al. Looking over liquid silicone rubbers:(2) mechanical properties vs network topology
JP5876835B2 (ja) 変性ポリオレフィン
CA2669040C (en) Benzoxazine compositions with core shell rubbers
JP5242805B2 (ja) シロキサン混合物を含有するエポキシ樹脂並びにその製造方法及びその使用
US9796845B2 (en) Nylon-based resin composite
JP5374665B1 (ja) 樹脂複合材料及び樹脂複合材料の製造方法
CN114196115B (zh) 一种聚丙烯材料及其制备方法
KR20070110254A (ko) 높은 사용 온도의 나노복합재 수지
KR960011896B1 (ko) 열경화형 실리콘 고무 조성물 및 그 경화물
CN110114407A (zh) 树脂组合物、预浸料、层叠板、覆金属箔层叠板、印刷电路板、及多层印刷电路板
Kazemi et al. Natural rubber biocomposites reinforced with cellulose nanocrystals/lignin hybrid fillers
Sun et al. Liquid polyoctahedral silsesquioxanes as an effective and facile reinforcement for liquid silicone rubber
JP6987745B2 (ja) 熱硬化性樹脂組成物、硬化物、成形材料、及び、成形体
JP2012197376A (ja) フェノール樹脂成形材料
WO1992013918A1 (fr) Composition de resine thermoplastique
Manoharan et al. Biologically sustainable rubber resin and rubber‐filler promoter: a precursor study
CN1894310A (zh) 氟塑料硅氧烷硫化橡胶
COTEŢ et al. Mechanical And Thermal Behavior of Carbon Nanotubes/Vinyl Ester Nanocomposites
Swapna et al. Mechanical and dynamic mechanical properties of POSS nanocomposites
KR100871827B1 (ko) 폴리올레핀계 나노복합체 및 그 제조방법
JP2022174550A (ja) ポリロタキサン被覆炭素繊維、炭素繊維複合材、及びプレプリグ
US20210070994A1 (en) Process for making a flexible polyamide polymer
Wang et al. Advances on Manufacturing of POSS Reinforced Resin Matrix Composites
JP2020143216A (ja) 繊維強化シリコーンゴム組成物およびその製造方法
US20200140685A1 (en) Process for making a flexible polyamide polymer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013501966

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13735987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14124676

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137032859

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013735987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE