WO2013104327A1 - 热像装置和热像拍摄方法 - Google Patents

热像装置和热像拍摄方法 Download PDF

Info

Publication number
WO2013104327A1
WO2013104327A1 PCT/CN2013/070340 CN2013070340W WO2013104327A1 WO 2013104327 A1 WO2013104327 A1 WO 2013104327A1 CN 2013070340 W CN2013070340 W CN 2013070340W WO 2013104327 A1 WO2013104327 A1 WO 2013104327A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
data
reference image
thermal image
predetermined
Prior art date
Application number
PCT/CN2013/070340
Other languages
English (en)
French (fr)
Inventor
王浩
Original Assignee
杭州美盛红外光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48106034&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013104327(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from CN2012100084027A external-priority patent/CN102538974A/zh
Priority claimed from CN 201210008404 external-priority patent/CN102538980A/zh
Application filed by 杭州美盛红外光电技术有限公司 filed Critical 杭州美盛红外光电技术有限公司
Priority to EP13736361.0A priority Critical patent/EP2803964A4/en
Priority to US14/371,441 priority patent/US10230908B2/en
Priority to JP2014551514A priority patent/JP6101287B2/ja
Publication of WO2013104327A1 publication Critical patent/WO2013104327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2621Cameras specially adapted for the electronic generation of special effects during image pickup, e.g. digital cameras, camcorders, video cameras having integrated special effects capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the thermal image device and the thermal image capturing method of the present invention relate to a thermal image device, a thermal image processing device, and an application field of infrared detection.
  • a thermal image device images by receiving infrared radiation energy of a subject, and the user judges the temperature state of the subject based on the displayed infrared thermal image.
  • Various subjects have their specific required shooting positions and shooting angles, and the subject thermal image conforming to this requirement appears as a specific imaging form, and also has a specific required shooting distance.
  • thermal image detection technology users have been confused about the correct imaging location, the perception of the imaging form of the subject at the shooting angle, and the control of the shooting distance. These depend on the user's subjective ideas and experience, which leads to the current To ensure the quality of the test, you need to think while shooting, the shooting speed is very slow, if you speed up, it is easy to miss key shooting parts or subject defects, affecting the effect of state evaluation. It usually takes years of practice accumulation to allow users to achieve higher levels of detection. Moreover, the user needs to adjust the position, size, and the like of the subject by subjective experience, so that the thermal image of the same or the same subject of each shot always has the difference in imaging position, size, and angle.
  • the difference of the thermal image of the subject obtained by each shooting causes the subsequent analysis work to be done manually (such as setting the analysis area corresponding to the thermal image of the subject, the analysis area consists of several points)
  • the area unit of the line and the surface for example, the S01, S02, and S03 area units in the analysis area F6 in Fig. 8.
  • the number, type, position, and size of the area unit are slightly different, and the final analysis results may be different. It is cumbersome; moreover, this difference leads to the difficulty of controlling the discreteness of the analytical data, and the horizontal and vertical analysis and comparison data are not efficient.
  • the thermal image data obtained by such shooting is very difficult in the subsequent batch processing of the computer, and how to take a photograph of the subject thermal image is a problem to be solved.
  • the patent document No. 201010221335.8 discloses a thermal imaging device having a visible light imaging portion and an infrared imaging portion, and synthesizing a visible light and an infrared thermal image, which can improve the visibility of the thermal image and thereby reduce the use.
  • the strength of the work For example, it is known to use grid lines, cross lines, etc. for aiming; and an over-temperature alarm is used to prompt the user to pay attention to the over-temperature subject.
  • the above method does not solve the problem.
  • the case where the temperature is high is not necessarily a defect in the power device, and the temperature of the hidden portion may be low.
  • the thermal imaging device of the prior art even if the user learns a large amount of infrared photography theory and subject knowledge, in the infrared detection, due to the lack of effective means, it is still necessary to rely on subjective experience to select the shooting.
  • the shooting position, shooting angle and shooting distance of the body, the shooting speed is slow, easy to miss, and the workload is large.
  • thermal imaging device that can achieve accumulation and subjective ideas without excessive reliance on experience, and can assist the user in correctly grasping the imaging form and shooting distance of the thermal image of the subject, and grasping the infrared.
  • the purpose and requirements of the test quickly and correctly select the shooting position, shooting angle and shooting distance of the subject, thus ensuring the validity of the evaluation and the standardization of the obtained thermal image data, so as to facilitate subsequent processing and operation of recording, analysis, etc.
  • ordinary users can achieve good shooting skill levels.
  • the present invention provides a thermal imaging device and a thermal imaging method, in which a reference image of a predetermined size that exhibits at least a predetermined morphological feature of a subject is displayed together with an infrared thermal image obtained by imaging in accordance with a predetermined position in the infrared thermal image.
  • the beneficial effects of the invention are: A reference image showing a predetermined position and a predetermined size and representing a predetermined morphological feature of the subject is displayed on the infrared thermal image, and the user uses the reference image as a visual reference for capturing the thermal image of the subject, and the subject is photographed.
  • the reference image visually presents the imaging form of the subject thermal image, and the desired subject thermal image size is indicated with reference to the predetermined size of the image, and the imaging distance related to the imaging size is indirectly indicated, thereby ensuring The quality of the shooting; thus, the technical requirements of the user are reduced, the quality and speed of the shooting are improved, the work intensity is reduced, and the quality of the subsequent analysis, recording, and the convenience of the operation are facilitated.
  • the thermal imaging device includes:
  • An obtaining unit for continuously obtaining thermal image data a reference image determining unit configured to determine composition data related to a reference image embodying a predetermined morphological feature of the subject, wherein the determined constituent data is used to obtain a predetermined morphological feature of the subject a reference image; a position determining unit configured to determine a predetermined position and a predetermined size of the reference image in the infrared thermal image; and a display control unit configured to obtain the reference image of the predetermined size based on the determined composition data, according to the reference image The specified position is displayed together with the infrared thermal image generated by the continuously obtained thermal image data.
  • a thermal imaging device including:
  • An obtaining unit for continuously obtaining thermal image data a reference image determining unit configured to determine composition data related to a reference image embodying a predetermined morphological feature of the subject, wherein the determined constituent data is used to obtain a predetermined morphological feature of the subject a reference image; a position determining unit configured to determine a predetermined position and a predetermined size of the reference image in the infrared thermal image; and a synthesizing unit configured to continuously synthesize the infrared thermal image and the reference image according to the predetermined position to obtain a composite image;
  • the infrared thermal image is generated based on thermal image data continuously obtained by the obtaining unit, and the reference image is obtained according to the predetermined size and based on the configuration data determined by the reference image determining unit.
  • a thermal imaging device including:
  • An obtaining unit for continuously obtaining thermal image data a reference image determining unit configured to determine composition data related to a reference image embodying a predetermined morphological feature of the subject, wherein the determined constituent data is used to obtain a predetermined morphological feature of the subject a reference image; a position determining unit configured to determine a predetermined position and a predetermined size of the reference image in the infrared thermal image; and a synthesizing unit configured to obtain the reference of the predetermined size based on the determined configuration data according to the predetermined position
  • the image is subjected to selective pseudo color processing on the continuously obtained thermal image data to obtain a composite image embodying the infrared thermal image generated by the reference image and the thermal image data.
  • a thermal imaging device including:
  • the obtaining unit is configured to obtain thermal image data
  • the reference image determining unit is configured to determine constituent data related to the reference image embodying the predetermined morphological feature of the subject, and the determined constituent data is used to obtain the characteristic morphological feature of the subject.
  • a reference image a reference image; a position determining unit configured to determine a predetermined position and a predetermined size of the reference image in the infrared thermal image; and a display control unit configured to obtain the reference image of the predetermined size based on the determined configuration data, according to the specification
  • the position, together with the infrared thermal image generated by the obtained thermal image data, is displayed together.
  • the thermal image capturing method of the present invention comprises the following steps:
  • Figure 1 is a block diagram showing the electrical configuration of a thermal image device of Embodiment 1-5.
  • Fig. 2 is an external view of the thermal image device of the embodiment.
  • Fig. 3 is a schematic view showing a setting menu interface of the thermal image device of the embodiment 1-4.
  • FIG. 4 is a schematic diagram showing an implementation of object information and form configuration data stored in the storage unit of the first embodiment.
  • Fig. 5 is a schematic diagram showing an embodiment of object information and a plurality of type composition data stored in the storage unit of the first embodiment.
  • Fig. 6 is a schematic view showing a composite image in which a visible image constitutes a reference image.
  • Fig. 7 is a schematic diagram of a composite image in which a texture image constitutes a reference image.
  • Fig. 8 is a schematic diagram showing a composite image in which a contour image and an analysis region pattern constitute a reference image.
  • Fig. 9 is a schematic diagram showing a composite image in which a contour image and an indication mark constitute a reference image.
  • Fig. 10 is a flowchart showing reference mode processing control in the first embodiment.
  • FIG. 11 is a schematic plan view showing a position where the subject h7 is photographed, a photographing position of the user, and a photographing distance in the first embodiment.
  • Fig. 12 is a view showing an object information candidate selection interface of the thermal imaging device of the first embodiment.
  • FIG. 13 is a schematic diagram showing a display interface of the subject h7 using the reference image in the first embodiment.
  • Fig. 14 is a view showing a display interface of the configuration data of the switching reference image of the first embodiment.
  • Fig. 15 is a view showing a display interface in which the reference image of the first embodiment coincides with the subject thermal image.
  • Fig. 16 is a flowchart showing the (adaptive display) reference mode processing control of the second embodiment.
  • 17 is a schematic diagram showing an adaptive display effect after the partial contour image "reference image centering" processing.
  • FIG. 18 is a schematic diagram showing an adaptive display effect after the partial contour image “center of reference range” processing.
  • Fig. 19 is a view showing another embodiment of the object information and the morphological configuration data stored in the storage unit of the second embodiment.
  • Fig. 20 is a block diagram showing another embodiment of the object information and the plurality of type composition data stored in the storage unit of the second embodiment.
  • FIG. 21 is a schematic diagram showing a display interface for determining a reference image adaptive display according to Embodiment 2.
  • Fig. 22 is a flowchart showing the processing reference mode processing control of the third embodiment.
  • Fig. 23 is a view showing a display interface of a reference image obtained by performing shear processing to obtain morphological composition data and a reference image generated using the morphological configuration data in the third embodiment;
  • Fig. 24 is a view showing a display interface of a process for obtaining morphological composition data and generating a reference image by performing edge extraction processing in the third embodiment
  • Fig. 25 is a view showing a setting interface for setting association information for a reference image generated by morphological composition data in an embodiment of the fourth embodiment
  • Fig. 26 is a view showing a setting menu of the thermal image device of the fifth embodiment.
  • Fig. 27 is a view showing a setting menu interface of object processing of the fifth embodiment.
  • Fig. 29 is a view showing five display examples of the action and effect of the reference image obtained by calculation or processing.
  • FIG. 30 is a schematic diagram of a setting menu interface of a reference image of Embodiment 5.
  • FIG. 31 is a schematic diagram of a switching setting menu interface of Embodiment 5.
  • 32 is a schematic diagram of a display interface for photographing a subject using a reference image composed of a contour and an analysis region and switching a reference image.
  • FIG. 33 is a schematic diagram showing a display interface for capturing a subject and switching a reference image by using a reference image composed of a contour and a calculated region.
  • Fig. 34 is a control flow chart showing an example of the reference mode of the embodiment 5.
  • Fig. 35 is a block diagram showing an electrical configuration of an embodiment of a thermal image processing system in which the thermal image processing apparatus and the thermal image pickup apparatus of the sixth embodiment are connected.
  • Fig. 36 is a view showing an implementation of a thermal image processing system in which the thermal image processing apparatus and the thermal image pickup apparatus of the sixth embodiment are connected.
  • Fig. 37 is a view showing a display interface of the process of adjusting the reference image by referring to the subject thermal image in the seventh embodiment.
  • the thermal image data may be thermal image AD value data (for example, data obtained by AD conversion of an infrared detector output signal), or image data of an infrared thermal image, or array data of temperature values, or other thermal image based image. Data generated by AD value data, etc.
  • the so-called thermal image data in the embodiment 1-5 is exemplified by the thermal image AD value data, and the imaging portion is taken as an example of the obtaining portion; the so-called thermal image data in the embodiment 6 is compressed thermal image AD value data or compressed infrared
  • the image data of the thermal image is taken as an example, and the communication interface is taken as an example of the obtaining section.
  • Embodiment 1 will be described in detail with reference to FIG.
  • Fig. 1 is a block diagram showing the electrical configuration of a thermal imaging device 12 of an embodiment.
  • Fig. 2 is an external view of the thermal imaging device 12 of the embodiment.
  • the thermal imaging device 12 includes an imaging unit 1, an image processing unit 2, a display unit 3, and a temporary storage unit 4.
  • the memory card I/F 5, the memory card 6, the flash memory 7, the communication I/F 8, the operation unit 9, and the control unit 10, and the control unit 10 is connected to the data bus 11 by the control and is responsible for the overall thermal imaging device 12. control.
  • the control unit 10 is realized by, for example, a CPU, an MPU, an SOC, a programmable FPGA, or the like.
  • the imaging unit 1 is composed of an optical member, a driving member, an infrared detector, a signal preprocessing circuit, and the like (not shown).
  • the optical component consists of an infrared optical lens for focusing the received infrared radiation onto the infrared detector.
  • the driving section drives the lens in accordance with a control signal of the control section 10 to perform a focusing or zooming operation, and may also be a manually adjusted optical component.
  • Infrared detectors such as infrared or non-refrigerated infrared focal plane detectors, convert infrared radiation through optical components into electrical signals.
  • the signal pre-processing circuit includes a sampling circuit, an AD conversion circuit, a timing trigger circuit, etc., and the signal read out from the infrared detector is subjected to signal processing such as sampling under a predetermined period, and converted into digital thermal image data by the AD conversion circuit.
  • the thermal image data is, for example, 14-bit or 16-bit binary data (also referred to as an AD value). This thermal image data is temporarily stored in the temporary storage unit 4.
  • the imaging unit 1 is an example of an acquisition unit for capturing a subject to obtain thermal image data (frame).
  • the image processing unit 2 performs predetermined processing on the thermal image data obtained by the imaging unit 1, and the processing of the image processing unit 2 is converted to be suitable for display, such as correction, interpolation, pseudo color, synthesis, compression, decompression, and the like. Record processing with equal data. For example, based on the recording instruction of the control unit 10, the image processing unit 2 is configured to obtain the compressed thermal image data in accordance with a predetermined compression process, and then the thermal image data is recorded on a storage medium such as the memory card 6. Further, based on the control of the control section 10, the image processing section 2 performs various processes related to image processing, for example, a process of changing the size of the image data by increasing or decreasing the pixels, for example, clipping processing of the image data.
  • the image processing unit 2 can be realized by a DSP or another microprocessor, a programmable FPGA, or the like, or can be integrated with the control unit 10.
  • the image processing unit 2 is an example of a synthesizing unit for continuously synthesizing the infrared thermal image generated by the thermal image data obtained by the imaging unit in accordance with the predetermined position and determining according to the predetermined size and based on the reference image.
  • the reference image obtained by the part constituting the data is obtained to obtain a composite image.
  • the composite image of the display (displayed by the display unit 3) can simultaneously display the subject thermal image and the reference image of the predetermined position and the predetermined size that embodies the predetermined morphological feature of the subject.
  • the image processing unit 2 performs predetermined processing on the thermal image data obtained by the imaging unit 1 to obtain an infrared thermal image, and the predetermined processing such as pseudo color processing or thermal image data obtained by the image processing unit 2 on the imaging unit 1 Predetermined processing such as non-uniformity correction and interpolation is performed, and pseudo color processing is performed on the thermal image data after the predetermined processing.
  • the pseudo color processing is determined according to the range of the AD value of the thermal image data or the setting range of the AD value, and the respective AD values of the thermal image data are corresponding in the pseudo color plate range.
  • the color value is taken as image data of its corresponding pixel position in the infrared thermal image, and here, the grayscale infrared image can be regarded as a special case in the pseudo color image.
  • the infrared thermal image and the reference image of a predetermined size are continuously synthesized at a predetermined transparent ratio according to a predetermined position, so that the obtained composite image can simultaneously display the subject thermal image and the embodiment.
  • the transparency ratio referred to herein represents the ratio of the image data of the reference image and the background (infrared thermal image) at the time of synthesis in the corresponding pixel of the composite image, and the sum of the transparency ratios of the reference image and the infrared thermal image in the synthesized pixel.
  • the image data of the pixel at the corresponding position of the thermal image represents that the image of the infrared thermal image of the corresponding position is completely occluded; for example, when the transparency ratio is equal, the image data of the image data ratios of the two images are equally added as a composite image.
  • Image data of the pixel, in the composite image, the reference image is in a semi-transparent state, and the infrared thermal image can be displayed through the reference image or the reference image can be displayed through the infrared thermal image.
  • the prescribed transparency ratio can be A predetermined transparency ratio is stored in the default value stored in the imaging device 1, or in the attribute of the configuration data set by the user via the operation unit 9 or related to the reference image.
  • the reference image includes a plurality of synthetic objects
  • the background for example, infrared thermal image
  • the synthesis processing is sequentially performed in accordance with the synthesis order of the respective synthetic objects and the corresponding transparency ratio.
  • synthetic object 1 synthetic object 1
  • synthetic object 2 synthetic object 2
  • synthetic object 1 is first synthesized according to its transparent ratio and background (infrared thermography) to obtain midway data.
  • a predetermined threshold range and a predetermined transparency ratio may be used to determine a transparency ratio corresponding to image data of the reference image or the infrared thermal image in the threshold range; wherein the predetermined threshold range and the specified range
  • the transparency ratio may be pre-stored or may be set and adjusted by the user; the expression range of the threshold range is, for example, an AD value range, a temperature band (value) range, a gray scale range, a color range, and the like.
  • the constituent data of the reference image is thermal image data
  • the image data generated by the image data is for display in the composite image (for example, the predetermined transparency ratio of the image data generated by the thermal image data in the threshold interval range is 1, and the others are 0).
  • the threshold interval range such as the AD value range or the temperature band range
  • image data generated by the thermal image data in the infrared thermal image is used for displaying in the composite image
  • image data generated by thermal image data in the threshold interval range specifies a transparency ratio of 1, and others are 0
  • the transparency ratio of the reference image may also be a changed value.
  • the image processing unit 2 as the synthesizing unit photographs the thermal image obtained by the corresponding pixel position in the infrared thermal image based on the predetermined position and the reference image of the predetermined size.
  • the data is subjected to selective pseudo color processing to obtain a composite image.
  • the image data of the reference image at the corresponding pixel position is used as the image data of the composite image of the pixel position, and the thermal image data of the corresponding pixel position is no longer subjected to pseudo color conversion processing, only to the reference image.
  • the thermal image data other than the pixel position is subjected to pseudo color conversion to obtain image data of the infrared thermal image, thereby generating a composite image; for example, the reference image corresponds to the thermal image data of the pixel position in the thermal image data, and the other image position is performed.
  • Different processing of the pseudo color processing of the thermal image data for example, pseudo color processing of different pseudo color plates, for example, subtracting a predetermined value from the thermal image data of the pixel position in the thermal image data corresponding to the reference image, and then performing pseudo color processing, etc.
  • Speed up processing A reference image suitable for a line form may be preceded by a corresponding type information or logo in the attribute of the constituent data for the reference image desired to be synthesized in this manner.
  • the display control unit causes the display unit to display a composite image obtained by one of the above-described modes or a plurality of simultaneous processing methods, thereby realizing obtaining a reference image of the predetermined size based on the determined configuration data.
  • the predetermined position the infrared thermal image generated by the continuously obtained thermal image data is displayed together.
  • the present invention is not limited thereto.
  • a reference image may be projected on an infrared thermal image to realize common display. In this case, the above-described function of the synthesis processing of the image processing unit 2 can be removed.
  • the display unit 3 includes a display driving circuit and a liquid crystal display.
  • the display driving circuit drives the liquid crystal display under the control of the control unit 10, continuously displays the infrared thermal image obtained by the imaging in the shooting standby mode, and continuously displays the synthesized image in the reference processing mode.
  • the image in the reproduction mode, displays an infrared thermal image read and expanded from the memory card 6. Further, various setting information can be displayed in accordance with the control of the control unit 10.
  • the display portion 3 is taken as an example of the display portion.
  • the display unit 3 may be another display device connected to the thermal image device 12, and the thermal image device 12 itself may have no display device in its electrical configuration.
  • the temporary storage unit 4 is a buffer memory that temporarily stores thermal image data output from the imaging unit 1 as a buffer memory for temporarily storing the thermal image data output from the imaging unit 1, and functions as a work memory of the image processing unit 2 and the control unit 10, and temporarily stores the memory.
  • the memory, the register, and the like included in the processor such as the control unit 10 and the image processing unit 2 may be construed as a temporary storage medium.
  • the memory card I/F 5 is an interface of the memory card 6, and a memory card 6 as a rewritable nonvolatile memory is connected to the memory card I/F 5, and is detachably attached to the main body of the thermal image device 12.
  • data such as thermal image data is recorded in accordance with the control of the control unit 10.
  • the flash memory 7 (incorporated flash memory), in the present embodiment, is an example of a storage unit for storing constituent data related to a reference image embodying at least a predetermined morphological feature of the subject; the stored constituent data includes at least a morphological composition
  • the data that is, the stored constituent data is morphological constituent data, or the stored constituent data includes morphological constituent data and other types of constituent data (hereinafter referred to as auxiliary constituent data).
  • the storage unit may refer to a storage medium in the thermal imaging device 12, such as a nonvolatile storage medium such as the flash memory 7, the memory card 6, a volatile storage medium referred to by the temporary storage unit 4, or the like; It may also be another storage medium that is wired or wirelessly connected to the thermal imaging device 12, such as a storage medium or network that communicates through a wired or wireless connection with the communication I/F 8 such as other storage devices or thermal imaging devices, computers, and the like.
  • the storage medium of the destination Preferably, data such as constituent data is stored in advance in the thermal image device 12 or in a nonvolatile storage medium connected thereto.
  • a preferred embodiment of the configuration data stored in the storage unit that is, one piece of subject information and one piece of configuration data associated with each subject information, is stored.
  • the position information for example, the position, the size, or the rotation angle
  • the morphological composition data is composed of coordinates of a plurality of points
  • the reference image size is simultaneously stored, and the size of the reference image formed by the points is determined by the coordinates of the stored plurality of points; similarly, when the position determining unit determines When a plurality of points constituting the reference image are located at the position in the infrared thermal image, the predetermined size of the reference image is also determined.
  • the subject information is a combination of one or more pieces of information representing the identity of the subject, such as the type, name, number, location, and the like of the subject.
  • the specific expression form of the position information or the like may also be a position parameter in a coordinate system located in the entire screen in the display portion (for example, when the screen includes an infrared thermal image display window and other information display windows located outside the infrared thermal image display window). (but falling in the infrared thermal image display window).
  • the morphological composition data is constituent data of an image representing a morphological feature of the subject, and may be, for example, dot matrix data or vector graphics data, or data composed of dot matrix data and vector graphics data, and the like, for example, dot matrix data.
  • Dot matrix image data such as dot matrix data composed of array data such as thermal image data.
  • the morphological composition data may be extracted from various types of subject images obtained by a predetermined imaging angle, an imaging site, such as an infrared thermal image, a visible light image, or the like, or may be stored in advance in a storage unit (such as the flash memory 7). middle.
  • the reference image may correspond to a prescribed morphological feature of the subject as a whole or a part or a part (such as the partial contour image T17 in FIG. 18).
  • the reference image embodies the predetermined morphological feature of the subject, and may be a predetermined morphological feature that embodies the thermal image of the subject, and may be, for example, an infrared thermal image including a thermal image of the subject; not limited thereto, due to the subject
  • Other types of images such as visible light and ultraviolet light and the infrared thermal image have contours, texture similarities or reference in cooperative use, and also refer to various types of subject images that embodies the requirements of prescribed morphological features such as visible light images of the subject. , pre-drawn images, etc.
  • such an image is displayed as a translucent display in a predetermined transparent ratio in the composite image, and a predetermined reference angle and a subject form of the imaged portion are provided as visual references for the photographing reference.
  • the reference image TU6 of the visible light image is semi-transparently displayed, and a semi-transparent occlusion is generated in the portion of the subject thermal image H6 located in the semi-transparent reference image TU6, which has an effect on the observation effect, but the reference is The images are vivid and easy to understand.
  • a reference image embodies a prescribed morphological feature of the subject, and may be an image that can reflect only the outline and/or texture features of the subject.
  • This type of reference image indicates contour and/or texture features related to the shape of the subject at the reference image pixel position in the composite image, and other positions of the composite image may display the infrared thermal image without blocking, and the thermal image of the subject Less occlusion.
  • the morphological composition data may be vector graphics data (such as generating the contour image T6 in FIG. 8) or lattice data (such as the texture image W6 in FIG. 7), and the contour and/or texture feature locations in the reference image.
  • Other pixel locations than others are fully transparent to display infrared thermal images; such reference images may be opaque or translucent.
  • a reference image embodies a predetermined morphological feature of the subject, and may also include other cue images as an aid, for example, an analysis area F6 representing a key observation area in FIG. 8 (analysis area F6 is numbered information S01, S02, S03)
  • analysis area F6 is numbered information S01, S02, S03
  • FIG. 9 the representative display mark B6 and the like are displayed, and the user is prompted to pay attention to the corresponding key attention parts in the reference image.
  • the auxiliary constituent data may be vector graphic data, or dot matrix data, or both vector graphic data and dot matrix data. For example, it is used to obtain an analysis area as shown in FIG. 8, a cue mark as shown in FIG. 9, and the like.
  • the analysis area such as a point, a line, and a surface, may actually include one or more analysis area units (points, lines, planes) and number information of the area unit; the analysis area used to obtain the analysis area constitutes data, for example The vector graphic data of the area unit and the number information of the area unit are included.
  • the constituent data relating to the reference image for example, various types of morphological constituent data and auxiliary constituent data; the constituent data for obtaining the reference image may be one or more, but at least one morphological constituent data is included.
  • the specific auxiliary constituent data is also used, for example, to specify the positional parameter of the reference image in the infrared thermal image; for example, the auxiliary object obtained by the auxiliary constituent data is set as the reference range area, and represents the area represented by the auxiliary object as the key observation or the like. the goal of.
  • the specific auxiliary component data for example, data of points, lines, and planes having a predetermined relative positional relationship with the reference image is stored in association with the thermal image data at the time of recording processing, and the amount of data of the morphological constituent data is relatively large, and the recording and recording are performed.
  • the auxiliary constituent data of the auxiliary object having the predetermined relative positional relationship of the reference image can reduce the amount of stored data.
  • the recording mode is advantageous for subsequent batch processing.
  • Another example of the storage content of the storage unit illustrated in FIG. 5 stores a plurality of types of subject information and a plurality of types of constituent data related to the reference image with type information associated with each subject information, including Type of morphological composition data, auxiliary constituent data (such as analysis area composition data, etc.), position information (such as position, size, or rotation angle) of various images constituting the data generated in the infrared thermal image, wherein
  • auxiliary constituent data such as analysis area composition data, etc.
  • position information such as position, size, or rotation angle
  • the type information indicates various types of constituent data, and the types may be classified according to reference features, photographing measurement purposes, data formats constituting data, and the like; a classification implementation is classified by reference features for generating reference images.
  • the predetermined type of the configuration data is set by the user in the menu setting column SZ31 as shown in FIG. 3, and the constituent data related to the generation of the reference image may be set as outline, texture, other (such as visible light, infrared thermal image), and the like.
  • the morphological form of the type constitutes one or more types of data, and may further include analysis area composition data and the like; when multi-selected, represents a reference type of a plurality of reference images obtained by constituting the data, for example, contours are selected
  • the reference image contains the contour image and the texture image.
  • the contour and the analysis area are selected, the reference image contains the contour image and the analysis area.
  • the determined type of setting can be saved as a default value for the specified type.
  • classification is not limited to constituting data for a single composition, and it is also possible to classify a combination of a plurality of constituent data.
  • FIG. 4 shows a storage embodiment in which one subject information is associated with one morphological composition data
  • FIG. 5 represents a storage embodiment in which one subject information is associated with a plurality of types of constituent data; there are also partially different subjects. Information (like a model of a subject) is associated with the same constituent data such as morphological composition data.
  • the type information may be added without selection of the type information.
  • the storage contents in FIGS. 4 and 5 can be stored in a plurality of files, for example, data files in which the subject information is used as a storage form of the file name, or the files are further classified by a folder. It is also possible to store the storage contents in FIG. 4 or FIG.
  • the constituent data associated with the subject information is, for example, constituent data directly related to the subject information; for example, the subject information is directly associated with a certain constituent data, and the constituent data is associated with other constituent data, and the other constituent data is also
  • the subject information is associated with the index information of the constituent data, and the constituent data corresponding to the index information is also the constituent data associated with the subject information.
  • the association information is stored by storing index information (such as a file name or the like) of the morphological composition data in the table of FIG. 4 or FIG. 5, the index information (such as a file name) is correspondingly stored in the storage medium.
  • the form constitutes a file such as data.
  • the morphological composition data is stored in association with the morphological data, so that the user can select the subject according to the scene-recognized subject.
  • the selection of the camera information avoids the mistakes in the selection of the data and reduces the data redundancy.
  • the communication I/F 8 is an interface that connects and exchanges data between the thermal imaging device 12 and an external device in accordance with a communication specification such as USB, 1394, or network.
  • a communication specification such as USB, 1394, or network.
  • a personal computer, a server, and a PDA (personal digital assistant device) can be cited as an external device.
  • other thermal imaging devices such as visible light imaging devices, storage devices, and the like.
  • the operation unit 9 is for the user to give an instruction to the thermal imaging device 12 or input setting information, such as the recording key 1, the confirmation key 2, the focus adjustment key 3, and the mode setting button 4 shown in FIG.
  • the cross key 5 and the like are not limited thereto, and the touch panel 6 or a voice component or the like may be used to implement the related operation.
  • the control unit 10 (such as a CPU) controls the overall operation of the thermal imaging device 12, and stores a program for control and various data used for control of each part in a storage medium such as the flash memory 7.
  • the above-described thermal imaging device 12 is used to describe a specific implementation of the embodiments of the present invention and is not intended to limit the present invention. Those skilled in the art will appreciate that the present invention can be implemented even if the above structure is modified.
  • the control program causes the control unit 10 to perform control of a plurality of mode processes.
  • the control unit 10 After the power is turned on, the control unit 10 initializes the internal circuit, and then enters the standby shooting mode, that is, the imaging unit 1 captures and obtains thermal image data, and the image processing unit (2)
  • the thermal image data obtained by the imaging unit 1 is subjected to predetermined processing, stored in the temporary storage unit 4, and the infrared thermal image is continuously displayed on the display unit 3 as a moving image.
  • the control unit 10 performs the control. , continuously monitor whether to switch to other mode processing or perform shutdown operation according to predetermined conditions, and if so, enter corresponding processing control.
  • control unit 10 is exemplified as a reference image specifying unit, a position determining unit, a display control unit, and the like.
  • FIG. 10 is a flowchart showing reference mode processing control.
  • FIG. 11 is a schematic plan view showing a place where the subject h7 is photographed, a user photographing position, and a photographing distance.
  • 12 is a schematic diagram of an object information candidate selection interface of the thermal image device.
  • FIG. 13 is a schematic diagram of a display interface for photographing a subject h7 using a reference image.
  • Fig. 14 is a view showing a display interface for switching constituent data of a reference image.
  • 15 is a schematic diagram of a display interface in which a reference image is coincident with a subject thermal image.
  • the scene of the infrared detection of the power device is taken as an example, and the purpose is to patrol the operation state of the object h7, and the object h7 is a key component in the power device DL.
  • the reference mode steps are as follows:
  • step S101 the control unit 10 performs its control to continuously monitor whether the user has selected the reference mode.
  • the display unit 3 displays a dynamic infrared thermal image.
  • the shooting position where the user is located is the position A in FIG. 11, and the infrared thermal image shown in the display interface G1301 of FIG. 13 is obtained.
  • the user may be confused about the shooting distance of the subject h7, and shooting.
  • the portion or even the photographic portion pointed to by the subject h7 in the power device DL is used to ensure the correctness of the photographing of the subject h7 by the reference of the reference image, and the operation is simple, and the user passes the mode of the operation portion 9.
  • the button or menu selects the reference mode, and the flow proceeds to step S102.
  • step S102 constituent data related to the reference image to be combined with the infrared thermal image is determined.
  • the control unit 10 is a reference image specifying unit that specifies configuration data relating to a reference image that reflects the predetermined morphological feature of the subject, which is combined with the infrared thermal image, based on the configuration data stored in the storage unit.
  • the determined constituent data includes at least one morphological constituent data, that is, the determined constituent data is morphological constituent data, or the determined constituent data includes morphological constituent data and auxiliary constituent data.
  • the flash memory 7 stores the storage contents as shown in FIG. 4 or FIG. 5, and in response to the user's operation in step S101, the control unit 10 will according to the object information stored in the flash memory 7, according to the A predetermined number of subject information to-be-selected items generated by the subject information are displayed on the display section 3, as shown in the subject information candidate list LB shown in FIG. 12, based on the cognition of the subject h7, for example, on-site
  • control unit 10, the operation unit 9, and the display unit 3 constitute an example of a selection unit for selecting subject information, and the subject information "subject h7" is selected in accordance with the user's operation.
  • the subject information is a combination of one or more pieces of information representing the identity of the subject, such as the type, name, number, location, and the like of the subject, whereby when the subject information is to be selected as a plurality of candidates When combined, the operation of selecting the subject information to be selected may require selection of a plurality of candidates to determine the final subject information.
  • the representation of the subject information to be selected may be a number, a text, an icon, a graphic, or the like.
  • the selection unit is not limited to displaying the subject information waiting option, and the subject information may be selected by, for example, inputting the number of the subject information or the like.
  • the storage contents as shown in FIG. 4 are stored in the flash memory 7, and in response to the operation, the control section 10 determines the contour T7 vector graphics data as the constituent data to be associated with the reference image synthesized by the infrared thermal image.
  • the control unit 10 reads the outline T7 vector pattern data corresponding to the subject information "subject h7", and transmits the position information of the reference image (contour image T7) in the infrared thermal image to a predetermined area of the temporary storage unit 4.
  • the stored content as shown in FIG. 5 is stored in the flash memory 7, and in response to the operation, the control section 10 reads the object information.
  • the configuration data such as the contour T7, the texture W7, and the analysis region F7 corresponding to the "subject h7", and the position information in the infrared thermal image such as the contour T7, the texture W7, and the analysis region F7 are transmitted to the temporary storage unit 4, and are prepared. Subsequent use such as switching, recording, etc. (the part where the setting is required can also be transmitted).
  • the control unit 10 determines the contour T7 vector graphics data as the constituent data relating to the reference image to be combined with the infrared thermal image based on the definition of the configuration data and the type information of the contour T7 vector graphics data. If the determination type is not specified, the constituent data of the contour T7, the texture W7, the analysis region F7, and the like associated with the subject information are simultaneously determined to constitute the constituent data for generating the reference image; or the user is selected again. For the prescribed determination type, the user can perform setting in the menu setting column SZ31 of the thermal imaging device 12 as shown in FIG. 3, which may be one or more of them.
  • control unit 10 can display the predetermined number of pieces of configuration information such as the morphological data and the like based on the configuration data such as the morphological configuration data stored in the flash memory 7, and the user can perform the predetermined information. Selecting, the selection information, such as text, characters, icons, numbers, codes, thumbnails, etc., constituting the data identity information related to the constituent data such as the morphological composition data, and the data identity information may be defined or edited with different application meanings. .
  • the control unit 10 can display a predetermined number of image thumbnails generated by the constituent data to provide a user selection, and the user selects the application to be applied to the subject according to the form of the thumbnail.
  • the composition data related to the reference image is determined according to the user's selection.
  • the control unit 10 displays the image based on the relevant file name or thumbnail stored in the flash memory 7 when the reference mode is entered, and is performed by the user. select. Therefore, the subject information is not essential, and the storage unit may store only the constituent data such as the morphological data.
  • control unit 10 as the reference image determining unit may determine the configuration data as described above; for example, a certain form configuration data is determined by default, and its application is detected for a specific subject.
  • the correspondence relationship between the specific button in the operation unit and the specific form configuration data and the like may be set in advance, and then the configuration data such as the corresponding form configuration data may be determined in response to the operation of the specific button.
  • the configuration data related to the current constituent data may be determined in response to a predetermined operation of the user such as switching of the direction keys.
  • the constituent data related to the composition of the reference image synthesized by the infrared thermal image; the constituent data related to the current constituent data is associated with the currently determined constituent data, or generated based on the current constituent data, or with the selected photographed Other constituent data associated with the body information.
  • the subject information is associated with a plurality of constituent data, and the plurality of constituent data can be determined and switched.
  • composition related to the reference image corresponding to the signal may also be determined by triggering by a corresponding receiving device (not shown) on the thermal imaging device according to a predetermined triggering condition such as an external trigger signal such as an inductive signal, a GPS signal, or the like. data.
  • control section 10 issues an instruction to the external device to obtain and determine the configuration data corresponding to the subject information by wire or wirelessly.
  • Step S103 determining that the reference image is located at a predetermined position and a predetermined size of the infrared thermal image
  • the control unit 10 determines a predetermined position and a predetermined size in which the outline image T7 is located in the infrared thermal image based on the position information transmitted to the temporary storage unit 4.
  • the flash memory 7 stores form configuration data and associated position information
  • the position information represents a predetermined position and a predetermined size in which the reference image generated by the form configuration data is located in the infrared thermal image.
  • the position specifying unit is configured to determine a predetermined position and a predetermined size represented by the position information as a reference position obtained by the form configuration data, and a predetermined position and a predetermined size in the infrared thermal image.
  • the position, size, or rotation angle of the reference image display may also be determined according to the user input through the operation unit; or the position determination unit sets the predetermined position and the specified size of the reference image according to the default position and size (eg, default)
  • the center point position is displayed in the original size, and the composition data of the reference image of the applicable size can be prepared in advance; or it is determined by the predetermined adaptive region, as shown in Embodiment 2.
  • Step S104 the captured thermal image data is transferred to the temporary storage unit 4.
  • Step S105 synthesizing the reference image and the infrared thermal image; specifically, the control unit 10 controls the image processing unit 2 to perform data (vector graphic data) on the contour T7 according to the determined predetermined size or the rotation angle.
  • the predetermined processing combines the image data obtained after the processing, for example, the image data of the predetermined monochrome, with the image data of the infrared thermal image obtained by the predetermined processing by the thermal image data in accordance with the predetermined position.
  • the profile T7 may be translucent or opaque.
  • step S106 the control unit 10 as the display control unit controls the composite image to be displayed on the display unit 3.
  • the reference image is displayed together with the infrared thermal image, and the process proceeds to step S107.
  • the contour image T7 provides a good visual reference for the user. It is conceivable that if there is no reference image reference means, the subject is photographed in the form of the subject thermal image H7 (in practice, many users often only take incomplete subject thermal images, or inappropriate shooting angles) and The imaging position, size, and angle in the infrared thermal image are difficult to subjectively grasp.
  • step S107 the control unit 10 performs its control to monitor whether the user has exited the reference mode.
  • the reference mode processing is ended. If not, the steps of steps S104-S106 are repeated, and the display unit displays the continuously synthesized dynamic infrared thermal image and the reference image, reflecting the state in which the dynamic infrared thermal image obtained by the shooting and the reference image T7 are continuously synthesized and displayed.
  • the display interface G1302 there is a large morphological difference between the subject thermal image H7 and the contour image T7; thus, the user adjusts the angle of the subject h7 according to the reference of the contour image T7, by changing the shooting. The position is changed from the shooting position A in FIG. 11 to the shooting position B.
  • the shooting angle of the shooting position B is displayed as the display interface G1303, and the contour image T7 is similar to the contour image of the subject thermal image H7, but The size of the subject thermal image H7 image is greatly different from the size of the contour image T7.
  • the user understands that the portion to be photographed is the subject shape indicated by the contour image T7 based on the visual reference of the contour image T7.
  • the position, size, and angle of the image of the thermal image of the subject in the infrared thermal image are indicated by the contour image T7, and then by adjusting the shooting distance between the optical component of the thermal imaging device 12 and the subject h7,
  • the imaging position for example, the user changes from the shooting position B in FIG.
  • the user can judge the state of the subject thermal image H7 conforming to the predetermined form, and will not miss, or can continue to adjust the shooting position and angle so as to achieve the visual coincidence matching state in the display interface shown in FIG. If the operation and processing such as analysis, recording, etc.
  • the composition data and the position information of the contour T7 and the subject information of the subject h7 are recorded in association with the thermal image data obtained at the time, and the generated infrared thermal image file has the subject thermal image in the infrared thermal image. Location and size information for subsequent batch analysis and intelligent diagnosis.
  • the control unit 10 responds to the user's switching operation, and in step S102.
  • the auxiliary component data associated with the subject information or the contour image T7 which is transmitted to the analysis area F7, the texture W7, and the like of the temporary storage unit 4, is determined, and is combined with the contour image T7 together with the infrared image (indicated in FIG. 14).
  • the reference image of the region F7 and the contour image T7 is analyzed to enhance the reference effect.
  • the reference mode can be reselected to enter the next subject's reference shot, or other mode processing can be performed. It is conceivable that in the case of infrared photography, if there is no reference image reference means that embodies the specified morphological features of the subject, the user needs to subjectively try to figure out the shooting angle, distance, and photographing position of the subject h7, and it is easy to miss the key measurement part, and shoot Slow.
  • control unit 10 may further include a transparent object specifying unit for specifying an object (for example, the reference image T7 in the present embodiment) in which the user needs to change the transparency ratio from the reference image displayed by the display unit, and responding to the user's Schedule a operation to change the transparency ratio of the specified object.
  • a transparent object specifying unit for specifying an object (for example, the reference image T7 in the present embodiment) in which the user needs to change the transparency ratio from the reference image displayed by the display unit, and responding to the user's Schedule a operation to change the transparency ratio of the specified object.
  • the morphological configuration data associated with the subject information stored in advance and the subject information is employed, it is convenient to select the corresponding morphological composition data based on the subject photographed on the spot;
  • the position information associated with the morphological composition data is stored in the flash memory 7, thus avoiding the positional adjustment of the reference image, and the operation is simple and standardized; the reference position and the specified size presented in the composite image and the reference of the contour feature of the object are reflected
  • the image provides a visual reference for the user to take a subject thermal image, and indicates and standardizes the shooting angle, shooting location, and shooting distance of the subject; obviously, according to the reference image reference, the user can clearly see the shooting requirement.
  • Embodiment 1 is a preferred embodiment, and of course, it is not necessarily required to achieve all of the advantages described above while implementing any of the embodiments of the present invention.
  • Embodiment 1 The difference from Embodiment 1 is that in the present embodiment, in the thermal imaging device 12 having the same configuration as that shown in FIG. 1, in the flash memory 7, it is stored for performing adaptive display of the reference image in the adaptive region.
  • Fig. 16 is a flowchart showing (adaptive display) reference mode processing control.
  • 17 is a schematic diagram showing an adaptive display effect after the partial contour image "reference image centering" processing.
  • FIG. 18 is a schematic diagram showing an adaptive display effect after the partial contour image “center of reference range” processing.
  • Fig. 19 is a view showing another embodiment of the object information and the morphological composition data stored in the storage unit.
  • FIG. 20 is another schematic diagram of the execution of the object information and the plurality of types of constituent data stored in the storage unit.
  • 21 is a schematic diagram of a display interface for determining a reference image to capture an object h6.
  • control unit 10 as the position determining unit determines the position of the reference image in the infrared thermal image based on the size and position of the adaptive region in the infrared thermal image and the position of the reference image in the adaptive region. And the specified size.
  • the adaptive region is a predetermined region for adaptively displaying a reference image or the like in the infrared thermal image
  • the adaptive display refers to a non-overflowing aspect ratio in the adaptive region by the designated position of the reference image in the adaptive region.
  • Fixed maximum display, this embodiment is a constant angle. But there are also cases where the angle is changed.
  • the subject thermal image to be photographed has a prescribed size, preferably centered, and the adaptive area can be easily displayed with reference to the image specification.
  • the adaptive area column SZ32 in FIG. 3 is used to set the position and size of the adaptive area in the infrared thermal image, such as setting a predetermined ratio in the infrared thermal image display window or a designated area in the infrared thermal image.
  • the reference image position column SZ33 is used to set the position of the reference image in the adaptive region, such as setting "reference image centered" and "reference range centered", not limited to the center point, but also other specified positions, or a rotation angle. . Once completed, the settings can be saved as the default adaptive settings parameters.
  • the control unit 10 is configured to perform calculation of a predetermined position and a predetermined size in the infrared thermal image after adaptively scaling the reference image, such that the set adaptive region is centered in the infrared thermal image and the reference image is in the adaptive region. Centered as an example, The control unit 10 calculates an X-axis and Y-axis ratio of the adaptive region (size X1, Y1) and the reference image (reference image size X2, Y2 before scaling), and selects the smaller one of X1/X2 and Y1/Y2.
  • the ratio is a zoom ratio based on the center point of the reference image when the reference image is centered, whereby the reference image obtained by the adaptive display is located at a predetermined position and a predetermined size in the infrared thermal image.
  • Fig. 17 illustrates the effect of the partial contour image T17 "reference image centering" display.
  • the reference image centering also includes a case where, when a plurality of types of constituent data are determined as constituent data related to the reference image, the control section 10 is configured to combine the determined constituent data as a combined object to obtain a combined reference image and The calculation of the position and size of the combined reference image adaptive display is performed, where the process of "reference image centering" may be a centered display of the combined reference image. It should be noted that the images generated by the constituent data of each type participating in the combination are not necessarily displayed.
  • the image generated by the constituent data representing the predetermined partial morphological feature of the subject is subjected to the "reference image centering" process
  • the image generated by the constituent data may not be generated. It is representative of a desired subject reference range.
  • the reference image shown in FIG. 17 cannot be used for photographing the entire subject; the reference image portion generated to further standardize various constituent data is specified in the infrared thermal image.
  • a common reference range area may be set for the image generated by the constituent data, and the reference range area corresponding to the reference image represents a display reference range defined by the reference image, and stores, for example, a plurality of constituent data corresponding to the same subject.
  • the position information (position, size, or also the angle of rotation) of each of the generated images with respect to the reference range area enables the images generated by the constituent data to maintain a specification of the relative position with respect to the reference range area.
  • the process of "centering the reference range” refers to the adaptive centering of the reference range region, and the relative position (position, size, and position of the reference image and the reference range region after the adaptive processing) Or there is a rotation angle) that remains the same.
  • the application of the reference range region can avoid the case where the reference image representing the local morphological feature of the subject is displayed too large, for example, the outer contour of the complete contour is generally used as the reference range region of the partial contour reference image;
  • Fig. 18 is a view showing a partial contour image T17 "reference range centered" display effect, and a difference from the partial contour image T17 "reference image centered" display of Fig. 17, in Fig. 18, T17 corresponds to the reference range area L17, which is not Must be displayed.
  • the reference range area may be pre-stored, may be input by a user, or may be one of constituent data related to a reference image, or may be calculated after a plurality of combinations.
  • the process of "referencing the range centered" refers to the adaptive centering of the reference range region, and the relative position (position, size, or still) of the processed reference image and the reference range region. There is a rotation angle) that remains the same.
  • the control unit 10 is configured to calculate the reference image at a predetermined position and a predetermined size of the infrared thermal image when the "reference range is centered", and first calculate the adaptive region (size X1, Y1) and the reference range region (the size X3 before scaling, Y3) X-axis and Y-axis ratio, the ratio of the smaller one of X1/X3 and Y1/Y3 is selected, and the zoom ratio based on the center point of the reference range region when the reference range region is adaptively centered is obtained;
  • the zoom rate of the zoom is calculated to calculate the reference range area adaptively centered, the reference image is located at a predetermined position and a predetermined size in the infrared thermal image.
  • the user can also use the key observation portion as the reference range area to further improve the reference effect.
  • the analysis area is used as a reference range area.
  • the reference range area it may cause partial overflow of the reference image, such overflow is acceptable because it is suitable for the application.
  • the user walks into the subject to take a picture, and also has a reference to the reference image, which ensures the quality of the shooting.
  • By transforming the reference range area it is possible to implement transformations at different display positions to achieve different shooting purposes.
  • a storage content as shown in FIG. 19 includes a subject information and object configuration data associated with the object information, and the reference image generated by not storing the contour form configuration data may be in the infrared. Location information in the thermal image.
  • FIG. 20 Another storage content shown in FIG. 20 includes object information, various constituent data having type information associated with object information, and images obtained by various constituent data (before scaling processing) with respect to contour (zooming) Position information before processing (for example, storing the position, size, or rotation angle in the contour), that is, a prescribed relative positional relationship; an image generated by storing or not storing the contour configuration data in the infrared thermal image Location information.
  • the outer envelope of the outline may be used as a reference range area of the image obtained by the other constituent data; in addition, a plurality of constituent data (for example, a plurality of constituent data associated with one object information stored in FIG. 20) may be combined.
  • the outer-out rectangle of the combined reference image obtained later is used as the reference range area of the image generated by the constituent data, and the position and size information of the image generated by each of the plurality of constituent data that can be stored with respect to the reference range area.
  • the storage unit flash memory 7 stores a reference range region corresponding to the image data and the image generated by the configuration data, and a predetermined relative positional relationship of the image generated by each component data with respect to the reference range region (for example, storage) The position, size, or rotation angle in the reference range area).
  • a predetermined relative positional relationship between objects obtained by the respective constituent data associated with the same subject information (hereinafter, also referred to as a prescribed relative positional relationship between constituent data) is stored, for example, the embodiment of FIG. 5,
  • the objects obtained by storing the respective types of constituent data associated with the same subject information are located in the same reference frame (for example, in the infrared thermal image); the embodiment shown in FIG. 20; but is not limited thereto,
  • a predetermined relative positional relationship between the objects obtained by the respective constituent data is given by the user, or a predetermined relative positional relationship between the objects obtained by the respective constituent data is given by the default positional rule of the thermal imaging device 12.
  • Step S201 in the standby shooting state, the display unit displays a dynamic infrared thermal image, as shown in FIG. 21 display interface G2101 display interface, the control unit 10 performs its control, when the user selects the reference mode, proceeds to step S202;
  • step S202 it is determined that the constituent data for generating the reference image is the contour T6 vector graphic data. For the determined implementation processing manner, refer to step S102.
  • Step S203 determining a predetermined position and a predetermined size of the reference image in the infrared thermal image according to the adaptive region;
  • the control unit 10 as the position determining unit determines the predetermined position of the contour image T6 in the infrared thermal image based on the size and position of the adaptive region Z1 in the infrared thermal image and the center position of the contour image T6 in the adaptive region Z1. , the specified size.
  • step S204 the thermal image data obtained by the photographing is transferred to the temporary storage unit 4.
  • step S205 the control unit 10 controls the image processing unit 2 to perform corresponding processing on the contour T6 constituent data (vector pattern data) based on the determined predetermined size, and to image data and the thermal image of the contour image T6 obtained after the processing in accordance with the predetermined position.
  • the data is subjected to synthesis by performing image data of an infrared thermal image obtained by a prescribed process.
  • step S206 the control unit 10 as the display control unit controls the display image to be displayed on the display unit 3, as shown in the display interface G2102 in Fig. 21, and the subject thermal image H6 and the contour image T6 in the composite image.
  • the control unit 10 controls the display image to be displayed on the display unit 3, as shown in the display interface G2102 in Fig. 21, and the subject thermal image H6 and the contour image T6 in the composite image.
  • the user can adjust the shooting of the subject h6 according to the reference of the contour image T6.
  • step S207 the control unit 10 performs its control to monitor whether the user has exited the reference mode. If there is, the reference mode processing is ended. If not, the steps of steps S204-S206 will be repeated.
  • the position and size of the reference image displayed in the infrared thermal image are determined in accordance with the size and position of the specified adaptive region in the composite image and the position of the reference image in the adaptive region. Therefore, the following advantages are obtained, and the display of the reference image is more standardized, and the user's display of the reference image is easier to understand.
  • Embodiment 3 is in the same thermal imaging device 12 as that shown in FIG. 1. Unlike the first embodiment, in the flash memory 7, an operation for performing a response reservation is stored, and the imaging unit is photographed.
  • the infrared thermal image obtained by obtaining the predetermined thermal image data or the thermal image data is determined as the constituent data relating to the reference image (which embodies the predetermined morphological feature of the subject), and further, the constituent data is processed to obtain the morphological composition. Data or a control program that further obtains a reference image.
  • This thermal imaging method will be described below, in which a processing target specifying unit (control unit 10) is used to designate a processing target, and an image processing unit (image processing unit 2) for performing cutting on the machining target.
  • At least one of edge extraction and threshold range extraction includes a storage unit (temporary storage unit 4, etc.) for storing morphological composition data obtained by processing; and a reference image determination unit (control unit 10) for obtaining processing
  • the morphological composition data is determined as the constituent data related to the reference image to be combined with the infrared thermal image.
  • Fig. 22 is a flowchart showing processing reference mode processing control.
  • Fig. 23 is a view showing a display interface for performing reference shooting in which morphological composition data and reference images generated using the morphological configuration data are obtained by performing shear processing.
  • Fig. 24 is a view showing a display interface of a process for obtaining morphological composition data and generating a reference image by performing edge extraction processing.
  • This embodiment is based on the following usage scenario, and an experienced superior user leads several lower-level users to perform infrared detection on the subject h23 in a substation.
  • the flash memory 7 does not store a corresponding one.
  • the morphological composition data of the subject h23 is used to clarify the shooting task and ensure the quality of the detection; the upper-level user uses the thermal image device of the lower-level user to collect the morphological data, and thereby releases the shooting task.
  • the control steps in the processing reference shooting process are as follows:
  • step S301 the display unit displays a dynamic infrared thermal image, and the control unit 10 performs control to continuously monitor whether the user selects the processing mode.
  • the infrared thermal image shown on the display unit interface G2301 may be confused by the user.
  • the upper-level user will perform the photographing task for photographing the subject h23 and its contemporaneous subject, and since the subject h23 is a specific component of the electric device DL, the lower level is The user understands the intention in the detection, the angle of the photographing, the photographed portion, and the photographed distance, and the upper user selects the cut processing mode by the mode button of the operation unit 9 to proceed to step S302.
  • the user can select the processing type in the processing menu setting column SZ34 as shown in FIG.
  • step S302 the control unit 10 continuously monitors whether or not the user has issued an instruction to designate the object.
  • the control unit 10 controls the display unit 3 to display a rectangular cutout frame J23, and the user adjusts the subject h23.
  • the angle, distance, or adjustment of the cropping area J23 is such that the subject thermal image H23 from which the morphological composition data or the reference image is desired to be obtained is located in the cropping region J23 as indicated by the display interface G2302.
  • the control unit 10 reads the signal at that time by the infrared detector in response to the operation, and stores the obtained thermal image data in a predetermined area of the temporary storage unit 4, and the control unit 10 stores the thermal image data.
  • the thermal image data obtained after the predetermined processing of the thermal image data is determined as the object to be processed, and the flow proceeds to step S303.
  • the infrared thermal image obtained by performing predetermined processing such as pseudo color processing
  • the pseudo color of the reference image generated by the processed morphological composition data is subsequently converted, and the heat is performed. It is more appropriate to use data as a processing object.
  • images acquired by other imaging devices may be used as processing objects or as constituent data of reference images.
  • the object to be processed may be selected from a storage medium or the like, and for example, an infrared thermal image or a visible light image stored in advance or other form configuration data may be read from the memory card 6 as a processing target.
  • step S303 processing processing of the processing target is performed. Based on the control of the control unit 10, the image processing unit 2 as the image processing unit extracts the thermal image data in the cropping region J23; and then proceeds to the next step.
  • the processing performs, for example, one or one of performing predetermined image processing such as cropping, feature extraction (such as threshold range extraction, edge extraction), enhancement, filtering, pseudo color, brightness adjustment, color adjustment, and the like on the processing object. More than one species.
  • Shear processing that is, extracting data (such as image data and thermal image data) in which the processing object is located in the cropping area.
  • Threshold range extraction that is, extracting data of a processing object located in a threshold range according to a prescribed algorithm (for example, extracting a temperature band or a color band for an infrared thermal image)
  • the threshold range is, for example, setting a range of thermal image data AD values
  • the threshold range of the temperature, the range of the gray scale, the range of the color scale, etc. may be a pre-stored threshold range, and the threshold setting and adjustment of the threshold may be performed by the user according to the displayed infrared thermal image.
  • the edge extraction processing that is, extracting data of the edge contour of the subject in the processing object according to a prescribed algorithm.
  • the determined processing object is binarized according to a predetermined threshold range; wherein the specified threshold range may be a pre-stored threshold range, or a binary image may be displayed, and the binarization threshold range is manually set.
  • the threshold range is, for example, a range of thermal image data AD values, a threshold range of temperature, a gray scale range, a color scale range, and the like; and then, the binarized image is subjected to processing of the connected region; then, Edge detection processing is performed on the connected area to obtain edge contour data. Further, the obtained edge contour data can also be vectorized.
  • the processing object is an infrared thermal image as shown by G2401 in FIG. 24; first, the infrared thermal image after the binary processing is as shown by G2402 in FIG. 24 (can be displayed or not displayed). Next, the extraction area J23 is set, and as shown by G2403 in Fig. 24, the area J23 desired to be extracted is determined. Then, the edge contour data of the binary thermal image EZ23 in the extracted G2403 is extracted and displayed as a contour image T23 as shown by G2404. For other specific processing methods, more mature methods in the industry can be used, and will not be described here.
  • step S304 the morphological composition data obtained by the processing is stored, and the data (morphological configuration data) obtained by the dicing processing is stored in a predetermined area of the temporary storage unit 4.
  • the morphological composition data obtained by the processing may be recorded on the memory card 6. Or in the flash memory 7, or enter the setting mode as in the fourth embodiment.
  • Step S305 determining the morphological composition data obtained by the processing as the constituent data related to the reference image
  • the control unit 10 as the reference image specifying unit determines the morphological configuration data obtained by the processing stored in the storage unit (for example, the temporary storage unit 4) as the configuration data related to the reference image.
  • Step S306 determining a predetermined position and a predetermined size of the reference image in the infrared thermal image; in the embodiment, the parameter is set according to the display area (the adaptive region Z1, the reference image is centered, and the display region Z1 is not shown in FIG. 23). It is determined that the reference image generated based on the morphological composition data obtained by the processing will be located and in the infrared thermal image.
  • Step S307 the captured thermal image data is transferred to the temporary storage 4;
  • Step S308 synthesizing the reference image and the infrared thermal image; the control unit 10 controls, according to the determined predetermined size, the image processing unit 2 performs corresponding processing on the cut configuration data and obtains the image of the reference image TU23 by pseudo color conversion.
  • the data is synthesized based on the predetermined position, the image data of the reference image TU23 and the infrared thermal image generated by the thermal image data obtained by the imaging unit 1 in accordance with the default transparency ratio (for example, 50%) corresponding to the cropping process.
  • step S309 the composite image is displayed, as shown by the display interface G2303 in FIG.
  • the lower-level user can fully grasp the intent and quality requirements of the shooting task, and the user can photograph the subject thermal image H23 according to the reference of the semi-transparent image TU23.
  • the effect of a reference photographing is such that the subject thermal image form portion of the translucent image TU23 shown in the display interface G2304 coincides with the subject thermal image H23, and the subject thermal image H23 at this time conforms to the desired photographing.
  • the quality requirements make it easy to perform subsequent operations such as status assessment, analysis, recording, etc., and the user can also switch to display only the infrared thermal image for status evaluation.
  • step S310 the control unit 10 performs its control to monitor whether the user has exited the reference mode. If there is, the reference mode processing is ended. If not, the steps of steps S307-S309 will be repeated.
  • the upper-level user can set and save the obtained configuration data of the reference image TU23 to the memory card 6, or transmit it to the thermal image device of other subordinate users, or repeat using the thermal image device of other subordinate users. The above steps.
  • the reference image can be easily and quickly acquired by processing the designated processing object, the same object is based on the same distance, the same portion, and the like by the obtained reference image.
  • the angle of the shooting ensures the validity of the detection, and the specified position and the specified size of the reference image in the infrared thermal image are selected according to the adaptive region, and the position and size of the reference image can be quickly specified, and the operation is more accurate. simple.
  • the above advantages are performed as a representative embodiment of a system. However, it is also possible that the user performs a certain situation.
  • the thermal image data obtained by the response operation is directly determined to be used as the morphological composition data, and is subjected to translucent synthesis with the subsequent infrared thermal image.
  • any of the products of the embodiments of the present invention does not necessarily require all of the advantages described above to be achieved at the same time.
  • a control program for performing association information setting and recording of the morphological configuration data is stored in the thermal imaging device 12 having the same configuration as that shown in Fig. 1, in the flash memory 7, a control program for performing association information setting and recording of the morphological configuration data is stored.
  • the control unit 10, the operation unit 9, and the display unit 3 are examples of the related information setting unit, and are used to set auxiliary configuration data corresponding to the morphological configuration data (to obtain one or more of the analysis region, the indication flag information, etc.),
  • the setting information of at least one of the subject information is used as an example of the setting recording unit for establishing the association record between the form configuration data and the setting information.
  • the morphological composition data obtained by the processing is obtained.
  • the subsequent reference mode imaging may not be performed temporarily, and the auxiliary configuration data corresponding to the morphological configuration data may be first performed (eg, the analysis area, Setting of related information such as prompt mark, etc., subject information. Further, it may be a reference image displayed in a composite image or morphological composition data read from the memory card 6 or the like.
  • the control unit 10 controls the display unit 3 to display the setting interface as shown in FIG. 25, and the user sets various information corresponding to the reference image TU23 generated by the processed form configuration data.
  • the setting interface has an adjustment column SZ0 for displaying a reference image and an adjustment analysis area, an analysis area setting column SZ1, a cue mark setting column SZ2, a subject information entry column SZ3, and the like.
  • the adjustment column SZ0 is used to display the reference image TU23, the analysis area F23 (including the S01, S02, and S03 analysis area units), the mark position, and the like, and the user can perform the reduction of the area units S01, S02, and S03 in the analysis area F23, Change the position, adjust, change (point, line, surface) type such as the modification of S01, S02, S03 from square to round, or set a new area unit; adjust the mark position.
  • the analysis area setting column SZ1 is used to select a type of generation manner of the analysis area (including the analysis area unit) corresponding to the reference image, wherein “point, line, and surface” Indicates that points, lines, and faces are set as the analysis area in the reference image.
  • the prompt mark column SZ2 is used to set prompt mark information, such as characters, arrows, etc., to indicate a part that needs attention, and a character such as a diagnosis criterion of the subject. Further, constituent data such as an analysis area or the like may be set by processing and/or calculation according to the method described in the fifth embodiment.
  • the subject information entry field SZ3 is used to record the subject information corresponding to the reference image.
  • the control unit 10 creates a related record as the setting information of the reference image TU23 as the setting recording unit, that is, the configuration data of the reference image TU23, the configuration data of the analysis region F23, and the configuration data of the presentation mark B23, F23.
  • the position and size information in the TU 23, the position information of B23 in the TU 23, and the subject information h23 are stored in association with the flash memory 7.
  • setting of at least one of auxiliary configuration data (for obtaining one or more of the analysis region, the indication flag information, and the like) and the subject information corresponding to the morphological composition data is set.
  • the information is recorded in association with the morphological composition data and the setting information, so that the call of the data associated with the morphological data is used later. Then, the processing as in the above reference mode can be entered. It is also possible to repeatedly set and correlate records.
  • the working modes such as the reference mode, the processing mode, and the related information setting mode are described in a single or a certain combination, but are not limited thereto, and the working modes are different according to the above. More implementations are available in combination.
  • Embodiment 5 in this embodiment, in the thermal imaging device 12 having the same structure as that shown in FIG. 1, in the flash memory 7, control for performing processing on a specified object and/or calculation to obtain constituent data is also stored. program. Further, when the main object is specified from a plurality of objects having a predetermined relative positional relationship, the position determining portion first sets a positional parameter in which the position of the main object is located in the infrared thermal image, and then sets the object obtained by the other constituent data to be in infrared heat. Position parameter in the image.
  • the position parameter includes a position, a size, or a rotation angle
  • the position parameter includes a position, or a size, or a rotation Angle, for example, when the analysis area is a single point, it is a position, and the like.
  • the shooting range area in the second embodiment can be regarded as one of the main objects, and the reference range corresponding to the reference image represents the display reference range specified by the reference image, and can be regarded as the shooting range area.
  • the primary object; the primary object can target all objects with a defined relative positional relationship. In the present embodiment, it is assumed that the object information as shown in FIG. 20 and its associated constituent data are stored in the flash memory 7.
  • Fig. 26 another embodiment of the setting menu will be described.
  • the display unit 3 displays the menu as shown in Fig. 26.
  • the menu item is selected, the corresponding configuration interface is displayed.
  • the control unit 10 and the operation unit 9 and the like constitute an arrangement unit, and the control unit 10 performs corresponding display control in response to an operation signal of the user, and records the content of the user's arrangement on the storage medium. The related operation is performed by the operation unit 9.
  • the menu item is used by the user to specify the machining object and set (add, modify, delete) the machining rule, and is used to configure the shape composition data obtained by processing the machining object according to the machining rule.
  • Composition data CD11 Displays information for selecting constituent data.
  • the information constituting the data is obtained, for example, from the table of Fig. 20, “contour", “texture”
  • the morphological composition type information of the data in addition, when there is other type information, for example, the specified processing object type combined with the type information of the constituent data corresponding to the specific processing rule, the type information as the alternative type is also displayed.
  • the processing target CD 12 for the user to select the constituent data as the processing target, it is obvious that one or a plurality of constituent data can be selected as the processing target, for example, one or a plurality of morphological constituent data can be processed.
  • Processing rule CD13 used by the user to set the machining rules for the machining object; the machining rules include the processing algorithm and related parameters. When the machining algorithm is selected, press the confirmation key to display the parameter column for input parameters (not shown). At least one of processing such as cutting, threshold range extraction, edge extraction, enhancement, filtering, pseudo color, grayscale (color to grayscale, black and white), brightness adjustment, color adjustment, etc., or multiple types of processing simultaneously In addition, various other processing processes well known in the industry can be configured.
  • the "object calculation CD2" menu item is explained for the user to select a calculation object and set (add, modify, delete) the calculation rule.
  • the auxiliary configuration data obtained by calculating the calculation object according to the calculation rule is configured, and the auxiliary configuration data arranged can be used as a part of the reference image together with the morphological configuration data to enhance the reference effect of the reference image.
  • Composition data CD21 Displays information for selecting constituent data.
  • the information constituting the data constitutes, for example, "contour", “texture”, “analysis area” from FIG. Type information, in addition, when there is other type information, for example, the specified calculation object type is combined with the type information of the constituent data corresponding to the specific calculation rule, for example, the specified processing object is combined with the type information of the constituent data corresponding to the specific processing rule, It is also displayed as type information for selection.
  • the calculation object CD22 is used for the user to select a calculation object; obviously, one or more constituent data can be selected as a calculation object, for example, one or more auxiliary constituent data can be calculated.
  • Calculation rule CD23 for the user to select and set the calculation rule for the calculation object; the calculation rule includes the algorithm and related parameters, such as scaling, deformation , feature points, feature regions, aliquots, outsourced rectangles, inscribed rectangles, centerlines, etc., such as the base point and scaling of the scale, the base point and deformation rate of the deformation (such as the aspect ratio), the calculation parameters of the feature points, Based on the feature area type (such as point, line, surface, etc.) and the size of the feature points, and other parameters related to the algorithm, press the enter key when the algorithm is selected, and the parameter column will be displayed for input parameters (not shown). ).
  • One or more calculation rules can be selected for the selected calculation object.
  • the feature points are calculated, for example, the center point of the contour is calculated, for example, the feature points (for example, the highest temperature point) in the thermal image data are calculated.
  • the configuration menus of "object processing CD2" and “object computing CD3” can also be combined into one configuration interface, which is obtained for the specified object (the composition data pre-stored in FIG. 20, the thermal image file in the memory card 6, and the shooting).
  • Thermal image data, etc. may select one or more processing rules, and/or select one or more calculation rules, which may be collectively referred to as processing the specified object.
  • the contour T1 constitutes data as a calculation object, and the image obtained by scaling and deforming the center point of the contour T1 as a base point can be used to prompt the user to observe the observation.
  • the temperature distribution of the specified area on the body of the body reduces the impact of the surrounding environment on the assessment.
  • the contour T1 constitutes data as a calculation object
  • the algorithm parameter is an 8-division region F102 obtained by performing 8 divisions; and can be used to prompt the user to observe the subject body differently. Part of the temperature distribution.
  • the contour T1 constitutes data as a calculation object
  • the algorithm parameter is a region F103 for calculating a predetermined size based on the feature point (for example, a center point) and based on the center point; Pay attention to the area.
  • the local infrared thermal image TU1 constitutes data as a processing object, and processing rules such as edge contour extraction, and the obtained edge contour image F104 can improve the reference effect of the local infrared thermal image TU1.
  • the local infrared thermal image TU1 constitutes data as a processing target, and the processing rule is to extract a pixel point (range extraction) of a predetermined temperature threshold or more, and the obtained image F105 is used in some applications.
  • the reference effect on the subject body is better than the effect of TU1 as a reference image.
  • Reference image CD3 for the user to select, in the reference mode, the configuration data, the position rule, the synthesis parameter, and the like related to the reference image in the non-switching state.
  • Composition data CD31 Display information for selecting constituent data, for example, obtaining type information such as “contour”, “texture”, “analysis area” from FIG. 20, and in addition, when there is other type information, such as "object processing CD1"
  • type information of the specified processing object type combined with the composition data corresponding to the specific machining rule, "contour (machining)", as set in the “object calculation CD2”, represents the specified calculation object type combined with the specific calculation rule
  • the type information "contour (calculation)" of the constituent data is also displayed for selection.
  • Reference image CD32 for the user to select the constituent data for obtaining the reference image.
  • One or more constituent data can be selected to obtain a reference image.
  • each of the objects obtained by the constituent data is taken as a composite object, that is, when a plurality of constituent data are selected, the reference image will contain a plurality of synthetic objects (it is also understood that the reference image is obtained from a plurality of constituent data.
  • the reference image CD32 may be selected, and a long press of the confirmation key may make part or all of the selected constituent data as a composite object (not shown).
  • the “contour”, “texture”, “analysis area” stored in the flash memory 7, and the configuration object corresponding to the specified processing rule can be composed of data such as “contour”. (Processing), the configuration data of the calculation target is combined with the auxiliary component data corresponding to the predetermined calculation rule, for example, "contour (calculation)", and at least one of the configuration data is selected, and a plurality of constituent data may be selected, and a plurality of components may be selected.
  • the data may be a plurality of morphological constituent data, or may include morphological constituent data and auxiliary constituent data.
  • thermal image data obtained by photographing or the like can be selected as constituent data, or can be selected as constituent data based on the thermal image file obtained from the memory card 6.
  • the constituent data relating to the reference image can then be determined based on the constituent data stored in the storage medium (e.g., in the flash memory 7, the memory card 6, the temporary storage unit 4, etc.) and the above-described selection configuration.
  • Location Rule CD33 For the user to configure a positional rule relating to the positional parameter of the reference image located in the infrared thermal image.
  • the position determining unit is configured to set a position parameter of the main object in the infrared thermal image, and then combine the main object in the infrared thermal image by a predetermined relative positional relationship between the other object and the main object.
  • the position parameter automatically sets the positional parameters of other objects in the infrared thermal image.
  • first determining a primary object having a predetermined relative positional relationship with a reference image setting a positional parameter of the primary object in the infrared thermal image, and then, based on a predetermined relative positional relationship between the reference image and the primary object, and the primary object is located in the infrared
  • the positional parameter in the thermal image to set the positional parameter of the reference image in the infrared thermal image.
  • the object obtained by the constituent data selected in the "reference image CD32" sets its positional parameter in accordance with the respective positional rules.
  • the main object can be selected from the constituent data CD 31.
  • it may be a reference image or a portion of the reference image, or may be a main object obtained by using other constituent data other than the constituent data of the reference image. That is, the configuration data for obtaining the main object can be based, for example, on one or more of the constituent data of the object having the predetermined relative positional relationship: morphological constituent data (for example, "contour"), or constituent data associated with the morphological constituent data.
  • morphological constituent data for example, "contour”
  • the main object is set to represent the area that needs to be emphasized.
  • the reference image can be transformed at different display positions to achieve different shooting purposes.
  • the user can also select a reference image (one or more of the synthesized objects) displayed on the display unit 3 as the main object.
  • adaptive used to select the location setting method of adaptive processing and specify the adaptive object (when the primary object is selected, it refers to the primary object).
  • the adaptive area is a specified area in the infrared thermal image, and the adaptive is selected, and then the long press of the confirm key 29, the position, the size, the rotation angle of the adaptive area in the infrared thermal image can be set, and the adaptive object is located in the adaptive area.
  • the position (which can be used as an adaptive scaling base point) and the angle of rotation.
  • a centered window area of 90% of the infrared thermal image is set as the adaptive area, hereinafter referred to as Z1, and the adaptive object is centered in Z1.
  • the specified position a positional parameter for specifying a reference image obtained by the selected constituent data or the like (when the primary object is selected, the primary object) is located in the infrared thermal image.
  • an input field (not shown) is displayed, and the user can input the position, size, rotation angle, and the like of the object obtained by the selected constituent data in the infrared thermal image.
  • the starting position of the default position may be the upper left corner of the infrared thermal image, the size is the original size, and the rotation angle is 0.
  • the associated location when the item is selected, the location information pre-associated according to the selected constituent data (referring to the primary object when the primary object is selected) is obtained, and the object obtained by the constituent data is located in the infrared thermal image.
  • Location parameter when the item is selected, the location information pre-associated according to the selected constituent data (referring to the primary object when the primary object is selected) is obtained, and the object obtained by the constituent data is located in the infrared thermal image.
  • Synthesis parameter CD34 a synthesis parameter for setting a reference image obtained by the selected constituent data and an infrared thermal image, a synthesis parameter such as a transparency ratio, depending on different types of constituent data or also a color, a line type, etc. (not shown), when the reference image includes The synthesis order of a plurality of synthetic objects, etc., or a synthetic parameter constituting the association of the data itself may also be selected.
  • a composite object (as a reference image) can be obtained from a plurality of constituent data, and the position determining portion can set a position and a size of the background in which the plurality of constituent data are synthesized with each other, and finally The obtained reference image is located in the position and size in the infrared thermal image.
  • a plurality of synthesis targets (as reference images) may be obtained from a plurality of constituent data, and a composite image of a reference image and an infrared thermal image may be sequentially synthesized in accordance with a predetermined synthesis order and a transparency ratio to obtain a composite image.
  • the position determining portion sets the position and size at which the plurality of combined objects are respectively located in the infrared thermal image.
  • Switching CD4 For setting the configuration information related to the switching target when the switching key of the operation unit is pressed once in the reference mode, for example, when the reference image placed in the "reference image CD3" is displayed together with the infrared thermal image. Referring to the configuration interface shown in FIG. 31, the configuration of the "switching CD4" will be explained.
  • the configuration information of the switching for example, the type of the constituent data of the switching, the positional rule of the object constituting the data after the switching, the synthesis parameter (such as the overlapping order, the transparency ratio) Any one of the transformations, such as color, to obtain a configuration different from the reference image in FIG.
  • an infrared thermal image may be used as a switching object, and the others are similar to the "reference image CD3", and the description is omitted.
  • the arrow CD40 is used to set (add, modify, delete) the switching rule, for example, the arrow CD40 can enter the next switching interface to configure more switching object configuration information.
  • the purpose of the user's photographing is to detect the overall thermal field distribution of the subject h6 (the overall portion represented by the outline T6). If suspiciousness is found, the subject analysis focus area (the area represented by the analysis area F6) will be approached. In order to conveniently achieve the purpose of the detection, the user performs the configuration before and after the reference image switching.
  • the configuration set by the user through “reference image CD3" is as shown in FIG. 30, and the reference image : “contour” and “analysis area”; position rule: contour (main object), adaptive area Z1, adaptive centering; synthesis parameter: transparency ratio is 1, “contour” synthesis order is 1, “analysis area” synthesis order For 2, the color can default to the color of its own property.
  • the user switches “switch one” by “switching CD4" as shown in FIG. 31, and the reference image : “contour”, “analysis area”; position rule: analysis area (main object), adaptive area Z1, adaptive centering; synthesis parameter: transparency ratio is 1, “contour” synthesis order is 1, “analysis area” synthesis The order is 2, and the color can default to the color of its own property.
  • the partial configuration data (shown in FIG. 20) stored in the flash memory 7 is used as an example of arranging the reference image.
  • the user can based on the constituent data in the flash memory 7, including the calculation of the specified calculation object, including the processing of the specified processing object.
  • a reference image for arranging various effects a reference image may be arranged based on a thermal image file or the like stored in the memory card 6; a reference image may be arranged based on thermal image data obtained by photographing, etc.; Differentiating at least one of the positional rules and the synthetic parameters makes it possible to obtain reference images of different reference effects and application purposes. Switching images for different uses and effects can be obtained by configuring the switching.
  • the user can configure related constituent data by "reference image CD3" or "switching object CD4" (for example, use)
  • the "object calculation CD1” and the “object processing CD2” can be used to set the morphological composition data of the association in combination with the configuration data corresponding to the predetermined processing rule or the calculation rule, and the reference image of the different effects can be arranged.
  • the control section 10 stores the set configuration in the flash memory 7 (for example, as a configuration file) as the default configuration of the subsequent thermal image device 12, and does not need to be used every time. Set it all once and then return to the standby shooting state.
  • the related configuration can be performed by the user is exemplified, it is not limited thereto, and may be an embodiment in which the thermal imaging device 12 is configured at the time of shipment, that is, the above various processes are configured.
  • the configuration is not required by the user to perform any manual setting; or the configuration is completed in an external computer, and the configuration file is loaded to the thermal image device 12 before shooting; or, the user performs the configuration of the above-mentioned contents.
  • the composition data can be automatically determined according to the predetermined type of the constituent data (for example, the type of storage, the type of the processing object combined with the processing rule, the type of the calculation object combined with the calculation rule, etc.), and the positional rule according to the reference image It is automatically determined that the reference image is located at a prescribed position and a prescribed size in the infrared thermal image, or has a rotation angle.
  • step B01 the control unit 10 continuously monitors whether or not the user has selected the reference mode.
  • the process proceeds to step B02.
  • step B02 the control unit 10 performs determination processing of the constituent data.
  • the constituent data of the contour T6 and the analysis region F6 is determined as the constituent data for obtaining the reference image.
  • step B03 the position determining unit determines a predetermined position and a predetermined size in which the reference image is located in the infrared thermal image.
  • the configuration data of T6, the contour T6 obtained by the constituent data of F6, and the positional parameter of the analysis region F6 located in the infrared thermal image are calculated, respectively.
  • the predetermined position and the specified size of the main object T6 in the infrared thermal image are calculated; then, according to the specified relative positional relationship between the analysis area F6 and the contour T6, and the contour T6 is in infrared heat
  • the positional parameter in the image determines the position and size of the analysis region F6 in the infrared thermal image, and maintains the specified relative positional relationship.
  • the position of the analysis region F6 or the like (auxiliary image) in the infrared thermal image is determined according to the positional parameter of the contour T6 in the infrared thermal image, and the relative position of the analysis region F6 and the contour T6 is kept unchanged.
  • the size of the analysis area F6 can be the original size.
  • Step B04 next, the captured thermal image data is transferred to the temporary storage 4;
  • step B05 the reference image of the predetermined size is obtained based on the determined composition data, and is displayed in common with the continuous infrared thermal image generated by the thermal image data obtained by the imaging unit in accordance with the predetermined position.
  • the image processing unit 2 obtains an image obtained by arranging the selected T6 in accordance with a predetermined size, and the image of the determined F6 is obtained according to the positional parameter set by the position determining unit, according to the respective predetermined position.
  • the synthesis is sequentially performed with the infrared thermal image; the synthesized image data is stored in the temporary storage unit 4, and then the composite image is displayed on the display unit 3.
  • the contour image T6 is firstly subjected to the prescribed transparency ratio according to the composition order and the transparency ratio of each object.
  • the infrared thermal image synthesis obtains the intermediate data, and then the analysis region F6 is synthesized according to the prescribed transparency ratio and the intermediate data to obtain the final composite image data.
  • the contour image T6 is displayed along with the display of the analysis region F6, and is based on the contour image T6, so that the predetermined morphological feature of the subject thermal image can be easily understood, and the reference is easily obtained according to the reference of the analysis region F6.
  • the indication of the observation site thereby making the purpose of the shooting easy to understand.
  • step B06 the control unit 10 determines whether the switching operation is performed by the user. If the switching operation is performed, the switching process is performed, that is, the process returns to step B02. At this time, the switched reference image or infrared is determined according to the set switching configuration. Thermal image.
  • the type of the main object is "analysis area", and the specification of the main object (analysis area F6) in the infrared thermal image is calculated.
  • Position and prescribed size Next, the positional parameter of the contour T6 in the infrared thermal image is determined according to the specified relative positional relationship of the analysis region F6 and the contour T6, and the positional parameter of F6 in the infrared thermal image.
  • the display interface G3202 in FIG. 32 exemplifies the display effect of setting the analysis region F6 as the main object (adaptive: adaptive region Z1, centered), and embodies the purpose of photographing and observing the region represented by the analysis region F6.
  • step B07 the control unit 10 determines whether the user has exited the reference mode.
  • step B04 If not, returning to step B04, the contour image T6 and the analysis region F6 and the continuous dynamic infrared thermal image are continuously synthesized and displayed together. If there is an exit instruction, the reference mode is ended.
  • another embodiment may be first synthesized into a composite object based on a predetermined relative positional relationship between the objects obtained by the configuration data (formal configuration data) of T6 and the constituent data (auxiliary constituent data) of F6. Then, the predetermined position and the predetermined size of the synthetic object in the infrared thermal image are set, and the specified position and the predetermined size of the synthetic object obtained in the infrared thermal image are not separately calculated; and then the synthetic object of the specified size is The predetermined position is continuously combined with the infrared thermal image generated by the thermal image data obtained by the imaging unit to realize common display of the reference image and the infrared thermal image.
  • the reference images before and after switching are taken as an example, but switching may not be performed.
  • the contour T6 and the analysis region F6 are respectively used as main objects and are switched. It is obvious that other objects having a predetermined relative positional relationship with the reference image may be used as the main object.
  • the portion that the user desires to focus on is the intermediate portion of the subject; the contour can be configured as follows: in FIG. 28 (object calculation CD2), the contour T6 is used as the calculation target configuration based on the center point and When it is desired to focus on the size of the portion to obtain the region F103; when the determined constituent data(s) have a calculation target in which the calculation algorithm is combined, in one embodiment, the control portion 10 controls the image processing portion 2 to calculate the object ( The contour T6) performs a calculation obtaining region F103; the position determining portion sets the reference image in the infrared thermal image based on the constituent data of the non-calculated object among the constituent data determined therein and the data obtained after the calculation of the calculation target, the obtained reference image Location information.
  • the positional parameter of the region F103 is determined according to the positional parameter after the contour T6 is adaptive, as shown by G3301 in FIG. 33; when the region F103 is used as the main object, the adaptive is performed according to the region F103.
  • the positional parameter determines the positional parameter of the contour T6, as shown by G3302 in Fig. 33 (the contour T6 is boldly displayed, but may not be bolded); thus the user can flexibly configure the reference image according to the purpose of shooting.
  • the area F103 is not limited to being displayed as a part of the reference image, and may be used only for recording. When used as an analysis area, the recording may facilitate subsequent batch analysis.
  • the processing object is combined with the processing rule, for example, the constituent data corresponding to the processing object and the processing rule (and as the main object) is determined to obtain the reference image.
  • the image processing unit 2 processes the processing object, and then The position determining portion determines position information of the reference image obtained by the processing in the infrared thermal image, thereby obtaining a reference image.
  • the position determining unit includes the composition of the non-machined object based on the determined constituent data.
  • Data and processing object corresponding processing data the obtained reference image, determining a position parameter of the reference image in the infrared thermal image, wherein the position parameter of the main object is determined first, and then determined according to the position parameter of the main object
  • the positional parameter of the image generated by the obtained constituent data is processed, thereby obtaining a reference image.
  • the reference of the reference image obtained based on the plurality of types of constituent data facilitates the clear focus of the photographed portion according to the purpose of photographing, further improving the effect of the reference; and obtaining by processing and/or calculation
  • the composition data can reduce the workload of preparing the data such as the analysis area in advance, and it is convenient to configure the reference image that meets the purpose of the photographing, or the analysis area required for subsequent batch analysis; by changing the main object, it can be realized at different display positions.
  • the transformation is to meet different shooting purposes; this embodiment provides an extremely convenient and flexible application means, improving the overall quality of shooting and recording.
  • Embodiment 5 Although various configuration data configurations (including processing and/or calculation) related to the reference image, configuration data determination, reference image position setting, reference image display parameters, and reference image switching are described in Embodiment 5. Although the thermal imaging device 12 can be configured not to be set by the user, these elements are disposed when the thermal imaging device 12 is shipped, and in use, the data is automatically configured according to the form of the storage medium. Embodiments of configuration data configuration, determination, position setting, display parameters, switching, and the like of the reference image. Of course, implementing any of the products of the embodiments of the present invention does not necessarily require all of the advantages described above to be achieved at the same time.
  • Thermal image processing device for thermal image data thermal image transmission data
  • the thermal image transmission data may be, for example, thermal image data obtained by a thermal image capturing device connected to the thermal image processing device, or may be data obtained after the thermal image data is specified, for example, an generated infrared thermal image, which may be compression.
  • the subsequent thermal image data may be image data of a compressed infrared thermal image or the like.
  • Embodiment 6 uses the thermal image processing apparatus 100 as an example of a thermal image apparatus.
  • 35 is a block diagram showing an electrical configuration of an embodiment of a thermal image processing system in which the thermal image processing apparatus 100 and the thermal image capturing apparatus 101 are connected.
  • the thermal image processing apparatus 100 includes a communication interface 103, an auxiliary storage unit 203, a display unit 303, a RAM 403, a hard disk 503, an operation unit 603, and a CPU 703 that is connected to the above-described components via a bus and performs overall control.
  • a personal computer, a personal digital assistant, a display device used in conjunction with a thermal imaging device, and the like can be exemplified.
  • the thermal image processing apparatus 100 receives the thermal image transmission data output from the thermal imaging apparatus 101 connected to the thermal image processing apparatus 100 via the communication interface 103 based on the control of the CPU 703.
  • Communication interface 103 (an example of an acquisition unit), For continuously receiving the thermal image data output by the thermal image capturing device 101; wherein the receiving of the thermal image transmission data transmitted by the relay device (the thermal image data output by the thermal image capturing device 101 is transmitted through the relay device) is received. At the same time, it can also serve as a communication interface for controlling the thermal imaging device 101.
  • the communication interface 103 includes various wired or wireless communication interfaces on the thermal image processing apparatus 100, such as a network interface, a USB interface, a 1394 interface, a video interface, and the like.
  • the auxiliary storage unit 203 is a storage medium such as a CD-ROM or a memory card and an associated interface.
  • the display unit 303 is a liquid crystal display, and the display unit 303 may be another display connected to the thermal image processing apparatus 100.
  • the thermal image processing apparatus 100 itself may have no display in its electrical configuration.
  • the RAM 403 serves as a buffer memory for temporarily storing the thermal image transmission data received by the communication interface 103. At the same time, as the work memory of the CPU 703, the data processed by the CPU 703 is temporarily stored.
  • a program for control and various data used in the control are stored in the hard disk 503.
  • the operation unit 603 is used for the user to perform various instruction operations or input various operations such as setting information, and the CPU 703 executes the corresponding program based on the operation signal of the operation unit 603.
  • the CPU 703 also performs a function of the image processing unit for performing predetermined processing on the received thermal image transmission data to obtain image data of the infrared thermal image, and the predetermined processing such as correction, interpolation, pseudo color, synthesis, compression, decompression, and the like. It is converted into processing suitable for data such as display and recording.
  • the CPU 703 is configured according to different formats of the thermal image transmission data, for example, when the received thermal image transmission data is compressed thermal image data, and the predetermined processing such as the CPU 703 decompresses the thermal image transmission data received by the obtaining unit.
  • the corresponding predetermined processing such as pseudo color processing is performed after decompressing the compressed thermal image data (thermal image transmission data) to obtain image data of the infrared thermal image
  • the prescribed processing is as follows.
  • the decompressed thermal image transmission data is subjected to various predetermined processes such as correction and interpolation.
  • Another embodiment for example, when the received thermal image transmission data itself is already image data of the compressed infrared thermal image, is decompressed to obtain image data of the infrared thermal image.
  • the communication interface 1 receives the analog infrared thermal image
  • the image data of the infrared thermal image obtained by the conversion by the associated AD conversion circuit AD is controlled to be transmitted to the temporary storage unit 403.
  • the configuration other than the imaging unit 1 from the thermal imaging device 12 is substantially the same as that of the thermal image processing device 100. It is obvious that the thermal image processing device 100 applies the above-described embodiment by acquiring thermal image transmission data. Therefore, the description of the embodiment is omitted.
  • the thermal image capturing apparatus 101 may be various types of thermal image capturing apparatuses for photographing an object and outputting thermal image transmission data.
  • An electrical block diagram of the thermal imaging device 101 in FIG. 35 is composed of a communication interface 104, an imaging unit 204, a flash memory 304, an image processing unit 404, a RAM 504, a CPU 604, and the like.
  • the CPU 604 controls the overall operation of the thermal image capturing apparatus 101, and the flash memory 304 stores control programs and various data used in the control of each part.
  • the imaging unit 204 includes an optical member, a driving member, a thermal image sensor, and a signal pre-processing circuit (not shown) for capturing thermal image data.
  • the thermal image data is temporarily stored in the RAM 50, and then subjected to predetermined processing (e.g., compression processing, etc.) by the image processing unit 404 (e.g., DSP) to obtain thermal image transmission data, which is output via the communication interface 104.
  • predetermined processing e.g., compression processing, etc.
  • the thermal image capturing device 101 may output thermal image data, image data of an infrared thermal image, or image data of thermal image data or infrared thermal image compressed by a predetermined format.
  • thermal images to transmit data One or more, etc., collectively referred to as thermal images to transmit data.
  • the thermal image capturing device 101 is used to capture and output thermal image transmission data, and functions similarly to the imaging unit 1 in the thermal imaging device 12.
  • Fig. 36 is a view showing an implementation of a thermal image processing system in which the thermal image processing apparatus 100 and the thermal image capturing apparatus 101 are connected.
  • the thermal imaging device 101 is connected to the thermal image processing device 100 by a tripod (or a pan/tilt or the like mounted on a detection vehicle) via a communication line such as a dedicated cable or a wired or wireless LAN.
  • the user views and monitors the subject thermal image through the thermal image processing apparatus 100.
  • the thermal image capturing apparatus 101 is connected to the thermal image processing apparatus 100 to constitute a thermal image processing system in the embodiment for capturing an image of the subject to obtain thermal image data, and outputting thermal image transmission data.
  • an infrared thermal image for performing playback in the thermal imaging device 12 having the same configuration as that shown in FIG. 1, in the flash memory 7, an infrared thermal image for performing playback, a reference image, and an adjustment reference image are stored in the playback mode. control program.
  • thermo image data to be processed is selected in the playback mode (for example, by selecting a thermal image file to be processed by the memory card 6); and then, the corresponding constituent data is determined to obtain a reference image, for example, to determine the heat first.
  • Information relating to the constituent data of the reference image such as data (frame), such as constituent data stored in association with the thermal image data, identity information constituting the data, subject information, etc., if any, may be associated
  • the information is used to determine the constituent data of the reference image. If not, the file name, number, thumbnail, and the like associated with the identity of the displayed constituent data can be selected by the user.
  • the reference image is displayed together with the infrared thermal image obtained by the thermal image data to be processed (for example, as shown in FIG. 37(a)); at this time, the user can check the quality of the shooting, if the quality of the shooting is not good, such as infrared. If the thermal image of the subject in the thermal image does not match the visual image of the reference image, the shooting can be performed again, avoiding errors in subsequent batch processing.
  • the user can also adjust the reference image T151 to match the subject thermal image IR1 in the infrared thermal image, that is, according to the adjustment operation of the user, the corresponding reference image T151 of the position determining portion is located in the infrared thermal image.
  • the position, the size, and the rotation angle are determined, and the result of the adjustment is reflected on the display unit. For example, when the state shown in FIG. 37(b) is experienced, and the visual matching of FIG. 37(c) is reached, subsequent processing can be performed, for example, reference is made.
  • the position parameter of the image T151 is recorded in association with the thermal image data to facilitate subsequent batch processing; for example, by calling the analysis area corresponding to the reference image T151 for analysis, the trouble of setting the analysis area can be avoided, and the correctness of the analysis can be ensured.
  • thermal imaging device with the shooting function.
  • a thermal image processing device such as a computer, a personal digital assistant, a display device used in conjunction with a thermal imaging device of a shooting function, etc.
  • inspection and evaluation of the collation of infrared data (such as thermal image files). Further, in order to evaluate and inspect the infrared thermal image at the time of playback, the user is easy to evaluate when referring to an instruction in the image with an auxiliary object such as an analysis area.
  • the operation of displaying and adjusting the reference image can be reduced, and the user can reduce the trouble of setting the analysis area and the like, and it is convenient to batch the thermal image data file.
  • the finishing and adjustment ensures the effectiveness of the batch processing and greatly reduces the workload and technical requirements of the users.
  • the thermal configuration of the device 12 is then followed by a default configuration, and does not need to be set once for each use.
  • the present invention is not limited thereto.
  • the specification of the data determination type, the implementation of the processing object and the specified processing rule, the implementation of the calculation object and the prescribed calculation rule, the implementation of the position setting process, and the implementation of the synthesis parameter, in use, according to the storage medium The configuration data is automatically implemented in accordance with the factory configuration. Or, some items have been configured at the factory, and other parts of the configuration are performed by the user.
  • the determination of the constituent data of the reference image and the determination of the position of the reference image are described in accordance with a certain processing procedure, but the processing steps are not limited to the order of steps described above, and various processing orders may be employed. Obviously, more embodiments can be obtained according to different combinations of the above processes.
  • the analysis area is mainly used as an auxiliary object and the auxiliary configuration data is used.
  • the auxiliary configuration data is not limited to the configuration data of the analysis area, and may be, for example, the attention area.
  • the application of the power industry is taken as an example, and it is also widely used in various industries of infrared detection.
  • processing and control functions of some or all of the components of the embodiments of the present invention may also be implemented in a dedicated circuit or a general purpose processor or a programmable FPGA.
  • an embodiment of the present invention provides a computer program in which digital signals are recorded in a computer-readable recording medium such as a hard disk, a memory, or the like. After the program runs, perform the following steps:
  • the thermal image device obtains thermal image data; the reference image determining step: determining composition data related to the reference image embodying the subject morphological feature; and the position determining step: the reference image obtained based on the determined constituent data is located in the infrared thermal image a predetermined position and a predetermined size; a synthesizing step of synthesizing the infrared thermal image and the reference image to obtain a composite image; the infrared thermal image is generated according to the predetermined position and according to the thermal image data obtained by the obtaining portion; The reference image is obtained in accordance with the predetermined size and based on the configuration data determined by the reference image determining unit.
  • Embodiments of the present invention also provide a readable storage medium storing a computer program for electronic data exchange, wherein the computer program causes a computer in the thermal image device to perform the following steps: 311) obtaining the step: the thermal image device Obtaining thermal image data; 312) a reference image determining step of: determining composition data related to a reference image embodying a prescribed morphological feature of the subject, the determined constituent data being used to obtain a reference image embodying a prescribed morphological feature of the subject; 313) a position determining step of: setting a predetermined position and a predetermined size of the reference image obtained based on the specified composition data in the infrared thermal image; 314) a display control step of: obtaining a reference image of the predetermined size based on the specified composition data And displaying the infrared thermal image generated by the obtained thermal image data in accordance with the predetermined position and the predetermined size; the constituent data refers to data related to the reference image; and the reference image refers to an image embodying the morphological feature

Abstract

一种热像装置(12),包括获得部、参照图像确定部、位置确定部、和显示控制部,其利用在红外热像中呈现规定位置、规定尺寸并体现了被摄体预定形态特征的参照图像,对使用者提供了被摄体热像预期热像质量和拍摄要求的视觉参照,辅助使用者正确把握对被摄体热像的成像形态和拍摄距离,易于获得统一规范的被摄体热像。一种使用热像装置的热像拍摄方法也被公开。

Description

热像装置和热像拍摄方法
技术领域
本发明的热像装置和热像拍摄方法,涉及热像装置、热像处理装置,以及红外检测的应用领域。
背景技术
作为公知的技术,热像装置通过接收被摄体的红外辐射能量来成像,使用者根据显示的红外热像来判断被摄体的温度状态。各种被摄体具有其特定要求的拍摄部位和拍摄角度,符合该要求的被摄体热像呈现为特定的成像形态,此外还具有特定要求的拍摄距离。
自热像检测技术应用以来,使用者一直困惑于对正确拍摄部位、拍摄角度下被摄体成像形态的认知和拍摄距离的控制,这些取决于使用者的主观意念和经验,导致目前如果要确保检测的质量则需边拍摄边思考,拍摄速度很慢,如果加快速度则易遗漏关键拍摄部位或被摄体缺陷,影响状态评估的效果。通常需要数年的实践积累,使用者才能达到较高的检测水平。并且,使用者需凭借主观经验来调整对被摄体拍摄的位置、尺寸等,导致每次拍摄的同一或同类被摄体的被摄体热像总是存在成像位置、大小、角度上的差异,容易遗漏关键的拍摄部位;每次拍摄获得的被摄体热像的差异性,导致后续的分析工作需人工来完成(如设置被摄体热像对应的分析区域,分析区域由若干个点、线、面的区域单元组成,例如图8分析区域F6中S01、S02、S03区域单元,区域单元的编号、种类、位置、大小等略有不同,最终的分析结果都可能不同,该设置工作繁琐);而且,这种差异性导致不易控制分析数据的离散性,横向和纵向的分析对比数据有效性不高。此外,这样拍摄获得的热像数据,在后续的计算机的批处理时非常困难,如何拍摄获得规范的被摄体热像是一个有待解决的问题。
本领域的技术人员一直在试图解决这个问题,近来,一些期望可以降低热像拍摄的技术难度,提高拍摄速度的手段为人公知。例如专利文献申请号:201010221335.8公开了一种热像装置,其具有可见光成像部和红外成像部,并对拍摄的可见光和红外热像合成显示,其可提高观察热像的直观性,从而减轻使用者的工作强度。又如公知的使用网格线、十字线等进行瞄准;又如采用超温报警来提示使用者对超温被摄体的关注。
然而,上述方式并未解决问题,例如温度高的情况在电力设备中并不一定是缺陷,隐患部位的温度可能是偏低的。按照现有技术的热像装置而言,使用者即便学习了大量的红外拍摄理论和被摄体的知识,但在红外检测中,由于缺乏有效手段,拍摄时仍需依靠主观经验来选择被摄体的拍摄部位、拍摄角度和拍摄距离,拍摄速度慢,易遗漏,工作量大。
此外,由于较难表达拍摄的部位、角度和距离的要求,上级也难以向下级下达明确的检测质量要求。
因此,所理解需要一种热像装置,其能达到无需过度依赖经验的积累和主观上的意念,能辅助使用者正确把握对被摄体热像的成像形态和拍摄距离的认知,领会红外检测的目的和要求,快速正确地选择被摄体的拍摄部位、拍摄角度和拍摄距离,从而保证评估的有效性及获得的热像数据的规范性,以利于后续的记录、分析等处理和操作,由此,使普通的使用者也能达到良好的拍摄技能水平。
发明内容
本发明提供一种热像装置和热像拍摄方法,按照红外热像中的规定位置,将规定尺寸的至少体现了被摄体规定形态特征的参照图像与拍摄获得的红外热像共同显示。本发明的有益效果在于: 在红外热像中显示规定位置、规定尺寸的并体现了被摄体规定形态特征的参照图像,使用者以该参照图像作为拍摄被摄体热像的视觉参照,进行被摄体的拍摄,由于参照图像对被摄体热像的成像形态进行了视觉提示,参照图像的规定尺寸,对所期望的被摄体热像尺寸进行了示意,间接对成像大小有关的拍摄距离进行了示意,保证了拍摄的质量;由此,对使用者的技术要求降低,拍摄质量和速度提高,工作强度减低,并利于后续的分析、记录等的质量和操作的便利。
为此,本发明采用以下技术方案,热像装置,包括:
获得部,用于连续获得热像数据;参照图像确定部,用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;位置确定部,用于确定参照图像位于红外热像中的规定位置和规定尺寸;显示控制部,用于将基于所确定的构成数据获得所述规定尺寸的参照图像,按照所述规定位置,与连续获得的热像数据生成的红外热像,共同显示。
本发明还可采用以下的技术方案:热像装置,包括:
获得部,用于连续获得热像数据;参照图像确定部,用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;位置确定部,用于确定参照图像位于红外热像中的规定位置和规定尺寸;合成部,用于按照所述规定位置,连续合成红外热像和参照图像,以获得合成图像;其中所述红外热像为根据获得部连续获得的热像数据生成的,所述参照图像为按照所述规定尺寸并根据参照图像确定部所确定的构成数据而获得的。
本发明还可采用以下的技术方案:热像装置,包括:
获得部,用于连续获得热像数据;参照图像确定部,用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;位置确定部,用于确定参照图像位于红外热像中的规定位置和规定尺寸;合成部,用于按照所述规定位置,根据基于所确定的构成数据获得所述规定尺寸的参照图像,对连续获得的热像数据进行选择性伪彩处理,来获得体现了参照图像与热像数据生成的红外热像的合成图像。
本发明还可采用以下的技术方案:热像装置,包括:
获得部,用于获得热像数据;参照图像确定部,用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;位置确定部,用于确定参照图像位于红外热像中的规定位置和规定尺寸;显示控制部,用于将基于所确定的构成数据获得所述规定尺寸的参照图像,按照所述规定位置,与获得的热像数据生成的红外热像,共同显示。
本发明的热像拍摄方法,包括如下步骤:
311)获得步骤:热像装置获得热像数据;312)参照图像确定步骤:用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;313)位置确定步骤:设置基于所指定的构成数据获得的参照图像位于红外热像中的规定位置和规定尺寸;314)显示控制步骤:将基于所指定的构成数据获得所述规定尺寸的参照图像,按照规定位置和规定尺寸,与获得的热像数据生成的红外热像,共同显示;所述构成数据指与参照图像有关的数据;所述参照图像指体现了被摄体形态特征的图像。
本发明的其他方面和优点将通过下面的实施例进行阐述。
附图说明:
图1是实施例1-5的热像装置的电气结构的框图。
图2是实施例的热像装置的外型图。
图3是实施例1-4的热像装置的设置菜单界面的示意图。
图4是实施例1的存储部存储的被摄体信息和形态构成数据的一种实施示意图。
图5是实施例1的存储部存储的被摄体信息和多个类型构成数据的一种实施示意图。
图6是以可见光图像构成参照图像的合成图像示意图。
图7是以纹理图像构成参照图像的合成图像示意图。
图8为轮廓图像和分析区域图形构成参照图像的合成图像示意图。
图9为轮廓图像和指示标记构成参照图像的合成图像示意图。
图10是表示实施例1的参照模式处理控制的流程图。
图11是实施例1的拍摄被摄体h7的场所和使用者拍摄位置、拍摄距离的俯视示意图。
图12为实施例1的热像装置的被摄体信息待选项选择界面示意图。
图13为实施例1的利用参照图像对被摄体h7进行拍摄过程的显示界面示意图。
图14为实施例1的切换参照图像的构成数据的显示界面示意图。
图15为实施例1的参照图像与被摄体热像重合匹配的显示界面示意图。
图16是实施例2的表示(自适应显示)参照模式处理控制的流程图。
图17为局部轮廓图像“参照图像居中”处理后的自适应显示效果示意图。
图18为局部轮廓图像“参照范围居中”处理后的自适应显示效果示意图。
图19是实施例2的存储部存储的被摄体信息和形态构成数据的另一种实施示意图。
图20是实施例2的存储部存储的被摄体信息和多个类型构成数据的另一种实施示意图。
图21为实施例2的确定参照图像自适应显示的显示界面示意图。
图22是表示实施例3的加工参照模式处理控制的流程图。
图23为实施例3的一种实施剪切加工获得形态构成数据及利用该形态构成数据生成的参照图像的参照拍摄的显示界面示意图。
图24为实施例3的一种实施边缘提取加工获得形态构成数据及生成参照图像的过程的显示界面示意图。
图25为实施例4的一种实施对形态构成数据生成的参照图像进行关联信息设置的设置界面示意图。
图26为实施例5的热像装置设置菜单的示意图。
图27为实施例5的对象加工的设置菜单界面的示意图。
图28为实施例5的对象计算的设置菜单界面的示意图。
图29为说明通过计算或加工,获得的参照图像的作用和效果的5个显示例。
图30为实施例5的参照图像的设置菜单界面的示意图。
图31为实施例5的切换设置菜单界面的示意图。
图32为利用轮廓和分析区域构成的参照图像对被摄体进行拍摄并切换参照图像的显示界面的示意图。
图33为利用轮廓和计算获得的区域构成的参照图像对被摄体进行拍摄并切换参照图像的显示界面的示意图。
图34为实施例5的参照模式的一个示例的控制流程图。
图35为实施例6的热像处理装置和热像拍摄装置连接构成的热像处理系统的一种实施的电气结构的框图。
图36为实施例6的热像处理装置和热像拍摄装置连接构成的热像处理系统的一种实施的示意图。
图37为实施例7参照被摄体热像来调整参照图像的过程的显示界面示意图。
具体实施方式
下面将结合附图和具体实施例对本发明做进一步的说明。注意,以下要说明的实施例用于更好地理解本发明,而不限制本发明的范围,并且可以改变成本发明范围内的各种形式。其中,所谓热像数据,可以是热像AD值数据(例如红外探测器输出信号经AD转换后获得的数据),或红外热像的图像数据,或温度值的阵列数据,或其他基于热像AD值数据生成的数据等。在实施例1-5中所谓的热像数据以热像AD值数据为例,拍摄部作为获得部的实例;实施例6中所谓的热像数据以压缩的热像AD值数据或压缩的红外热像的图像数据为例,通信接口作为获得部的实例。
参考附图1来详细描述实施例1。图1是实施例的热像装置12的电气结构的框图。图2是实施例的热像装置12的外型图。
热像装置12具有拍摄部1、图像处理部2、显示部3、临时存储部4 、存储卡I/F5、存储卡6、闪存7、通信I/F8、操作部9、控制部10,控制部10通过控制与数据总线11与上述各部分进行连接,负责热像装置12的总体控制。控制部10例如由CPU、MPU、SOC、可编程的FPGA等来实现。
拍摄部1由未图示的光学部件、驱动部件、红外探测器、信号预处理电路等构成。光学部件由红外光学透镜组成,用于将接收的红外辐射聚焦到红外探测器。驱动部件根据控制部10的控制信号驱动透镜来执行聚焦或变焦操作,此外,也可为手动调节的光学部件。红外探测器如制冷或非制冷类型的红外焦平面探测器,把通过光学部件的红外辐射转换为电信号。信号预处理电路包括采样电路、AD转换电路、定时触发电路等,将从红外探测器读出的信号在规定的周期下进行取样等信号处理,经AD转换电路转换为数字的热像数据,该热像数据例如为14位或16位的二进制数据(又称为AD值)。该热像数据暂时存储在临时存储部4中。本实施例中,拍摄部1作为获得部的实例,用于对被摄体进行拍摄获得热像数据(帧)。
图像处理部2用于对通过拍摄部1获得的热像数据进行规定的处理,图像处理部2的处理如修正、插值、伪彩、合成、压缩、解压等,进行转换为适合于显示用、记录用等数据的处理。例如,基于控制部10的记录指示,图像处理部2用于将热像数据按照规定的压缩处理获得压缩后的热像数据,而后该热像数据被记录到如存储卡6等存储介质。此外,基于控制部10的控制,图像处理部2执行与图像处理相关的各种处理,例如使像素的增减来改变图像数据尺寸的处理,例如对图像数据的剪切处理。图像处理部2可以采用DSP或其他微处理器或可编程的FPGA等来实现,或者,也可与控制部10为一体。
在本实施例中,图像处理部2作为合成部的实例,用于按照所述规定位置,连续合成拍摄部拍摄获得的热像数据生成的红外热像和按照所述规定尺寸并根据参照图像确定部所确定的构成数据而获得的参照图像,以获得合成图像。合成处理,使显示(显示部3显示)的合成图像中能同时呈现被摄体热像和体现了被摄体规定形态特征的规定位置、规定尺寸的参照图像。
图像处理部2用于对拍摄部1拍摄获得的热像数据实施规定的处理而获得红外热像,规定的处理如伪彩处理,或如图像处理部2对拍摄部1拍摄获得的热像数据进行非均匀性校正、插值等规定处理,对规定处理后的热像数据进行伪彩处理。伪彩处理具体而言,例如根据热像数据的AD值的范围或AD值的设定范围来确定对应的伪彩板范围,将热像数据的各AD值在伪彩板范围中对应的具体颜色值作为其在红外热像中对应像素位置的图像数据,在此,灰度红外图像可以视为伪彩图像中的一种特例。
合成处理的一种实施方式,具体而言,例如按照规定位置,以规定透明比率连续合成红外热像和规定尺寸的参照图像,以使获得的合成图像中能同时呈现被摄体热像和体现了被摄体规定形态特征的规定位置、规定尺寸的参照图像。
这里所说的透明比率代表了合成时参照图像和背景(红外热像)的图像数据在合成图像对应像素中的比率,在合成后的像素中,参照图像和红外热像的透明比率的和通常为1(当具有多个重叠的图像时,可以具有分别规定的透明比率,其和也通常为1),针对参照图像与红外热像的所有重叠的像素点,例如根据公式“合成后的像素 = 参照图像的图像数据x参照图像透明比率 +红外热像的图像数据x(1 - 参照图像透明比率)”来获得合成后重叠的像素点的图像数据。例如当参照图像的透明比率为1,红外热像的透明比率为0时,则以参照图像相应位置像素的图像数据替代红外热像在该相应位置像素的图像数据,代表将该相应位置的红外热像的图像完全遮挡;如当透明比率均等时,将二个图像的图像数据比率均等相加的图像数据作为合成图像中该像素的图像数据,这样的合成图像中,所述参照图像呈现为半透明的状态,可透过参照图像显示红外热像,或理解为透过红外热像显示参照图像。规定透明比率可以是拍摄装置1中存储的默认值、或由使用者通过操作部9设置、或与参照图像有关的构成数据的属性中存放了规定的透明比率。
显然,当有多个需要与背景(例如,红外热像)合成的合成对象(参照图像包括多个合成对象)时,例如按照各合成对象的合成次序和对应的透明比率,逐次进行合成处理来获得最终的显示图像;例如,有合成对象1(合成次序为1)和合成对象2(合成次序为2),则先将合成对象1按照其透明比率与背景(红外热像)合成获得中途数据“合成对象1的图像数据x合成对象1的透明比率 +背景的图像数据x(1 -合成对象1的透明比率)”,而后,将合成对象2按照其透明比率与所述中途数据再次合成处理,即,该处理获得的合成像素根据下式获得,合成对象2*合成对象2的透明比率+中途数据*(1-合成对象2的透明比率)。
此外,也可以规定的阀值区间范围及对应规定的透明比率来确定参照图像或红外热像位于该阀值区间范围中的图像数据对应的透明比率;其中,规定的阀值区间范围及所规定的透明比率可以是预存的,也可以是使用者进行设置和调节的;所述阀值区间范围的表现形式例如AD值范围、温度带(值)范围、灰度范围、颜色范围等。例如,当参照图像的构成数据为热像数据时,以该热像数据的阀值区间范围(如AD值范围或温度带范围)对应的透明比率,来确定合成时,参照图像中哪一些热像数据所生成的图像数据是用于在合成图像中显示(例如阀值区间范围中的热像数据生成的图像数据的规定透明比率为1,其他的为0)。反之,也可根据拍摄获得的热像数据的阀值区间范围(如AD值范围或温度带范围)来决定红外热像中哪一些热像数据所生成的图像数据是用于在合成图像中显示(例如阀值区间范围中的热像数据生成的图像数据规定透明比率为1,其他的为0),来避免重要的部分(阀值区间范围内)的红外热像被遮挡。在此,参照图像的透明比率,或也可以是变化的值。
将红外热像与参照图像进行合成处理的又一种实施方式,作为合成部的图像处理部2根据规定位置、规定尺寸的参照图像在红外热像中的相应像素位置来对拍摄获得的热像数据进行选择性的伪彩处理而获得合成图像。具体而言,例如以处于相应像素位置的参照图像的图像数据作为该像素位置的合成图像的图像数据,对该相应像素位置的热像数据不再进行伪彩转换的处理,仅对参照图像的像素位置以外的热像数据进行伪彩转换来获得红外热像的图像数据,以此生成合成图像;例如,将参照图像对应热像数据中的像素位置的热像数据,进行与其他像数位置的热像数据的伪彩处理所不同的处理,例如不同伪彩板的伪彩处理,例如对参照图像对应热像数据中的像素位置的热像数据减去规定值后再进行伪彩处理等,来生成合成图像。可加快处理速度。适用于线条形态的参照图像,对于希望以这种方式进行合成处理的参照图像可在其构成数据的属性中事先附加相应类型信息或标识。
显示控制部(控制部10),优选的是使显示部显示上述方式的一种或同时多种处理方式获得的合成图像,来实现将基于所确定的构成数据获得所述规定尺寸的参照图像,按照所述规定位置,与连续获得的热像数据生成的红外热像,共同显示。但不限定于此,例如,基于特定的显示装置,也可以将参照图像投影在红外热像上来实现共同显示,这时,可去除图像处理部2的合成处理的上述功能。
显示部3包括显示驱动电路及液晶显示器,显示驱动电路在控制部10的控制下,驱动液晶显示器,在拍摄待机模式中,连续显示拍摄获得的红外热像;在参照处理模式,可连续显示合成图像,在再现模式,显示从存储卡6读出和扩展的红外热像。此外,还可根据控制部10的控制显示各种设定信息。在本实施例中,显示部3作为显示部的实例。不限与此,显示部3还可以是与热像装置12连接的其他显示装置,而热像装置12自身的电气结构中可以没有显示装置。
临时存储部4如RAM、DRAM等易失性存储器,作为对拍摄部1输出的热像数据进行临时存储的缓冲存储器,同时,作为图像处理部2和控制部10的工作存储器起作用,暂时存储由图像处理部2和控制部10进行处理的数据。不限与此,控制部10、图像处理部2等处理器内部包含的存储器或者寄存器等也可以解释为一种临时存储介质。
存储卡I/F5,作为存储卡6的接口,在存储卡I/F5上,连接有作为可改写的非易失性存储器的存储卡6,可自由拆装地安装在热像装置12主体的卡槽内,根据控制部10的控制记录热像数据等数据。
闪存7(内藏快闪存储器),在本实施例中作为存储部的实例,用于存储与至少体现被摄体规定形态特征的参照图像相关的构成数据;所存储的构成数据至少包括形态构成数据,即所存储的构成数据为形态构成数据,或,所存储的构成数据包括形态构成数据和其他类型的构成数据(下文中称为辅助构成数据)。
在此,存储部所指的,即可以是热像装置12中的存储介质,如闪存7、存储卡6等非易失性存储介质,临时存储部4所指的易失性存储介质等;还可以是与热像装置12有线或无线连接的其他存储介质,如通过与通信I/F8有线或无线连接的进行通讯的其他装置如其他存储装置或热像装置、电脑等的存储介质或网络目的地的存储介质。优选的,构成数据等数据预先存储在热像装置12中或与其连接的非易失性存储介质中。
如图4所示,来说明存储部中存储的构成数据的一种优选实施方式,即存储多个被摄体信息及各被摄体信息关联的一个形态构成数据。包括多个被摄体信息、被摄体信息关联的形态构成数据、形态构成数据生成的图像位于红外热像中的位置信息(例如位置、尺寸、或还有旋转角度);显然,例如当存储的形态构成数据由多个点的坐标构成时,也视为同时存储了参照图像尺寸,由存储的多个点的坐标决定了这些点构成的参照图像的尺寸;同理,当位置确定部确定了构成参照图像的多个点位于红外热像中的位置时,也相当于确定了该参照图像的规定尺寸。其中,被摄体信息为被摄体的类型、名称、编号、地点等代表被摄体身份的信息之一或多个的组合。此外,位置信息等的具体表现形式也可以是位于显示部中整个画面(例如当画面包括红外热像显示窗口和位于红外热像显示窗口之外的其他信息显示窗口时)的坐标系中位置参数(但落在红外热像显示窗口中)。
形态构成数据为代表被摄体规定形态特征的图像的构成数据,例如可以是点阵数据,或矢量图形数据,或由点阵数据和矢量图形数据组成的数据等,在此,点阵数据例如点阵图像数据,例如热像数据等阵列数据构成的点阵数据。形态构成数据例如可以是从根据规定拍摄角度、拍摄部位而获得的各种类型的被摄体图像如红外热像、可见光图像等中提取获得,也可以是事先存储在存储部(如闪存7)中的。参照图像可以对应于被摄体整体或部分或局部(如图18中的局部轮廓图像T17)的规定形态特征。
体现了被摄体的规定形态特征的参照图像,可以是体现了被摄体热像的规定形态特征,例如可以是包含被摄体热像的红外热像;不限于此,由于被摄体的可见光、紫外等其他类型图像与红外热像具有轮廓、纹理的相似性或协同使用中的参考性,还指体现了规定形态特征要求的各种类型的被摄体图像如被摄体的可见光图像、预先绘制的图像等。经合成后这类图像在合成图像中按照规定透明比率呈现为半透明显示,提供了其所代表的规定拍摄角度、拍摄部位的被摄体形态作为拍摄参照的视觉参照。在图6中,为可见光图像的参照图像TU6半透明显示,对被摄体热像H6位于半透明参照图像TU6的部分会产生半透明的遮挡,虽然对观察效果有所影响,但该类参照图像比较生动,便于理解。
体现了被摄体的规定形态特征的参照图像,可以是如能仅体现被摄体的轮廓和/或纹理特征的图像。该类参照图像在合成图像中的参照图像像素位置上示意与被摄体形态有关的轮廓和/或纹理特征,合成图像的其他位置可以无遮挡地显示红外热像,对被摄体热像的遮挡少。例如,在图8中所示的轮廓图像T6,仅对轮廓图像T6像素位置的红外热像会产生遮挡,对其它位置的红外热像不会产生遮挡。该类形态构成数据可以为矢量图形数据(如生成图8中的轮廓图像T6),也可以是点阵数据(如生成图7中的纹理图像W6),参照图像中轮廓和/或纹理特征位置以外的其他像素位置为全透明显示红外热像;该类参照图像可以不透明或半透明显示。
体现了被摄体的规定形态特征的参照图像,还可以同时包含其他的提示图像作为辅助,例如图8中代表重点观察区域的分析区域F6(分析区域F6由编号信息为S01、S02、S03的三个框形分析区域单元构成),图9中代表拍摄的提示标记B6等,提示使用者注意观察参照图像中相应的重点关注部位。例如,虽然可以由一个形态构成数据来获得包含图8中的分析区域F6和轮廓T6的参照图像;但优选的实施方式,由形态构成数据(获得轮廓T6)和辅助构成数据(如用来获得分析区域的分析区域构成数据)共同来获得如图8所示的参照图像(包括分析区域F6和轮廓T6);由此,将提升轮廓T6的参照效果,并避免了单一辅助图像F6等参照性弱的缺点。在实施例中,辅助构成数据可以是矢量图形数据,也可以是点阵数据,或同时包含有矢量图形数据和点阵数据。例如用于获得如图8所示的分析区域,如图9所示的提示标记等。其中,分析区域例如点、线、面,实际中,通常可包括一个或多个分析区域单元(点、线、面)和区域单元的编号信息;用来获得分析区域的分析区域构成数据,例如包括区域单元的矢量图形数据和区域单元的编号信息。与参照图像相关的构成数据,例如各种类型的形态构成数据及辅助构成数据;用来获得参照图像的构成数据可以是一个或一个以上,但其中至少包括一个形态构成数据。
此外,特定的辅助构成数据还用来例如规范参照图像在红外热像中的位置参数;如将辅助构成数据获得的辅助对象设置为参考范围区,代表了辅助对象所代表的区域作为重点观察等的目的。此外,特定的辅助构成数据例如与参照图像具有规定的相对位置关系的点、线、面的数据,在记录处理时与热像数据关联存储,由于形态构成数据的数据量相对较大,记录与参照图像具有规定的相对位置关系的辅助对象的辅助构成数据可以减少存储数据量,当辅助构成数据获得的对象代表了分析区域的时,该记录方式有益于后续的批处理。
图5示意的存储部的另一种实施存储内容示例,存放了多个被摄体信息及各被摄体信息关联的多个类型的带有类型信息的与参照图像有关的构成数据,包括多个类型的形态构成数据、辅助构成数据(如分析区域构成数据等),各种构成数据生成的图像在红外热像中的位置信息(例如位置、尺寸、或还有旋转角度),其中,当辅助构成数据为单个点时(例如分析区域为单个点时),则仅存储位置。这些构成数据可用来构成不同参照类型的图像,并便于在使用中切换,使良好的参照效果和对红外热像的遮挡之间取得平衡。
类型信息表明各种构成数据的类型,类型可按照参照特征、拍摄测量目的、构成数据的数据格式等来进行分类;一种分类的实施方式,以参照特征来分类,对于用来生成参照图像的构成数据的规定确定类型,使用者可在如图3所示的菜单设置栏SZ31中进行设置,可以设置与生成参照图像有关的构成数据为轮廓、纹理、其它(如可见光、红外热像)等类型的形态构成数据的一种或多种,此外,还可包括分析区域构成数据等;当多选设置时,代表了多个构成数据所获得的参照图像的参照类型,例如,选择了轮廓和纹理,则参照图像中包含了轮廓图像和纹理图像,选择了轮廓和分析区域,则参照图像中包含轮廓图像和分析区域。可将设置的确定类型作为规定确定类型的默认值保存。显然,分类并不限于对单个的构成数据,还可对多个构成数据的组合构成来分类。
图4中代表一个被摄体信息关联了一个形态构成数据的存储实施方式;图5中代表一个被摄体信息关联了多个类型的构成数据的存储实施方式;也存在部分不同的被摄体信息(如同型号的被摄体)关联了相同的构成数据如形态构成数据的情况。在图5的存储实施例中,也可以不附加类型信息,由使用者进行选择。图4和图5中的存储内容可以以若干文件形式来存放,例如以被摄体信息作为文件名的存放形态构成数据的数据文件,或进一步采用文件夹对这些文件进行分类。也可以将图4或图5中的存储内容存放在数据库或规定格式的数据文件等。被摄体信息关联的构成数据,例如是被摄体信息直接关联的构成数据;例如被摄体信息的直接关联某个构成数据,该构成数据又关联了其他构成数据,所述其他构成数据也为被摄体信息关联的;例如被摄体信息关联了构成数据的索引信息,该索引信息对应的构成数据,也为被摄体信息关联的构成数据等。此外,如果是通过在图4或图5的表中存储形态构成数据的索引信息(如文件名等)进行关联的方式,则在存储介质中还相应存储了索引信息(如文件名等)对应的形态构成数据等的文件。在红外检测的场合,常存在大量外形相同的不同被摄体,采用被摄体信息与形态构成数据关联的方式来存储形态构成数据等,便于使用者根据现场认知的被摄体来选择被摄体信息进行选用,避免了构成数据选用错误,并能降低数据冗余。
通信I/F8是例如按照USB、1394、网络等通信规范,将热像装置12与外部装置进行连接并数据交换的接口,作为外部装置,例如可以列举个人计算机、服务器、PDA(个人数字助理装置)、其他的热像装置、可见光拍摄装置、存储装置等。
操作部9:用于使用者向热像装置12发出指示,或者输入设定信息,操作部9例如图2中所示的记录键1、确认键2、调焦键3、模式设定按键4、十字键5等构成,不限与此,也可采用触摸屏6或语音部件等来实现相关的操作。
控制部10(如CPU)控制了热像装置12的整体的动作,在存储介质例如闪存7中存储有用于控制的程序,以及各部分控制中使用的各种数据。上述热像装置12结构用来说明本发明的实施例的具体实现方式,并不是用于对本发明做限定。本领域的技术人员可知即使对上述结构进行改动,本发明亦可实现。
所述控制程序使控制部10执行多种模式处理的控制,接通电源后,控制部10进行内部电路的初始化,而后,进入待机拍摄模式,即拍摄部1拍摄获得热像数据,图像处理部2将拍摄部1拍摄获得的热像数据进行规定的处理,存储在临时存储部4中,并使显示部3上以动态图像形式连续显示红外热像,在此状态,控制部10实施其控制,持续监视是否按照预定的条件切换到了其他模式的处理或进行了关机操作,如果有,则进入相应的处理控制。
以下将对热像拍摄方法(参照模式)进行说明,在本实施例中,控制部10作为参照图像确定部、位置确定部、显示控制部等的实例。
图10是表示参照模式处理控制的流程图。图11是拍摄被摄体h7的场所和使用者拍摄位置、拍摄距离的俯视示意图。图12为热像装置的被摄体信息待选项选择界面示意图。图13为利用参照图像对被摄体h7进行拍摄过程的显示界面示意图。图14为切换参照图像的构成数据的显示界面示意图。图15为参照图像与被摄体热像重合匹配的显示界面示意图。本实施例以电力设备红外检测的场景为例,目的是对被摄体h7的运行状态进行巡视拍摄,被摄体h7为电力设备DL中的一个关键部件。参照模式步骤如下:
步骤S101,控制部10实施其控制,持续监视用户是否选择了参照模式。在待机拍摄状态,显示部3显示动态的红外热像。这时,使用者所在的拍摄位置为图11中的位置A,获得如图13的显示界面G1301所示的红外热像,在以往使用者可能会困惑于拍摄被摄体h7的拍摄距离、拍摄部位、甚至不明确电力设备DL中被摄体h7所指的拍摄部位,为通过参照图像的参照来保证对被摄体h7拍摄的正确性,并使操作简单,使用者通过操作部9的模式按键或菜单选择参照模式,进入步骤S102。
步骤S102,确定与要和红外热像合成的参照图像相关的构成数据。控制部10作为参照图像确定部,用于根据存储部中存储的构成数据,确定要和红外热像合成的体现被摄体规定形态特征的参照图像相关的构成数据。所确定的构成数据至少包括一个形态构成数据,即所确定的构成数据为形态构成数据,或,所确定的构成数据包括形态构成数据和辅助构成数据来构成。
在本实施例中,闪存7中存储如图4或图5所示的存储内容,响应于使用者在步骤S101中的操作,控制部10根据闪存7中存储的被摄体信息,将根据被摄体信息生成的规定数量的被摄体信息待选项显示在显示部3,如图12所示的被摄体信息待选项列表LB,使用者根据对被摄体h7的认知,例如现场的设备指示牌,通过操作部9中的十字键,查找到LB中的被摄体信息待选项“被摄体h7”予以选择并按下确认键。在本实施例,由控制部10、操作部9、显示部3构成选择部的实例,用于选择被摄体信息,根据使用者的操作就选择了被摄体信息“被摄体h7”。其中,被摄体信息为被摄体的类型、名称、编号、地点等代表被摄体身份的信息之一或多个的组合,由此,当被摄体信息待选项为多个待选项的组合时,选择确定被摄体信息待选项的操作可能需要对多个待选项进行选择来确定最终的被摄体信息。被摄体信息待选项的表现形式可以是数字、文字、图标、图形等。选择部并不限定于显示被摄体信息待选项,也可通过例如输入被摄体信息的编号等的方式来选择被摄体信息。
一种实施方式如闪存7中存储如图4所示的存储内容,响应于该操作,控制部10确定轮廓T7矢量图形数据作为要和红外热像合成的参照图像相关的构成数据。控制部10读取与被摄体信息“被摄体h7”对应的轮廓T7矢量图形数据,参照图像(轮廓图像T7)在红外热像中的位置信息,传送到临时存储部4的规定区域。
又一种实施方式如闪存7中存储如图5所示的存储内容,响应于该操作,控制部10读取与被摄体信息 “被摄体h7”对应的轮廓T7、纹理W7、分析区域F7等的构成数据,轮廓T7、纹理W7、分析区域F7等在红外热像中的位置信息,传送到临时存储部4,已备后续如切换、记录等使用(也可传送其中设定需要的部分)。控制部10根据构成数据的规定确定类型为轮廓,及轮廓T7矢量图形数据的类型信息,来确定轮廓T7矢量图形数据作为要和红外热像合成的参照图像相关的构成数据。如没有规定确定类型,则后续同时确定被摄体信息关联的轮廓T7、纹理W7、分析区域F7等的构成数据来构成用于生成参照图像的构成数据;或提供使用者再次选择。对于规定确定类型,使用者可在如图3所示的热像装置12的菜单设置栏SZ31中进行设置,可以是其中的一种或多种。
不限于上述的方式,控制部10也可根据闪存7中存储的形态构成数据等构成数据,使显示部的规定位置显示规定数量的与形态构成数据等构成数据有关的选择信息,使用者能进行选择,所述选择信息,如与形态构成数据等构成数据有关的代表构成数据身份信息的文字、字符、图标、数字、代码、缩略图等,构成数据身份信息可以定义或编辑有不同的应用含义。例如,当存储部中存储了多个构成数据的情况,控制部10可以显示规定数量的构成数据生成的图像缩略图提供使用者选择,使用者根据缩略图的形态来选择与被摄体适用的,根据使用者的选择,确定与参照图像相关的构成数据。如当在存储介质中以图形文件、图像文件的形式存储构成数据时,则在进入参照模式时,控制部10基于闪存7中存储的相关的文件名或缩略图,进行显示,由使用者进行选择。由此,被摄体信息并非是必须的,存储部也可以仅保存了形态构成数据等构成数据。
此外,作为参照图像确定部的控制部10也可以是这样来确定构成数据;例如,默认确定某个形态构成数据,其应用如针对特定被摄体检测。例如,也可以事先设定操作部中的特定按键与特定形态构成数据等构成数据的对应关系,之后,响应特定按键的操作来确定对应的形态构成数据等构成数据。
此外,也可以在所确定的构成数据生成的参照图像和红外热像合成显示后,响应使用者的预定操作如方向键的切换,来确定与当前构成数据有关的构成数据,作为切换后,要和红外热像合成的参照图像的构成相关的构成数据;与当前构成数据有关的构成数据,是指与当前确定的构成数据关联的,或根据当前构成数据生成的,或与所选择的被摄体信息关联的其他构成数据。例如被摄体信息关联了多个构成数据,可以在该多个构成数据进行确定切换。
此外,也可以根据预定的触发条件如外界触发信号如感应、GPS信号等,通过热像装置上的相应接收装置(未图示)的触发,来确定与该信号对应的与参照图像相关的构成数据。
此外,还存在这种情况,例如在热像装置12的存储介质中保存了被摄体的信息,而与被摄体信息关联的构成数据保存在由通过通信I/F8有线或无线连接的外部设备如存储器、电脑等中,当使用者选择了被摄体信息,则控制部10向外部设备发出指示,以通过有线或无线方式获得并确定对应于被摄体信息的构成数据。
步骤S103,确定参照图像位于红外热像的规定位置和规定尺寸;
控制部10根据传送到临时存储部4的位置信息来确定轮廓图像T7位于红外热像中的规定位置和规定尺寸。例如,如图4所示,闪存7中存储形态构成数据及其关联的位置信息,所述位置信息代表由该形态构成数据所生成的参照图像将位于红外热像中的规定位置和规定尺寸,所述位置确定部用于将所述位置信息所代表的规定位置、规定尺寸,确定为该形态构成数据所获得的参照图像将位于红外热像中的规定位置和规定尺寸。此外,参照图像显示的位置、尺寸或者还有旋转角度也可以根据使用者通过操作部输入来确定;或,位置确定部根据默认的位置和尺寸来设置参照图像的规定位置和规定尺寸(例如默认中心点位置,以原始尺寸进行显示,可预先准备适用尺寸的参照图像的构成数据);或,由规定的自适应区域所决定,详见实施例2。
步骤S104,将拍摄获得的热像数据传送到临时存储部4;
步骤S105,将参照图像与红外热像进行合成;具体而言,控制部10控制,图像处理部2根据确定的规定尺寸或还有旋转角度对轮廓T7构成数据(矢量图形数据)的进行相应的规定处理,按照规定位置,将处理后获得的图像数据例如预定单色的图像数据,与热像数据经历规定处理获得的红外热像的图像数据进行合成。在本实施例中,轮廓T7可以是半透明或不透明。
步骤S106,作为显示控制部的控制部10控制,将合成图像显示在显示部3,如显示界面G1302所示,即将参照图像与红外热像共同显示,而后进入步骤S107。轮廓图像T7提供使用者良好的视觉参照。可以想象,如没有参照图像参照手段,使用者拍摄的被摄体热像H7的形态(在实际中很多使用者往往仅拍摄了不完整的被摄体热像,或者不合适的拍摄角度)和在红外热像中的成像位置、大小、角度,难以主观把握。
步骤S107,控制部10实施其控制,监视用户是否退出参照模式。
如果有,则结束参照模式处理。如没有,将重复步骤S104-S106的步骤,显示部显示连续合成的动态红外热像和参照图像,反映拍摄获得的动态红外热像与参照图像T7连续合成和显示的状态。例如,显示界面G1302,被摄体热像H7与轮廓图像T7之间均存在较大形态差异;于是,使用者根据轮廓图像T7的参照来调整对被摄体h7拍摄的角度,通过改变拍摄的位置,从图11中的拍摄位置A改变到拍摄位置B,这时,在拍摄位置B的拍摄角度,显示如显示界面G1303,轮廓图像T7与被摄体热像H7的轮廓形态类同,但被摄体热像H7成像的大小与轮廓图像T7的大小存在较大差异,这时,使用者根据轮廓图像T7的视觉参照,就理解了需要拍摄的部位是轮廓图像T7所指示被摄体形态的部位、被摄体热像在红外热像中规范的成像位置、大小、角度是轮廓图像T7所指示的,而后通过调整热像装置12的光学部件和被摄体h7之间的拍摄距离、成像位置,例如使用者从图11中的拍摄位置B改变到拍摄位置C,使调整后得到的如图13显示界面G1304中被摄体热像H7与轮廓图像T7在视觉上处于成像位置、大小初步匹配状态。这时,使用者可以对符合规定形态的被摄体热像H7进行状态判断,不会遗漏,或还可继续调整拍摄位置和角度,使达到图15所示的显示界面中的视觉重合匹配状态,如果在重合匹配后,进行分析、记录等操作和处理,易于获得准确的分析结果,并且,当关联了分析区域F7就可避免人工来设置分析区域;并且,将与轮廓图像T7有关的信息例如轮廓T7的构成数据和位置信息、被摄体h7的被摄体信息与该时刻获得的热像数据关联记录下来,生成的红外热像文件中具有被摄体热像在红外热像中的位置、尺寸的信息,便于后续的批处理分析和智能诊断。
如闪存7中存储如图5所示的存储内容时,使用者可切换显示其他类型的参照图像等,以帮助参照,具体而言,控制部10响应使用者的切换操作,对在步骤S102中传送到临时存储部4的分析区域F7、纹理W7等与被摄体信息或轮廓图像T7关联的辅助构成数据进行确定,单独或与轮廓图像T7一起与红外热像进行合成(图14所示包含分析区域F7和轮廓图像T7的参照图像),来增强参照效果。
此外,也存在这样的应用,调整(重新确定)轮廓图像T7的位置、尺寸、或还有旋转角度去匹配显示界面G1303中所示的被摄体热像H7。
可以对被摄体h7进行检测后,重新选择参照模式进入下一被摄体的参照拍摄,也可以进入其他模式处理。可以想象,在红外拍摄中如没有体现被摄体规定形态特征的参照图像参照手段,使用者需要主观去揣摩被摄体h7的拍摄角度、距离、拍摄的部位,容易遗漏重点测量部位,并且拍摄速度慢。
此外,控制部10还可以具有透明对象指定部,用于使用者从显示部显示的参照图像中,指定需要改变透明比率的对象(例如本实施例中的参照图像T7),并响应使用者的预定操作,来改变所指定的对象的透明比率。
如上所述,在本实施例1中,由于采用了预先存储的被摄体信息和被摄体信息关联的形态构成数据,因此便于根据现场拍摄的被摄体来选择对应的形态构成数据;由于在闪存7中存储形态构成数据所关联的位置信息,这样避免了对参照图像的位置调整,操作简单规范;由于在合成图像中呈现的规定位置、规定尺寸并体现了被摄体轮廓特征的参照图像,为使用者拍摄被摄体热像提供了视觉参照,对被摄体的拍摄角度、拍摄部位、拍摄距离进行了提示和规范;显然,根据参照图像的参照,使用者对拍摄要求一目了然,无需过度依赖经验的积累和主观上的意念,能大幅度降低拍摄难度,提高检测质量和速度,普通的使用者也能达到良好的拍摄技能水平。并且,由于采用了轮廓形态构成数据来构成参照图像,使参照的效果更佳。实施例1为较优的实施方式,当然,实施本发明的实施方式的任一产品并不一定需要同时达到以上所述的所有优点。
实施例2,
与实施例1不同的在于,本实施例是在具有与图1所示的结构相同的热像装置12中,在闪存7中,存储了用于执行使参照图像在自适应区域中自适应显示的控制程序。图16是表示(自适应显示)参照模式处理控制的流程图。图17为局部轮廓图像“参照图像居中”处理后的自适应显示效果示意图。图18为局部轮廓图像“参照范围居中”处理后的自适应显示效果示意图。图19是存储部存储的被摄体信息和形态构成数据的另一种实施示意图。图20是存储部存储的被摄体信息和多个类型构成数据的另一种实施示意图。图21为确定参照图像对被摄体h6进行拍摄的显示界面示意图。
在本实施例中,作为位置确定部的控制部10根据自适应区域在红外热像中的大小和位置,以及参照图像在自适应区域中的位置,来确定参照图像在红外热像中规定位置和规定尺寸。
自适应区域为在红外热像中用于自适应显示参照图像等的规定区域,自适应显示是指参照图像在该自适应区域中的指定位置,进行在自适应区域中非溢出的、纵横比固定的最大化显示,本实施例为不变角度。但也可有变角度的情况。
通常,期望拍摄的被摄体热像具有规定的尺寸,最好是居中,设置自适应区域能便于参照图像规范显示。图3中的自适应区域栏SZ32用于设置自适应区域在红外热像中的位置、尺寸,如设置占红外热像显示窗口的规定比例或红外热像中的指定区域等。其中的参照图像位置栏SZ33,用于设置参照图像在自适应区域中的位置如设置“参照图像居中”、“参照范围居中”,不限于中心点,也可是其他指定位置,或还有旋转角度。完成后,可保存设置作为默认的自适应设置参数。
控制部10用于进行参照图像自适应缩放后的位于红外热像中的规定位置、规定尺寸的计算,以设置的自适应区域在红外热像中居中和参照图像在自适应区域中”参照图像居中”为例, 控制部10计算自适应区域(尺寸X1,Y1)与参照图像(缩放前的参照图像尺寸X2、Y2)的X轴、Y轴比值,选取X1/X2和Y1/Y2中较小的一个轴的比值,作为参照图像居中时基于参照图像中心点的缩放率,由此,获得自适应显示的参照图像位于红外热像中的规定位置、规定尺寸。图17示意了局部轮廓图像T17“参照图像居中”显示的效果。
此外,参照图像居中还包括这种情况,当确定多个类型的构成数据来作为参照图像相关的构成数据时,控制部10用于将确定的构成数据作为组合对象进行组合以获得组合参照图像并进行该组合参照图像自适应显示的位置和尺寸的计算,这时“参照图像居中”的处理可以是组合参照图像的居中显示。需要注意的是,参与组合的每一类型的构成数据生成的图像并不一定都显示。
但当例如代表被摄体局部规定形态特征的构成数据所生成的图像采用“参照图像居中”的处理,可能会带来这些构成数据所生成的图像(参照图像,或参照图像中的部分)并非是代表所期望的被摄体参照范围,例如图17所示的参照图像无法用于拍摄被摄体整体使用;为进一步规范各种构成数据所生成的参照图像部分在红外热像中的规定位置和规定尺寸,可为构成数据所生成的图像设置一个共同的参照范围区,参照图像对应的参照范围区代表了该参照图像规定的显示参照范围,存储例如对应同一被摄体的多个构成数据中的每一个所生成的图像相对于所述参照范围区的位置信息(位置、尺寸、或还有旋转角度),使这些构成数据所生成的图像能保持与参照范围区的相对位置的规范。当参照图像具有与之对应的参照范围区,这时“参照范围居中”的处理是指参照范围区的自适应居中,自适应处理后的参照图像与参照范围区的相对位置(位置、尺寸、或还有旋转角度)保持不变。
一方面,参照范围区的应用可以避免代表被摄体局部规定形态特征的参照图像显示过大的情况,例如通常将完整轮廓的外包矩形作为局部轮廓参照图像的参照范围区; 图18示意了局部轮廓图像T17“参照范围居中”显示效果,与图17的局部轮廓图像T17“参照图像居中”显示的差异,在图18中,T17所对应的为参照范围区L17,其不一定显示。参照范围区可以是预先存储的,也可以是使用者设置输入的,也可以是与参照图像相关的构成数据中的一个,或多个组合后计算获得的。当参照图像具有与之对应的参照范围区,这时“参照范围居中”的处理是指参照范围区的自适应居中,处理后的参照图像与参照范围区的相对位置(位置、尺寸、或还有旋转角度)保持不变。控制部10用于进行“参照范围居中”时参照图像位于红外热像的规定位置和规定尺寸的计算,首先计算自适应区域(尺寸X1,Y1)与参照范围区的(缩放前的尺寸X3、Y3)的X轴、Y轴比值,选取X1/X3和Y1/Y3中较小的一个轴的比值,得到参照范围区自适应居中时的基于参照范围区中心点的缩放率;而后可根据参照图像(缩放前的)在参照范围区(缩放前的)中的相对位置(位置、尺寸、或还有旋转角度),按照参照范围区自适应居中时的缩放率作为参照图像基于参照范围区中心点进行缩放的缩放率,来计算参照范围区自适应居中时,参照图像位于红外热像中的规定位置、规定尺寸。
另一方面,也可将使用者需要重点观察部位作为参考范围区,来进一步提高了参照的效果。例如将分析区域作为参考范围区。这时,虽然可能会导致参照图像部分溢出,这种溢出因适合于应用需要而可接受。这样,使用者走进被摄体进行拍摄,也有了参照图像的参照,保证了拍摄的质量。通过变换参考范围区,能实现在不同显示位置上的变换,来实现不同的拍摄目的。
在本实施例中,一种存储实施方式如图19所示的存储内容,包括被摄体信息、被摄体信息关联的形态构成数据,可以不存储轮廓形态构成数据所生成的参照图像在红外热像中的位置信息。
图20所示的另一种存储内容,包括被摄体信息、被摄体信息关联的具有类型信息的各种构成数据、各种构成数据获得的图像(缩放处理前的)相对于轮廓(缩放处理前的)的位置信息(例如存储位于轮廓中的位置、尺寸、或还有旋转角度),即规定的相对位置关系;可以存储或不存储轮廓形态构成数据所生成的图像在红外热像中的位置信息。在此,可将轮廓的外包矩形作为其他构成数据获得的图像的参照范围区;此外,也可以将多个构成数据(例如图20中存储的一个被摄体信息关联的多个构成数据)组合后获得的组合参照图像的外包矩形作为这些构成数据所生成的图像的参照范围区,可存储的多个构成数据中的每一个所生成的图像相对于所述参照范围区的位置和尺寸信息。优选的,所述存储部(闪存7)中存储了构成数据以及构成数据所生成的图像对应的参照范围区以及各构成数据所生成的图像相对于参照范围区的规定的相对位置关系(例如存储位于参照范围区中的位置、尺寸、或还有旋转角度)。。
注意,存储同一被摄体信息关联的各构成数据获得的对象之间的规定的相对位置关系(在下文中,也称为构成数据之间的规定的相对位置关系),例如图5的实施方式,存储同一被摄体信息关联的各类型的构成数据获得的对象分别位于同一参照系中(例如红外热像中)的位置信息;也可以如图20所示的实施方式;但不限定于此,例如由使用者赋予各构成数据获得的对象之间的规定的相对位置关系,或者由热像装置12的默认的位置规则来赋予各构成数据获得的对象之间的规定的相对位置关系等。
下面介绍按照自适应区域的参照拍摄过程,本实施例根据设置的自适应区域Z1和“参照图像居中”的情况。
步骤S201,在待机拍摄状态,显示部显示动态的红外热像,如图21中显示界面G2101所示的显示界面,控制部10实施其控制,当使用者选择了参照模式,进入步骤S202;
步骤S202,确定用于生成参照图像的构成数据为轮廓T6矢量图形数据。确定的实施处理方式参见步骤S102。
步骤S203,根据自适应区域确定参照图像在红外热像中的规定位置和规定尺寸;
作为位置确定部的控制部10根据自适应区域Z1在红外热像中的大小和位置,以及轮廓图像T6在自适应区域Z1中的居中位置,来确定轮廓图像T6在红外热像中的规定位置、规定尺寸。
步骤S204,将拍摄获得的热像数据传送到临时存储部4。
步骤S205,控制部10控制,图像处理部2根据确定的规定尺寸对轮廓T6构成数据(矢量图形数据)的进行相应处理,按照规定位置,将处理后获得的轮廓图像T6的图像数据与热像数据经历规定处理获得的红外热像的图像数据进行合成。
步骤S206,作为显示控制部的控制部10控制,将合成图像显示在显示部3,如图21中显示界面G2102所示的显示界面,合成图像中的被摄体热像H6与轮廓图像T6之间存在较大形态差异;使用者可根据轮廓图像T6的参照来调整对被摄体h6的拍摄。
步骤S207,控制部10实施其控制,监视用户是否退出参照模式。如果有,则结束参照模式处理。如没有,将重复步骤S204-S206的步骤。
如上所述,按照规定的自适应区域在合成图像中的大小和位置,以及参照图像在自适应区域中的位置,来确定参照图像在红外热像中显示的位置、尺寸。因此具有以下优点,对参照图像的显示更为规范,使用者对于参照图像的显示更易理解。
实施例3,本实施例是在具有与图1所示的结构相同的热像装置12中,与实施例1不同,在闪存7中,存储了用于执行响应预定的操作,将拍摄部拍摄获得规定的热像数据或所述热像数据获得的红外热像,确定为与(体现被摄体规定形态特征的)参照图像有关的构成数据,进一步,对该构成数据进行加工来获得形态构成数据或进一步获得参照图像的控制程序。以下将对这种热像拍摄方法进行说明,其中,加工对象指定部(控制部10),用于指定加工对象;图像加工部(图像处理部2),用于对所述加工对象执行剪切、边缘提取、阀值范围提取中的至少一种处理;存储部(临时存储部4等),用于存储加工获得的形态构成数据;参照图像确定部(控制部10),用于将加工获得的形态构成数据确定为与要和红外热像合成的参照图像相关的构成数据。
图22是表示加工参照模式处理控制的流程图。图23为一种实施剪切加工获得形态构成数据及利用该形态构成数据生成的参照图像的参照拍摄的显示界面示意图。图24为一种实施边缘提取加工获得形态构成数据及生成参照图像的过程的显示界面示意图。
本实施例基于如下的使用场景,由富有经验的上级使用者带领数个下级使用者,对某变电站中的被摄体h23进行红外检测,与实施例1不同,闪存7中未存储有对应被摄体h23的形态构成数据,为明确拍摄任务和保证检测质量;上级使用者利用下级使用者的热像装置进行形态构成数据的采集,并以此下达拍摄任务。加工参照拍摄处理中控制步骤如下:
步骤S301,显示部显示动态的红外热像,控制部10实施其控制,持续监视使用者是否选择了加工模式;这时,显示部界面G2301所示的红外热像,在以往使用者可能会困惑于拍摄被摄体热像H23的距离和角度,上级使用者将下达的拍摄任务为拍摄被摄体h23及其同类被摄体,由于被摄体h23作为电力设备DL的特定部件,为使下级使用者理解检测中的意图、拍摄的角度、拍摄的部位、拍摄的距离,上级使用者通过操作部9的模式按键选择了剪切加工模式则进入步骤S302。使用者可在如图3中所示的加工菜单设置栏SZ34中选择加工类型。
步骤S302,控制部10持续监视使用者是否发出了加工对象指定的指示;响应剪切加工模式的选择,控制部10控制使显示部3显示一矩形剪切框J23,使用者调整被摄体h23拍摄的角度、距离,或调整剪切区域J23,使期望从中获得形态构成数据或参照图像的被摄体热像H23位于剪切区域J23中,如显示界面G2302所示。接着,按下确认键,控制部10响应该操作,例如利用红外探测器读取该时刻的信号,将获得的热像数据保存在临时存储部4的规定区域,控制部10将该热像数据或该热像数据进行规定处理后获得的热像数据确定为加工对象,进入步骤S303。在此,可将该热像数据进行规定处理(如伪彩处理)后获得的红外热像确定为加工对象,如后续需对加工获得的形态构成数据生成的参照图像的伪彩进行变换,热像数据作为加工对象更为合适。
此外,当热像装置12中具有其他类型的成像装置(例如可见光相机,在图1中未图示),也可以使用其他成像装置采集的图像来作为加工对象,或作为参照图像的构成数据。此外,也可从存储介质等中来选择加工对象,例如从存储卡6中读取预先存储的红外热像或可见光图像等或其他的形态构成数据来作为加工对象。
步骤S303,进行加工对象的加工处理;基于控制部10的控制,作为图像加工部的图像处理部2提取剪切区域J23中的热像数据;而后进入下一步。
所述加工例如对所述加工对象执行规定的图像处理例如剪切、特征提取(如阀值范围提取、边缘提取)、增强、滤波、伪彩、亮度调整、色彩调整等中的一种或一种以上。
剪切加工,即提取加工对象位于剪切区域中的数据(如图像数据、热像数据)。
阀值范围提取,即依据规定的算法,对加工对象位于阀值范围的数据进行提取(对于红外热像而言例如提取温度带或颜色带),阀值范围例如设置热像数据AD值范围、温度的阀值范围、灰度范围、色标范围等,可以是预存的阀值范围,也可由使用者根据显示的红外热像进行阀值范围的设置和调节。
边缘提取处理,即依据规定的算法,提取加工对象中的被摄体的边缘轮廓的数据。例如按照规定的阀值范围对确定的加工对象进行二值化;其中,规定的阀值范围可以是预存的阀值范围,也可显示二值图像,由人工进行二值化阀值范围的设定,所述阀值范围例如设置热像数据AD值范围、温度的阀值范围、灰度范围、色标范围等;而后,对二值化处理后的图像,进行连通区域的处理;接着,对连通区域进行边缘检测处理,得到边缘轮廓数据。进一步,还可对获得的边缘轮廓数据进行矢量化处理。例如,加工对象如图24中G2401所示的红外热像;首先,二值处理后的红外热像如图24中的G2402所示(可显示或不显示)。接着,设置提取区域J23,如图24中的G2403所示,确定期望提取的区域J23。而后,提取得到的G2403中二值热像EZ23的边缘轮廓数据,经居中自适应显示为如G2404所示的轮廓图像T23。对于其他具体加工处理方法可采用业内比较成熟的方法,在这里不再赘述。
步骤S304,存储加工获得的形态构成数据,该剪切加工获得的数据(形态构成数据)保存在临时存储部4规定区域中,在此,也可以将加工获得的形态构成数据记录在存储卡6或闪存7中,或进入如实施例4的设置模式。
步骤S305,将加工获得的形态构成数据确定为与参照图像相关的构成数据;
作为参照图像确定部的控制部10将存储在存储部(如临时存储部4)中的该加工获得的形态构成数据确定为与参照图像相关的构成数据。
步骤S306,确定参照图像位于红外热像中的规定位置和规定尺寸;在本实施例中,例如根据显示区设置参数(自适应区域Z1,参照图像居中,图23中未图示显示区Z1)来确定根据该加工获得的形态构成数据生成的参照图像将位于红外热像中的位置和尺寸。
步骤S307,将拍摄获得的热像数据传送到临时存储部4;
步骤S308,将参照图像与红外热像进行合成;控制部10控制,按照确定的规定尺寸,图像处理部2对剪切获得的形态构成数据进行相应处理并经伪彩转换获得参照图像TU23的图像数据,根据规定位置,按照剪切加工所对应的默认透明比率(例如50%),将参照图像TU23的图像数据与拍摄部1拍摄获得的热像数据生成的红外热像进行合成。
步骤S309,显示合成图像,如图23中的显示界面G2303所示。这样,下级使用者就能充分领会拍摄任务的意图和质量的要求,使用者可以根据半透明图像TU23的参照对被摄体热像H23进行拍摄。例如一种参照拍摄的效果如显示界面G2304所示半透明图像TU23中的被摄体热像形态部分与被摄体热像H23重合匹配,这时的被摄体热像H23符合所期望的拍摄质量要求,便于进行状态评估、分析、记录等后续的操作,并且,使用者还可以切换到仅显示红外热像进行状态评估。
步骤S310,控制部10实施其控制,监视用户是否退出参照模式。如果有,则结束参照模式处理。如没有,将重复步骤S307-S309的步骤。
而后,上级使用者可以将获得的参照图像TU23的形态构成数据进行设置并保存到存储卡6中,或发送给其他下级使用者的热像装置中,或使用其他下级使用者的热像装置重复上述步骤。
如上所述,在本实施例中,由于通过指定加工对象进行加工,能方便快速地获取参照图像,之后,凭借所获得的参照图像对同类被摄体基于相同的距离、相同的部位、类同的角度的拍摄,从而确保了检测的有效性,而根据自适应区域来选择参照图像在红外热像中的规定位置和规定尺寸,能迅速地对参照图像的位置和大小进行规范,操作更为简单。在此,上述优点是作为一系统的代表性的实施方式操作被执行的。但也有可能用户执行某种情况,如未进行了剪切,直接将响应操作而拍摄获得的热像数据确定作为形态构成数据使用,并与后续的红外热像进行半透明的合成。当然,实施本发明的实施方式的任一产品并不一定需要同时达到以上所述的所有优点。
实施例4
本实施例是在具有与图1所示的结构相同的热像装置12中,在闪存7中,存储了用于执行对形态构成数据进行关联信息设置和记录的控制程序。控制部10、操作部9、显示部3作为关联信息设置部的实例,用于设置形态构成数据所对应的辅助构成数据(用来相应获得分析区域、指示标记信息等之一或多个)、被摄体信息中的至少之一的设置信息,控制部10作为设置记录部的实例,用于将形态构成数据与设置信息建立关联记录。
例如,在实施例3的步骤S303,获得了加工获得的形态构成数据,这时,也可以暂时不进行后续的参照模式拍摄,可先进行形态构成数据所对应的辅助构成数据(如分析区域、提示标记等)、被摄体信息等关联信息的设置。此外,也可以是合成图像中显示的参照图像或从存储卡6等中读取的形态构成数据。
具体而言,响应设置指示,控制部10控制使显示部3显示如图25中的设置界面,由使用者对加工获得的形态构成数据生成的参照图像TU23所对应的各种信息进行设置。该设置界面具有显示参照图像和调整分析区域的调整栏SZ0、分析区域设置栏SZ1、提示标记设置栏SZ2、被摄体信息录入栏SZ3等。
调整栏SZ0,用于显示参照图像TU23、分析区域F23(包括S01、S02、S03分析区域单元)、标记位置等,使用者可以对分析区域F23中的区域单元S01、S02、S03进行如减少、改变位置、调整、改变(点、线、面)种类如将S01、S02、S03从方型改为圆形等的修改,或设置新的区域单元;调整标记位置。
分析区域设置栏SZ1,用于选择参照图像所对应的分析区域(包括分析区域单元)的生成方式种类,其中,“点、线、面” 表示在参照图像中设置点、线、面来作为分析区域。提示标记栏SZ2,用于设置提示标记信息,例如文字、箭头等来指示需要关注的部位,文字如该被摄体的诊断判据。此外,也可根据实施例5所介绍的方法,通过加工和/或计算来设置例如分析区域等的构成数据。
被摄体信息录入栏SZ3,用于录入参照图像所对应的被摄体信息。
当使用者进行完成设置确认,控制部10作为设置记录部将参照图像TU23的设置信息建立关联记录,即将参照图像TU23的形态构成数据、分析区域F23的构成数据、提示标记B23的构成数据、F23在TU23中的位置和尺寸信息、B23在TU23中的位置信息、被摄体信息h23建立关联保存在闪存7。
如上所述,在本实施例中,设置形态构成数据所对应的辅助构成数据(用来相应获得分析区域、指示标记信息等之一或多个)、被摄体信息中的至少之一的设置信息,并将形态构成数据与设置信息建立关联记录,便于之后使用中与形态构成数据关联数据的调用。而后,可进入如上述参照模式的处理。也可反复进行设置和关联记录的操作。
需要注意的是,虽然上述的实施例中,参照模式、加工模式、关联信息设置模式等工作模式是以单独或一定的组合来进行描述,但不限与此,根据将上述工作模式进行不同的组合可获得更多的实施方式。
实施例5,本实施例是在具有与图1所示的结构相同的热像装置12中,在闪存7中,还存储了用于执行对指定对象进行加工和/或计算获得构成数据的控制程序。并且,当从多个具有规定的相对位置关系的对象中指定主对象时,位置确定部先设置主对象的位置位于红外热像中的位置参数,而后,设置其他构成数据获得的对象位于红外热像中的位置参数。在此,对于体现被摄体规定形态特征的参照图像,位置参数包括位置、尺寸、或还有旋转角度;对于辅助构成数据获得的对象,位置参数包括位置、或还有尺寸、或还有旋转角度,例如分析区域为单个点时,为位置等。
其中,在实施例2中所谓的拍摄范围区,可视为主对象中的一种情况,参照图像对应的参照范围区代表了该参照图像规定的显示参照范围,可视为将拍摄范围区作为主对象;主对象可以针对所有具有规定的相对位置关系的对象。在本实施例中,假定闪存7中存储了如图20所示的被摄体信息及其关联的构成数据。
参考图26,来说明另一种设置菜单的实施例,当使用者按下了菜单键,进入菜单模式,显示部3显示如图26所示的菜单。当选中其中的菜单项,则显示相应的配置界面。控制部10与操作部9等构成了配置部,控制部10响应使用者的操作信号,进行相应的显示控制,并将使用者的配置的内容记录至存储介质。通过操作部9来进行相关操作。
参考图27所示的配置界面,来说明“对象加工CD1” 菜单项,用于使用者指定加工对象及设置(增加、修改、删除)加工规则,用来配置对加工对象按照加工规则进行加工获得的形态构成数据。
构成数据CD11:显示供选择构成数据的信息。供选择构成数据的信息例如从图20的表中获得“轮廓”、“纹理” 等形态构成数据的类型信息,此外,当有其他的类型信息,例如指定的加工对象类型结合特定加工规则所对应的构成数据的类型信息,也显示作为供选择的类型信息。
加工对象CD12:用于使用者选择作为加工对象的构成数据,显然,可以选择一个或多个构成数据作为加工对象,例如可加工获得一个或多个形态构成数据。
加工规则CD13:用于使用者设置针对加工对象的加工规则;加工规则包括加工处理的算法及相关参数,在选中加工算法时长按确认键,将显示参数栏供录入参数(未图示)。加工处理例如剪切、阀值范围提取、边缘提取、增强、滤波、伪彩、灰度(彩色变灰度、黑白)、亮度调整、色彩调整等中至少一种处理,也可同时选择多种处理,此外,还可以配置行业内所熟知的其他各种加工处理。
参考图28所示的配置界面,来说明“对象计算CD2”菜单项,用于使用者选择计算对象并设置(增加、修改、删除)计算规则。用来配置对计算对象按照计算规则进行计算获得的辅助构成数据,所配置的辅助构成数据可与形态构成数据一起作为参照图像的部分,来增强参照图像的参照效果。
构成数据CD21:显示供选择构成数据的信息。供选择构成数据的信息例如从图20中获得“轮廓”、“纹理”、“分析区域” 的类型信息,此外,当有其他的类型信息,例如指定的计算对象类型结合特定计算规则所对应的构成数据的类型信息,例如指定的加工对象结合特定加工规则所对应的构成数据的类型信息,也显示作为供选择的类型信息。
计算对象CD22:用于使用者选择计算对象;显然,可以选择一个或多个构成数据作为计算对象,例如可计算获得一个或多个辅助构成数据。
计算规则CD23:用于使用者选择和设置针对计算对象的计算规则;计算规则包括算法及相关参数,算法例如缩放、变形 、特征点、特征区域、等分、外包矩形、内切矩形、中心线等的算法,参数例如缩放的基点及缩放率、变形的基点及变形率(如纵横比)、特征点的计算参数、基于特征点设置的特征区域类型(如点、线、面等)及尺寸、等分的数量等与算法相关的参数,在选中算法时常按确认键,将显示参数栏供录入参数(未图示)。对所选择的计算对象可选择一个或多个计算规则。其中计算特征点,例如计算轮廓的中心点,例如计算热像数据中的特征点(例如最高温度点)等。
此外,还可配置为基于显示的参照图像、或从存储卡6等存储介质中的热像文件、或拍摄获得的热像数据或红外热像等中,提供选择指定加工和/或计算对象。
显然,“对象加工CD2”和“对象计算CD3”的配置菜单也可以合并为一个配置界面,对指定对象(如图20中预先存储的构成数据、存储卡6中的热像文件、拍摄获得的热像数据等)可以选择一种或多种加工规则,和/或,选择一种或多种计算规则,加工和/或计算可以统称为对指定对象进行处理。此外,也可以仅配置有关的加工规则或计算规则,而并不指向特定的构成数据;例如作为默认配置,适用于后续所选择的构成数据。
参考图29来说明通过计算或加工,获得的参照图像的作用和效果。
参考图29(a)所示的参照图像,将轮廓T1构成数据作为计算对象,以轮廓T1的中心点作为基点,进行缩放和变形后,获得的图像F101;可用于提示使用者注意观察被摄体本体上规定区域的温度分布,减少周围环境对评估的影响。
参考图29(b)所示的参照图像,将轮廓T1构成数据作为计算对象,算法参数为进行8等分,获得的8等分的区域F102;可用于提示使用者注意观察被摄体本体不同部分的温度分布。
参考图29(c)所示的参照图像,将轮廓T1构成数据作为计算对象,算法参数为计算基于特征点(例如中心点)并基于该中心点设置规定尺寸的区域F103;可用于提示使用者注意观察该区域。
参考图29(d)所示的参照图像,将局部红外热像TU1构成数据作为加工对象,加工规则如边缘轮廓提取,获得的边缘轮廓图像F104,可提高局部红外热像TU1的参考效果。
参考图29(e)所示的参照图像,将局部红外热像TU1构成数据作为加工对象,加工规则如提取规定温度阀值以上的像素点(范围提取),获得的图像F105,在有些应用情况下,对被摄体主体的参照效果优于TU1作为参照图像的效果。
参考图30所示的配置界面,来说明“参照图像CD3”的配置。
“参照图像CD3”:用于使用者选择在参照模式中,非切换状态下,设置与参照图像有关的构成数据、位置规则、合成参数等。
构成数据CD31:显示供选择构成数据的信息,例如从图20中获得“轮廓”、“纹理”、“分析区域”等类型信息,此外,当有其他的类型信息,如在“对象加工CD1”中设置的代表指定的加工对象类型结合特定加工规则所对应的构成数据的类型信息“轮廓(加工)”,如在“对象计算CD2”中设置的代表指定的计算对象类型结合特定计算规则所对应的构成数据的类型信息“轮廓(计算)”,也显示供选择。
参照图像CD32:用于使用者选择用于获得参照图像的构成数据。可以选择一个或多个构成数据来获得参照图像。在本实施例中,将每一个构成数据获得的对象均作为一个合成对象,即当选择了多个构成数据时,参照图像将包含多个合成对象(也可理解由多个构成数据获得参照图像);也可选中参照图像CD32,并长按确认键,可将所选择的构成数据中的部分或全部作为一个合成对象(未图示)。
参考图30来说明确定的构成数据:显然,可以从闪存7中存储的“轮廓”、“纹理”、“分析区域”,以及规定加工对象结合规定的加工规则所对应的形态构成数据例如“轮廓(加工)”、规定计算对象的构成数据结合规定计算规则所对应的辅助构成数据例如“轮廓(计算)”等中,选择其中至少一个形态构成数据,也可选择多个构成数据,多个构成数据可以是多个形态构成数据,或者也可以包含形态构成数据和辅助构成数据。
此外,也可以配置为如可将基于拍摄获得的热像数据等选择为构成数据,或也可基于从存储卡6中获得的热像文件来选择为构成数据。而后可基于存储介质(如闪存7、存储卡6、临时存储部4等中)存储的构成数据及上述选择配置,来确定与参照图像有关的构成数据。
位置规则CD33:用于使用者配置与参照图像位于红外热像中的位置参数有关的位置规则。
其中,当指定了主对象,位置确定部用于设置主对象位于红外热像中的位置参数,而后,通过其他对象与主对象之间的规定的相对位置关系结合主对象位于红外热像中的位置参数,来自动设置其他对象位于红外热像中的位置参数。例如,先确定与参照图像具有规定的相对位置关系的主对象,设置主对象位于红外热像中的位置参数,而后,基于参照图像与主对象之间的规定的相对位置关系及主对象位于红外热像中的位置参数,来设置参照图像位于红外热像中的位置参数。
当不选择用于获得主对象的构成数据时,在“参照图像CD32”中所选择的构成数据获得的对象按照各自的位置规则来设置其位置参数。
从图30中可见,主对象可以从构成数据CD31中选择,显然,例如可以是参照图像,或参照图像的部分,也可以是参照图像的构成数据之外的其他的构成数据获得的主对象。即用来获得主对象的构成数据,例如可基于具有规定的相对位置关系的对象的构成数据中的一个或多个:形态构成数据(例如“轮廓”),或与形态构成数据关联的构成数据(例如“分析区域” ),或基于指定的计算对象结合规定计算规则所对应的构成数据(例如“轮廓(计算)” ),或基于指定的加工对象结合规定加工规则所对应的构成数据(例如“轮廓(加工)” )等。当指定了多个构成数据来获得主对象时,例如将多个构成数据获得的组合对象作为主对象。
通常所设置的主对象代表了需要重点观察的区域,通过变换主对象,能实现参照图像在不同显示位置上的变换,来实现不同的拍摄目的。此外,使用者还可选择在显示部3显示的参照图像(其中的合成对象之一或多个),来作为主对象。
其中,自适应:用于选择自适应处理的位置设置方式及指定自适应对象(当选择了主对象,则指主对象)。自适应区域为红外热像中的规定区域,选中自适应,而后长按确认键29,可设置自适应区域位于红外热像中的位置、尺寸、旋转角度,以及自适应对象位于自适应区域中的位置(可作为自适应的缩放基点)和旋转角度。本例中,设置红外热像90%比例的居中窗口区域作为自适应区域,以下简称Z1,自适应对象在Z1中,居中自适应。
其中,指定位置:用于指定所选择的构成数据获得的参照图像等(当选择了主对象,则指主对象)位于红外热像中的位置参数。当使用者选中“指定位置栏”,则显示输入栏(未图示),使用者可输入所选择的构成数据获得的对象在红外热像中的位置、尺寸、旋转角度等。当均不输入时,例如,可以默认位置起点为红外热像的左上角、尺寸为原始尺寸、旋转角度为0。
其中,关联位置:选择该项,则将根据所选择的构成数据(当选择了主对象,则指主对象)预先关联的位置信息,来获得该构成数据获得的对象将位于红外热像中的位置参数。
合成参数CD34: 用于设置所选择的构成数据获得的参照图像与红外热像的合成参数,合成参数如透明比率,根据构成数据的不同类型或还有颜色、线型等(未图示),当参照图像包括多个合成对象时的合成次序等,或也可选用构成数据自身关联的合成参数。
显然,当确定了多个构成数据时,例如可以由多个构成数据来获得一个合成对象(作为参照图像),位置确定部可设置多个构成数据相互合成时位于背景的位置和尺寸,及最终获得的参照图像位于红外热像中的位置和尺寸。也可以由多个构成数据获得多个合成对象(作为参照图像),按照规定的合成次序和透明比率,依次与红外热像进行合成获得参照图像与红外热像的合成图像,来实现共同显示,这时,位置确定部将设置多个合成对象分别位于红外热像中的位置和大小。
切换CD4:用于设置在参照模式中,例如“参照图像CD3”所配置的参照图像与红外热像共同显示的状态下,按动一次操作部的切换键时,与切换对象有关的配置信息。参考图31所示的配置界面,来说明“切换CD4”的配置,切换的配置信息例如切换的构成数据的类型、切换后构成数据获得的对象的位置规则、合成参数(如重叠次序、透明比率、颜色)等任意一项的变换,来获得与图30中的参照图像所不同使用效果的配置。此外还可有红外热像作为切换对象,其他与“参照图像CD3”类同,省略了说明。在切换CD4中的箭头CD40:用于设置(增加、修改、删除)切换规则,例如通过箭头CD40可以进入下一切换的界面,来配置更多的切换对象的配置信息。
在实施例5中,使用者的拍摄目的,是检测被摄体h6的整体热场分布(轮廓T6所代表的整体部分)。如果发现可疑之处,还将走近拍摄被摄体重点分析部位(分析区域F6所代表的区域)。为方便地实现该检测目的,使用者进行了参照图像切换前后的配置。
使用者通过“参照图像CD3”设置的配置如图30所示,参照图像 :“轮廓”及“分析区域”;位置规则:轮廓(主对象),自适应区域Z1,自适应居中;合成参数:透明比率为1,“轮廓”合成次序为1,“分析区域”合成次序为2,颜色可默认自身属性的颜色。
使用者通过“切换CD4”的配置了“切换一”如图31所示,参照图像 :“轮廓”、“分析区域”;位置规则:分析区域(主对象)、自适应区域Z1,自适应居中;合成参数:透明比率为1,“轮廓”合成次序为1,“分析区域”合成次序为2,颜色可默认自身属性的颜色。
即按一下切换键,由“轮廓(主对象)、分析区域”与红外热像的共同显示切换为“轮廓、分析区域(主对象)”与红外热像的共同显示;再按一下,则回到 “轮廓(主对象)、分析区域”与红外热像的共同显示的显示状态。采用不同的主对象,代表了不同的关注重点的控制方式。
虽然,在本实施例中,以闪存7中存储的(图20所示)的部分构成数据作为来配置参照图像的例子。但显然,通过对图26-31所示的菜单的上述说明,使用者可基于闪存7中的构成数据,包括可以是将指定的计算对象结合计算规则,包括可以是将指定的加工对象结合加工规则,来配置各种不同效果的参照图像;也可以基于存储卡6中存储的热像文件等来配置参照图像;也可以基于拍摄获得的热像数据等来配置参照图像;参照图像的构成数据、位置规则、合成参数中至少之一的不同,就可能获得不同参照效果和应用用途的参照图像。通过对切换的配置就可获得不同用途和效果的切换图像。
此外,即便当如图4或图19所示的被摄体信息仅关联了一个形态构成数据时,使用者可通过“参照图像CD3”或“切换对象CD4”来配置相关的构成数据(例如使用者可通过“对象计算CD1”,和“对象加工CD2”来设置该关联的形态构成数据结合了规定加工规则或计算规则对应的构成数据)等,也能配置不同效果的参照图像。显然,也可配置该关联的形态构成数据及其加工和/或计算的构成数据的规定确定类型,便于灵活使用。
当完成设置操作,按下确认键,控制部10将所设置的各项配置存储在闪存7中(例如作为一个配置文件),作为之后热像装置12的默认配置,而并不需要每次使用都设置一次,而后,回到待机拍摄状态。需要注意的是,尽管示例了可由使用者进行相关配置的实施方式;但不限于此,也可以是这样的实施方式,即热像装置12在出厂时,即配置好了上述各种处理的相关配置,而不需要使用者进行任何人工设置;或者在外部计算机中配置完毕,在拍摄前将配置文件装载到热像装置12;或者,由使用者进行上述说明的部分内容的配置。由此,可根据构成数据的规定确定类型(例如存储的类型、加工对象结合加工规则所对应的类型、计算对象结合计算规则所对应的类型等)来自动确定构成数据,根据参照图像的位置规则来自动确定参照图像位于红外热像中的规定位置和规定尺寸,或还有旋转角度。
参见图34来说明实施例5的流程图,步骤如下:
步骤B01,控制部10持续监视使用者是否选择了参照模式。当使用者通过操作部选择了参照模式,则进入步骤B02。
步骤B02,控制部10进行构成数据的确定处理。根据图30中的配置,当选择了被摄体h6时,即确定轮廓T6与分析区域F6的构成数据作为用来获得参照图像的构成数据。
步骤B03,位置确定部确定参照图像位于红外热像中的规定位置和规定尺寸。根据图30中的配置,例如分别计算T6的构成数据、F6的构成数据获得的轮廓T6和分析区域F6位于红外热像中的位置参数。首先,根据主对象的类型为“轮廓”,计算主对象T6在红外热像中的规定位置和规定尺寸;接着,根据分析区域F6与轮廓T6的规定的相对位置关系,及轮廓T6在红外热像中的位置参数,来确定分析区域F6在红外热像中的位置和尺寸,保持规定的相对位置关系不变。
但也有这种应用情况,根据轮廓T6在红外热像中的位置参数,来确定分析区域F6等(辅助图像)在红外热像中的位置,保持分析区域F6与轮廓T6的相对位置不变,但分析区域F6的尺寸可以按照原始的尺寸。
步骤B04,接着,将拍摄获得的热像数据传送到临时存储部4;
步骤B05,将基于所确定的构成数据获得所述规定尺寸的参照图像,按照规定位置,与拍摄部拍摄获得的热像数据生成的连续的红外热像,共同显示。一种实施方式,图像处理部2,将所选择的T6的构成数据按照规定尺寸获得的图像,所确定的F6的构成数据按照位置确定部所设置的位置参数获得的图像,按照各自的规定位置,依次与红外热像进行合成;将合成的图像数据存放在临时存储部4,接着,将合成图像显示在显示部3。
在本实施例中,由于参照图像包括有轮廓图像T6、分析区域F6,并且合成次序不同,一种实施方式,按照各个对象的合成次序和透明比率,首先将轮廓图像T6按照规定的透明比率与红外热像合成获得中途数据,而后将分析区域F6按照规定的透明比率与中途数据合成获得最终的合成图像数据。
参考图32中的显示界面G3201所示,轮廓图像T6显示伴随着分析区域F6的显示,根据轮廓图像T6参照,易于理解被摄体热像的规定形态特征,根据分析区域F6的参照易于得到重点观察部位的提示,由此,使拍摄目的易于理解。
步骤B06,控制部10判断使用者是否进行的切换操作,如进行了切换操作,则进行切换处理,即回到步骤B02,这时,将根据所设置的切换配置来确定切换的参照图像或红外热像。
即当使用者在如G3201的显示状态下,按下切换键,则根据图31中的配置,主对象的类型为“分析区域”,计算主对象(分析区域F6)在红外热像中的规定位置和规定尺寸;接着,根据分析区域F6与轮廓T6的规定的相对位置关系,及F6在红外热像中的位置参数,来确定轮廓T6在红外热像中的位置参数。图32中的显示界面G3202示例了将分析区域F6设置为主对象(自适应:自适应区域Z1,居中)的显示效果,体现了对分析区域F6所代表的区域为主的拍摄观察目的。虽然可能会导致轮廓T6部分溢出,这种溢出因适合于应用需要而可接受。这样,使用者走进被摄体进行拍摄,也有了具有规定形态特征的参照图像的参照,保证了拍摄的质量。显然,如使用者再次按下切换键,将切换回如G3201所示的显示状态。
步骤B07,控制部10判断用户是否退出参照模式。
如无,则回到步骤B04,体现了轮廓图像T6及分析区域F6与连续动态的红外热像,连续合成,共同显示,如有退出指示,则结束参照模式。
此外,另一种实施方式,也可根据T6的构成数据(形态构成数据)、F6的构成数据(辅助构成数据)所获得的对象之间的规定的相对位置关系,先合成为一个合成对象,而后设置该合成对象位于红外热像中的规定位置和规定尺寸,而并不分别计算各自获得的合成对象在红外热像中的规定位置和规定尺寸;而后将所述规定尺寸的合成对象,按照所述规定位置,与拍摄部拍摄获得的热像数据生成的红外热像连续合成,来实现参照图像与红外热像的共同显示。
并且,为了体现不同主对象的效果,在本实施例中以切换前后的参照图像作为示例,但也可以不进行切换。并且,在图32中以轮廓T6和分析区域F6分别作为主对象并进行切换的例子,显然,其他与参照图像具有规定的相对位置关系的对象也可作为主对象。
如图33所示,假定使用者希望重点观察的部位为被摄体的中间部位;可对轮廓进行如下配置,即在图28(对象计算CD2)中以轮廓T6作为计算对象配置基于中心点并所期望重点观察部位的尺寸而获得区域F103;当确定的构成数据(多个)中具有结合了计算算法的计算对象时,一种实施方式,控制部10控制图像处理部2,对计算对象(轮廓T6)进行计算获得区域F103;位置确定部基于其中所确定的构成数据中非计算对象的构成数据及计算对象计算后获得的数据,所获得的参照图像,设置该参照图像位于红外热像中的位置信息。当轮廓T6作为主对象时,例如根据轮廓T6自适应后的位置参数来确定区域F103的位置参数,显示如图33中的G3301所示;当区域F103作为主对象时,根据区域F103自适应后的位置参数来确定轮廓T6的位置参数,如图33中的G3302所示(轮廓T6加粗显示,但也可不加粗);这样使用者可以根据拍摄的目的来灵活地配置参照图像。
并且,区域F103并不限定于作为参照图像的部分进行显示,也可以仅用于记录,当作为分析区域时,记录可便于后续的批处理分析。
对于加工对象结合加工规则同理,例如确定了由加工对象及加工规则所对应的构成数据(并作为主对象)来获得参照图像,一种实施方式,图像处理部2对加工对象进行处理,而后,位置确定部确定加工获得的参照图像位于红外热像中的位置信息,由此来获得参照图像。当确定的(多个)构成数据中,具有加工对象及加工规则所对应的构成数据(非主对象)时,一种实施方式,位置确定部基于所确定的构成数据,包括非加工对象的构成数据及加工对象加工对应的构成数据,所获得的参照图像,确定该参照图像位于红外热像中的位置参数,其中,将先确定主对象的位置参数,而后根据主对象的位置参数,来确定加工获得的构成数据所生成的图像的位置参数,以此,来获得参照图像。
如上所述,在实施例5中,显然,根据多个类型的构成数据获得的参照图像的参照,便于根据拍摄目的明确重点拍摄部位,进一步提高了参照的效果;通过加工和/或计算来获得构成数据,能降低事先准备分析区域等构成数据的工作量,并便于配置迎合拍摄目的的参照图像,或便于后续批处理分析所需的分析区域;通过变换主对象,能实现在不同显示位置上的变换,来满足不同的拍摄目的;本实施方式提供了极为便利和灵活的应用手段,提高了拍摄和记录的总体质量。需要注意的是,尽管在实施例5中介绍了参照图像有关的多种构成数据配置(包括加工和/或计算)、构成数据确定、参考图象位置设置、参照图像显示参数、参照图像切换的配置方式,但热像装置12也可配置为不需要使用者设置,而在热像装置12出厂时,即配置好了这些要素,在使用中,根据存储介质中的形态构成数据等,自动进行参照图像的构成数据配置、确定、位置设置、显示参数、切换等的实施方式。当然,实施本发明的实施方式的任一产品并不一定需要同时达到以上所述的所有优点。
实施例6
虽然本发明在实施例1-5中用于具有拍摄部的热像装置,但对于本发明而言拍摄获得热像数据的功能不是必不可少的,本发明还可应用于从外部接收和处理热像数据(热像传输数据)的热像处理装置等。所述热像传输数据,例如可以是与热像处理装置连接的热像拍摄装置拍摄获得的热像数据,也可以是热像数据规定处理后获得的数据例如生成的红外热像,可以是压缩后的热像数据,可以是压缩红外热像的图像数据等。实施例6以热像处理装置100作为热像装置的实例。
参考图35为热像处理装置100和热像拍摄装置101连接构成的热像处理系统的一种实施的电气结构的框图。
热像处理装置100具有通信接口103、辅助存储部203、显示部303、RAM403、硬盘503、操作部603、通过总线与上述部件连接并进行整体控制的CPU703。作为热像处理装置100,可以例举个人计算机、个人数字助理、与热像装置配套使用的显示装置等作为例子。热像处理装置100,基于CPU703的控制,通过通信接口103接收与热像处理装置100连接的热像拍摄装置101输出的热像传输数据。
通信接口103(获得部的实例), 用于连续接收热像拍摄装置101输出的热像数据;其中,包括接收通过中继装置来发送的(由热像拍摄装置101输出的热像数据通过中继装置来发送的)热像传输数据;同时,还可作为对热像拍摄装置101进行控制的通信接口。在此,通信接口103包括热像处理装置100上的各种有线或无线通信接口,如网络接口、USB接口、1394接口、视频接口等。
辅助存储部203,例如CD-ROM、存储卡等存储介质及相关的接口。
显示部303如液晶显示器,显示部303还可以是与热像处理装置100连接的其他显示器,而热像处理装置100自身的电气结构中可以没有显示器。
RAM403作为对通信接口103接收的热像传输数据进行临时存储的缓冲存储器。同时,作为CPU703的工作存储器起作用,暂时存储由CPU703进行处理的数据。
硬盘503中存储有用于控制的程序,以及控制中使用的各种数据。
操作部603用于使用者进行各种指示操作,或者输入设定信息等各种操作,CPU703根据操作部603的操作信号,执行相应的程序。
CPU703还执行了图像处理部的功能,用于对接收的热像传输数据实施规定的处理而获得红外热像的图像数据,规定的处理如修正、插值、伪彩、合成、压缩、解压等,进行转换为适合于显示用、记录用等数据的处理。其中,CPU703根据热像传输数据的不同格式,一种实施方式,例如,当接收的热像传输数据为压缩的热像数据,规定的处理如CPU703对获得部接收的热像传输数据进行解压并进行相应的规定处理;一种实施方式,对压缩热像数据(热像传输数据)解压后相应的规定处理如伪彩处理,来获得红外热像的图像数据,此外,规定的处理还如在解压后的热像传输数据进行校正、插值等规定的各种处理。另一种实施方式,例如,当接收的热像传输数据本身已是压缩的红外热像的图像数据,则解压来获得红外热像的图像数据。又一种实施方式,例如,当通信接口1接收的是模拟的红外热像时,控制将经相关AD转换电路AD转换后获得数字的红外热像的图像数据,传送到临时存储部403。
从热像装置12中除去拍摄部1以外的结构与热像处理装置100大致相同,显然,热像处理装置100,通过获取热像传输数据,同样适用上述实施例。因此省略了实施方式的说明。
热像拍摄装置101可以是各种类型的热像拍摄装置,其用于对被摄体进行拍摄,并输出热像传输数据。见图35中热像拍摄装置101的电气框图,由通信接口104、拍摄部204、闪存304、图像处理部404、RAM504、CPU604等构成。其中,CPU604控制了热像拍摄装置101的整体的动作,闪存304中存储了控制程序以及各部分控制中使用的各种数据。拍摄部204包括未图示的光学部件、驱动部件、热像传感器、信号预处理电路,用于拍摄获得热像数据。该热像数据暂时存储在RAM50中,而后经图像处理部404(如DSP)经过规定处理(如压缩处理等)后获得热像传输数据,经通信接口104输出。根据设计和使用目的的不同,例如,热像拍摄装置101输出的可以是热像数据,也可以是红外热像的图像数据,热像数据或红外热像的图像数据经规定格式压缩后的数据等之一或多种,统称热像传输数据。在此,热像拍摄装置101用于拍摄并输出的热像传输数据,其作用类似热像装置12中的拍摄部1。
图36为热像处理装置100和热像拍摄装置101连接构成的热像处理系统的一种实施的示意图。
热像拍摄装置101采用三角架(或云台等架设在检测车辆),经由专用电缆等通信线、或有线和无线的方式构成的局域网等方式与热像处理装置100进行连接。使用者通过热像处理装置100进行观看和监测被摄体热像。热像拍摄装置101,与热像处理装置100连接构成实施方式中的热像处理系统,用于对被摄体进行拍摄获得热像数据,并输出热像传输数据。
实施例7
本实施例是在具有与图1所示的结构相同的热像装置12中,在闪存7中,存储了用于回放模式下,执行对回放的红外热像,设置参照图像及调整参照图像的控制程序。
一种实施的示例,在回放模式中选择需要处理的热像数据(例如,通过存储卡6中选择需要处理的热像文件);而后,确定相应的构成数据来获得参照图像,例如先判断热像数据(帧)是否有关联的与参照图像的构成数据有关的信息,如与热像数据关联保存的构成数据、构成数据的身份信息、被摄体信息等,如有,则可根据关联的这些信息来确定参照图像的构成数据,如无,则可使显示的供选择的构成数据的身份标识有关的文件名、编号、缩略图等,由使用者进行选择。而后,将参照图像与需要处理的热像数据获得的红外热像共同显示(例如图37(a)所示);这时,使用者可以检查拍摄的质量,如果拍摄的质量不好,例如红外热像中的被摄体热像与参照图像视觉的匹配程度不高,则可以重新进行拍摄,避免了后续批处理时的出错。或者,使用者也可进行参照图像T151的调整,去匹配红外热像中的被摄体热像IR1,即根据使用者的调整操作,位置确定部相应的对参照图像T151位于红外热像中的位置、尺寸、旋转角度进行确定,并在显示部反映调整的结果,例如经历图37(b)所示的状态,达到图37(c)的视觉匹配时,可以进行后续的处理,例如将参照图像T151的位置参数与该热像数据关联记录,便于后续的批处理;例如调用参照图像T151对应的分析区域进行分析,可以避免设置分析区域的麻烦,并保证分析的正确性。
不限于带有拍摄功能的热像装置,本实施例也可以热像处理装置(如计算机、个人数字助理、与拍摄功能的热像装置配套使用的显示装置等)作为热像装置的实例,用于对红外数据(如热像文件)的整理时的检查和评估。此外,为在回放时评估和检查红外热像,当参照图像中带有分析区域等辅助对象的指示时,使用者易于评估。
如上所述,对热像数据进行评估、分析、整理等工作时,通过参照图像的显示、调整等操作,能降低使用者设置分析区域等的麻烦,并便于在对热像数据文件批处理之前的整理和调整,保证了批处理的有效性,并大幅度降低使用者的工作量和技术要求。
需要注意的是,尽管在上述实施例中介绍了由使用者可对各种处理进行配置;当完成配置操作,将所设置的各项配置存储在闪存7中(例如作为一个配置文件),作为之后热像装置12的默认配置,而并不需要每次使用都设置一次。但不限于此,例如,也可以是这样的实施方式,即在热像装置12出厂时,即配置好了上述多种设置中的一项或一项以上组合,例如出厂时已配置好了构成数据的规定确定类型的实施方式、加工对象和规定加工规则的实施方式、计算对象和规定计算规则的实施方式、位置设置处理的实施方式、合成参数的实施方式,在使用中,根据存储介质中的构成数据,自动根据出厂配置进行上述处理的实施方式。或者,出厂时已配置好了部分项目,由使用者进行其他部分的配置。
此外,在上述实施例中,参照图像的构成数据的确定、参照图像的位置确定是按照一定的处理步骤来进行描述,但其处理步骤并不限于上述描述的步骤次序,可以有各种处理次序,显然,根据将上述处理进行不同的组合可获得更多的实施方式。
此外,在上述的附图15,附图23(G2304),附图37(c),反映的是参照图像与被摄体热像的完全匹配的视觉效果,显然,实际使用中允许有一定的偏差。
此外,在上述的实施例中,主要以分析区域作为辅助对象、辅助构成数据的例子,但在红外检测的应用领域,辅助构成数据并不限定于分析区域的构成数据,也可以是例如关注区域、提示区域等与参照拍摄有关的各种辅助图像的构成数据。
此外,实施例中以电力行业的应用作为场景例举,也适用在红外检测的各行业广泛运用。
此外,也可以用专用电路或通用处理器或可编程的FPGA实现本发明的实施方式中的部分或全部部件的处理和控制功能。
此外,本发明的实施方式提供一种计算机程序,计算机程序构成的数字信号记录在计算机可读的记录介质中,例如硬盘、存储器等中。该程序运行后执行如下步骤:
获得步骤:热像装置获得热像数据;参照图像确定步骤:确定与体现被摄体形态特征的参照图像有关的构成数据;位置确定步骤:基于所确定的构成数据获得的参照图像位于红外热像中的规定位置和规定尺寸;合成步骤:将红外热像和参照图像进行合成,以获得合成图像;所述红外热像是按照所述规定位置并根据获得部获得的热像数据生成的;所述参照图像是按照所述规定尺寸并根据参照图像确定部所确定的构成数据而获得的。
本发明的实施方式还提供一种可读存储介质,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得热像装置中的计算机执行如下步骤:311)获得步骤:热像装置获得热像数据;312)参照图像确定步骤:用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;313)位置确定步骤:设置基于所指定的构成数据获得的参照图像位于红外热像中的规定位置和规定尺寸;314)显示控制步骤:将基于所指定的构成数据获得所述规定尺寸的参照图像,按照规定位置和规定尺寸,与获得的热像数据生成的红外热像,共同显示;所述构成数据指与参照图像有关的数据;所述参照图像指体现了被摄体形态特征的图像。
上述所描述的仅为发明的具体实施方式,各种例举说明不对发明的实质内容构成限定,所属领域的技术人员在阅读了说明书后可对具体实施方式进行其他的修改和变化,而不背离发明的实质和范围。

Claims (42)

  1. 热像装置,包括:
    获得部,用于连续获得热像数据;
    参照图像确定部,用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;
    位置确定部,用于确定参照图像位于红外热像中的规定位置和规定尺寸;
    显示控制部,用于将基于所确定的构成数据获得的所述规定尺寸的参照图像,按照所述规定位置,与连续获得的热像数据生成的红外热像,共同显示。
  2. 热像装置,包括:
    获得部,用于连续获得热像数据;
    参照图像确定部,用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;
    位置确定部,用于确定参照图像位于红外热像中的规定位置和规定尺寸;
    合成部,用于按照所述规定位置,连续合成红外热像和参照图像,以获得合成图像;其中所述红外热像为根据获得部连续获得的热像数据生成的,该参照图像为按照所述规定尺寸并根据参照图像确定部所确定的构成数据而获得的。
  3. 热像装置,包括:
    获得部,用于连续获得热像数据;
    参照图像确定部,用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;
    位置确定部,用于确定参照图像位于红外热像中的规定位置和规定尺寸;
    合成部,用于按照所述规定位置,根据基于所确定的构成数据获得所述规定尺寸的参照图像,对连续获得的热像数据进行选择性伪彩处理,来获得体现了参照图像与热像数据生成的红外热像的合成图像。
  4. 如权利要求1-3任意一项所述的热像装置,其特征在于,所述构成数据分为形态构成数据和辅助构成数据,所述形态构成数据为代表了被摄体规定形态特征的图像的构成数据;所述辅助构成数据为所述形态构成数据以外的构成数据;所述参照图像可以基于参照图像确定部所确定的形态构成数据,或形态构成数据与辅助构成数据来获得。
  5. 如权利要求4所述的热像装置,其特征在于,
    参照图像确定部,用于响应预定的操作,基于获得部获得的热像数据和/或所述热像数据获得的红外热像,来确定与参照图像相关的构成数据。
  6. 根据权利要求4所述的热像装置,其特征在于,参照图像确定部,用于基于存储于存储部的构成数据,来确定与参照图像相关的构成数据。
  7. 如权利要求6所述的热像装置,其特征在于,存储部存储的构成数据至少包括轮廓形态构成数据,所述轮廓形态构成数据为代表被摄体边缘轮廓的图像的形态构成数据。
  8. 如权利要求6所述的热像装置,其特征在于,存储部存储的构成数据为矢量图形数据和/或点阵数据。
  9. 如权利要求6所述的热像装置,其特征在于,所述存储部,用于存储多个被摄体信息及各被摄体信息关联的构成数据;
    并且,具有选择部,用于对被摄体信息进行选择;
    所述参照图像确定部,可根据所选择的被摄体信息,基于该被摄体信息关联的构成数据,来确定用于获得参照图像的构成数据。
  10. 如权利要求9所述的热像装置,其特征在于,所述参照图像确定部,根据构成数据的规定确定类型,来确定用于获得参照图像的构成数据。
  11. 如权利要求9所述的热像装置,其特征在于,所述存储部用于存储多个被摄体信息及各被摄体信息关联的多个类型的构成数据;所述参照图像确定部,根据构成数据的规定确定类型,来确定用于获得参照图像的构成数据。
  12. 根据权利要求6所述的热像装置,其特征在于,所述参照图像确定部确定的构成数据为存储部中预先存储的形态构成数据、对加工对象根据加工规则所得到的形态构成数据的一种或组合,或者,上述形态构成数据与存储部中预先存储的辅助构成数据或/和对计算对象根据计算规则所得到的辅助构成数据的组合;所述加工对象可以为存储部中存储的形态构成数据;所述加工规则包括对加工对象进行一种或一种以上的加工处理;所述计算对象可以为存储部中存储的构成数据;所述计算对象可选择进行一个或者多个计算规则。
  13. 如权利要求4所述的热像装置,其特征在于,
    具有加工对象指定部,用于指定加工对象;
    并且,具有图像加工部,用于对所述加工对象执行规定的加工处理,以获得形态构成数据;
    并且,具有用于存储加工获得的形态构成数据的存储部;
    所述参照图像确定部,用于将存储部中存储的图像加工部加工获得的形态构成数据确定为与参照图像相关的构成数据。
  14. 如权利要求11-13任意一项所述的热像装置,其特征在于,
    所述加工处理至少为剪切、阀值范围提取、边缘提取、增强、滤波、伪彩、灰度、亮度调整、色彩调整中的一种或一种以上。
  15. 如权利要求12所述的热像装置,其特征在于,计算规则至少为对计算对象进行缩放、变形 、特征点、特征区域、等分、外包矩形、内切矩形、中心线中的一种或一种以上的计算。
  16. 如权利要求1-3任意一项所述的热像装置,其特征在于,所述位置确定部用于自动确定参照图像位于红外热像中的规定位置和规定尺寸。
  17. 如权利要求5所述的热像装置,其特征在于,存储部用于存储构成数据及其关联的位置信息,所述位置信息代表由该构成数据所获得的图像将位于红外热像中的规定位置和规定尺寸;所述位置确定部用于将所述位置信息所代表的规定位置和规定尺寸,确定为该构成数据所获得的图像将位于红外热像中的规定位置和规定尺寸。
  18. 根据权利要求4所述的热像装置,其特征在于,当指定了主对象,所述位置确定部用于设置主对象位于红外热像中的位置参数,而后,通过其他对象与主对象之间的规定位置关系结合主对象位于红外热像中的位置参数,来自动设置其他对象位于红外热像中的位置参数;其中主对象及其他对象中,至少具有参照图像的构成数据或参照图像的构成数据之一获得的对象。
  19. 如权利要求4所述的热像装置,其特征在于,所述位置确定部按照规定的自适应区域在红外热像中的位置和大小,以及参照图像在自适应区域中的位置,进行在自适应区域中非溢出的、纵横比固定的最大化缩放从而获得自适应后的尺寸,进而确定参照图像位于红外热像中的规定位置和规定尺寸。
  20. 如权利要求4所述的热像装置,其特征在于,所述位置确定部按照规定的自适应区域在红外热像中的位置和大小,以及参照图像对应的参照范围区在自适应区域中的位置,以及参照图像在所对应的参照范围区中的位置信息,来确定参照图像位于红外热像中的规定位置和规定尺寸。
  21. 如权利要求1-3任意一项所述的热像装置,其特征在于,具有配置部,用于使用者配置与参照图像相关的构成数据、加工规则、计算规则、位置规则、合成参数、切换规则中的至少之一。
  22. 如权利要求1-3任何一项所述的热像装置,其特征在于,具有切换控制部,用于响应使用者的预定操作,进行参照图像相关的构成数据、位置规则、合成参数中至少之一的切换控制。
  23. 如权利要求4所述的热像装置,其特征在于,具有关联信息设置部和设置记录部,所述关联信息设置部用于设置形态构成数据所对应的辅助构成数据、被摄体信息中的至少之一的关联信息,所述设置记录部,用于将形态构成数据与关联信息设置部设置的关联信息建立关联记录。
  24. 如权利要求2或3所述的热像装置,其特征在于,具有显示控制部,用于控制显示部显示所述合成图像。
  25. 如权利要求2所述的热像装置,其特征在于,
    所述合成部按照规定透明比率连续合成红外热像和参照图像以获得合成图像,以使所显示的合成图像中,参照图像呈现为半透明。
  26. 根据权利要求25所述的热像装置,其特征在于,还包括透明对象指定部,所述透明对象指定部用于指定需要改变透明率的对象,所述合成部可响应使用者的预定操作,改变所指定的对象的透明率,所述对象为参照图像或参照图像的部分。
  27. 根据权利要求1-3任意一项所述的热像装置,其特征在于,所述热像数据通过拍摄部拍摄获取。
  28. 热像装置,包括:
    获得部,用于获得热像数据;
    参照图像确定部,用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;
    位置确定部,用于确定参照图像位于红外热像中的规定位置和规定尺寸;
    显示控制部,用于将基于所确定的构成数据获得所述规定尺寸的参照图像,按照所述规定位置,与获得的热像数据生成的红外热像,共同显示。
  29. 如权利要求1,2,3,28任意一项所述的热像装置,其特征在于,位置确定部用于响应预定的操作来改变参照图像位于红外热像中的位置、尺寸、旋转角度中的一项或多项。
  30. 如权利要求9-11任意一项所述的热像装置,其特征在于,所述选择部,用于根据所述存储部中存储的被摄体信息,使显示部的规定位置显示规定数量的被摄体信息待选项,根据对被摄体信息待选项的选择来选择被摄体信息。
  31. 热像拍摄方法,其特征在于,包括,
    311)获得步骤:热像装置获得热像数据;
    312)参照图像确定步骤:用于确定与体现被摄体规定形态特征的参照图像相关的构成数据,所确定的构成数据用于获得体现被摄体规定形态特征的参照图像;
    313)位置确定步骤:设置基于所指定的构成数据获得的参照图像位于红外热像中的规定位置和规定尺寸;
    314)显示控制步骤:将基于所指定的构成数据获得所述规定尺寸的参照图像,按照规定位置和规定尺寸,与获得的热像数据生成的红外热像,共同显示。
  32. 根据权利要求31所述的热像拍摄方法,其特征在于,所述步骤311)获得的是连续的热像数据;所述步骤314)用于将基于所指定的构成数据获得所述规定尺寸的参照图像,按照规定位置和规定尺寸,与获得的热像数据生成的连续红外热像,共同显示。
  33. 热像拍摄方法,其特征在于,包括
    331)获得步骤:热像装置获得热像数据;
    332)参照图像确定步骤:确定与体现被摄体规定形态特征的参照图像有关的构成数据;
    333)位置确定步骤:基于所确定的构成数据获得的参照图像位于红外热像中的规定位置和规定尺寸;
    334)合成步骤:将红外热像和参照图像进行合成,以获得合成图像;所述红外热像是按照所述规定位置并根据获得部获得的热像数据生成的;该参照图像是按照所述规定尺寸并根据参照图像确定部所确定的构成数据而获得的。
  34. 热像拍摄方法,其特征在于,包括:
    341)获得步骤:热像装置获得连续热像数据;
    342)参照图像确定步骤:选择用于指定与体现被摄体规定形态特征的参照图像有关的构成数据;
    343)位置确定步骤:设置基于所指定的构成数据获得的参照图像位于红外热像中的规定位置和规定尺寸;
    343)合成步骤:用于按照所述规定位置,根据基于所确定的构成数据获得所述规定尺寸的参照图像,对连续获得的热像数据进行选择性伪彩处理,来获得体现了参照图像与热像数据生成的红外热像的合成图像。
  35. 如权利要求31-34任意一项所述的热像拍摄方法,其特征在于,所述构成数据分为形态构成数据和辅助构成数据,所述形态构成数据为代表了被摄体规定形态特征的图像的构成数据;所述辅助构成数据为所述形态构成数据以外的构成数据;所述参照图像可以基于参照图像确定部所确定的形态构成数据,或形态构成数据与辅助构成数据来获得。
  36. 如权利要求35所述的热像拍摄方法,其特征在于,
    具有选择步骤,用于基于存储部存储多个被摄体信息及各被摄体信息关联的构成数据,对被摄体信息进行选择;
    所述参照图像确定步骤,可根据所选择的被摄体信息,基于该被摄体信息关联的构成数据,来确定用于获得参照图像的构成数据。
  37. 如权利要求35所述的热像拍摄方法,其特征在于,具有加工对象指定步骤,用于指定加工对象;并且,具有图像加工步骤,用于对所述加工对象执行规定的加工处理,以获得形态构成数据;并且,具有用于存储加工获得的形态构成数据的存储步骤;
    所述参照图像确定步骤,用于将存储步骤中存储的图像加工部加工获得的形态构成数据确定为与参照图像相关的构成数据。
  38. 如权利要求37所述的热像拍摄方法,其特征在于,所述参照图像确定步骤确定的构成数据为基于存储部中存储的构成数据;所述存储部中存储的构成数据包括存储部中预先存储的形态构成数据、对加工对象根据加工规则所得到的形态构成数据的一种或及其组合;以及上述形态构成数据与存储部中预先存储的辅助构成数据或/和对计算对象根据计算规则所得到的辅助构成数据的组合;所述加工对象可以为存储部中存储的形态构成数据;所述加工规则包括对加工对象进行一种或一种以上的加工处理;所述计算对象可以为存储部中存储的构成数据;所述计算对象可选择进行一个或者多个计算规则。
  39. 如权利要求37-38任意一项所述的热像拍摄方法,其特征在于,所述加工处理至少为剪切、阀值范围提取、边缘提取、增强、滤波、伪彩、灰度、亮度调整、色彩调整中的一种或一种以上。
  40. 如权利要求37或38所述的热像装置,其特征在于,计算规则至少为对计算对象进行缩放、变形 、特征点、特征区域、等分、外包矩形、内切矩形、中心线中的一种或一种以上的计算。
  41. 如权利要求35所述的热像拍摄方法,其特征在于,当指定了主对象,设置主对象位于红外热像中的位置参数,而后,通过其他对象与主对象之间的规定位置关系结合主对象位于红外热像中的位置参数,来自动设置其他对象位于红外热像中的位置参数;其中主对象及其他对象中,至少具有参照图像的构成数据或参照图像的构成数据之一获得的对象。
  42. 如权利要求33所述的热像拍摄方法,其特征在于,还包括透明对象指定步骤,所述透明对象指定步骤用于指定需要改变透明率的对象,所述合成步骤,可响应使用者的预定操作,改变所指定的对象的透明率,所述对象为参照图像或参照图像的部分。
PCT/CN2013/070340 2012-01-12 2013-01-10 热像装置和热像拍摄方法 WO2013104327A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13736361.0A EP2803964A4 (en) 2012-01-12 2013-01-10 THERMAL IMAGING APPARATUS AND METHOD FOR PHOTOGRAPHING THERMAL IMAGES
US14/371,441 US10230908B2 (en) 2012-01-12 2013-01-10 Thermal imaging device and thermal image photographing method
JP2014551514A JP6101287B2 (ja) 2012-01-12 2013-01-10 熱画像装置および熱画像撮影方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN2012100084027A CN102538974A (zh) 2012-01-12 2012-01-12 热像显示装置、热像显示系统和热像显示方法
CN 201210008404 CN102538980A (zh) 2012-01-12 2012-01-12 热像装置和热像拍摄方法
CN201210008404.6 2012-01-12
CN201210008402.7 2012-01-12
CN201210353428.5 2012-09-21
CN201210353428 2012-09-21

Publications (1)

Publication Number Publication Date
WO2013104327A1 true WO2013104327A1 (zh) 2013-07-18

Family

ID=48106034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070340 WO2013104327A1 (zh) 2012-01-12 2013-01-10 热像装置和热像拍摄方法

Country Status (5)

Country Link
US (1) US10230908B2 (zh)
EP (1) EP2803964A4 (zh)
JP (2) JP6101287B2 (zh)
CN (1) CN103063314B (zh)
WO (1) WO2013104327A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090976B (zh) * 2012-01-12 2015-12-02 杭州美盛红外光电技术有限公司 热像显示装置、热像显示系统和热像显示方法
CN103776543A (zh) * 2012-09-21 2014-05-07 杭州美盛红外光电技术有限公司 热像分析装置和热像分析方法
CN104284101A (zh) * 2013-05-09 2015-01-14 杭州美盛红外光电技术有限公司 热像识别监测装置、监测系统和热像识别监测方法
CN104280131A (zh) * 2013-07-09 2015-01-14 杭州美盛红外光电技术有限公司 一种红外热像装置
CN104422526A (zh) * 2013-09-11 2015-03-18 杭州美盛红外光电技术有限公司 热像分析装置和热像分析方法
WO2015074626A1 (zh) * 2013-11-25 2015-05-28 王浩 热像分析装置、配置装置和热像分析方法、配置方法
CN104655284B (zh) * 2013-11-25 2022-04-19 杭州美盛红外光电技术有限公司 分析装置、处理装置和分析方法、处理方法
WO2015074628A1 (zh) * 2013-11-25 2015-05-28 王浩 分析对比装置和分析对比方法
CN104655288A (zh) * 2013-11-25 2015-05-27 杭州美盛红外光电技术有限公司 热像检测装置和热像检测方法
CN104677505B (zh) * 2013-12-01 2022-04-22 杭州美盛红外光电技术有限公司 分析设置装置和分析设置方法
CN104748861A (zh) * 2013-12-26 2015-07-01 杭州美盛红外光电技术有限公司 选择装置和选择方法
CN103747183B (zh) * 2014-01-15 2017-02-15 北京百纳威尔科技有限公司 一种手机拍摄对焦方法
US9990730B2 (en) 2014-03-21 2018-06-05 Fluke Corporation Visible light image with edge marking for enhancing IR imagery
US10152811B2 (en) 2015-08-27 2018-12-11 Fluke Corporation Edge enhancement for thermal-visible combined images and cameras
JP2017143419A (ja) * 2016-02-10 2017-08-17 オリンパス株式会社 撮像装置、撮像方法およびプログラム
CN107861034A (zh) * 2017-10-25 2018-03-30 国网湖南省电力公司 基于图像合成的避雷器、绝缘子缺陷红外成像检测判断方法
US11346938B2 (en) 2019-03-15 2022-05-31 Msa Technology, Llc Safety device for providing output to an individual associated with a hazardous environment
CN111639214B (zh) * 2020-05-31 2023-05-02 广西电网有限责任公司南宁供电局 一种提高机器人采集动态红外热图时存储效率的方法
CN113077399B (zh) * 2021-04-09 2023-03-14 烟台艾睿光电科技有限公司 一种图像处理方法、装置、系统及计算机可读存储介质
CN113298913A (zh) * 2021-06-07 2021-08-24 Oppo广东移动通信有限公司 数据增强方法、装置、电子设备及可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038701A (ja) * 2004-07-28 2006-02-09 Nikon Corp データの連結合成方法及び連結合成プログラム
CN101067710A (zh) * 2006-01-20 2007-11-07 红外线解决方案公司 具有可见光与红外图像混合的相机
CN101111748A (zh) * 2004-12-03 2008-01-23 红外线解决方案公司 具有激光指示器的可见光和ir组合的图像照相机
CN101945224A (zh) * 2009-07-01 2011-01-12 弗卢克公司 热成像方法
CN102075683A (zh) * 2009-11-20 2011-05-25 三星电子株式会社 数字图像处理设备和数字图像处理设备的拍摄方法
CN102387311A (zh) * 2010-09-02 2012-03-21 深圳Tcl新技术有限公司 一种合成视频图像的装置以及合成视频图像的方法
CN102538974A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像显示装置、热像显示系统和热像显示方法
CN102538980A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像装置和热像拍摄方法
CN102564607A (zh) * 2012-01-12 2012-07-11 杭州美盛红外光电技术有限公司 热像装置和热像规范拍摄方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223930A (ja) * 2000-02-09 2001-08-17 Toshiba Corp 画像撮像装置
US6664956B1 (en) * 2000-10-12 2003-12-16 Momentum Bilgisayar, Yazilim, Danismanlik, Ticaret A. S. Method for generating a personalized 3-D face model
JP4178009B2 (ja) * 2002-08-16 2008-11-12 富士フイルム株式会社 撮影システム
JP2004341992A (ja) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd 画像撮影装置及び画像照合装置
JP2005026872A (ja) * 2003-06-30 2005-01-27 Casio Comput Co Ltd 撮影方法、撮像装置、及びプログラム
JP4449525B2 (ja) * 2004-03-24 2010-04-14 ソニー株式会社 監視装置
GB2412831A (en) * 2004-03-30 2005-10-05 Univ Newcastle Highlighting important information by blurring less important information
JP4642757B2 (ja) * 2004-07-23 2011-03-02 パナソニック株式会社 画像処理装置および画像処理方法
US7457441B2 (en) * 2005-02-25 2008-11-25 Aptina Imaging Corporation System and method for detecting thermal anomalies
CN101253537B (zh) * 2005-05-12 2012-10-10 富士胶片株式会社 影集制作装置、影集制作方法及程序
US7732768B1 (en) * 2006-03-02 2010-06-08 Thermoteknix Systems Ltd. Image alignment and trend analysis features for an infrared imaging system
JP5055939B2 (ja) * 2006-10-12 2012-10-24 株式会社ニコン デジタルカメラ
US20090015702A1 (en) * 2007-07-11 2009-01-15 Sony Ericsson Communicatins Ab Enhanced image capturing functionality
JP5354767B2 (ja) * 2007-10-17 2013-11-27 株式会社日立国際電気 物体検知装置
JP5190257B2 (ja) * 2007-12-28 2013-04-24 日本アビオニクス株式会社 熱画像撮影装置
JP2009212803A (ja) * 2008-03-04 2009-09-17 Fujifilm Corp 構図アシスト機能付き撮像装置及び該撮像装置における構図アシスト方法
JP5075924B2 (ja) * 2010-01-13 2012-11-21 株式会社日立製作所 識別器学習画像生成プログラム、方法、及びシステム
US20130155249A1 (en) * 2011-12-20 2013-06-20 Fluke Corporation Thermal imaging camera for infrared rephotography

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038701A (ja) * 2004-07-28 2006-02-09 Nikon Corp データの連結合成方法及び連結合成プログラム
CN101111748A (zh) * 2004-12-03 2008-01-23 红外线解决方案公司 具有激光指示器的可见光和ir组合的图像照相机
CN101067710A (zh) * 2006-01-20 2007-11-07 红外线解决方案公司 具有可见光与红外图像混合的相机
CN101945224A (zh) * 2009-07-01 2011-01-12 弗卢克公司 热成像方法
CN102075683A (zh) * 2009-11-20 2011-05-25 三星电子株式会社 数字图像处理设备和数字图像处理设备的拍摄方法
CN102387311A (zh) * 2010-09-02 2012-03-21 深圳Tcl新技术有限公司 一种合成视频图像的装置以及合成视频图像的方法
CN102538974A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像显示装置、热像显示系统和热像显示方法
CN102538980A (zh) * 2012-01-12 2012-07-04 杭州美盛红外光电技术有限公司 热像装置和热像拍摄方法
CN102564607A (zh) * 2012-01-12 2012-07-11 杭州美盛红外光电技术有限公司 热像装置和热像规范拍摄方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2803964A4

Also Published As

Publication number Publication date
EP2803964A4 (en) 2016-01-27
JP2017123677A (ja) 2017-07-13
CN103063314B (zh) 2016-05-04
JP2015505216A (ja) 2015-02-16
US10230908B2 (en) 2019-03-12
JP6419233B2 (ja) 2018-11-07
CN103063314A (zh) 2013-04-24
EP2803964A1 (en) 2014-11-19
JP6101287B2 (ja) 2017-03-22
US20150042817A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
WO2013104327A1 (zh) 热像装置和热像拍摄方法
WO2013104328A1 (zh) 热像装置和热像规范拍摄方法
CN103776542B (zh) 热像诊断装置和热像诊断方法
JP4715527B2 (ja) 撮影装置、撮影画像の画像処理方法及びプログラム
US7864226B2 (en) Image sensing apparatus and control method thereof
US20110239100A1 (en) Inspection information processing apparatus and method
KR20080111134A (ko) 접을 수 있는 프로젝터 스크린, 프로젝터 스크린 사용자 인터페이스 회로 및 이것을 포함하는 장치, 휴대용 프로젝터 스크린, 영사 처리 회로 및 이것을 포함하는 장치, 사용자 휴대용 디바이스, 이미지 영사 방법 및 컴퓨터 프로그램
KR20070072324A (ko) 영상 투사기의 투사 화면 조절 방법 및 그 장치
JP4770197B2 (ja) プレゼンテーション制御装置およびプログラム
JP2010134915A (ja) 画像処理装置
WO2015078418A1 (zh) 决定装置和决定方法
JP2020194998A (ja) 制御装置、投影システム、制御方法、プログラムおよび記憶媒体
GB2470634A (en) Document camera presentation device with picture-in-picture snapshot of live video image
JP2015534364A (ja) 熱画像情報記録装置および熱画像情報記録方法
US9918014B2 (en) Camera apparatus and method for generating image signal for viewfinder
WO2014044219A1 (zh) 热像分析装置和热像分析方法
WO2006068312A1 (en) Apparatus, method and program for information processing
JP2012165271A (ja) 画像処理装置、画像処理方法及びプログラム
JP2000341499A (ja) 色再現装置
JP2002271825A (ja) 色合わせ方法、色合わせシステムおよびこれらに用いられるテレビジョンカメラ
JP3962825B2 (ja) 画像処理装置、及び、プログラム
KR101326095B1 (ko) 영상융합장치 및 그 방법
JP2005064630A (ja) 撮像装置
JP2020150481A (ja) 情報処理装置、投影システム、情報処理方法、及び、プログラム
JP2020048117A (ja) 画像提供システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551514

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371441

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013736361

Country of ref document: EP