WO2013103265A1 - 양면 인쇄회로기판의 제조방법 - Google Patents

양면 인쇄회로기판의 제조방법 Download PDF

Info

Publication number
WO2013103265A1
WO2013103265A1 PCT/KR2013/000064 KR2013000064W WO2013103265A1 WO 2013103265 A1 WO2013103265 A1 WO 2013103265A1 KR 2013000064 W KR2013000064 W KR 2013000064W WO 2013103265 A1 WO2013103265 A1 WO 2013103265A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
conductive
circuit pattern
conductive material
circuit board
Prior art date
Application number
PCT/KR2013/000064
Other languages
English (en)
French (fr)
Inventor
정광춘
한영구
유명봉
윤광백
정봉기
Original Assignee
주식회사 잉크테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 잉크테크 filed Critical 주식회사 잉크테크
Priority to CN201380012607.5A priority Critical patent/CN104160794B/zh
Priority to US14/370,644 priority patent/US10080299B2/en
Priority to JP2014551192A priority patent/JP6069355B2/ja
Priority claimed from KR20130001252A external-priority patent/KR101505049B1/ko
Publication of WO2013103265A1 publication Critical patent/WO2013103265A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1453Applying the circuit pattern before another process, e.g. before filling of vias with conductive paste, before making printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating

Definitions

  • the present invention relates to a method for manufacturing a double-sided printed circuit board, and in particular, to easily form a circuit pattern on the upper and lower surfaces of the insulating layer, and to easily form the energization of the circuit pattern formed on the upper and lower surfaces of the insulating layer.
  • a method for manufacturing a double-sided printed circuit board is a method for manufacturing a double-sided printed circuit board.
  • FIG. 1 schematically illustrates a process of forming a circuit pattern in a conventional printed circuit board and energizing circuit patterns formed on upper and lower sides of an insulating layer.
  • a conventional printed circuit board is prepared with a raw material (double-sided copper foil film) on which conductive layers are mounted on both surfaces of an insulating layer. It shows that a polyimide film is used as the insulating layer and a copper film is used as the conductive layer.
  • a front etching process is performed.
  • the thickness of copper foil is fixed, and when the whole-hole plating is performed, the thickness is about 10 or more. Therefore, when a fine pattern is to be formed, it is too thick, so it is difficult to realize a precise circuit through etching. To proceed the process to lower the thickness.
  • the through-hole is processed through the conductive layer and the insulating layer. Subsequently, the conductive layer and the insulating layer in which the through-holes are formed are exposed to the conductive aqueous solution to form a conductive film to perform a pre-plating process (Shadow process).
  • an electroless copper plating film is formed on the conductive layer and the insulating layer on which the conductive film is formed to perform the entire electroplating process, and the inner wall of the through hole is coated with the conductive copper of the thin film using Pd (palladium) catalysis.
  • the electrolytic reaction of copper is used to completely coat the inner wall of the trough hole with conductive copper.
  • the photosensitive film is laminated, and a process of exposure, development, corrosion, and peeling is performed to form a circuit having a desired pattern to form a final circuit.
  • An object of the present invention is to solve the problems described above, and to easily form a circuit pattern on the upper and lower surfaces of the insulating layer, and to easily form a circuit pattern formed on the upper and lower surfaces of the insulating layer. It is to provide a method of manufacturing a double-sided printed circuit board to be able to.
  • Method for manufacturing a double-sided printed circuit board forming a conductive first circuit pattern constituting a circuit on the upper surface of the insulating layer; Forming a conductive second circuit pattern constituting a circuit on a lower surface of the insulating layer; Forming a through hole penetrating the insulating layer in a vertical direction; And forming a conductive material on an inner circumferential surface of the through hole so that the first circuit pattern and the second circuit pattern are electrically connected by the through hole.
  • the through hole is formed, and after the conductive material is formed on the inner circumferential surface of the through hole, the protective film is preferably laminated.
  • the insulating layer is exposed to the outside at the portion where the through hole is formed, and when the second circuit pattern is formed, the insulating layer is exposed to the outside at the portion where the through hole is formed. It is desirable to be.
  • first and second circuit patterns may be patterned and printed, and the inner circumferential surface of the through hole may be printed with the conductive material.
  • the first and second protective films may be formed after laminating non-conductive first and second protective films on the upper surfaces of the first and second circuit patterns, respectively, and after the conductive material is formed on the inner circumferential surface of the through holes. Preference is given to dilaminating.
  • the non-conductive protective film on the second circuit pattern, and to form the conductive material on the inner circumferential surface of the through hole, and then to laminate the protective film.
  • the non-conductive first protective film is laminated on the second circuit pattern, the through hole is formed, and after the second protective film is laminated on the first circuit pattern, the conductive material is formed on the inner circumferential surface of the through hole, It is preferable to delaminate the protective film.
  • the circuit pattern is easily formed on the upper and lower surfaces of the insulating layer, and the circuit pattern is formed on the upper and lower surfaces of the insulating layer. Provides the effect of easy implementation.
  • the simplified process reduces the manufacturing time, thereby improving productivity, and lowering the defective rate, thereby providing an effect of improving product quality.
  • a double-sided printed circuit board can be easily manufactured in a simplified process without complicated processes such as exposure, development, and corrosion, and environmental pollutants.
  • FIG. 1 is a view schematically showing a circuit pattern forming method and a through hole energizing process of a conventional printed circuit board
  • FIG. 2 is a flowchart illustrating a method of manufacturing a double-sided printed circuit board according to an embodiment of the present invention
  • FIG. 3 is a flowchart illustrating a method of manufacturing a double-sided printed circuit board according to another embodiment of the present invention.
  • 4 to 10 are flowcharts of a method of manufacturing a double-sided printed circuit board according to another embodiment of the present invention.
  • the method for manufacturing a double-sided printed circuit board includes: a) preparing a polyimide film 1 as a substrate; b) Ag conductive paste, which is a conductive ink, is printed on both surfaces of the polyimide film 1, that is, the upper surface 1a and the lower surface 1b, respectively, to form the first and second circuit patterns 2a and 2b.
  • the substrate 1 may be a PI film, a PET film, or a PEN film, but is not limited thereto.
  • the circuit patterns 2a and 2b may be formed by printing a conductive paste which is a conductive ink. At this time, it may be printed by gravure printing, inkjet printing, offset printing, silkscreen printing, rotary screen printing, flexo printing, or imprinting.
  • the heat treatment is a temperature condition of 80 ⁇ 400 It can be done with
  • an organic silver complex compound may be included.
  • the organic silver complex compound may be obtained by reacting one or more silver compounds of Formula 1 with one or more ammonium carbamate or ammonium carbonate compounds of Formula 2, Formula 3, or Formula 4.
  • N is an integer of 1 to 4
  • X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrite, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoro Substituents selected from borate, acetylacetonate, carboxylate and derivatives thereof)
  • R1, R2, R3, R4, R5 and R6 may be the same or different from each other, hydrogen, an aliphatic or alicyclic alkyl group having 1 to 30 carbon atoms or an aryl or aralkyl (ARALKYL) group, an alkyl group substituted with a functional group and A substituent selected from an aryl group, a heterocyclic compound group, a high molecular compound group and derivatives thereof.
  • ARALKYL aryl or aralkyl
  • the conductive paste may further comprise a conductor, a metal precursor or one or more of these mixtures.
  • the conductor may be Ag, Au, Cu, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Select from Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu, Ac, Th and at least one metal or alloy or alloy oxide thereof, conductive carbon black, graphite, carbon nanotubes and conductive polymers It may include any one or more components.
  • the metal precursor may be selected from one or more metal compound groups represented by the following Chemical Formula 5.
  • n is an integer of 10 or less
  • X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrite, sulfate, phosphate, thio
  • Substituents selected from cyanate, chlorate, perchlorate, tetrafluoroborate, acetylacetonate, merceto, amide, alkoxide, carboxylate and derivatives thereof.
  • the metal precursor is gold acetate, palladium oxalate, silver 2-ethyl hexanoate, copper 2-ethyl hexanoate, iron stearate, nickel formate, zinc citrate, bismuth acetate, silver nitrate, copper cyanide, cobalt carbonate, platinum chloride, chloride Geum acid, tetrabutoxy titanium, dimethoxyzirconium dichloride, aluminum isopropoxide, tin tetrafluoro borate, vanadium oxide, indium-tin oxide, ruthenium oxide, tantalum methoxide, dodecyl mercetonated gold, indium acetyl acetonate It may include any one or more components selected from the group.
  • the amount of the conductor or metal precursor or a mixture thereof may be used in an amount of 1 to 90 wt% based on the paste composition.
  • the conductor or metal precursor may be selected from the group consisting of particles, powders, flakes, colloids, hybrids, pastes, sol, solutions, and mixtures thereof.
  • the shape of the conductor and the metal precursor may be any one or more selected from the group of spherical, linear, plate-shaped, or mixed forms thereof.
  • step b) and step e) the conductive paste and the printing method may be applied in the same or different ways.
  • the protective film of step c) may be a PET film, a PEN film, a fabric mesh (Fabric mesh), a metal mesh (Metal mesh), paper (Paper) or a rubber material film.
  • the protective film may be laminated by thermally compressing two protective films, and for example, the protective film may be formed by pressing a PET film onto an object using a film laminator.
  • the hole is processed to a design diameter for conducting the first circuit pattern 2a formed on the upper surface 1a of the substrate 1 and the second circuit pattern 2b formed on the lower surface 1b. It is a process to do it.
  • the through hole 5 of step d) may be formed using a CNC drill bit or using a laser source.
  • the diameter of the through hole 5 may be at least 0.08mm ⁇ 1mm or up to 1mm or more, for example, may be formed with a diameter of 0.2mm ⁇ 0.3mm.
  • the first circuit pattern 2a formed on the upper surface 1a of the substrate 1 and the second circuit pattern 2b formed on the lower surface 1b are electrically connected to each other.
  • a conductive line 5 such as a bridge to connect is formed by printing an Ag conductive paste on the inner wall surface of the through hole 4.
  • Ag-conductive paste on the upper surface 1a of the polyimide film 1 was printed by using a silkscreen printing method with a thickness of about 3 to 7 with a minimum line width of 75 and a line spacing of 75 and a high temperature heat treatment at about 150 to 200 A 1 degree pattern 2a is used as a pattern.
  • the positional precision of about 10 is maintained at the same thickness and pattern interval on the lower surface 1b opposite to the one-degree printing surface to form a two-degree pattern 2b as a circuit pattern at the same temperature condition as one degree after printing.
  • a protective film 3 composed of a thickness of 12, and a PET film 75 thickness on the side on which the 1 or 2 degree pattern (2a, 2b) is printed, it is pressed at a rate of 5M / min at room temperature conditions.
  • a cylindrical hole 4 was formed at a speed of about 80,000 to 150,000 rpm using a CNC drill bit of 0.2 to 0.3 on the opposite surface of the protective film 3.
  • the inner wall of the through hole 4 to a thickness of about 1 to 3 using an Ag conductive paste having a lower viscosity than that of the Ag conductive paste used for the 1 degree and 2 degree patterns 2a and 2b on the opposite side of the protective film 3. Is printed to form a conductive line (5).
  • the protective film 3 can be removed to manufacture a double-sided printed circuit board.
  • the scope of the present invention is not limited to the numerical ranges and conditions herein.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a double-sided printed circuit board according to another embodiment of the present invention.
  • the method for manufacturing a double-sided printed circuit board according to FIG. 3 may include forming first and second circuit patterns 20 and 30, forming a through hole 40, and a conductive material on an inner circumferential surface of the through hole 40. 50).
  • the printed circuit board according to the present invention first forms a circuit of a desired pattern.
  • the first circuit pattern 20 is a circuit patterned using a conductive material to form a circuit on the upper surface of the insulating layer 10.
  • the first circuit pattern 20 is printed using a known paste such as silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), and the like.
  • the first circuit pattern 20 is not limited to being formed by a printing method.
  • the insulating layer 10 a known one such as a polyimide film is used.
  • the second circuit pattern 30 is a circuit patterned using a conductive material to form a circuit on the lower surface of the insulating layer 10.
  • the second circuit pattern 30 is similar to the first circuit pattern 20 by using a known paste such as silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), or the like. It is printed.
  • the second circuit pattern 30 is not limited to being formed by the printing method.
  • the step of forming the through hole 40 is performed.
  • the through hole 40 penetrates the insulating layer 10 in the vertical direction. 2, when the first circuit pattern 20 is formed, the insulating layer 10 is exposed to the outside at a portion where the through hole 40 is formed. In addition, when the second circuit pattern 30 is formed, the insulating layer 10 is exposed to the outside at the portion where the through hole 40 is formed.
  • the first circuit pattern 20 provided above the portion where the through hole 40 is formed and the second circuit pattern 30 provided below are patterned in consideration of the through hole 40 to be subsequently formed. Therefore, the through hole 40 is formed by processing the hole substantially penetrating the insulating layer 10.
  • the step of forming the conductive material 50 on the inner circumferential surface of the barrel hole 40 is performed.
  • the inner circumferential surface of the barrel hole 40 is printed using a known paste such as silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), and the like.
  • a printed circuit board through which the first and second circuit patterns 20 and 30 are energized by the through hole 40 is formed.
  • first and second circuit patterns 20 and 30 are first formed, and then, through holes 40 are formed, and the conductive material 50 is formed in the through holes 40. ), And the first and second circuit patterns 20 and 30 are energized, so that the conventional printed circuit board is processed by a simplified method as compared with a complicated process to implement the circuit pattern energized by the through hole. The effect of implementing a printed circuit board will be provided.
  • a process of laminating the protective film 60 may be performed before the conductive material 50 is formed on the inner circumferential surface of the barrel hole 40.
  • the protective film 60 is a polyethylene terephthalate (PET) film is used.
  • PET polyethylene terephthalate
  • the protective film 60 is provided to prevent the conductive material 50 from penetrating into the second circuit pattern 30 when the conductive material 50 is subsequently printed on the inner circumferential surface of the through hole 40.
  • the conductive material 50 when the conductive material 50 is excessive when printing the conductive material 50 on the inner circumferential surface of the through hole 40 without the protective film 60, the conductive material 50 penetrates into the second circuit pattern 30. This may cause a defect of the printed circuit board.
  • the protective film 60 prevents the conductive material 50 from spreading to the second circuit pattern 30.
  • a process of forming the through hole 40 and a printing process in the through hole 40 is performed, and then the protective film 60 is removed.
  • the delaminate process is performed.
  • first and second circuit patterns 20 and 30 are finally formed on the upper and lower surfaces of the insulating layer 10, and the first and second circuit patterns 20 and 30 are formed on the inner circumferential surface of the through hole 40. It is energized by the conductive material 50 formed in the.
  • a heat treatment process is performed after a printing process is performed on the barrel hole 40.
  • the conductive material 50 is printed in the barrel hole 40, the conductive material is cured and shrinks as the conductive material is cured.
  • a conductive plating film 70 may be formed on the conductive material 50 formed on the inner circumferential surface of the first and second circuit patterns 20 and 30 and the through hole 40.
  • the plating film 70 may be a copper film formed by electroless or electrolytic copper plating.
  • the plating film 70 may be plated by appropriately adjusting the thickness in consideration of the amount of current applied and consumed.
  • the first and second circuit patterns 20 and 30 may be formed only to maintain the properties of the seed layer, and when the amount of applied and consumed current is large, It is preferable to form and form the plating film 70 in a suitable thickness.
  • the first and second circuit patterns 20 and 30 are quickly formed and the through holes connecting the first and second circuit patterns 20 and 30 are formed.
  • 40 and a conductive material 50 is printed on the inner circumferential surface of the through hole 40 to energize the first and second circuit patterns 20 and 30, thereby providing a first and second circuits of the printed circuit board.
  • the circuit patterns 20 and 30 can be energized.
  • 5 to 9 illustrate a method of forming a precision printed circuit board for forming a circuit pattern and a conductive line in a through hole according to another embodiment of the present invention.
  • first and second circuit patterns 20 and 30 are formed on upper and lower surfaces of the insulating layer 10, and the first and second protective films are formed on the first and second circuit patterns 20 and 30. After laminating 61 and 62, the hole 40 is processed.
  • a process of printing the conductive material 50 in the through hole 40 is performed, and a process of delaminating the first and second protective films 61 and 62 is performed.
  • the heat treatment process is performed after the conductive material 50 is printed in the through hole 40, and the conductive material 50 printed in the through hole 40 is cured and contracted during the heat treatment.
  • FIG. 6 illustrates that a conductive plating film 70 may be further added to the conductive material 50 formed in the first and second circuit patterns 20 and 30 and the through hole 40 in addition to the embodiment of FIG. 5. It is shown. The action and effect of the plated film 70 is described above, so a detailed description thereof will be omitted.
  • first and second circuit patterns 20 and 30 are formed on the top and bottom surfaces of the insulating layer 10, and then the through holes 40 are formed. Subsequently, the non-conductive protective film 60 is laminated on the second circuit pattern 30, and after the conductive material 50 is printed in the through hole 40, the lamination process of the protective film 60 is performed. .
  • a heat treatment process is performed, and the conductive material 50 shrinks while curing the conductive material 50.
  • FIG. 8 illustrates that in addition to the embodiment of FIG. 6, the conductive plating film 70 may be further added to the conductive material 50 formed in the first and second circuit patterns 20 and 30 and the through hole 40. It is shown. The action and effect of the plated film 70 is described above, so a detailed description thereof will be omitted.
  • first and second circuit patterns 20 and 30 are formed on upper and lower surfaces of the insulating layer 10, and a non-conductive first protective film 61 is laminated on the second circuit pattern 30. do. Subsequently, the through hole 40 is formed, and the second protective film 62 is laminated on the first circuit pattern 20 by inverting the insulating layer 10 on which the through hole 40 is formed.
  • the process of delaminating the first and second protective films 61 and 62 is performed.
  • a heat treatment process is performed, and the conductive material 50 shrinks while curing the conductive material 50.
  • FIG. 10 illustrates that in addition to the embodiment of FIG. 8, the conductive plating film 70 may be further added to the conductive material 50 formed in the first and second circuit patterns 20 and 30 and the through hole 40. It is shown. The action and effect of the plated film 70 is described above, so a detailed description thereof will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

본 발명은 절연층의 상면에 회로를 구성하는 도전성 제1 회로패턴을 형성하는 단계; 상기 절연층의 하면에 회로를 구성하는 도전성 제2 회로패턴을 형성하는 단계; 상기 절연층을 상하방향으로 관통하는 통홀을 형성하는 단계; 상기 제1 회로패턴과 상기 제2 회로패턴이 상기 통홀에 의해 도통되도록, 상기 통홀의 내주면에 도전성 물질을 형성하는 단계를 포함하는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법을 제공한다.

Description

양면 인쇄회로기판의 제조방법
본 발명은 양면 인쇄회로기판의 제조방법에 관한 것으로, 특히 절연층의 상면 및 하면에 회로패턴을 용이하게 형성하고, 절연층의 상면 및 하면에 형성된 회로패턴의 통전을 용이하게 형성할 수 있도록 한 양면 인쇄회로기판의 제조방법에 관한 것이다.
도1은 종래 인쇄회로기판에서 회로패턴을 형성하고, 절연층의 상측 및 하측에 형성된 회로패턴을 통전시키는 과정을 개략적으로 도시한 것이다.
도1을 참조하면, 종래 인쇄회로기판은 절연층의 양면에 도전층이 올려진 원자재(양면동박필름)가 먼저 준비된다. 절연층으로 폴리이미드필름이 사용되고, 도전층으로 구리막이 사용된 것을 도시한 것이다.
이어서, 전면 식각(Etching) 공정이 수행된다. 양면동박필름의 경우 동박 두께가 정해져 있고 통홀 도금을 수행하는 경우 약 10 이상의 두께가 형성되기 때문에 미세패턴을 형성하고자 하는 경우에 지나치게 두꺼워 식각을 통한 정밀 회로 구현이 어려운 관계로 통홀 가공 전에 전면 식각 공정을 수행하여 두께를 낮추는 공정을 진행한다.
이어서, 도전층과 절연층을 관통하여 통홀을 가공한다. 이어서 통홀이 형성된 도전층 및 절연층을 전도성 수용액에 노출하여 전도성막을 형성시켜 도금 전 공정을 수행한다(Shadow 공정).
이어서, 전도성막이 형성된 도전층 및 절연층에 무전해 동 도금막을 형성하여 전기동도금 전 공정을 수행하고, Pd(팔라듐) 촉매반응을 이용하여 통홀 내벽을 박막의 전도성 구리로 입히게 된다. 구리의 전기 분해 반응을 이용하여 통홀 내벽을 완전히 전도성 구리로 입히게 된다.
이어서, 감광성필름을 합지하고, 노광, 현상, 부식, 및 박리의 공정을 수행하여 원하는 패턴의 회로를 형성하여 최종 회로를 형성하게 된다.
이처럼, 종래 인쇄회로기판은 절연층의 양면에 형성되는 회로패턴이 통홀을 통하여 통전 가능하도록 구현하는 과정은 복잡하여 생산성을 떨어뜨리고 불량률을 높이는 단점이 있다.
본 발명의 목적은, 상술한 바와 같은 문제점을 개선하기 위해 안출된 것으로, 절연층의 상면 및 하면에 회로패턴을 용이하게 형성하고, 절연층의 상면 및 하면에 형성된 회로패턴의 통전을 용이하게 형성할 수 있도록 한 양면 인쇄회로기판의 제조방법을 제공하는 것이다.
본 발명에 따른 양면 인쇄회로기판의 제조방법은, 절연층의 상면에 회로를 구성하는 도전성 제1 회로패턴을 형성하는 단계; 상기 절연층의 하면에 회로를 구성하는 도전성 제2 회로패턴을 형성하는 단계; 상기 절연층을 상하방향으로 관통하는 통홀을 형성하는 단계; 상기 제1 회로패턴과 상기 제2 회로패턴이 상기 통홀에 의해 도통되도록, 상기 통홀의 내주면에 도전성 물질을 형성하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 제2 회로패턴 위에 비전도성 보호필름이 라미네이트된 후 상기 통홀이 형성되며, 상기 통홀의 내주면에 상기 도전성 물질이 형성된 후에 상기 보호필름은 디라미네이트되는 것이 바람직하다.
또한, 상기 제1 회로패턴이 형성될 때 상기 통홀이 형성되는 부위에서 상기 절연층은 외부로 노출되며, 상기 제2 회로패턴이 형성될 때 상기 통홀이 형성되는 부위에서 상기 절연층은 외부로 노출되는 것이 바람직하다.
또한, 상기 제1,2 회로패턴은 패턴화되어 프린팅되고, 상기 통홀의 내주면은 상기 도전성 물질이 프린팅되는 것이 바람직하다.
또한, 상기 제1,2 회로패턴 및 상기 통홀의 내주면에 형성된 도전성 물질에 도금막을 형성하는 것이 바람직하다.
또한, 상기 통홀의 내주면에 도전성 물질을 형성한 후에 열처리가 수행되는 것이 바람직하다.
또한, 상기 제1,2 회로패턴의 상면에 각각 비전도성 제1,2 보호필름을 라미네이트 한 후에 상기 통홀을 형성하고, 상기 통홀의 내주면에 상기 도전성 물질이 형성된 후에 상기 제1,2 보호필름은 디라미네이트되는 것이 바람직하다.
또한, 상기 통홀의 내주면에 도전성 물질을 형성한 후에 열처리가 수행되는 것이 바람직하다.
또한, 상기 통홀을 형성한 후 상기 제2 회로패턴 위에 비전도성 보호필름을 라미네이트하고, 상기 통홀의 내주면에 상기 도전성 물질을 형성한 후에 상기 보호필름을 디라미네이트하는 것이 바람직하다.
또한, 상기 제2 회로패턴 위에 비전도성 제1 보호필름을 라미네이트하고, 상기 통홀을 형성하며, 상기 제1 회로패턴 위에 제2 보호필림을 라미네이트 한 후에 상기 통홀의 내주면에 상기 도전성 물질을 형성하고, 상기 보호필름을 디라미네이트하는 것이 바람직하다.
본 발명에 따른 회로패턴 및 통홀 내 도통라인을 형성하는 양면 인쇄회로기판의 제조방법은, 절연층의 상면 및 하면에 회로패턴을 용이하게 형성하고, 절연층의 상면 및 하면에 형성된 회로패턴의 통전을 용이하게 구현하는 효과를 제공한다.
또한, 간소화된 공정에 의해 제조 시간을 단축하여 생산성을 향상시키고, 불량률을 낮춰 제품의 품질을 향상시키는 효과를 제공한다.
또한, 노광, 현상, 부식 등의 복잡한 공정 및 이로 인한 환경오염물질 발생 없이 간소화된 공정으로 용이하게 양면 인쇄회로기판을 제조할 수 있다.
또한, 인쇄방법을 통해 회로패턴 및 이를 도통시키는 도통라인의 두께 조절이 용이하여 박막으로 제조 가능한 양면 인쇄회로기판을 제공할 수 있다.
도 1은 종래 인쇄회로기판의 회로패턴 형성방법 및 통홀 통전 과정을 개략적으로 도시한 도면,
도 2는 본 발명의 일 실시예에 따른 양면 인쇄회로기판의 제조방법 흐름도,
도 3은 본 발명의 다른 실시예에 따른 양면 인쇄회로기판의 제조방법 흐름도,
도 4 내지 도 10은 본 발명의 또 다른 실시예에 따른 양면 인쇄회로기판의 제조방법 흐름도이다.
이하에서는 본 발명에 대해 도면을 참조하여 구체적으로 설명하기로 하나, 본 발명의 범위로 이로 한정되는 것은 아니다.
도 2에 도시된 바와 같이, 본 발명에 따른 양면인쇄회로기판의 제조방법은, 기재로서, a) 폴리이미드필름(1)을 준비하는 단계와; b) 폴리이미드필름(1)의 양면에 즉, 상부면(1a) 및 하부면(1b)에 각각 전도성 잉크인 Ag 전도성 페이스트를 인쇄하여 제1 및 제2회로패턴(2a,2b)을 형성하는 단계와; c) 폴리이미드필름(1)의 하부면(1b)에 인쇄된 제2회로패턴(2b)에 보호필름인 PET필름(3)을 라미네이팅하는 단계와; d) 기재(1) 및 PET필름(3)을 상하방향으로 관통하는 통홀(4)을 형성하는 단계와; e) 기재(1)의 상부면(1a)에 형성된 제1회로패턴(2a)와 하부면(1b)에 형성된 제2회로패턴(2b)이 통홀(4)에 의해 도통되도록, 통홀(4)의 내벽면에 전도성 잉크인 Ag 전도성 페이스트를 인쇄하여 통홀(4)를 통해 제1 및 제2회로패턴(2a,2b)을 연결하는 도통라인(5)을 형성하는 단계와; PET필름(3)을 제거하는 단계를 포함하는 것을 특징으로 한다.
상기 a) 단계에서 기재(1)로는 PI필름, PET필름, 또는 PEN필름을 사용할 수 있으나, 이로 한정되는 것은 아니다.
상기 b) 단계에서 회로패턴(2a,2b)은 전도성 잉크인 전도성 페이스트를 안쇄하여 형성할 수 있다. 이때, 그라비아 프린팅, 잉크젯 프린팅, 옵셋 프린팅, 실크스크린 프린팅, 로터리스크린 프린팅, 플렉소 프린팅, 또는 임프린팅법으로 인쇄할 수 있다.
여기서, 회로패턴(2a,2b) 인쇄 후, 산화처리, 환원 처리, 열처리, 적외선처리, 자외선처리, 전자선처리 또는 레이저처리에서 선택되는 후처리 공정을 할 수 있으며, 열처리는 80~ 400의 온도 조건으로 수행할 수 있다.
상기 b) 단계에서 회로패턴(2a,2b)을 형성하는 상기 전도성 페이스트의 경우 유기 은 착체화합물을 포함할 수 있다.
상기 유기은착체화합물은 하기 화학식 1의 하나 이상의 은 화합물과 하기 화학식 2, 화학식 3 또는 화학식 4의 하나 이상의 암모늄 카바메이트계 또는 암모늄 카보네이트계 화합물을 반응시켜 얻어질 수 있다.
(화학식 1)
AgnX
(상기의 n은 1~4의 정수이고, X는 산소, 황, 할로겐, 시아노, 시아네이트, 카보네이트, 니트레이트, 나이트라이트, 설페이트, 포스페이트, 티오시아네이트, 클로레이트, 퍼클로레이트, 테트라플로로 보레이트, 아세틸아세토네이트, 카복실레이트 및 그들의 유도체에서 선택되는 치환기이다)
(화학식 2)
Figure PCTKR2013000064-appb-I000001
(화학식 3)
Figure PCTKR2013000064-appb-I000002
(화학식 4)
Figure PCTKR2013000064-appb-I000003
(상기 R1, R2, R3, R4, R5 및 R6는 서로 같거나 다를 수 있으며, 각각 수소, 탄소수 1 내지 30개의 지방족이나 지환족 알킬기 또는 아릴기나 아랄킬(ARALKYL)기, 관능기가 치환된 알킬기 및 아릴기와 헤테로고리 화합물기와 고분자화합물기 및 그들의 유도체에서 선택되는 치환기이다.)
상기 전도성 페이스트는 도전체, 금속 전구체 또는 1종 이상의 이들 혼합물을 더 포함할 수 있다.
상기 도전체는 Ag, Au, Cu, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu, Ac, Th 및 적어도 1종 이상의 금속 또는 이들의 합금 또는 합금 산화물, 전도성 카본블랙, 그라파이트, 탄소나노튜브 및 전도성 고분자 군에서 선택되는 어느 하나 이상의 성분을 포함할 수 있다.
상기 금속 전구체는 하기 화학식 5의 하나 이상의 금속화합물 군에서 선택할 수 있다.
(화학식 5)
MnX
(상기의 M은 제8항의 도전체 중에서 금속 군을, n은 10 이하의 정수, 그리고 X는 산소, 황, 할로겐, 시아노, 시아네이트, 카보네이트, 니트레이트, 나이트라이트, 설페이트, 포스페이트, 티오시아네이트, 클로레이트, 퍼클로레이트, 테트라플로로 보레이트, 아세틸아세토네이트, 머켑토, 아미드, 알콕사이드, 카복실레이트 및 그들의 유도체에서 선택되는 치환기이다.)
상기 금속 전구체가 초산 금, 옥살산 팔라듐, 2-에틸 헥산산 은, 2-에틸 헥산산 구리, 스테아린산 철, 포름산 니켈, 아연 시트레이트, 비스무스 아세테이트, 질산 은, 시안화 구리, 탄산 코발트, 염화 백금, 염화금산, 테트라부톡시 티타늄, 디메톡시지르코늄 디클로라이드, 알루미늄 이소프로폭사이드, 주석 테트라플로로 보레이트, 바나듐 옥사이드, 인듐-주석 옥사이드, 루테늄 옥사이드, 탄탈륨 메톡사이드, 도데실 머켑토화 금, 인듐 아세틸 아세토네이트 군에서 선택되는 어느 하나 이상의 성분을 포함할 수 있다.
상기 도전체 또는 금속전구체 또는 이들 혼합물의 사용량이 페이스트 조성물에 대하여 1 ~ 90 중량% 사용될 수 있다.
상기 도전체 또는 금속전구체가 입자, 분말, 플레이크, 콜로이드, 하이브리드, 페이스트, 졸, 용액 및 이들의 혼합 상태 군에서 선택될 수 있다.
상기 도전체 및 금속 전구체의 형태가 구형, 선형, 판상형 또는 이들의 혼합형태 군에서 선택되는 어느 하나 이상일 수 있다.
상기 b) 단계와 상기 e) 단계에서 전도성 페이스트 및 인쇄방법은 동일하게 또는 다르게 적용할 수 있다.
여기서, 상기 c) 단계에서 PET필름(3)을 라미네이팅하게 되면, 상기 d) 단계에서 기재(1)의 양면에 필요한 회로 패턴(2a,2b)을 위한 통홀(4)을 형성할 때, 번짐을 방지할 수 있게 된다.
상기 c) 단계의 보호필름으로는 PET 필름, PEN필름, 페브릭 메시(Fabric mesh), 메탈 메시(Metal mesh), 페이퍼(Paper) 또는 러버 재질의 필름을 사용할 수 있다. 상기 보호필름은, 두 장의 보호필름을 열 압착하는 것에 의해 적층할 수 있으며, 예컨대 필름 라미네이터를 이용하여 대상물에 PET필름을 압착하여 형성할 수 있다.
상기 d) 단계는, 기재(1)의 상부면(1a)에 형성된 제1회로패턴(2a)와 하부면(1b)에 형성된 제2회로패턴(2b)의 도통을 위한 설계 직경으로 홀을 가공하는 공정이다.
상기 d) 단계의 통홀(5)은 CNC 드릴(Drill)비트를 이용하거나 레이저 소스를 이용하여 형성할 수 있다.
여기서, 통홀(5)의 직경은 최소 0.08mm~1mm 또는 1mm이상까지도 가능하며, 한 예로는 0.2mm~0.3mm의 직경으로 형성할 수 있다.
또한, 상기 e) 단계에서는, 기재(1)의 상부면(1a)에 형성된 제1회로패턴(2a)와 하부면(1b)에 형성된 제2회로패턴(2b)이 전기적으로 물리적으로 연결되도록 이를 연결하는 브릿지와 같은 도통라인(5)을 통홀(4)의 내벽면에 Ag 전도성 페이스트를 인쇄하여 형성하는 단계이다.
이와 같은 본 발명에 따른 양면인쇄회로기판의 제조방법에 있어, 일 실시예로 더욱 구체적으로 설명하기로 하나, 이로 본 발명의 범위가 한정되는 것은 아니다. 폴리이미드필름(1)의 상부면(1a)에 Ag 전도성 페이스트를 약 3~7의 두께로 최소 선폭75, 선간격75로 실크스크린 인쇄법을 이용하여 인쇄 후 약150~200에서 고온 열처리하여 회로패턴으로서 1도 패턴(2a)을 한다. 1도 인쇄면 반대편인하부면(1b)에 동일한 두께 및 패턴간격으로 약 10의 위치정밀도를 유지하여 인쇄 후 1도와 동일한 온도 조건에서 회로패턴으로서 2도 패턴(2b)을 형성한다. 1도 또는 2도 패턴(2a,2b)이 인쇄된 면에 고분자 접착제를 12의 두께로, PET 필름 75 두께로 구성된 보호필름(3)을 이용하여 상온조건에서 5M/min의 속도로 압착한다. 보호필름(3)을 압착한 반대면에 0.2~0.3의 CNC 드릴(Drill)비트를 이용하여 약 80,000~150,000rpm의 속도로 통홀(4)를 형성하였다. 보호필름(3)을 압착한 반대면에 1도 및 2도 패턴(2a,2b)에 사용한 Ag 전도성 페이스트 보다 낮은 점도의 Ag 전도성 페이스트를 사용하여 약 1~3의 두께로 통홀(4)의 내벽을 인쇄하여 도통라인(5)을 형성한다. 다음으로 약80~200의 열처리한 후, 보호 필름(3)을 제거하여 양면 인쇄회로기판을 제조할 수 있다. 여기 수치 범위 및 조건으로 본 발명의 범위가 한정되는 것은 아니다.
한편, 도 3은 본 발명의 다른 실시예에 따른 양면 인쇄회로기판의 제조방법 흐름도이다.
도 3에 따른 양면 인쇄회로기판의 제조방법은, 제1,2 회로패턴(20,30)을 형성하는 단계와, 통홀(40)을 형성하는 단계, 및 통홀(40)의 내주면에 도전성 물질(50)을 형성하는 단계를 포함한다.
본 발명에 따른 인쇄회로기판은 원하는 패턴의 회로를 먼저 형성한다.
상기 제1 회로패턴(20)은 절연층(10)의 상면에 회로를 구성하기 위해서 도전성 물질을 이용하여 패턴화된 회로이다. 본 실시예에서, 상기 제1 회로패턴(20)은 은(Ag), 구리(Cu), 니켈(Ni), 알루미늄(Al) 등 공지된 페이스트를 이용하여 프린팅된다. 물론, 제1 회로패턴(20)은 프린팅 방식으로 형성되는 것으로 한정되지 않는다. 상기 절연층(10)으로 폴리이미드필름 등 공지된 것을 사용한다.
상기 제2 회로패턴(30)은 절연층(10)의 하면에 회로를 구성하기 위해서 도전성 물질을 이용하여 패턴화된 회로이다. 본 실시예에서, 상기 제2 회로패턴(30)은 상기 제1 회로패턴(20)과 마찬가지로 은(Ag), 구리(Cu), 니켈(Ni), 알루미늄(Al) 등 공지된 페이스트를 이용하여 프린팅된다. 물론, 제2 회로패턴(30)도 프린팅 방식으로 형성되는 것으로 한정되지 않는다.
이어서, 통홀(40)을 형성하는 단계가 수행된다. 상기 통홀(40)은 절연층(10)을 상하 방향으로 관통한다. 본 실시예에서, 도2를 참조하면, 상기 제1 회로패턴(20)이 형성될 때 상기 통홀(40)이 형성되는 부위에서 상기 절연층(10)은 외부로 노출된다. 또한 상기 제2 회로패턴(30)이 형성될 때 상기 통홀(40)이 형성되는 부위에서 상기 절연층(10)은 외부로 노출된다.
따라서, 상기 통홀(40)이 형성되는 부위의 상측에 마련된 제1 회로패턴(20)과, 하측에 마련된 제2 회로패턴(30)은 후속하여 형성될 통홀(40)을 고려하여 패터닝된다. 따라서, 실질적으로 절연층(10)을 관통하는 홀을 가공함으로써 통홀(40)이 형성되게 된다.
이어서, 상기 통홀(40)의 내주면에 도전성 물질(50)을 형성하는 단계가 수행된다.
본 실시예에서, 상기 통홀(40)의 내주면은 상술한 은(Ag), 구리(Cu), 니켈(Ni), 알루미늄(Al) 등 공지된 페이스트를 이용하여 프린팅된다. 이와 같은 과정에 의해 상기 제1,2 회로패턴(20,30)이 통홀(40)에 의해 통전되는 인쇄회로기판이 형성된다.
따라서, 본 발명에 따른 양면 인쇄회로기판의 형성 방법은 제1,2 회로패턴(20,30)을 우선적으로 형성하고, 이어서 통홀(40)을 형성하며, 상기 통홀(40)에 도전성 물질(50)을 형성하여 제1,2 회로패턴(20,30)을 통전시키는 과정을 거치므로, 종래 인쇄회로기판이 통홀에 의해 통전되는 회로패턴을 구현하기 위해 복잡한 과정을 거치는 것에 비하여 간소화된 방법에 의해 인쇄회로기판을 구현할 수 있는 효과를 제공하게 된다.
한편, 본 발명 실시예에 따르면, 상기 통홀(40)의 내주면에 도전성 물질(50)을 형성하기 전에 보호필름(60)을 라미네이트하는 공정이 수행될 수 있다.
도3을 참조하면, 제1,2 회로패턴(20,30)을 형성한 후에, 제2 회로패턴(30) 위에 비전도성 보호필름(60)을 라미네이트하는 공정이 수행된다. 본 실시예에서, 상기 보호필름(60)은 폴리에틸렌 테레프타레이트(Polyethylene Terephthalate:PET) 필름이 사용된다. 상기 보호필름(60)은 후속하여 통홀(40)의 내주면에 도전성 물질(50)을 프린팅할 때, 상기 도전성 물질(50)이 제2 회로패턴(30)으로 침투하는 것을 방지하기 위해 마련된다.
즉, 상기 보호필름(60) 없이 통홀(40)의 내주면에 도전성 물질(50)을 프린팅할 때 상기 도전성 물질(50)이 과도한 경우, 제2 회로패턴(30)으로 도전성 물질(50)이 침투하여 인쇄회로기판의 불량의 원인이 될 수 있다. 상기 보호필름(60)은 상기 도전성 물질(50)이 제2 회로패턴(30)으로 번지는 것을 미연에 방지한다.
상기한 바와 같이, 보호필름(60)이 라미네이트 된 후에, 도3에 도시된 바와 같이 통홀(40) 형성 공정 및 통홀(40)에 프린팅 공정을 수행하고, 이어서 상기 보호필름(60)을 제거하는 디라미네이트 공정을 수행한다.
이러한 공정을 거쳐 최종적으로 절연층(10)의 상면 및 하면에 제1,2 회로패턴(20,30)이 형성되고, 상기 제1,2 회로패턴(20,30)은 통홀(40)의 내주면에 형성된 도전성 물질(50)에 의해 통전되게 된다.
또한, 본 실시예에 따르면, 상기 통홀(40)에 프린팅 공정을 수행한 후에 열처리 공정이 수행된다. 상기 통홀(40) 내에 도전성 물질(50)이 프린팅된 후 상기 열처리 공정이 되면서 상기 도전성 물질이 경화되면서 수축된다.
한편, 도4를 참조하면, 상기 제1,2 회로패턴(20,30) 및 상기 통홀(40)의 내주면에 형성된 도전성 물질(50)에 도전성 도금막(70)이 형성될 수 있다.
본 실시예에서, 상기 도금막(70)은 무전해 또는 전해 동도금에 의해 형성되는 구리막일 수 있다. 상기 도금막(70)은 인가 및 소모되는 전류량을 고려하여 그 두께를 적절하게 조절하여 도금될 수 있다.
상기 도금막(70)에 의해 전기전도도가 높이지므로, 상기 제1,2 회로패턴(20,30)은 Seed Layer의 특성을 유지하는 정도로만 형성하는 것이 가능하며, 인가 및 소모되는 전류량이 많을 경우 상기 도금막(70)을 적합한 두께로 형성하여 제조하는 것이 바람직하다.
이처럼, 본 발명 실시예에 따른 양면 인쇄회로기판의 형성방법은, 제1,2 회로패턴(20,30)을 신속하게 형성하고, 제1,2 회로패턴(20,30)을 연결하는 통홀(40)을 형성하며, 상기 통홀(40)의 내주면에 도전성 물질(50)을 프린팅하여 제1,2 회로패턴(20,30)을 통전시킴으로써, 간소화된 공정을 통해 인쇄회로기판의 제1,2 회로패턴(20,30)을 통전시킬 수 있다.
따라서, 공정시간을 단축하여 생산성을 향상시키는 효과를 제공하고, 아울러 종래 복잡한 공정에 의할 때 발생하는 불량률을 간소화된 공정에 의해 획기적으로 낮출 수 있으며, 제품의 품질을 향상시키는 효과를 제공한다.
한편, 도5 내지 도9는 본 발명의 또 다른 실시예에 따른 회로패턴 및 통홀 내 도통라인을 형성하는 정밀 인쇄회로기판 형성방법을 도시한다.
도5를 참조하면, 절연층(10)의 상면 및 하면에 제1,2 회로패턴(20,30)을 형성하고, 제1,2 회로패턴(20,30) 위에 제1,2 보호필름(61,62)을 라미네이트 한 후에 통홀(40)을 가공한다.
이어서, 상기 통홀(40)에 도전성 물질(50)을 프린팅하는 공정을 수행하고, 상기 제1,2 보호필름(61,62)을 디라미네이트하는 공정을 수행한다. 본 실시예에서, 상기 통홀(40)에 도전성 물질(50)을 프린팅 한 후에 열처리 공정을 수행하며, 통홀(40) 내에 프린팅된 도전성 물질(50)은 열처리시 경화되어 수축된다.
도6는 상기 도5의 실시예에 더하여, 상기 제1,2 회로패턴(20,30) 및 통홀(40) 내에 형성된 도전성 물질(50)에 도전성 도금막(70)이 더 부가될 수 있음을 도시한 것이다. 도금막(70)의 작용 및 효과는 상술한 바, 구체적인 설명은 생략한다.
도7을 참조하면, 절연층(10)의 상면 및 하면에 제1,2 회로패턴(20,30)을 형성하고, 이어서 통홀(40)을 형성한다. 이어서, 제2 회로패턴(30) 위에 비전도성 보호필름(60)을 라미네이트하고, 통홀(40)의 내부에 도전성 물질(50)을 프린팅 한 후에 상기 보호필름(60)의 디라미네이트 공정을 수행한다.
본 실시예에서, 통홀(40)의 내부에 도전성 물질(50)을 프린팅 한 후 열처리 공정을 수행하며, 열처리시 상기 도전성 물질(50)을 경화되면서 수축된다.
도8은 상기 도6의 실시예에 더하여, 상기 제1,2 회로패턴(20,30) 및 통홀(40) 내에 형성된 도전성 물질(50)에 도전성 도금막(70)이 더 부가될 수 있음을 도시한 것이다. 도금막(70)의 작용 및 효과는 상술한 바, 구체적인 설명은 생략한다.
도9을 참조하면, 절연층(10)의 상면 및 하면에 제1,2 회로패턴(20,30)을 형성하고, 제2 회로패턴(30) 위에 비전도성 제1 보호필름(61)을 라미네이트한다. 이어서, 통홀(40)을 형성하고, 상기 통홀(40)이 형성된 절연층(10)을 뒤집어 제1 회로패턴(20) 위에 제2 보호필름(62)을 라미네이트한다.
이어서, 통홀(40) 내에 도전성 물질(50)을 채우는 프린팅 공정을 수행한 후에, 제1,2 보호필름(61,62)을 디라미네이트하는 공정을 수행한다. 본 실시예에서, 통홀(40)의 내부에 도전성 물질(50)을 프린팅 한 후 열처리 공정을 수행하며, 열처리시 상기 도전성 물질(50)을 경화되면서 수축된다.
도10는 상기 도8의 실시예에 더하여, 상기 제1,2 회로패턴(20,30) 및 통홀(40) 내에 형성된 도전성 물질(50)에 도전성 도금막(70)이 더 부가될 수 있음을 도시한 것이다. 도금막(70)의 작용 및 효과는 상술한 바, 구체적인 설명은 생략한다.
상기한 도5 내지 도10의 실시예에 따른 정밀 인쇄회로기판 형성방법의 작용 및 효과는 도4의 실시예와 유사하므로, 그 구체적인 설명은 생략한다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 범주를 벗어나지 않는 범위 내에서 여러 가지 많은 변형이 제공될 수 있다.
[부호의 설명]
10... 절연층
20... 제1 회로패턴
30... 제2 회로패턴
40... 통홀
50... 도전성 물질
60... 보호필름
61... 제1 보호필름
62... 제2 보호필름
70... 도금막

Claims (10)

  1. 절연층(10)의 상면에 회로를 구성하는 도전성 제1 회로패턴(20)을 형성하는 단계;
    상기 절연층(10)의 하면에 회로를 구성하는 도전성 제2 회로패턴(30)을 형성하는 단계;
    상기 절연층(10)을 상하방향으로 관통하는 통홀(40)을 형성하는 단계;
    상기 제1 회로패턴(20)과 상기 제2 회로패턴(30)이 상기 통홀(40)에 의해 도통되도록, 상기 통홀(40)의 내주면에 도전성 물질(50)을 형성하는 단계를 포함하는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
  2. 제1항에 있어서,
    상기 제2 회로패턴(30) 위에 비전도성 보호필름(60)이 라미네이트된 후 상기 통홀(40)이 형성되며, 상기 통홀(40)의 내주면에 상기 도전성 물질(50)이 형성된 후에 상기 보호필름(60)은 디라미네이트되는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
  3. 제1항에 있어서,
    상기 제1 회로패턴(20)이 형성될 때 상기 통홀(40)이 형성되는 부위에서 상기 절연층(10)은 외부로 노출되며, 상기 제2 회로패턴(30)이 형성될 때 상기 통홀(40)이 형성되는 부위에서 상기 절연층(10)은 외부로 노출되는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
  4. 제1항에 있어서,
    상기 제1,2 회로패턴(20,30)은 패턴화되어 프린팅되고,
    상기 통홀(40)의 내주면은 상기 도전성 물질(50)이 프린팅되는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
  5. 제1항에 있어서,
    상기 제1,2 회로패턴(20,30) 및 상기 통홀(40)의 내주면에 형성된 도전성 물질(50)에 도금막(70)을 형성하는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
  6. 제1항에 있어서,
    상기 통홀(40)의 내주면에 도전성 물질(50)을 형성한 후에 열처리가 수행되는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
  7. 제1항에 있어서,
    상기 제1,2 회로패턴(20,30)의 상면에 각각 비전도성 제1,2 보호필름(61,62)을 라미네이트 한 후에 상기 통홀(40)을 형성하고, 상기 통홀(40)의 내주면에 상기 도전성 물질(50)이 형성된 후에 상기 제1,2 보호필름(61,62)은 디라미네이트되는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
  8. 제7항에 있어서,
    상기 통홀(40)의 내주면에 도전성 물질(50)을 형성한 후에 열처리가 수행되는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
  9. 제1항에 있어서,
    상기 통홀(40)을 형성한 후 상기 제2 회로패턴(30) 위에 비전도성 보호필름(60)을 라미네이트하고, 상기 통홀(40)의 내주면에 상기 도전성 물질(50)을 형성한 후에 상기 보호필름(60)을 디라미네이트하는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
  10. 제1항에 있어서,
    상기 제2 회로패턴(30) 위에 비전도성 제1 보호필름을 라미네이트하고, 상기 통홀(40)을 형성하며, 상기 제1 회로패턴(20) 위에 제2 보호필름을 라미네이트 한 후에 상기 통홀(40)의 내주면에 상기 도전성 물질(50)을 형성하고, 상기 보호필름(60)을 디라미네이트하는 것을 특징으로 하는 양면 인쇄회로기판의 제조방법.
PCT/KR2013/000064 2012-01-04 2013-01-04 양면 인쇄회로기판의 제조방법 WO2013103265A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380012607.5A CN104160794B (zh) 2012-01-04 2013-01-04 双面印刷电路板的制造方法
US14/370,644 US10080299B2 (en) 2012-01-04 2013-01-04 Manufacturing method of double sided printed circuit board
JP2014551192A JP6069355B2 (ja) 2012-01-04 2013-01-04 両面プリント回路基板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0001205 2012-01-04
KR20120001205 2012-01-04
KR10-2013-0001252 2013-01-04
KR20130001252A KR101505049B1 (ko) 2012-01-04 2013-01-04 양면 인쇄회로기판의 제조방법

Publications (1)

Publication Number Publication Date
WO2013103265A1 true WO2013103265A1 (ko) 2013-07-11

Family

ID=48745295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000064 WO2013103265A1 (ko) 2012-01-04 2013-01-04 양면 인쇄회로기판의 제조방법

Country Status (1)

Country Link
WO (1) WO2013103265A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870001193B1 (ko) * 1982-04-07 1987-06-16 엔도오 이사오 인쇄 배선판의 제조방법
JP2005123320A (ja) * 2003-10-15 2005-05-12 Sharp Corp 多層プリント配線板の製造方法及びその製造装置
JP2007266323A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd 電子部品内蔵基板、電子部品内蔵基板の製造方法、及び電子部品の製造方法
KR20100005816A (ko) * 2008-07-08 2010-01-18 삼성전기주식회사 인쇄회로기판 제조방법
KR20100029431A (ko) * 2008-09-08 2010-03-17 삼성전기주식회사 양면 인쇄회로기판 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870001193B1 (ko) * 1982-04-07 1987-06-16 엔도오 이사오 인쇄 배선판의 제조방법
JP2005123320A (ja) * 2003-10-15 2005-05-12 Sharp Corp 多層プリント配線板の製造方法及びその製造装置
JP2007266323A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd 電子部品内蔵基板、電子部品内蔵基板の製造方法、及び電子部品の製造方法
KR20100005816A (ko) * 2008-07-08 2010-01-18 삼성전기주식회사 인쇄회로기판 제조방법
KR20100029431A (ko) * 2008-09-08 2010-03-17 삼성전기주식회사 양면 인쇄회로기판 제조방법

Similar Documents

Publication Publication Date Title
CN102823335B (zh) 双面印刷电路板的制造方法
KR100983219B1 (ko) 직접인쇄방식에 의한 인쇄회로기판의 제조방법 및 이에 의하여 제조된 인쇄회로기판
CN101522408B (zh) 覆金属层压板的制造方法
US20090214839A1 (en) Process for preparing light transmissive electromagnetic wave shielding material, light transmissive electromagnetic wave shielding material and display filter
WO2016163695A1 (ko) 전도성 구리 잉크 및 광소결을 이용한 다층인쇄 회로기판의 제조방법 및 이로부터 제조된 다층인쇄 회로기판
KR101505049B1 (ko) 양면 인쇄회로기판의 제조방법
JP2010135752A5 (ko)
CN100473258C (zh) 电子零部件及其制造方法
WO2015178696A1 (ko) 전도성 조성물
KR101518394B1 (ko) 양면 인쇄회로기판의 제조방법
CN105379436B (zh) 印刷电路板的制造方法及印刷电路板
WO2019031706A1 (ko) 광 흡수 계수가 우수한 전도성 mod 잉크 조성물 및 이를 이용한 금속 박막 형성방법
WO2013103265A1 (ko) 양면 인쇄회로기판의 제조방법
JP2019085621A (ja) 高導電率卑金属厚膜導体ペーストの調製方法
WO2014061949A1 (ko) 도금층을 구비한 도전성 페이스트 인쇄회로기판 및 이의 제조방법
CN107113970A (zh) 印刷配线板用基板、印刷配线板和制作印刷配线板用基板的方法
US20180103546A1 (en) Method for Reducing Thin Films on Low Temperature Substrates
KR20140099844A (ko) 양면 인쇄회로기판의 제조방법
WO2014058265A1 (ko) 회로패턴 및 통홀 내 도통라인을 인쇄하여 형성하는 양면인쇄회로기판 형성방법
KR20100080589A (ko) 직접인쇄방법에 의하여 회로가 형성되는 인쇄회로기판
GB2186436A (en) Making printed circuits
TWI514944B (zh) 雙層印刷電路板及其製備方法
KR20140053800A (ko) 내열기판의 고온열처리를 통한 연성인쇄회로기판 제조방법 및 그 연성회로기판
KR20140051780A (ko) 내열기판의 고온열처리를 통한 연성인쇄회로기판 제조방법 및 그 연성회로기판
WO2019225340A1 (ja) 導体の製造方法、配線基板の製造方法及び導体形成用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13733570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14370644

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014551192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13733570

Country of ref document: EP

Kind code of ref document: A1