WO2013105467A1 - グリーンハニカム成形体の欠陥を検査する方法、グリーンハニカム構造体の製造方法及びグリーンハニカム成形体の欠陥の検査装置 - Google Patents

グリーンハニカム成形体の欠陥を検査する方法、グリーンハニカム構造体の製造方法及びグリーンハニカム成形体の欠陥の検査装置 Download PDF

Info

Publication number
WO2013105467A1
WO2013105467A1 PCT/JP2012/084134 JP2012084134W WO2013105467A1 WO 2013105467 A1 WO2013105467 A1 WO 2013105467A1 JP 2012084134 W JP2012084134 W JP 2012084134W WO 2013105467 A1 WO2013105467 A1 WO 2013105467A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow paths
green honeycomb
molded body
honeycomb molded
Prior art date
Application number
PCT/JP2012/084134
Other languages
English (en)
French (fr)
Inventor
篠塚 淳彦
幸人 徳岡
和也 土本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to MX2014008369A priority Critical patent/MX2014008369A/es
Priority to EP12865425.8A priority patent/EP2803972B1/en
Priority to KR1020147019872A priority patent/KR20140112034A/ko
Publication of WO2013105467A1 publication Critical patent/WO2013105467A1/ja
Priority to US14/328,185 priority patent/US9067376B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0089Producing honeycomb structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95692Patterns showing hole parts, e.g. honeycomb filtering structures

Definitions

  • One embodiment of the present invention relates to a method for inspecting a defect of a green honeycomb molded body, a method for manufacturing a green honeycomb structure, and a defect inspection apparatus for a green honeycomb molded body.
  • a defect inspection method for a green honeycomb molded body which is a molded body before firing of a so-called honeycomb filter
  • a gas flow containing fine particles is provided to the inlet end surface of the green honeycomb molded body, and the gas flow exiting the outlet end surface of the green honeycomb molded body is passed through a permeable member such as a screen. It is disclosed that fine particles exiting the transmissive member are illuminated with a light source.
  • One embodiment of the present invention has been made in view of the above problems, and provides a method and apparatus capable of easily inspecting a defect of a green honeycomb molded body, and a method of manufacturing a green honeycomb structure using the same. For the purpose.
  • a method according to an embodiment of the present invention includes a partition that forms a plurality of flow paths extending in parallel with each other, and closes one end of a part of the plurality of flow paths and the other end of the remaining part of the plurality of flow paths. This is a method for inspecting a defect of a green honeycomb molded body having a sealing portion. Then, the distribution of the refractive index of the gas in the vicinity of the other ends of the plurality of flow paths from the step of applying the pressure by the gas to one end of the plurality of flow paths and the first direction intersecting the axis of the plurality of flow paths.
  • a step of acquiring a plurality of second direction images visualizing the refractive index distribution of the gas at different times, and a gas discharged from the other ends of the plurality of channels of the green honeycomb molded body among the plurality of first direction images Selecting the image having the largest number of jets of the gas, and selecting the image having the largest number of jets of the gas discharged from the other ends of the plurality of flow paths of the green honeycomb molded body among the plurality of second direction images.
  • the process and the position of the jet in the two selected images And a step of respectively acquiring a broadcast, a.
  • An apparatus closes a partition wall that forms a plurality of flow paths extending in parallel to each other, one end of a part of the plurality of flow paths, and the other end of the remaining part of the plurality of flow paths.
  • a pressure applying member that applies pressure by a gas supplied from a gas supply source to one end of the plurality of flow paths, and the other end of the plurality of flow paths from a first direction that intersects the axis of the plurality of flow paths.
  • a first visualization unit that obtains a plurality of first direction images visualizing the refractive index distribution of the nearby gas at different times, and a second that intersects the axis of the plurality of flow paths and intersects the first direction.
  • a second visualization unit that obtains a plurality of second direction images obtained by visualizing the refractive index distributions of the gas near the other ends of the plurality of flow paths from the direction, and green among the plurality of first direction images.
  • a first selection unit that selects an image having the largest number of jets of gas discharged from the other ends of the plurality of flow paths of the honeycomb molded body, and a plurality of flow paths of the green honeycomb molded body among the plurality of second direction images Select the image with the largest number of gas jets discharged from the other end That comprises a second selecting unit, and a position acquisition unit that acquires each information about the position of the jet in the two images selected.
  • one end or the other end of each flow path is closed by the sealing portion, so that the gas flows. It does not flow out of the other end through the road.
  • the partition wall has a defect that allows the flow paths to communicate with each other or the sealing portion of the flow path has a defect
  • the gas for applying pressure passes through the flow path and the other flow paths. Escape from the edge. Therefore, by making the refractive index of the leaking gas different from the refractive index of the atmospheric gas near the other end, the refractive index distribution changes, and the presence or absence of a defect is detected by obtaining an image that visualizes this change. it can.
  • the image having the largest number of jets is selected from a plurality of images visualized from each direction, it is difficult to be affected by the temporal fluctuation of the jet discharged from the defective portion, and the defect location can be accurately identified. .
  • the method according to an embodiment of the present invention there is a possibility that a defect of the green honeycomb formed body exists due to the information acquired by the step of acquiring the information regarding the position of the jet in the two selected images.
  • a predetermined threshold value from the third to nth directions that intersect the axis of the plurality of flow paths, intersect the first direction and the second direction, and intersect each other (n is 3 or more)
  • a plurality of third to n-th direction images visualizing the refractive index distribution of the gas in the vicinity of the other ends of the plurality of flow paths, and a plurality of third to n-th direction images.
  • a defect of the green honeycomb formed body exists due to the information acquired by the information regarding the position of the jet in the two selected images acquired by the position acquisition unit.
  • a third visualization unit to an nth visualization unit that obtains a plurality of third to nth direction images visualizing the refractive index distribution of the gas in the vicinity of the other ends of the plurality of flow paths at different times;
  • a third selection unit to an nth selection unit that respectively select an image having the largest number of jets of gas discharged from the other ends of the plurality of flow paths of the green honeycomb molded body among the plurality of third to nth direction images.
  • the position acquisition unit is selected 3 ⁇ The information about the position of the jet of the
  • the present invention when it is estimated that the number of positions where a defect may be present is larger than a predetermined threshold based on the information regarding the positions of the jets in the two images, 3 to Similarly, a plurality of third to nth direction images in which the refractive index distribution of the gas is visualized from the n direction are acquired at different times, and the other ends of the plurality of flow paths in each of the plurality of third to nth direction images. The images having the largest number of jets of gas discharged from each are selected, and information on the positions of the jets in the selected third to nth images is acquired. As a result, information regarding the positions of the jets in more images can be acquired, and the positions where there is a possibility of defects can be limited to a smaller number.
  • the method according to an embodiment of the present invention includes a step of acquiring information regarding the position of the jet by detecting the pressure of the jet of gas discharged from the other ends of the plurality of flow paths of the green honeycomb molded body. .
  • An apparatus includes a pressure sensor that detects the pressure of a jet of gas discharged from the other ends of the plurality of flow paths of the green honeycomb molded body, and the position acquisition unit is detected by the pressure sensor. Information on the position of the jet is acquired from the pressure of the jet of gas discharged from the other ends of the plurality of flow paths.
  • information on the position of the jet is obtained by detecting the pressure of the jet of gas discharged from the other ends of the plurality of flow paths of the green honeycomb molded body. Therefore, the position where the defect exists can be more accurately limited.
  • the refractive index distribution can be visualized by any one of the shadow graph method, the Mach-Zehnder method, and the Schlieren method, and can be detected by the Schlieren method.
  • the density of the atmospheric gas near the other end of the plurality of flow paths is 1 at 0 ° C. and 1 atm
  • the density of the gas for applying pressure is 0.1 to 0.9 at 0 ° C. and 1 atm
  • it can be 1.1 to 5.0.
  • the pressure can be applied to one end of the plurality of flow paths with a gas having a composition different from that of the atmospheric gas in the vicinity of the other end of the plurality of flow paths.
  • gas near the other end of the plurality of flow paths is a gas having a density difference from the gas for applying pressure, and the pressure is
  • the gas to be applied is any gas selected from the group consisting of helium, neon, nitrogen, argon, xenon, krypton, oxygen, and carbon dioxide, or a mixed gas of two or more members in this group Alternatively, it can be a mixed gas of one or more members in this group and air.
  • scales can be arranged in the field of view of the plurality of first direction images and the plurality of second direction images, thereby making it easy to identify the location where the gas leaks based on the images and to grasp the position of the defect. .
  • the distribution of the refractive index of the gas in the vicinity of the other end of the plurality of flow paths is visualized from a direction orthogonal to the axis of the plurality of flow paths to obtain a plurality of first direction images and a plurality of second direction images. Can do. Thereby, it is easy to detect a gas leak.
  • the first direction and the second direction can be orthogonal. As a result, two-dimensional coordinate information regarding the location of leakage can be easily obtained, and the defective flow path can be easily identified.
  • the green honeycomb molded body can contain an inorganic compound source and a binder.
  • a method for manufacturing a green honeycomb structure according to an embodiment of the present invention includes a step of recognizing a position of a defect based on the above-described inspection method and a step of repairing the recognized defect.
  • FIG. 1A is a perspective view of a green honeycomb molded body 100 to be inspected
  • FIG. 1B is a view taken along arrow Ib-Ib in FIG.
  • FIG. 2 is a schematic cross-sectional view of the defect inspection apparatus 400a of the green honeycomb molded body 100 according to the first embodiment.
  • FIG. 6 is a top view of the defect inspection apparatus 400b of the green honeycomb molded body 100 according to the second embodiment.
  • FIG. 7 is a top view showing an aspect in which the inspection direction of the inspection apparatus 400b of FIG. 6 is further increased.
  • FIG. 8 is a schematic cross-sectional view of the defect inspection apparatus 400c of the green honeycomb molded body 100 according to the third embodiment.
  • a green honeycomb molded body 100 that is a target in the present embodiment includes partition walls 112 that form a plurality of channels 110 that extend in parallel to each other, and a plurality of channels.
  • 110 is a sealing portion 114 that closes one end (left end in FIG. 1B) of a part of 110 and the other end (right end in FIG. 1B) of the remaining part of the plurality of flow paths 110. It is the cylinder which has.
  • the length of the green honeycomb molded body 100 in the direction in which the flow path 110 extends is not particularly limited, but may be, for example, 40 to 350 mm. Further, the outer diameter of the green honeycomb molded body 100 is not particularly limited, but may be, for example, 100 to 320 mm.
  • the size of the cross section of the flow path 110 can be set to 0.8 to 2.5 mm on a side in the case of a square, for example.
  • the thickness of the partition 112 can be 0.05 to 0.5 mm.
  • the green honeycomb molded body 100 is green (unfired body) that becomes porous ceramics when fired later, and is a non-porous material containing a ceramic raw material.
  • the ceramic is not particularly limited, and examples thereof include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and metal.
  • the aluminum titanate can further contain magnesium and / or silicon.
  • the green honeycomb molded body 100 includes, for example, an inorganic compound source powder that is a ceramic raw material, an organic binder such as methylcellulose, and an additive that is added as necessary.
  • the inorganic compound source powder includes an aluminum source powder such as ⁇ -alumina powder, and a titanium source powder such as anatase-type or rutile-type titania powder.
  • an aluminum source powder such as ⁇ -alumina powder
  • a titanium source powder such as anatase-type or rutile-type titania powder.
  • Magnesium source powder such as magnesia powder and magnesia spinel powder and / or silicon source powder such as silicon oxide powder and glass frit can be included.
  • organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
  • the raw material mixture can contain organic additives other than the organic binder.
  • organic additives are, for example, pore formers, lubricants and plasticizers, and dispersants.
  • the pore-forming agent examples include carbon materials such as graphite, resins such as polyethylene, polypropylene, and polymethyl methacrylate, plant materials such as starch, nut shells, walnut shells, and corn, ice, and dry ice.
  • the amount of pore-forming agent added is usually 0 to 40 parts by weight, for example 0 to 25 parts by weight, based on 100 parts by weight of the inorganic compound powder.
  • the pore former disappears when the green molded body is fired. Therefore, in the aluminum titanate sintered body, micropores are formed at locations where the pore-forming agent was present.
  • Lubricants and plasticizers include alcohols such as glycerin, caprylic acid, lauric acid, palmitic acid, higher fatty acids such as alginate, oleic acid and stearic acid, stearic acid metal salts such as Al stearate; polyoxyalkylene alkyl Examples include ether.
  • the addition amount of the lubricant and the plasticizer is usually 0 to 10 parts by weight, for example, 0.1 to 5 parts by weight with respect to 100 parts by weight of the inorganic compound powder.
  • the dispersant examples include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid, organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid, alcohols such as methanol, ethanol and propanol, and ammonium polycarboxylate. Surfactant etc. are mentioned.
  • the added amount of the dispersant is usually 0 to 20 parts by weight, for example, 2 to 8 parts by weight with respect to 100 parts by weight of the inorganic compound powder.
  • the left end of a part of the plurality of channels 110 of the green honeycomb molded body 100 is sealed by the sealing portion 114, and the remaining right end of the plurality of channels 110 of the green honeycomb molded body 100 is sealed. Sealed by the portion 114.
  • a material that becomes ceramics by firing similar to the green honeycomb molded body 100, can be used.
  • the “part of the plurality of channels 110” and the “remaining portion of the plurality of channels 110” described above are, for example, in a matrix as seen from the end face side, as shown in FIG. Of the plurality of arranged flow paths, a combination of flow paths selected every other one in the vertical direction and the horizontal direction.
  • Such a green honeycomb molded body 100 can be manufactured as follows, for example.
  • an inorganic compound source powder, an organic binder, a solvent, and additives to be added as necessary are prepared. These are mixed by a kneader or the like to obtain a raw material mixture.
  • the obtained raw material mixture is extruded from an extruder having an outlet opening corresponding to the shape of the partition wall, cut to a desired length, and then dried by a known method. By doing so, the green honeycomb molded object 100 can be obtained. Then, what is necessary is just to seal the edge part of the flow path 110 by a well-known method.
  • the inspection device 400a includes a pressure applying member 200 for applying pressure by a gas supplied from a gas supply source 210 to one end (lower end in FIG. 2) of the plurality of flow paths 110 of the green honeycomb molded body 100, Schlieren units 300X (first visualization unit) and 300Y (second visualization unit) as a visualization unit for visualizing the distribution of the gas refractive index near the other end (upper end in FIG. 2) of the channel 110, and scales 360X and 360Y.
  • the information processing apparatus 500 and the display 600 are provided.
  • the pressure application member 200 includes a cylindrical seal portion 201 that surrounds and seals one end portion (the lower end portion in FIG. 2) of the green honeycomb molded body 100 in the axial direction (the axial direction of the plurality of flow paths 110) from the outside. And a space forming portion 202 that forms a space V at a portion facing the lower end 110b of the channel 110.
  • a gas supply source 210 is connected to the space forming unit 202 via a line L1 having a valve V1.
  • the gas of the gas supply source 210 is not particularly limited as long as it has a refractive index different from that of the atmospheric gas in the vicinity of the upper ends 110t of the plurality of flow paths 110. In order to obtain different refractive indexes, the gas density may be changed.
  • the density of the gas of the gas supply source 210 is 0.1 to 0.9, or 1.1 to 5.0 at 0 ° C. and 1 atm, with the density of the atmospheric gas (eg, air) at 0 ° C. and 1 atm being 1. Can be.
  • a gas having a composition different from the atmospheric gas may be used as the gas of the gas supply source 210.
  • the atmospheric gas can be air for ease of inspection, and when the atmospheric gas is air, the gas of the gas supply source 210 is helium, neon, nitrogen, argon, xenon, krypton, oxygen, and Any gas selected from the group consisting of carbon dioxide, or two or more mixed gases (excluding air composition) in this group, or a mixture of one or more members in this group and air Can be gas.
  • the gas of the gas supply source 210 is helium, neon, nitrogen, argon Any gas selected from the group consisting of xenon, krypton, oxygen, and carbon dioxide, or a mixture of two or more gases (except for the air composition) within this group, or within this group It can be set as the mixed gas of 1 or more types and air.
  • the gas temperature of the gas supply source 210 can be 0 to 30 ° C.
  • the gas of the gas supply source 210 is in a state of leaking into the atmospheric gas by setting the temperature of the gas different from that of the atmospheric gas. It is also possible to give a density difference, that is, a refractive index difference. In this case, the temperature difference can be 10 to 50 ° C. Of course, both the composition and the temperature may be different.
  • Each of the schlieren portions 300X and 300Y shown in FIG. 3 acquires an image in which the distribution of the gas refractive index in the vicinity of the upper ends 110t of the plurality of flow paths 110 of the green honeycomb molded body 100 is visualized as shown in FIG. ,
  • a light source unit 301 and an observation unit 302 are provided.
  • the light source unit 301 includes a light source 340 and a collimator lens 350 that collimates the light emitted from the light source 340.
  • the observation unit 302 converges the light emitted from the collimator lens 350 and passed on the upper ends 110t of the plurality of flow paths 110, the knife edge 330 provided at the focal position of the converged light, and the knife edge A camera 310 that captures an image of light after passing through 330 is provided.
  • the light source unit 301 and the observation unit 302 of the first schlieren unit 300X are separated from each other in the X direction, which is a direction perpendicular to the Z direction in which the plurality of flow paths 110 extend.
  • the portions near the upper ends 110t of the plurality of flow paths 110 are arranged so as to sandwich them.
  • the light source unit 301 and the observation unit 302 of the second schlieren unit 300Y are spaced apart from each other in the Y direction, which is a direction perpendicular to the Z direction in which the plurality of channels 110 extend, while the upper ends 110t of the plurality of channels 110 are arranged. It arrange
  • the refractive index distribution of the gas in the vicinity of the upper ends 110t of the plurality of channels 110 can be visualized from two directions (X direction and Y direction) orthogonal to the Z axis that is the axis of the plurality of channels 110, respectively. ing.
  • the scale 360X exists in the field of view observed by the schlieren unit 300X
  • the scale 360Y exists in the field of view observed by the schlieren unit 300Y. It is arranged above the upper end 110t of the path 110 and closer to the light source part 301 of each schlieren part 300X, 300Y.
  • the scales 360X and 360Y have marks 361 at positions corresponding to the central axes of the plurality of flow paths 110 when viewed from the observation units 302 of the schlieren units 300X and 300Y, respectively.
  • the cameras 302 of the schlieren units 300X and 300Y each regularly acquire an image in which the density distribution is visualized every predetermined time.
  • the predetermined time is not particularly limited, and is, for example, 0.01 to 2 seconds.
  • the number of images to be acquired is not particularly limited, but can be, for example, every 1 to 30.
  • Each schlieren unit 300X, 300Y can start acquiring an image before starting to supply gas. Note that the image acquisition times of the schlieren units 300X and 300Y can be synchronized, but it is also possible to acquire images at different times without synchronization.
  • the information processing apparatus 500 includes a first selection unit 501, a second selection unit 502, a position acquisition unit 510, and an output unit 520. These functions of the information processing apparatus 500 are realized by software executed on a computer.
  • the first selection unit 501 acquires a plurality of images acquired by the schlieren unit 300X, and extracts an image having the largest number of gas jets among these images.
  • the second selection unit 502 acquires a plurality of images acquired by the schlieren unit 300Y, and extracts an image having the largest number of gas jets among these images.
  • this step can be performed, for example, as follows.
  • 4A and 4B show two images 400X 1 and 400X 2 acquired by the schlieren unit 300X as examples of visualized images.
  • 5A and 5B show two images 400Y 1 and 400Y 2 acquired by the schlieren unit 300Y as an example of the visualized images.
  • Images 400X 1 and 400Y 1 have two jets D flowing out from the upper end surface of the green honeycomb molded body 100, and images 400X 2 and 400Y 2 show one jet D coming out from the upper end surface of the green honeycomb molded body 100.
  • the jet D portion is recognized by binarizing the image.
  • the number of portions recognized as the portion of the jet D on the straight line parallel to the Y direction between the upper end surface of the green honeycomb molded body 100 and the scale 360X is counted.
  • an image having the largest number of jets D may be extracted from each of the plurality of images acquired by the schlieren unit 300X and the plurality of images acquired by the schlieren unit 300Y.
  • the position acquisition unit 510 acquires and acquires information about the image selected by the first selection unit 501 and the position of the jet D in the image selected by the second selection unit 502, respectively.
  • Acquisition method is not particularly limited, for example, in the image 400X 1 in FIG. 4 (a), based on the position of the mark 361 of the scale 360X, for example, the position of the third mark from the left in the X direction, and The position of the sixth mark from the left, that is, the information that the X coordinate is 3 and 6 can be acquired.
  • the image 400Y 1 of FIG. 5 (a) based on the position of the mark 361 of the scale 360Y, for example, the position of the second mark from right in the Y direction, and, the fifth mark from the right Information such as the position, that is, the X coordinate of 2 and 5, can be acquired.
  • it may be a horizontal position in the image, for example, a dot number.
  • the output unit 520 outputs information on the position of the jet D acquired by the position acquisition unit 510 to an output device such as the display 600.
  • the partition 112 of the green honeycomb molded body 100 has, as a defect, a hole that communicates the flow path 110x with the upper end sealed and the flow path 110y with the lower end sealed.
  • the channel 110x is at the position of the leftmost mark 361 on the scale 360Y and at the position of the third mark 361 from the bottom on the scale 360X.
  • the flow path 110y is at the position of the second mark 361 from the left in the scale 360Y, and is at the position of the third mark 361 from the bottom in the scale 360X.
  • the pressure applying member 200 is attached to the lower part of the green honeycomb molded body 100.
  • bulb V1 is open
  • the pressure is not particularly limited, but for example, it can be 0.01 to 1 MPa as a differential pressure with respect to atmospheric pressure.
  • a state in which there is almost no flow of atmospheric gas for example, a flow rate of 1 m / s or less can be set.
  • the temperature of the atmospheric gas can be 0 to 30 ° C. for ease of experimentation.
  • the gas G used for pressurization flows out from the upper end of the channel 110y having the defect.
  • the sealing portion 114 is missing or when there is a defect such as a gap between the sealing portion 114 and the flow path 110.
  • the green honeycomb molded body 100 does not have the above-described defects, even if pressure is applied to the lower ends of the plurality of flow paths 110, the gas passes over the upper ends 110t of the plurality of flow paths 110. Cannot flow out, and the gas does not flow out on the upper ends 110t of the plurality of flow paths 110.
  • the refractive index of the gas G is different from the refractive index of the atmospheric gas in the vicinity of the upper ends of the plurality of flow paths 110, the refractive index unevenness occurs in the vicinity of the upper ends of the flow paths 110y if there is a defect.
  • select the image most number of jets D is larger from among the image 400X n that schlieren portion 300X acquired.
  • the image 400X n that schlieren portion 300X acquired.
  • the image 400X 2 since the image 400X 2 has one jet D, a large number images of the most jet D of two is the image 400X 1 .
  • the image most number of jets D is larger from among the image 400Y n that schlieren portion 300Y acquired.
  • the image 400Y 1 are two jets D
  • the image 400Y 2 has one jet D
  • a large number images of the most jet D of two is the image 400Y 1 .
  • the X coordinate of the jet D of 400X 1 is 3 and 6
  • the Y coordinate of the jet D of 400Y 1 is 2 and 5.
  • the reason for this is not clear, but by circulating the gas, the state of internal defects fluctuates, making it difficult for gas to flow out from a certain defective part, while gas may easily flow out from another defective part. it is conceivable that.
  • the unevenness of the refractive index is generated in the vicinity of the flow path 110y according to the presence or absence of a defect in the flow path. By visualizing this, the presence or absence of the defect and the location can be easily detected.
  • the distribution of the refractive index of the gas in the vicinity of the upper ends 110t of the plurality of flow paths 110 is changed from two directions (X direction and Y direction) perpendicular to the axis (Z axis) of the plurality of flow paths 110 to the schlieren portion 300X. , 300Y respectively, two-dimensional information (coordinates) can be obtained for a place where the refractive index is uneven, and a defective flow path can be easily identified.
  • the provision of the scales 360X and 360Y makes it easier to identify defective flow paths.
  • the ceramic honeycomb fired body formed from the ceramic porous body is obtained by firing the green honeycomb molded body determined to be a non-defective product according to the present embodiment by a known method.
  • This ceramic honeycomb fired body can be used as a diesel particulate filter or the like.
  • the refractive index distribution of the gas in the vicinity of the upper ends 110t of the plurality of flow paths 110 can be visualized from the directions of 0 ° and 90 ° which are two orthogonal directions.
  • a schlieren unit 300 ⁇ capable of visualizing the refractive index distribution of the gas in the vicinity of the upper ends 110t of the plurality of channels 110 from a direction of 45 °, which is an intermediate direction between the schlieren units 300X and 300Y. ing.
  • the schlieren unit 300 ⁇ includes a light source unit 301 and an observation unit 302 similar to the schlieren units 300X and 300Y.
  • a scale similar to the scales 360X and 360Y is disposed in the vicinity of the light source unit 301 of the schlieren unit 300 ⁇ , but the illustration is omitted.
  • the information processing apparatus 500 includes a third selection unit 503 in addition to the first selection unit 501 and the second selection unit 502. Similar to the first selection unit 501 and the second selection unit 502, the third selection unit 503 acquires a plurality of images acquired by the schlieren unit 300 ⁇ , and selects an image having the largest number of gas jets among these images. Extract.
  • the schlieren portion 300Y when the schlieren portion 300Y is set to 0 °, the refractive index distribution of the gas in the vicinity of the upper ends 110t of the plurality of flow paths 110 from the direction of 113 ° counterclockwise is obtained.
  • a visible schlieren portion 300 ⁇ can be provided.
  • the schlieren unit 300 ⁇ has the same configuration as the schlieren units 300X, 300Y, and 300 ⁇ . It is possible to arrange the schlieren portions 300X to 300 ⁇ so that the angles at which the schlieren portions 300X to 300 ⁇ are arranged are not equally spaced, because it becomes easy to specify the position of the defect.
  • the information processing apparatus 500 includes a fourth selection unit 504 in addition to the first selection unit 501, the second selection unit 502, and the third selection unit 503. Similar to the first selection unit 501 to the third selection unit 503, the fourth selection unit 504 acquires a plurality of images acquired by the schlieren unit 300 ⁇ , and selects an image having the largest number of gas jets among these images. Extract.
  • the inspection apparatus 400b visualizes the refractive index distribution of the gas in the vicinity of the upper ends 110t of the plurality of flow paths 110 from two directions by the schlieren units 300X and 300Y, similarly to the inspection apparatus 400a of the first embodiment.
  • the inspection apparatus 400b is configured to connect the plurality of flow paths 110 from three directions including the schlieren portion 300 ⁇ . Visualize the refractive index distribution of the gas in the vicinity of the upper end 110t. By increasing the inspection direction, it is possible to further limit the combinations of positions where defects may exist.
  • the inspection apparatus 400b uses the gas near the upper ends 110t of the plurality of flow paths 110 from the four directions including the schlieren portion 300 ⁇ . Visualize the refractive index distribution of.
  • an additional schlieren portion may be further arranged to inspect from five or more directions.
  • the inspection direction may be increased stepwise until the combination of positions where a defect may exist can be specified to be less than a predetermined threshold.
  • the number of jets of gas discharged from the other ends of the plurality of flow paths in each of the three or more images obtained by acquiring a plurality of images in which the refractive index distribution of the gas is visualized from three or more directions at different times.
  • Each of the images having the largest number of images is selected, and information on the position of the jet in the selected three or more images is acquired.
  • a pressure sensor 700 is disposed in the vicinity of the upper ends 110t of the plurality of flow paths 110.
  • the pressure sensor 700 divides the upper ends 110t of the plurality of flow paths 110 in a matrix and detects the pressure of the jet D from these sections. Further, the position acquisition unit 510 of the information processing apparatus 500 acquires the position of the jet D based on the detection result of the pressure sensor 700.
  • the information on the position of the jet D is acquired by detecting the pressure of the jet D of the gas discharged from the upper ends 110t of the plurality of flow paths 110, so that the position where the defect exists is more accurately detected. It can be limited.
  • the Schlieren method is adopted as a method for visualizing the refractive index distribution, but the method is not limited to this as long as the refractive index difference of the gas can be visualized.
  • the shadow graph method or the Mach Zender You may adopt the law.
  • the two schlieren portions 300X and 300Y are provided, but even if only one of the schlieren portions is provided, it is possible to determine the presence or absence of a defect, and it is possible to grasp the position of an approximate defect. .
  • the atmospheric gas is air, but it goes without saying that other gases may be used as the atmospheric gas.
  • the flow channel 110 of the green honeycomb molded body 100 is arranged in the vertical direction, but it can be implemented in any direction.
  • the cross-sectional shape of the flow path 110 is substantially square, but is not limited thereto, and can be rectangular, circular, elliptical, triangular, hexagonal, octagonal, or the like. Moreover, in the flow path 110, what has a different diameter and a different cross-sectional shape may be mixed.
  • the arrangement of the channels is also a square arrangement in FIG. 1, but is not limited to this, and may be an equilateral triangle arrangement, a staggered arrangement, etc. in which the central axis of the channel is arranged at the apex of the equilateral triangle in the cross section. it can.
  • the external shape of the green honeycomb molded body is not limited to a cylindrical shape, and may be, for example, a triangular prism, a quadrangular prism, a hexagonal prism, an octagonal prism, or the like.
  • Green honeycomb molded body 110 Channel 110t Upper end (one end) of channel 110b Lower end (other end) of flow path 112 Bulkhead 114 Sealing portion 200 Pressure applying member 300X, 300Y, 300 ⁇ , 300 ⁇ Schlieren portion 360 Scale 400a, 400b, 400c Inspection device 500 Information processing device 501 First selection portion 502 Second selection portion 503 Third selection portion 504 Fourth selection Unit 510 position acquisition unit 520 output unit 600 display 700 pressure sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

 互いに平行に伸びる複数の流路を形成する隔壁、及び、複数の流路の内の一部の上端及び残部の下端を閉鎖する封口部を有するグリーンハニカム成形体の欠陥を検査する方法である。複数の流路の下端に対してガスによる圧力を印加する工程と、複数の流路の上端近傍のガス屈折率の分布を可視化する工程と、を備える。

Description

グリーンハニカム成形体の欠陥を検査する方法、グリーンハニカム構造体の製造方法及びグリーンハニカム成形体の欠陥の検査装置
 本発明の一実施形態は、グリーンハニカム成形体の欠陥を検査する方法、グリーンハニカム構造体の製造方法及びグリーンハニカム成形体の欠陥の検査装置に関する。
 従来より、いわゆるハニカムフィルタの焼成前の成形体であるグリーンハニカム成形体の欠陥検査方法が知られている。例えば、特許文献1、2には、微粒子を含むガス流をグリーンハニカム成形体の入口端面に提供し、このグリーンハニカム成形体の出口端面を出るガス流をスクリーンなどの透過性部材を通して流し、この透過性部材を出る微粒子を光源を用いて照明することが開示されている。
特表2009-503508号公報 特表2002-357562号公報
 しかしながら、従来の方法では、微粒子がグリーンハニカム成形体内に残存してしまうため、検査後に微粒子を除去する必要があり煩雑である。
 本発明の一実施形態は、上記課題に鑑みてなされたものであり、グリーンハニカム成形体の欠陥を容易に検査できる方法及び装置、さらに、これを用いたグリーンハニカム構造体の製造方法を提供することを目的とする。
 本発明の一実施形態に係る方法は、互いに平行に伸びる複数の流路を形成する隔壁と、複数の流路の内の一部の一端及び複数の流路の内の残部の他端を閉鎖する封口部を有するグリーンハニカム成形体の欠陥を検査する方法である。そして、複数の流路の一端に対してガスによる圧力を印加する工程と、複数の流路の軸線と交差する第1方向から、複数の流路の他端近傍のガスの屈折率の分布を可視化した第1方向画像を、互いに異なる時刻に複数取得する工程と、複数の流路の軸線と交差し、かつ、第1方向と交差する第2方向から、複数の流路の他端近傍のガスの屈折率の分布を可視化した第2方向画像を、互いに異なる時刻に複数取得する工程と、複数の第1方向画像の内、グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像を選択する工程と、複数の第2方向画像の内、グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像を選択する工程と、選択された2つの画像中の噴流の位置に関する情報をそれぞれ取得する工程と、を備える。
 本発明の一実施形態に係る装置は、互いに平行に伸びる複数の流路を形成する隔壁と、複数の流路の内の一部の一端及び複数の流路の内の残部の他端を閉鎖する封口部とを有するグリーンハニカム成形体の欠陥の検査装置である。そして、複数の流路の一端に対してガス供給源から供給されるガスによる圧力を印加する圧力印加部材と、複数の流路の軸線と交差する第1方向から、複数の流路の他端近傍のガスの屈折率の分布を可視化した第1方向画像を、互いに異なる時刻に複数取得する第1可視化部と、複数の流路の軸線と交差し、かつ、第1方向と交差する第2方向から、複数の流路の他端近傍のガスの屈折率の分布を可視化した第2方向画像を、互いに異なる時刻に複数取得する第2可視化部と、複数の第1方向画像の内、グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像を選択する第1選択部と、複数の第2方向画像の内、グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像を選択する第2選択部と、選択された2つの画像中の噴流の位置に関する情報をそれぞれ取得する位置取得部とを備える。
 本発明の一実施形態によれば、流路同士が連通する欠陥や封口部の欠陥が無い場合、各流路の一端又は他端のいずれかが封口部によって閉鎖されているので、ガスが流路を通過して他端から流出することはない。これに対して、隔壁が流路同士を連通させる欠陥を有したり、流路の封口部が欠陥を有したり場合、圧力を印加するためのガスが流路を通過して流路の他端から流出する。したがって、漏れるガスの屈折率を他端近傍における雰囲気ガスの屈折率と異ならせておくことにより、屈折率の分布が変化し、この変化を可視化した画像を得ることにより欠陥の有無や場所を検出できる。
 また、異なる二つの方向から可視化した画像をそれぞれ取得するので、欠陥の位置の特定が容易である。
 さらに、各方向から可視化した複数の画像からそれぞれ噴流の数が最も多い画像を選択するので、欠陥部位から排出される噴流の時間変動の影響を受けにくく、精度よく欠陥場所の特定が可能である。
 ここで、本発明の一実施形態に係る方法は、選択された2つの画像中の噴流の位置に関する情報をそれぞれ取得する工程によって取得された情報によりグリーンハニカム成形体の欠陥が存在する可能性がある位置の個数が所定の閾値以上であるときは、複数の流路の軸線と交差し、第1方向及び第2方向と交差し、互いに交差する第3~第n方向から(nは3以上の整数)、複数の流路の他端近傍のガスの屈折率の分布を可視化した第3~第n方向画像を、互いに異なる時刻に複数取得する工程と、複数の第3~第n方向画像それぞれの内、グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像をそれぞれ選択する工程と、選択された第3~第n個の画像中の噴流の位置に関する情報をそれぞれ取得する工程とを備える。
 また、本発明の一実施形態に係る装置は、位置取得部により取得された選択された2つの画像中の噴流の位置に関する情報によって取得された情報によりグリーンハニカム成形体の欠陥が存在する可能性がある位置の個数が所定の閾値以上であるときに、複数の流路の軸線と交差し、第1方向及び第2方向と交差し、互いに交差する第3~第n方向から(nは3以上の整数)、複数の流路の他端近傍のガスの屈折率の分布を可視化した第3~第n方向画像を、互いに異なる時刻に複数取得する第3可視化部~第n可視化部と、複数の第3~第n方向画像それぞれの内、グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像をそれぞれ選択する第3選択部~第n選択部とを備え、位置取得部は、選択された第3~第n個の画像中の噴流の位置に関する情報をそれぞれ取得する。
 本発明の一実施形態によれば、2個の画像中の噴流の位置に関する情報により欠陥が存在する可能性がある位置の個数が所定の閾値以上に多いと推定されるときは、さらに3~n方向から同様にガスの屈折率の分布を可視化した第3~第n方向画像を互いに異なる時刻に複数取得し、複数の第3~第n方向画像それぞれの内、複数の流路の他端から排出するガスの噴流の数が最も多い画像をそれぞれ選択し、選択された第3~第n個の画像中の噴流の位置に関する情報をそれぞれ取得する。これにより、より多くの画像中の噴流の位置に関する情報を取得することができ、欠陥が存在する可能性がある位置をより少ない個数に限定することができる。
 また、本発明の一実施形態に係る方法は、グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の圧力を検出することにより、噴流の位置に関する情報を取得する工程を備える。
 また、本発明の一実施形態に係る装置は、グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の圧力を検出する圧力センサを備え、位置取得部は、圧力センサにより検出された複数の流路の他端から排出するガスの噴流の圧力により噴流の位置に関する情報を取得する。
 本発明の一実施形態によれば、上記の構成に加えて、グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の圧力を検出することにより、噴流の位置に関する情報を取得するため、欠陥が存在する位置をさらに精度良く限定することができる。
 ここで、屈折率の分布を、シャドウグラフ法、マッハツェンダー法、及び、シュリーレン法のいずれかにより可視化することができ、シュリーレン法により検出することができる。
 また、複数の流路の他端近傍の雰囲気ガスの密度を0℃、1atmにおいて1としたときに、圧力を印加するためのガスの密度が0℃、1atmにおいて0.1~0.9、又は、1.1~5.0であることができる。これにより、雰囲気ガスと、漏れるガスとの間に十分な屈折率差が与えられて、ガスの漏れを検出できる。
 具体的には、複数の流路の他端近傍の雰囲気ガスとは異なる組成のガスにより複数の流路の一端に対して圧力を印加することができる。
 複数の流路の他端近傍が真空である状態及び複数の流路の他端近傍の雰囲気ガスが圧力を印加するためのガスと密度差のあるガスである状態のいずれかであり、圧力を印加するためのガスが、ヘリウム、ネオン、窒素、アルゴン、キセノン、クリプトン、酸素、及び、二酸化炭素からなる群から選択されるいずれかのガス、又は、この群の内の2種以上の混合ガス、又は、この群の内の1種以上と空気との混合ガスであることができる。
 また、複数の流路の他端近傍の雰囲気ガスとは異なる温度のガスにより、複数の流路の一端に対して圧力を印加することもでき、これにより、圧力を印加するガスとして複数の流路の他端近傍の雰囲気ガスと同じ組成のガスを用いる場合であっても、ガスに密度差を与えることができ、可視化が可能である。
 また、複数の第1方向画像及び複数の第2方向画像の視野内にスケールを配置することができ、これにより画像に基づいてガスが漏れた場所を特定しやすく、欠陥の位置を把握しやすい。
 また、複数の流路の他端近傍のガスの屈折率の分布を、複数の流路の軸線と直交する方向から可視化して複数の第1方向画像及び複数の第2方向画像を取得することができる。これにより、ガスの漏れを検出しやすい。
 第1方向と第2方向とが直交することができる。これにより、漏れの場所についての二次元的な座標情報が容易に得られ、欠陥のある流路の特定が容易である。
 また、グリーンハニカム成形体は、無機化合物源と、バインダとを含むことができる。
 本発明の一実施形態にかかるグリーンハニカム構造体の製造方法は、上述の検査方法に基づいて欠陥の位置を認識する工程と、認識された欠陥を修復する工程とを備える。
 これにより、歩留まりが向上する。
 本発明の一実施形態によれば、グリーンハニカム成形体の欠陥を容易に検査できる。
図1の(a)は検査対象となるグリーンハニカム成形体100の斜視図、図1の(b)は(a)のIb-Ib矢視図である。 図2は、第1実施形態に係るグリーンハニカム成形体100の欠陥の検査装置400aの概略断面図である。 図3は、図2の上面図である。 図4の(a),(b)は、それぞれシュリーレン部300Xのカメラ302によって時刻t=t1、t2に撮影された像400X,400Xの模式図である。 図5の(a),(b)は、それぞれシュリーレン部400Yのカメラ302によって時刻t=t1、t2に撮影された画像400Y、400Yの模式図である。 図6は、第2実施形態に係るグリーンハニカム成形体100の欠陥の検査装置400bの上面図である。 図7は、図6の検査装置400bの検査方向をさらに増やした態様を示す上面図である。 図8は、第3実施形態に係るグリーンハニカム成形体100の欠陥の検査装置400cの概略断面図である。
 図面を参照して、発明の実施形態について説明する。まず、本実施形態で検査対象となるグリーンハニカム成形体100について説明する。
 本実施形態において対象となるグリーンハニカム成形体100は、図1の(a)及び(b)に示すように、互いに平行に伸びる複数の流路110を形成する隔壁112、及び、複数の流路110の内の一部の一端(図1の(b)の左端)、及び、複数の流路110の内の残部の他端(図1の(b)の右端)を閉鎖する封口部114を有する円柱体である。
 グリーンハニカム成形体100の流路110が延びる方向の長さは特に限定されないが、例えば、40~350mmとすることができる。また、グリーンハニカム成形体100の外径も特に限定されないが、例えば、100~320mmとすることできる。流路110の断面のサイズは、例えば、正方形の場合一辺0.8~2.5mmとすることができる。隔壁112の厚みは、0.05~0.5mmとすることができる。
 グリーンハニカム成形体100は、後で焼成することにより多孔性セラミクスとなるグリーン(未焼成体)であり、セラミクス原料を含む非多孔性の材料である。セラミクスは特に限定されないが、例えば、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素、金属等が挙げられる。なお、チタン酸アルミニウムは、さらに、マグネシウム及び/又はケイ素を含むことができる。
 グリーンハニカム成形体100は、例えば、セラミクス原料である無機化合物源粉末、及び、メチルセルロース等の有機バインダ、及び、必要に応じて添加される添加剤を含む。
 例えば、セラミクスがチタン酸アルミニウムの場合、無機化合物源粉末は、αアルミナ粉等のアルミニウム源粉末、及び、アナターゼ型やルチル型のチタニア粉末等のチタニウム源粉末を含み、必要に応じて、さらに、マグネシア粉末やマグネシアスピネル粉末等のマグネシウム源粉末及び/又は、酸化ケイ素粉末やガラスフリット等のケイ素源粉末を含むことができる。
 有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩を例示できる。
 原料混合物は、有機バインダ以外の有機添加物を含むことができる。その他の有機添加物とは、例えば、造孔剤、潤滑剤および可塑剤、分散剤である。
 造孔剤としては、グラファイト等の炭素材、ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類、でんぷん、ナッツ殻、クルミ殻、コーンなどの植物材料、氷、及びドライアイス等などが挙げられる。造孔剤の添加量は、無機化合物粉末の100重量部に対して、通常、0~40重量部であり、例えば0~25重量部である。造孔剤はグリーン成形体の焼成時に消失する。したがって、チタン酸アルミニウム焼結体では、造孔剤が存在していた箇所に微細孔が形成される。
 潤滑剤及び可塑剤としては、グリセリンなどのアルコール類、カプリル酸、ラウリン酸、パルミチン酸、アラギン酸、オレイン酸、ステアリン酸などの高級脂肪酸、ステアリン酸Al等のステアリン酸金属塩;ポリオキシアルキレンアルキルエーテルなどが挙げられる。潤滑剤及び可塑剤の添加量は、無機化合物粉末の100重量部に対して、通常、0~10重量部であり、例えば0.1~5重量部である。
 分散剤としては、例えば、硝酸、塩酸、硫酸などの無機酸、シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸、メタノール、エタノール、プロパノール等のアルコール類、ポリカルボン酸アンモニウムなどの界面活性剤などが挙げられる。分散剤の添加量は、無機化合物粉末の100重量部に対して、通常、0~20重量部であり、例えば2~8重量部である。
 上述のように、グリーンハニカム成形体100の複数の流路110のうちの一部の左端が封口部114により封口され、グリーンハニカム成形体100の複数の流路110のうちの残部の右端が封口部114により封口されている。封口部114としては、グリーンハニカム成形体100と同様の、焼成することによりセラミクスとなる材料を用いることができる。上述の「複数の流路110のうちの一部」と「複数の流路110のうちの残部」とは、例えば、図1の(a)に示すように、端面側から見て行列状に配列された複数の流路の内の、縦方向及び横方向それぞれ1つおきに選択された流路の組合せである。
 このようなグリーンハニカム成形体100は例えば以下のようにして製造することができる。
 まず、無機化合物源粉末と、有機バインダと、溶媒と、必要に応じて添加される添加物を用意する。そして、これらを混練機等により混合して原料混合物を得、得られた原料混合物を隔壁の形状に対応する出口開口を有する押出機から押し出し、所望の長さに切断後、公知の方法で乾燥することにより、グリーンハニカム成形体100を得ることができる。その後、公知の方法によって流路110の端部を封口すればよい。
 続いて、図2及び図3を参照して、本発明の第1実施形態のグリーンハニカム成形体100の検査装置について説明する。
 この検査装置400aは、グリーンハニカム成形体100の複数の流路110の一端(図2の下端)にガス供給源210から供給されるガスによる圧力を印加するための圧力印加部材200と、複数の流路110の他端(図2の上端)近傍のガス屈折率の分布を可視化する可視化部としてのシュリーレン部300X(第1可視化部),300Y(第2可視化部)と、スケール360X,360Yと、情報処理装置500と、ディスプレイ600とを備える。
 圧力印加部材200は、グリーンハニカム成形体100の軸方向(複数の流路110の軸方向)の一端部(図2では下端部)を外側から包囲してシールする筒状シール部201と、複数の流路110の下端110bと対向する部分に空間Vを形成する空間形成部202とを有する。
 空間形成部202には、バルブV1を有するラインL1を介してガス供給源210が接続されている。
 ガス供給源210のガスは、複数の流路110の上端110tの近傍の雰囲気ガスとは異なる屈折率のガスであれば特に限定されない。異なる屈折率とするためには、ガスの密度を変えればよい。ガス供給源210のガスの密度は、0℃、1atmにおける雰囲気ガスの密度(例えば空気)を1として、0℃、1atmにおいて0.1~0.9、又は、1.1~5.0であることができる。
 具体的には、例えば、ガス供給源210のガスとして、雰囲気ガスとは異なる組成のガスを用いればよい。例えば、検査の容易さから雰囲気ガスは空気であることができ、雰囲気ガスが空気である場合には、ガス供給源210のガスは、ヘリウム、ネオン、窒素、アルゴン、キセノン、クリプトン、酸素、及び、二酸化炭素からなる群から選択されるいずれかのガス、又は、この群の内の2種以上の混合ガス(空気組成を除く)、又は、この群の内の1種以上と空気との混合ガスであることができる。あるいは、検査装置400a周辺を密閉系とし、真空引きするか、あるいは雰囲気置換する等の手法によって検査装置400a周辺を真空とした場合も、ガス供給源210のガスは、ヘリウム、ネオン、窒素、アルゴン、キセノン、クリプトン、酸素、及び、二酸化炭素からなる群から選択されるいずれかのガス、又は、この群の内の2種以上の混合ガス(空気組成を除く)、又は、この群の内の1種以上と空気との混合ガスとすることができる。また、ガス供給源210のガスの温度は0~30℃であることができる。
 また、ガス供給源210のガスと雰囲気ガスとの組成が同じ場合であっても、ガス供給源210のガスの温度を、雰囲気ガスとは異なる温度とすることにより雰囲気ガス中に漏出した状態で密度差、すなわち屈折率差を与えることもできる。この場合、温度差は、10~50℃とすることができる。勿論組成、及び、温度の両方に差をつけてもよい。
 図3に示すシュリーレン部300X,300Yは、それぞれ、図2に示すようにグリーンハニカム成形体100の複数の流路110の上端110t近傍のガス屈折率の分布を可視化した画像を取得するものであり、光源部301、及び観測部302をそれぞれ備える。光源部301は、光源340、及び、光源340から出射する光を平行光にするコリメータレンズ350を備える。観測部302は、コリメータレンズ350から出射され、複数の流路110の上端110t上を通過した光を収束させるコリメータレンズ320、収束した光の焦点位置に設けられたナイフエッジ330、及び、ナイフエッジ330通過後の光の像を撮影するカメラ310を備える。
 本実施形態では、図3に示すように、第1のシュリーレン部300Xの光源部301及び観測部302は、複数の流路110が伸びるZ方向に垂直な方向であるX方向に互いに離間しつつ、複数の流路110の上端110tの近傍の部分を間に挟むように配置されている。一方、第2のシュリーレン部300Yの光源部301及び観測部302は、複数の流路110が伸びるZ方向に垂直な方向であるY方向に互いに離間しつつ、複数の流路110の上端110tの近傍の部分を間に挟むように配置されている。これにより、複数の流路110の上端110t近傍のガスの屈折率の分布を、複数の流路110の軸線であるZ軸と直交する2方向(X方向及びY方向)からそれぞれ可視化可能となっている。
 図2及び図3に示すように、スケール360Xは、シュリーレン部300Xが観察する視野内に存在するように、スケール360Yは、シュリーレン部300Yが観察する視野内に存在するように、それぞれ複数の流路110の上端110tよりも上方かつ各シュリーレン部300X,300Yの光源部301寄りに配置されている。スケール360X,360Yは、それぞれ、シュリーレン部300X,300Yの観測部302から見て、複数の流路110の中心軸に対応する位置にそれぞれマーク361を有する。
 各シュリーレン部300X,300Yのカメラ302は、それぞれ、密度分布を可視化した画像を、所定の時間毎に定期的に取得する。所定の時間は特に限定されないが、例えば、0.01~2秒である。また、取得する画像の数も特に限定されないが、例えば、1~30毎とすることができる。各シュリーレン部300X,300Yは、ガスを供給開始する前から、画像の取得を開始しておくことができる。なお、シュリーレン部300X及び300Yの画像取得時刻を同期させることができるが、同期させずに異なる時刻の画像を取得しても実施は可能である。
 図3に示すように、情報処理装置500は、第1選択部501、第2選択部502、位置取得部510、及び、出力部520を備えている。情報処理装置500のこれらの機能は、コンピュータ上で実行されるソフトウエアにより実現されている。
 第1選択部501は、シュリーレン部300Xが取得した複数の画像を取得し、これらの画像の内最もガスの噴流の数が多い画像を抽出する。第2選択部502は、シュリーレン部300Yが取得した複数の画像を取得し、これらの画像の内最もガスの噴流の数が多い画像を抽出する。
 この工程は、具体的には、例えば、以下のようにして行うことができる。図4の(a),(b)に、可視化した画像の一例として、シュリーレン部300Xが取得した二枚の画像400X、400Xを示す。図5の(a),(b)に、可視化した画像の一例として、シュリーレン部300Yが取得した二枚の画像400Y、400Yを示す。画像400X、400Yはグリーンハニカム成形体100の上端面から流出する2つの噴流Dを有しており、画像400X、400Yはグリーンハニカム成形体100の上端面からでる1つの噴流Dを有している。
 まず、画像を二値化等することにより噴流Dの部分を認識する。次に、グリーンハニカム成形体100の上端面と、スケール360Xと、の間におけるY方向に平行な直線上における噴流Dの部分と認識された部分の数を数える。このような作業を各画像に行うことにより、シュリーレン部300Xが取得した各画像における噴流Dの数、および、シュリーレン部300Yが取得した各画像における噴流Dの数をそれぞれ取得できる。
 次に、シュリーレン部300Xが取得した複数の画像、及び、シュリーレン部300Yが取得した複数の画像のそれぞれから、最も噴流Dの数が多い画像を抽出すればよい。
 図3に戻って、位置取得部510は、第1選択部501が選択した画像、及び、第2選択部502が選択した画像中の噴流Dの位置に関する情報を取得それぞれ取得する。
 取得方法は特に限定されないが、例えば、図4の(a)の画像400Xでは、スケール360Xのマーク361の位置に基づいて、例えば、X方向に向かって左から3番目のマークの位置、及び、左から6番目のマークの位置、すなわち、X座標が3及び6といった情報を取得できる。例えば、図5の(a)の画像400Yでは、スケール360Yのマーク361の位置に基づいて、例えば、Y方向に向かって右から2番目のマークの位置、及び、右から5番目のマークの位置、すなわち、X座標が2及び5といった情報を取得できる。マーク361が無い場合には、画像内の水平位置、例えば、ドット番号等でもよい。
 出力部520は、位置取得部510が取得した噴流Dの位置に関する情報をディスプレイ600等の出力装置に出力する。
 続いて、上述の検査装置400を使用したグリーンハニカム成形体100の検査方法について説明する。
 ここでは、一例として、図2に示すように、グリーンハニカム成形体100の隔壁112には、欠陥として、上端が封口された流路110xと、下端が封口された流路110yとを連通させる孔hがあるものとする。ここで、図2及び図3に示すように、流路110xは、スケール360Yにおいて一番左側のマーク361の位置にあり、かつ、スケール360Xにおいて下から3番目のマーク361の位置にある。一方、流路110yは、スケール360Yにおいて左から2番目のマーク361の位置にあり、スケール360Xにおいて下から3番目のマーク361の位置にあるものとする。
 まず、圧力印加部材200をグリーンハニカム成形体100の下部に装着する。そして、バルブV1を開放して、例えば、アルゴンガスにより、グリーンハニカム成形体100の複数の流路110の下端にガスによる圧力を印加する(圧力を印加する工程)。圧力は特に限定されないが、例えば、大気圧に対する差圧として、0.01~1MPaとすることができる。そして、複数の流路110の上端110tの近傍には、雰囲気ガスの流れが殆ど無い状態、例えば、流速1m/s以下としておくことができる。また、実験の容易さから、雰囲気ガスの温度は0~30℃であることができる。
 このように圧力を印加すると、図2に示すような孔hが存在する場合、流路110x、孔h、及び、流路110yによって複数の流路110の上端110tと下端110bとを結ぶ流路が形成されるため、当該欠陥がある流路110yの上端から、加圧に使用したガスGが流出する。封口部114が欠落している場合や、封口部114と流路110とのあいだに隙間が生じている等の欠陥がある場合も同様である。これに対して、グリーンハニカム成形体100に、上述のような欠陥が無い場合には、複数の流路110の下端に圧力が印加されても、複数の流路110の上端110tを越えてガスが流れ出ることはできず、複数の流路110の上端110t上にガスは流出しない。
 そして、ガスGの屈折率が、複数の流路110の上端近傍の雰囲気ガスの屈折率と異なるため、欠陥がある場合には流路110yの上端近傍では屈折率のムラが生ずる。
 そして、この屈折率のムラを、シュリーレン部300X,300Yによってそれぞれ明暗の差等として可視化し画像を所定時間毎に取得する(画像を取得する工程)。図4の(a),(b)に、シュリーレン部300Xのカメラ302によって時刻t=t、tに撮影された画像400X,400Xの模式図を示す。また、図5の(a),(b)に、シュリーレン部300Yのカメラ302によって時刻t=t、tに撮影された画像400Y、400Yの模式図を示す。
 次に、シュリーレン部300Xが取得した画像400Xの内から最も噴流Dの数が多い画像を選択する。例えば、図4の例では、画像400Xが2つの噴流Dを有し、画像400Xが1つの噴流Dを有するので、二枚の内最も噴流Dの数が多い画像は画像400Xである。
 同様にして、シュリーレン部300Yが取得した画像400Yの内から最も噴流Dの数が多い画像を選択する。例えば、図5の例では、画像400Yが2つの噴流Dを有し、画像400Yが1つの噴流Dを有するので、二枚の内最も噴流Dの数が多い画像は画像400Yである。
 続いて、選択された画像400X,400Yそれぞれについて、噴流Dの位置に関する情報を得る。ここでは、400Xの噴流DのX座標は3及び6となり、400Yの噴流DのY座標は2及び5となる。
 そして、X座標が二つであり、Y座標が二つであるので、可能性がある欠陥位置は、4つの組み合わせ、すなわち、(X,Y)=(3,2)、(3,5)、(6,2)、(6,5)に絞り込むことができる。
 なお、図4、図5に示すように、ガス漏れの挙動は時間と共に変動する場合がある。すなわち、t=t1では噴流Dは二つ確認されるが、t=t2では噴流Dは一つしか確認されていない。この理由は明らかではないが、ガスを流通させることにより、内部の欠陥の状況が変動し、ある欠陥部位からガスが流出しにくくなる一方、他の欠陥部位からガスが流出しやすくなることがあると考えられる。
 像400X,400Yに基づいて推定された可能性のある欠陥位置の(X,Y)=(3,2)、(3,5)、(6,2)、(6,5)について、人手によって実際に存在する欠陥の有無や位置を判断してもよいが、公知の画像処理方法によって、欠陥の有無や位置を判断してもよい。
 本実施形態によれば、流路の欠陥の有無に応じて、当該流路110yの近傍に屈折率のムラが生じ、これを可視化することにより欠陥の有無や場所を容易に検出できる。
 本実施形態では、複数の流路110の上端110t近傍のガスの屈折率の分布を、複数の流路110の軸線(Z軸)と直交する2方向(X方向、Y方向)からシュリーレン部300X,300Yによってそれぞれ可視化するので、屈折率にムラのある場所について二次元的な情報(座標)が得られ、欠陥のある流路の特定が容易である。また、スケール360X,360Yを備えることにより、より一層、欠陥のある流路の特定が容易となっている。
 また、ガス中に、ガス以外の微粒子(例えば、グリコール系微粒子や、水蒸気ミスト)を添加する必要が無いので、検査後に微粒子を除去する必要がなく簡便である。
 そして、本実施形態により良品と判断されたグリーンハニカム成形体を、公知の方法で焼成することにより、セラミクス多孔体から形成されたセラミクスハニカム焼成体が得られる。このセラミクスハニカム焼成体は、ディーゼル粒子フィルタ(Diesel particulate filter)等として使用できる。
 以下、本発明の第2実施形態について説明する。本実施形態の検査装置400bでは、図6に示すように、直交する2方向である0°及び90°の方向から複数の流路110の上端110t近傍のガスの屈折率の分布を可視化可能なシュリーレン部300X,300Yに加えて、シュリーレン部300X,300Yの中間の方向である45°の方向から複数の流路110の上端110t近傍のガスの屈折率の分布を可視化可能なシュリーレン部300αを備えている。シュリーレン部300αは、シュリーレン部300X,300Yと同様の光源部301及び観測部302を有する。また、シュリーレン部300αの光源部301近傍には、スケール360X,360Yと同様のスケールが配置されているが、図示は省略する。
 また、情報処理装置500は、第1選択部501及び第2選択部502に加えて第3選択部503を備えている。第3選択部503は、第1選択部501及び第2選択部502と同様に、シュリーレン部300αが取得した複数の画像を取得し、これらの画像の内最もガスの噴流の数が多い画像を抽出する。
 あるいは検査装置400bでは、図7に示すように、シュリーレン部300Yを0°とした場合に、反時計周りに113°の方向から複数の流路110の上端110t近傍のガスの屈折率の分布を可視化可能なシュリーレン部300βを備えることができる。シュリーレン部300βはシュリーレン部300X,300Y,300αと同様の構成を有する。なお、シュリーレン部300X~300βの配置は、それぞれの配置されている角度が等間隔とならないように配置されていることが、欠陥の位置を特定し易くなるため、可能である。この場合、情報処理装置500は、第1選択部501、第2選択部502及び第3選択部503に加えて第4選択部504を備えている。第4選択部504は、第1選択部501~第3選択部503と同様に、シュリーレン部300βが取得した複数の画像を取得し、これらの画像の内最もガスの噴流の数が多い画像を抽出する。
 以下、本実施形態の検査装置400bの動作について説明する。検査装置400bは、まず、上記第1実施形態の検査装置400aと同様にシュリーレン部300X,300Yにより二方向から複数の流路110の上端110t近傍のガスの屈折率の分布を可視化する。このとき、欠陥が存在する可能性がある位置の組合せが、所定の閾値である例えば5個以上であるときは、検査装置400bは、シュリーレン部300αを加えた三方向から複数の流路110の上端110t近傍のガスの屈折率の分布を可視化する。検査方向を増加させることにより、欠陥が存在する可能性がある位置の組合せをさらに限定することができる。
 三方向からの検査により、欠陥が存在する可能性がある位置の組合せが所定の閾値未満となった場合には、上記第1実施形態と同様に、人手や公知の画像処理方法によって、欠陥の有無や位置を判断する。もし、未だ欠陥が存在する可能性がある位置の組合せが所定の閾値未満に特定できないときは、検査装置400bは、シュリーレン部300βを加えた四方向から複数の流路110の上端110t近傍のガスの屈折率の分布を可視化する。
 本実施形態では、さらに追加のシュリーレン部を配置し、5方向以上から検査を行なうことも可能である。本実施形態では、欠陥が存在する可能性がある位置の組合せが所定の閾値未満に特定できるまで、検査方向を段階的に増加させても良い。また本実施形態では、一度に配置された全てのシュリーレン部を用いて検査を行なっても良い。
 本実施形態では、X方向及びY方向の2個の画像中の噴流の位置に関する情報により、欠陥が存在する可能性がある位置の個数が所定の閾値以上に多いと推定されるときは、さらに3以上の方向から同様にガスの屈折率の分布を可視化した画像を互いに異なる時刻に複数取得し、3方向以上の画像それぞれの内、複数の流路の他端から排出するガスの噴流の数が最も多い画像をそれぞれ選択し、選択された3個以上の画像中の噴流の位置に関する情報をそれぞれ取得する。これにより、より多くの画像中の噴流の位置に関する情報を取得することができ、欠陥が存在する可能性がある位置をより少ない個数に限定することができる。
 以下、本発明の第3実施形態について説明する。本実施形態の検査装置400cでは、図8に示すように、複数の流路110の上端110t近傍に圧力センサ700が配置されている。圧力センサ700は、複数の流路110の上端110tをマトリクス状に区分し、それらの区画からの噴流Dの圧力を検出する。また、情報処理装置500の位置取得部510は、圧力センサ700の検出結果に基づき、噴流Dの位置を取得する。
 本実施形態によれば、複数の流路110の上端110tから排出するガスの噴流Dの圧力を検出することにより、噴流Dの位置に関する情報を取得するため、欠陥が存在する位置をさらに精度良く限定することができる。
 本発明は上記実施形態に限定されずさまざまな変形態様が可能である。
 例えば、上記実施形態では、屈折率の分布の可視化方法として、シュリーレン法を採用しているがガスの屈折率差を可視化できるものであればこれに限定されず、例えば、シャドウグラフ法やマッハツェンダー法を採用してもよい。
 また、上記実施形態では、2つのシュリーレン部300X、300Yを有するが、いずれかのシュリーレン部のみを有していても欠陥の有無の判定は可能であり、また、大体の欠陥の位置は把握できる。
 また、上記実施形態では、雰囲気ガスが空気であるが、他のガスを雰囲気ガスとしてもよいことは言うまでも無い。
 また、上記実施形態では、グリーンハニカム成形体100の流路110が上下方向に配置されているが、いずれの方向を向いても実施可能である。
 また、上記実施形態では、流路110の断面形状は、略正方形であるがこれに限定されず、矩形、円形、楕円形、3角形、6角形、8角形等にすることができる。また、流路110には、径の異なるもの、断面形状の異なるものが混在してもよい。また、流路の配置も、図1では正方形配置であるが、これに限定されず、断面において流路の中心軸が正三角形の頂点に配置される正三角形配置、千鳥配置等にすることができる。さらに、グリーンハニカム成形体の外形も、円柱に限られず、例えば3角柱、4角柱、6角柱、8角柱等とすることができる。
 本発明の一実施形態によれば、グリーンハニカム成形体の欠陥を容易に検査できる。
100 グリーンハニカム成形体
110 流路
110t 流路の上端(一端)
110b 流路の下端(他端)
112 隔壁
114 封口部
200 圧力印加部材
300X,300Y,300α,300β シュリーレン部
360 スケール
400a,400b,400c 検査装置
500 情報処理装置
501 第一選択部
502 第二選択部
503 第三選択部
504 第4選択部
510 位置取得部
520 出力部
600 ディスプレイ
700 圧力センサ
 

Claims (13)

  1.  互いに平行に伸びる複数の流路を形成する隔壁と、前記複数の流路の内の一部の一端及び前記複数の流路の内の残部の他端を閉鎖する封口部とを有するグリーンハニカム成形体の欠陥を検査する方法であって、
     前記複数の流路の一端に対してガスによる圧力を印加する工程と、
     前記複数の流路の軸線と交差する第1方向から、前記複数の流路の他端近傍のガスの屈折率の分布を可視化した第1方向画像を、互いに異なる時刻に複数取得する工程と、
     前記複数の流路の軸線と交差し、かつ、前記第1方向と交差する第2方向から、前記複数の流路の他端近傍のガスの屈折率の分布を可視化した第2方向画像を、互いに異なる時刻に複数取得する工程と、
     前記複数の第1方向画像の内、前記グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像を選択する工程と、
     前記複数の第2方向画像の内、前記グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像を選択する工程と、
     前記選択された2つの画像中の噴流の位置に関する情報をそれぞれ取得する工程と、を備えるグリーンハニカム成形体の欠陥を検査する方法。
  2.  前記選択された2つの画像中の噴流の位置に関する情報をそれぞれ取得する工程によって取得された情報により前記グリーンハニカム成形体の欠陥が存在する可能性がある位置の個数が所定の閾値以上であるときは、
     前記複数の流路の軸線と交差し、前記第1方向及び前記第2方向と交差し、互いに交差する第3~第n方向から(nは3以上の整数)、前記複数の流路の他端近傍のガスの屈折率の分布を可視化した第3~第n方向画像を、互いに異なる時刻に複数取得する工程と、
     前記複数の第3~第n方向画像それぞれの内、前記グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像をそれぞれ選択する工程と、
     前記選択された第3~第n個の画像中の噴流の位置に関する情報をそれぞれ取得する工程と、を備える請求項1記載の方法。
  3.  前記グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の圧力を検出することにより、噴流の位置に関する情報を取得する工程、を備える請求項1又は2に記載の方法。
  4.  前記屈折率の分布を、シャドウグラフ法、マッハツェンダー法、又は、シュリーレン法のいずれかにより可視化する請求項1~3のいずれか1項記載のグリーンハニカム成形体の欠陥を検査する方法。
  5.  前記複数の流路の他端近傍の雰囲気ガスの密度を0℃、1atmにおいて1とした場合に、前記圧力を印加するためのガスの密度が0℃、1atmにおいて0.1~0.9又は1.1~5.0である請求項1~4のいずれか1項記載のグリーンハニカム成形体の欠陥を検査する方法。
  6.  前記複数の流路の他端近傍の雰囲気ガスとは異なる組成のガスにより前記複数の流路の一端に対して圧力を印加する請求項1~5のいずれか1項記載のグリーンハニカム成形体の欠陥を検査する方法。
  7.  前記複数の流路の他端近傍が真空である状態及び前記複数の流路の他端近傍の雰囲気ガスが前記圧力を印加するためのガスと密度差のあるガスである状態のいずれかであり、前記圧力を印加するためのガスが、ヘリウム、ネオン、窒素、アルゴン、キセノン、クリプトン、酸素、及び、二酸化炭素からなる群から選択されるいずれかのガス、又は、この群の内の2種以上の混合ガス、又は、この群の内の1種以上と空気との混合ガスである請求項6記載のグリーンハニカム成形体の欠陥を検査する方法。
  8.  前記複数の流路の他端近傍の雰囲気ガスとは異なる温度のガスにより前記複数の流路の一端に対して圧力を印加する請求項1~7のいずれか1項記載のグリーンハニカム成形体の欠陥を検査する方法。
  9.  前記第1方向画像及び前記第2方向画像の視野内にスケールを配置する請求項1~8のいずれか1項記載のグリーンハニカム成形体の欠陥を検査する方法。
  10.  請求項1~9のいずれか1項記載のグリーンハニカム成形体の欠陥を検査する方法に基づいて欠陥の位置を認識する工程と、
     前記認識された欠陥を修復する工程と、を備える、グリーンハニカム構造体の製造方法。
  11.  互いに平行に伸びる複数の流路を形成する隔壁と、前記複数の流路の内の一部の一端及び前記複数の流路の内の残部の他端を閉鎖する封口部とを有するグリーンハニカム成形体の欠陥の検査装置であって、
     前記複数の流路の一端に対してガス供給源から供給されるガスによる圧力を印加する圧力印加部材と、
     前記複数の流路の軸線と交差する第1方向から、前記複数の流路の他端近傍のガスの屈折率の分布を可視化した第1方向画像を、互いに異なる時刻に複数取得する第1可視化部と、
     前記複数の流路の軸線と交差し、かつ、前記第1方向と交差する第2方向から、前記複数の流路の他端近傍のガスの屈折率の分布を可視化した第2方向画像を、互いに異なる時刻に複数取得する第2可視化部と、
     前記複数の第1方向画像の内、前記グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像を選択する第1選択部と、
     前記複数の第2方向画像の内、前記グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像を選択する第2選択部と、
     前記選択された2つの画像中の噴流の位置に関する情報をそれぞれ取得する位置取得部と、を備えるグリーンハニカム成形体の欠陥の検査装置。
  12.  前記位置取得部により取得された前記選択された2つの画像中の噴流の位置に関する情報によって取得された情報により前記グリーンハニカム成形体の欠陥が存在する可能性がある位置の個数が所定の閾値以上であるときに、前記複数の流路の軸線と交差し、前記第1方向及び前記第2方向と交差し、互いに交差する第3~第n方向から(nは3以上の整数)、前記複数の流路の他端近傍のガスの屈折率の分布を可視化した第3~第n方向画像を、互いに異なる時刻に複数取得する第3可視化部~第n可視化部と、
     前記複数の第3~第n方向画像それぞれの内、前記グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の数が最も多い画像をそれぞれ選択する第3選択部~第n選択部と、
    を備え、
     前記位置取得部は、前記選択された第3~第n個の画像中の噴流の位置に関する情報をそれぞれ取得する、請求項11記載のグリーンハニカム成形体の欠陥の検査装置。
  13.  前記グリーンハニカム成形体の複数の流路の他端から排出するガスの噴流の圧力を検出する圧力センサを備え、
     前記位置取得部は、前記圧力センサにより検出された前記複数の流路の他端から排出するガスの噴流の圧力により噴流の位置に関する情報を取得する、請求項11又は12記載のグリーンハニカム成形体の欠陥の検査装置。
PCT/JP2012/084134 2012-01-12 2012-12-28 グリーンハニカム成形体の欠陥を検査する方法、グリーンハニカム構造体の製造方法及びグリーンハニカム成形体の欠陥の検査装置 WO2013105467A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2014008369A MX2014008369A (es) 2012-01-12 2012-12-28 Metodo de examen de defecto de moldeado de panal verde, metodo de fabricacion estructura de panal verde, y dispositivo de examen de defecto de moldeado de panal verde.
EP12865425.8A EP2803972B1 (en) 2012-01-12 2012-12-28 Green honeycom molding defect examination method, green honeycomb structure manufacturing method, and green honeycomb molding defect examination device
KR1020147019872A KR20140112034A (ko) 2012-01-12 2012-12-28 그린 허니컴 성형체의 결함을 검사하는 방법, 그린 허니컴 구조체의 제조 방법 및 그린 허니컴 성형체의 결함 검사 장치
US14/328,185 US9067376B2 (en) 2012-01-12 2014-07-10 Green honeycomb molding defect examination method, green honeycomb structure manufacturing method, and green honeycomb molding defect examination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-004140 2012-01-12
JP2012004140A JP5481498B2 (ja) 2012-01-12 2012-01-12 グリーンハニカム成形体の欠陥を検査する方法、グリーンハニカム構造体の製造方法及びグリーンハニカム成形体の欠陥の検査装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/328,185 Continuation US9067376B2 (en) 2012-01-12 2014-07-10 Green honeycomb molding defect examination method, green honeycomb structure manufacturing method, and green honeycomb molding defect examination device

Publications (1)

Publication Number Publication Date
WO2013105467A1 true WO2013105467A1 (ja) 2013-07-18

Family

ID=48781423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084134 WO2013105467A1 (ja) 2012-01-12 2012-12-28 グリーンハニカム成形体の欠陥を検査する方法、グリーンハニカム構造体の製造方法及びグリーンハニカム成形体の欠陥の検査装置

Country Status (7)

Country Link
US (1) US9067376B2 (ja)
EP (1) EP2803972B1 (ja)
JP (1) JP5481498B2 (ja)
KR (1) KR20140112034A (ja)
MX (1) MX2014008369A (ja)
PL (1) PL2803972T3 (ja)
WO (1) WO2013105467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614342A (zh) * 2015-02-03 2015-05-13 清华大学 一种高温气流扰动下空气折射率三维重构测量方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9996766B2 (en) 2015-05-01 2018-06-12 Corning Incorporated Imaging-based methods for detecting and measuring defects in extruded cellular ceramic articles
MX2017014917A (es) 2015-05-21 2018-08-15 Corning Inc Metodos para inspeccionar articulos celulares.
WO2017061383A1 (ja) * 2015-10-09 2017-04-13 住友化学株式会社 ハニカムフィルタの検査方法、ハニカムフィルタの検査装置、及びハニカムフィルタの製造方法
US10739226B2 (en) * 2016-03-03 2020-08-11 Konica Minolta Opto, Inc. Gas leak position estimation device, gas leak position estimation method and gas leak position estimation program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626323A (ja) * 1992-03-16 1994-02-01 Ngk Insulators Ltd ディーゼルパティキュレートフィルタの端部目封じ検査修正装置
JP2002357562A (ja) 2001-03-30 2002-12-13 Ngk Insulators Ltd 欠陥を検出する検査方法及び検査装置
US7043964B1 (en) * 2004-12-20 2006-05-16 Corning Incorporated Method and system for detecting leaks in a plugged honeycomb structure
US20060151926A1 (en) * 2004-12-21 2006-07-13 Zoeller Leon R Iii Method and system for identifying and repairing defective cells in a plugged honeycomb structure
JP2008139184A (ja) * 2006-12-04 2008-06-19 Denso Corp 微小間隙溝保有物体の検査方法及びその物体の修正方法
JP2009503508A (ja) 2005-07-29 2009-01-29 コーニング インコーポレイテッド 粒子状流体を用いてハニカム体の欠陥を検出する方法、システム及び装置
WO2009028709A1 (ja) * 2007-08-30 2009-03-05 Ngk Insulators, Ltd. 被検体の欠陥検査方法
JP2010230460A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd ハニカム構造体欠陥検査装置、及びハニカム構造体欠陥検査方法
WO2011142268A1 (ja) * 2010-05-13 2011-11-17 住友化学株式会社 グリーンハニカム成形体の欠陥を検査する方法、及び、グリーンハニカム成形体の欠陥の検査装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1504402A (fr) * 1963-06-05 1967-12-08 Onera (Off Nat Aerospatiale) Perfectionnements à la strioscopie
JPS53134776A (en) * 1977-04-28 1978-11-24 Kuraray Co Ltd Method and apparatus for detecting leak portions in hollow fiber modules employed for liquid treatments
EP0267956A4 (en) * 1986-05-30 1990-01-08 Diffracto Ltd VISUALIZATION OF REFRACTION INDEXES.
JP2005283547A (ja) 2004-03-31 2005-10-13 Ngk Insulators Ltd セラミック構造体の検査方法
DE102005027023A1 (de) * 2005-06-11 2006-12-14 Gerhart Schroff Verfahren und Anordnung zur integralen Dichtheitsprüfung
JP2008056534A (ja) * 2006-08-31 2008-03-13 Denso Corp ハニカム構造体におけるセルの閉塞状態検査方法
KR101086142B1 (ko) * 2010-02-02 2011-11-25 한국수력원자력 주식회사 카메라 영상신호를 이용한 누설판별 방법 및 시스템

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626323A (ja) * 1992-03-16 1994-02-01 Ngk Insulators Ltd ディーゼルパティキュレートフィルタの端部目封じ検査修正装置
JP2002357562A (ja) 2001-03-30 2002-12-13 Ngk Insulators Ltd 欠陥を検出する検査方法及び検査装置
US7043964B1 (en) * 2004-12-20 2006-05-16 Corning Incorporated Method and system for detecting leaks in a plugged honeycomb structure
US20060151926A1 (en) * 2004-12-21 2006-07-13 Zoeller Leon R Iii Method and system for identifying and repairing defective cells in a plugged honeycomb structure
JP2009503508A (ja) 2005-07-29 2009-01-29 コーニング インコーポレイテッド 粒子状流体を用いてハニカム体の欠陥を検出する方法、システム及び装置
JP2008139184A (ja) * 2006-12-04 2008-06-19 Denso Corp 微小間隙溝保有物体の検査方法及びその物体の修正方法
WO2009028709A1 (ja) * 2007-08-30 2009-03-05 Ngk Insulators, Ltd. 被検体の欠陥検査方法
JP2010230460A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd ハニカム構造体欠陥検査装置、及びハニカム構造体欠陥検査方法
WO2011142268A1 (ja) * 2010-05-13 2011-11-17 住友化学株式会社 グリーンハニカム成形体の欠陥を検査する方法、及び、グリーンハニカム成形体の欠陥の検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2803972A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614342A (zh) * 2015-02-03 2015-05-13 清华大学 一种高温气流扰动下空气折射率三维重构测量方法

Also Published As

Publication number Publication date
EP2803972A1 (en) 2014-11-19
MX2014008369A (es) 2014-09-26
JP2013142669A (ja) 2013-07-22
EP2803972B1 (en) 2016-11-30
US9067376B2 (en) 2015-06-30
PL2803972T3 (pl) 2017-05-31
JP5481498B2 (ja) 2014-04-23
KR20140112034A (ko) 2014-09-22
EP2803972A4 (en) 2015-07-15
US20140319714A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2013105467A1 (ja) グリーンハニカム成形体の欠陥を検査する方法、グリーンハニカム構造体の製造方法及びグリーンハニカム成形体の欠陥の検査装置
JP5913799B2 (ja) ハニカム構造体の固定器具、ハニカム構造体の加工装置、及び、ハニカム構造体の検査装置
JP4926173B2 (ja) 粒子状流体を用いてハニカム体の欠陥を検出するシステムおよび装置
WO2013008789A1 (ja) ハニカム構造体の検査方法、ハニカム構造体の製造方法及びハニカム構造体の検査装置
JP5952530B2 (ja) グリーンハニカム成形体の欠陥を検査する方法、及び、グリーンハニカム成形体の欠陥の検査装置
EP2031378A1 (en) Method of detecting porous material defect
TWI581305B (zh) 檢測污染位置的設備、檢測污染位置的方法及電腦可讀取記錄媒體
US11662293B2 (en) Inspection method for pillar-shaped honeycomb filter
JP5667415B2 (ja) ハニカム構造体の検査方法、及び、ハニカム構造体の検査装置
JP2020153954A (ja) セラミックス焼成体の特性推定方法
JP5939750B2 (ja) ハニカムフィルタの欠陥の検査方法、及び、ハニカムフィルタの製造方法
US9133061B2 (en) Ceramics manufacture using rapidly dissolvable cellulosic binder
JP6005394B2 (ja) ハニカムフィルタの製造方法、及び、ハニカムフィルタの製造システム
JP2012083258A (ja) ハニカムフィルタの欠陥の検査方法、及び、ハニカムフィルタの欠陥の検査装置
WO2017061383A1 (ja) ハニカムフィルタの検査方法、ハニカムフィルタの検査装置、及びハニカムフィルタの製造方法
JP7206234B2 (ja) セラミックス製の円柱状ハニカム構造体の検査方法及び検査装置
JP2018112517A (ja) エアリークテスター用の基準容器及びリークテスト方法
RU2305828C1 (ru) Способ определения параметров пористости материалов
WO2013125483A1 (ja) ハニカム構造体の検査方法、ハニカム構造体の製造方法、ハニカム構造体、封口用マスクの設計方法、及びハニカム構造体の検査プログラム
JP2008058119A (ja) ハニカム構造体の検査方法及びその検査装置
JP2007256263A (ja) ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2012137649A1 (ja) ハニカム構造体用の外形検査装置及びハニカム構造体の製造方法
JPH08122196A (ja) ハニカム成形体の欠陥検出方法とその装置
Cruz et al. Extrusion of thin tubular membranes of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ (BSCF)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865425

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/008369

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2012865425

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012865425

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147019872

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE